# A Study of Toxic Emissions from a Coal-Fired Power Plant Utilizing an ESP While Demonstrating the ICCT CT-121 FGD Project

Contract No. DE-AC22-93PC93253 DCN 93-643-004-03

Final Report, 16 June 1994

Prepared by Radian Corporation 8501 North Mopac Boulevard P.O. Box 201088 Austin, Texas 78720-1088

Prepared for U.S. Department of Energy Pittsburgh Energy Technology Center P.O. Box 10940 Pittsburgh, Pennsylvania 15236

[U.S. DOE patent clearance is <u>not</u> required prior to the publication of this document.]

# **CONTENTS**

|     | ·                                          |        |
|-----|--------------------------------------------|--------|
| Sec | ction                                      | Page   |
|     | Executive Summary                          | ES-1   |
| 1   | Introduction                               | . 1-1  |
|     | Background                                 | . 1-1  |
|     | Objectives                                 | . 1-1  |
|     | Auditing                                   | . 1-2  |
|     | Project Organization                       | . 1-5  |
|     | Report Organization                        |        |
| 2   | Site Description                           | 2-1    |
| _   | Power Plant Configuration                  |        |
|     | Process Description: Major Process Streams |        |
|     | CT-121 Wet FGD System                      |        |
|     | Ash and Cooling System                     |        |
|     | ESP Design                                 |        |
|     | Process Description: Sampling Locations    |        |
|     | Flue Gas Sample Streams                    |        |
|     | Solid Sample Streams                       |        |
|     | Liquid Sample Streams                      |        |
|     | Plant Operating Conditions                 |        |
|     | Problems                                   |        |
|     | Deviations from Sampling Plan              |        |
|     | References                                 | 2 10   |
|     | References                                 | . 2-17 |
| 3   | Sample Collection                          |        |
|     | Sampling Schedule                          |        |
|     | Samples Collected                          |        |
|     | Gas Samples                                |        |
|     | Liquid Samples                             |        |
|     | Solid Samples                              |        |
|     | Process Stream Flow Rates                  |        |
|     | References                                 | 3-11   |

| 4 | Sample Preparation and Analysis Methods                             | 4-1  |
|---|---------------------------------------------------------------------|------|
| 5 | Analytical Results                                                  | 5-1  |
|   | Gases                                                               | 5-1  |
|   | Flue Gas Particle Size Distribution Results                         | 5-12 |
|   | ESP Hopper Particle Size Distribution Results                       | 5-12 |
|   | FGD System                                                          |      |
|   | Solids                                                              |      |
|   | Liquids                                                             |      |
| 6 | Data Evaluation and Analysis                                        | 6-1  |
| U | Evaluation of Sampling Techniques                                   |      |
|   | Evaluation of Analytical Techniques                                 |      |
|   | Semivolatile Organics                                               |      |
|   |                                                                     |      |
|   | Volatile Organics                                                   |      |
|   | Aldehydes                                                           |      |
|   | Metals                                                              |      |
|   | Anions                                                              |      |
|   | Cyanide, Ammonia, and Phosphate                                     |      |
|   | Evaluation of Process Operation                                     | 6-5  |
|   | Data Analysis: Mass Balances, Removal Efficiencies, and Emission    |      |
|   | Factors                                                             | 6-6  |
|   | Mass Balances                                                       | 6-13 |
|   | Emission Factors                                                    | 6-19 |
|   | Removal Efficiencies                                                | 6-19 |
|   | Organic Compound Results                                            |      |
| 7 | Comparison of Vapor and Particulate Composition                     | 7-1  |
| 8 | Distribution of HAPs As a Function of Particle Size in the Flue Gas |      |
| • | and the Particle Size Distribution of the ESP                       | 8-1  |
|   | Collection and Analytical Methods                                   |      |
|   | Particle Size Distribution and Fractional Efficiency                |      |
|   | Predicted ESP Performance                                           |      |
|   | Metals Removal Across ESP                                           |      |
|   |                                                                     |      |
|   | Four Metals with Higher Penetration than the Average                |      |
|   | Hopper Distribution                                                 |      |
|   | References                                                          | 8-22 |
| 9 | Mercury Methods Comparison and Speciation Determinations            |      |
|   | Sample Collection and Analysis                                      |      |
|   | Methods and Conditions                                              |      |
|   | Samples Collected                                                   |      |
|   | Data Analysis                                                       |      |
|   | References                                                          | 9-7  |

| Introduc<br>Sample (                        | 1t Chromium Determinations         10-1           tion         10-1           Collection and Analysis         10-1                                                                                                          |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                             | alysis                                                                                                                                                                                                                      |  |
| Sample ( Samp Samp Samp Data An ESP : Stack | Tations of Toxics on Particle Surfaces  Collection and Analysis  Alle Collection  Alle Preparation and Analysis  Alle Preparation and Analysis  Alle Style Ash  Cas Particulate Matter  11-1  11-2  11-6  11-6  11-9  11-12 |  |
| Appendix A:                                 | Quality Assurance Audits                                                                                                                                                                                                    |  |
| Appendix B:                                 | Sampling Protocol B-1                                                                                                                                                                                                       |  |
| Appendix C:                                 | Sample Calculations                                                                                                                                                                                                         |  |
| Appendix D:                                 | Quality Assurance/Quality Control D-1                                                                                                                                                                                       |  |
| Appendix E:                                 | Analytical Protocol E-1                                                                                                                                                                                                     |  |
| Appendix F:                                 | Error Propagation and Uncertainty Calculations F-1                                                                                                                                                                          |  |
| Appendix G:                                 | Treatment of Nondetects, Values Outside of the Calibration Range, and Blanks                                                                                                                                                |  |
| Appendix H:                                 | Detailed Analytical Results                                                                                                                                                                                                 |  |
| Appendix I:                                 | Development of Mass Balance Equations and Example                                                                                                                                                                           |  |

# LIST OF ILLUSTRATIONS

| Figur | Figure Page                                                                       |      |
|-------|-----------------------------------------------------------------------------------|------|
| 1-1   | Project Organization                                                              | 1-6  |
| 2-1   | Simplified Process Flow Diagram Illustrating Sampling Locations and Flue Gas Flow | 2-2  |
| 2-2   | Plan View Plant Yates ESP Unit #1                                                 | 2-6  |
| 2-3   | Unit 1 Load                                                                       | 2-12 |
| 2-4   | Furnace Gas Oxygen                                                                | 2-13 |
| 2-5   | JBR Pressure Drop                                                                 | 2-14 |
| 2-6   | JBR pH                                                                            | 2-15 |
| 2-7   | Stack SO <sub>2</sub>                                                             | 2-16 |
| 2-8   | Stack NO <sub>x</sub>                                                             | 2-17 |
| 2-9   | Stack CO                                                                          | 2-18 |
| 3-1   | Sample Collection Schedule for June 21-24, 1993                                   | 3-2  |
| 3-2   | Sample Collection Schedule for June 25-28, 1993                                   | 3-3  |
| 4-1   | Gas Particulate Sample Preparation and Analysis Plan for Metals                   | 4-2  |
| 4-2   | Flue Gas Impinger Sample Preparation and Analysis Plan for Metals                 | 4-3  |
| 4-3   | Flue Gas Impinger Sample Preparation and Analysis Plan for Mercury                | 4-4  |
| 4-4   | Gas Particulate Sample Preparation and Analysis Plan for Anions                   | 4-5  |

| 4-5  | Flue Gas Impinger Sample Preparation and Analysis Plan for Anions                | 4-6  |
|------|----------------------------------------------------------------------------------|------|
| 4-6  | Flue Gas Impinger Sample Preparation and Analysis Plan for Ammonia and Cyanide   | 4-7  |
| 4-7  | Flue Gas Impinger Sample Preparation and Analysis Plan for Formaldehyde          | 4-8  |
| 4-8  | VOST Sorbent Sample Preparation and Analysis Plan for Volatile Organic Compounds | 4-9  |
| 4-9  | Flue Gas Sample Preparation and Analysis Plan for Semivolatile Organic Compounds | 4-10 |
| 4-10 | Flue Gas Sample Preparation and Analysis Plan for Dioxins and Furans             | 4-11 |
| 4-11 | Gas Particulate Sample Preparation and Analysis Plan for Extractable Metals      | 4-12 |
| 4-12 | Size-Fractionated Particulate Sample Preparation and Analysis Plan for Metals    | 4-13 |
| 4-13 | Liquid Sample Preparation and Analysis Plan                                      | 4-14 |
| 4-14 | Coal Sample Preparation and Analysis Plan                                        | 4-15 |
| 4-15 | Ash Sample Preparation and Analysis Plan                                         | 4-17 |
| 4-16 | Limestone and FGD Solids Sample Preparation and Analysis Plan                    | 4-18 |
| 6-1  | Mass Balance Boundaries                                                          | 6-16 |
| 8-1  | Cumulative Particle Size Distribution, Yates ESP Inlet                           | 8-3  |
| 8-2  | Differential Particle Size Distribution, Yates ESP Inlet                         | 8-4  |
| 8-3  | Cumulative Particle Size Distribution, Yates ESP Outlet                          | 8-5  |
| 8-4  | Outlet Differential Particle Size Distribution                                   | 8-6  |
| 8-5  | Particle Resistivity                                                             | 8-9  |
| 8-6  | Voltage Current Curves                                                           | 8-10 |
| 8-7  | Opacity                                                                          | 8-12 |
| 8-8  | ESP Fractional Penetration                                                       | 8-13 |

| 8-9  | Distribution of Metals According to Particle Size at the ESP Inlet                 | 8-14 |
|------|------------------------------------------------------------------------------------|------|
| 8-10 | Distribution of Metals According to Particle Size at the ESP Outlet                | 8-17 |
| 8-11 | Total Metals Collection in Hopper                                                  | 8-19 |
| 8-12 | Elemental Relationship Between Outlet/Inlet Enrichment and Fine/ Coarse Enrichment | 8-20 |
| 11-1 | Gas Particulate Sample Preparation and Analysis Plan for Extractable Metals        | 11-3 |

# **LIST OF TABLES**

| Table |                                                    | Pa  | ge   |
|-------|----------------------------------------------------|-----|------|
| 1-1   | Target Analytes                                    | •   | 1-3  |
| 1-2   | Report Organization                                | •   | 1-7  |
| 2-1   | Summary of Design Data on the Yates Unit #1 ESP    | . : | 2-5  |
| 2-2   | ESP Rapping Schedule, Plant Yates Unit #1          | . : | 2-7  |
| 2-3   | Summary of Process Monitoring Data                 | . : | 2-11 |
| 3-1   | Gaseous Sampling Summary                           |     | 3-5  |
| 3-2   | Number and Type of Gas Sample Analyses Plant Yates |     | 3-6  |
| 3-3   | Liquids Sampling Summary                           |     | 3-7  |
| 3-4   | Liquid Stream QA/QC Samples                        |     | 3-8  |
| 3-5   | Solids Sampling Summary                            |     | 3-9  |
| 3-6   | Solid Stream QA/QC Samples                         |     | 3-10 |
| 3-7   | Process Flow Rates During Phase II of Testing      |     | 3-12 |
| 3-8   | Flow Rate Calculations                             |     | 3-13 |
| 4-1   | Summary of Coal Analytical Methods                 |     | 4-16 |
| 5-1   | Filter Substrate Data Comparison                   |     | 5-2  |
| 5-2   | Gas Process Stream Data Summary                    |     | 5-3  |
| 5-3   | Flue Gas Particle Size Distribution                |     | 5-11 |

| 5-4  | ESP Fields 1 and 2 Hopper Composite Catches                 | 5-12 |
|------|-------------------------------------------------------------|------|
| 5-5  | FGD System Summary                                          | 5-14 |
| 5-6  | Coal Data                                                   | 5-15 |
| 5-7  | Boiler Process Solids Data                                  | 5-17 |
| 5-8  | ESP Hopper Ash                                              | 5-19 |
| 5-9  | FGD Process Solids Data                                     | 5-21 |
| 5-10 | Liquid Ash Sluice System Data Summary                       | 5-23 |
| 5-11 | Liquid FGD Process Stream Data Summary                      | 5-25 |
| 5-12 | Liquid Ancillary Stream Data Summary                        | 5-27 |
| 6-1  | Daily Summary                                               | 6-7  |
| 6-2  | Mass Balance Closures                                       | 6-14 |
| 6-3  | Emission Factors                                            | 6-20 |
| 6-4  | Removal Efficiencies (Includes Particulate and Vapor Phase) | 6-22 |
| 7-1  | Vapor and Particulate-Phase Distribution at ESP Inlet       | 7-2  |
| 7-2  | Vapor and Particulate-Phase Distribution at ESP Outlet      | 7-3  |
| 7-3  | Vapor and Particulate-Phase Distribution at Stack           | 7-4  |
| 7-4  | Stack Field Blank Versus Vapor Concentration                | 7-6  |
| 8-1  | Measured Particle Size and Fractional Efficiency            | 8-7  |
| 8-2  | Comparison of Predicted and Measured ESP Performance        | 8-15 |
| 8-3  | ESP Particulate-Phase Metals Collection Efficiency          | 8-16 |
| 8-4  | Enrichment of Streams in Inorganic Elements                 | 8-21 |
| 9-1  | Mercury Concentrations in Flue Gas                          | 9-4  |
| 9-2  | Summary of Blank Results                                    | 9-5  |
| 9-3  | Summary of Spike and Audit Sample Recoveries                | 9-6  |

# **GLOSSARY**

| acfm        | Actual Cubic Foot (Feet) per Minute                                                          |
|-------------|----------------------------------------------------------------------------------------------|
| AAS         | Atomic Absorption Spectrophotometry                                                          |
| ADA         | ADA Technologies, Inc.                                                                       |
| AP-42       | Publication number of the principal emission factor document published by EPA.               |
| APH         | Air Preheater                                                                                |
| ASTM        | American Society for Testing and Materials                                                   |
| В           | Data Flag (value has been blank corrected)                                                   |
| Btu         | British Thermal Unit                                                                         |
| С           | Data Flag (with blank correction, value was below detection limit, detection limit reported) |
| CE          | Combustion-Engineering, Inc.                                                                 |
| CEM         | Continuous Emission Monitor                                                                  |
| CEMS        | Continuous Emission Monitoring System                                                        |
| Chicago OPC | Chicago Office of Patent Counsel (U.S. DOE)                                                  |
| CI          | Confidence Interval                                                                          |
| <b>Ģ</b>    | Pitot Tube Coefficient                                                                       |
| CT-121      | Chiyoda Thoroughbred-121 (a second-generation flue gas desulfurization process)              |
| CT&E        | Commercial Testing & Engineering                                                             |
| CVAA        | Cold Vapor Atomic Absorption                                                                 |
| CVAFS       | Cold Vapor Atomic Fluorescence Spectrometry                                                  |
| DAS         | Data Acquisition System                                                                      |
| ΔΡ          | "Delta P"; Pressure Drop; Pressure Difference (measured in inches of water column)           |
| DL          | Detection Limit                                                                              |

Glossary

DNPH Dinitrophenylhydrazine

DQO Data Quality Objective

dscfm Dry Standard Cubic Foot (Feet) per Minute

E Data Flag (analyte concentration exceeded calibration range)

EPA U.S. Environmental Protection Agency

EPRI Electric Power Research Institute

ESP Electrostatic Precipitator

FGD Flue Gas Desulfurization

f/sec Foot (Feet) per Second

g Gram(s)

GC/MS Gas Chromatography/Mass Spectrometry

GDMS Glow Discharge Mass Spectrometry

g-mole Gram-Mole (weight of a mole of a substance expressed in grams)

GPC Georgia Power Company

HAP Hazardous Air Pollutant

HHV Higher Heating Value

HPLC High Performance Liquid Chromatography

IC Ion Chromatography

ICCT Innovative Clean Coal Technology (a U.S. DOE program)

ICP-AES Inductively Coupled Plasma-Atomic Emission Spectroscopy

ICP-MS Inductively Coupled Plasma-Mass Spectrometry

INAA Instrumental Neutron Activation Analysis

J Data Flag (below the lower detection limit)

JBR Jet Bubbling Reactor (the absorber design used in the CT-121

process)

kg Kilogram(s)

L Liter

m Meter

mL Milliliter

MM5 Modified Method 5

 $\mu g$  Microgram(s)

μL Microliter

μm Micrometer; 1 x 10<sup>6</sup> meter

NA Not Applicable

ND Not Detected

Nm<sup>3</sup> Normal Cubic Meter(s): 1m<sup>3</sup> @ 0°C and 1.0 atm (equivalent to

37.44 ft<sup>3</sup> @ 68°F and 1.0 atm)

Orsat Method of Fixed-Gas (O<sub>2</sub>, CO<sub>2</sub>, CO) Analysis

PAH Polycyclic Aromatic Hydrocarbon

PCDD Polychlorinated Dibenzodioxin

PCDF Polychlorinated Dibenzofuran

PNR Probe and Nozzle Rinse

POM Polycyclic Organic Matter

RPD Relative Percent Difference

PSD Particle Size Distribution

RSF Relative Sensitivity Factor (used in mass spectrometry)

RTI Research Triangle Institute

scf Standard Cubic Foot (feet): 1 ft<sup>3</sup> @ 68°F and 1.0 atm (equivalent

to 0.02671 m<sup>3</sup> @ 0° C and 1.0 atm)

scfm Standard Cubic Foot (Feet) per Minute

SCS Southern Company Services, Inc.

SIE Specific Ion Electrode

SW-846 Publication number of "Test Methods for Evaluating Solid Waste"

TCLP Toxicity Characteristic Leaching Procedure

Tenax An organic resin used for sample collection

UV-Vis Ultraviolet-Visible

VOC Volatile Organic Compound; Volatile Organic Chemical

VOST Volatile Organic Sampling Train

# **EXECUTIVE SUMMARY**

The U.S. Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. This program responds to the Clean Air Act Amendments of 1990, which require the U.S. Environmental Protection Agency (EPA) to evaluate emissions of hazardous air pollutants (HAPs) from electric utility power plants for potential health risks. The resulting data will be furnished to EPA for emissions factor and health risk determinations.

The assessment of emissions involves the collection and analysis of samples from the major input, process, and output streams of each of the eight power plants for selected hazardous pollutants identified in Title III of the Clean Air Act. Additional goals are to determine the removal efficiencies of pollution control subsystems for these selected pollutants and the concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances are being performed for selected pollutants around the entire power plant and several subsystems to identify the fate of hazardous substances in each utility system.

Radian Corporation was selected to perform a toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The site selected is Plant Yates Unit No. 1 of Georgia Power Company, which includes a Chiyoda Thoroughbred-121 demonstration project.

# Site Description

Plant Yates Unit No. 1 is a bituminous coal-fired steam electricity-generating unit with a net generating capacity of 100 megawatts. Located in Newnan, Georgia, the station is owned and operated by Georgia Power Company. The station uses a tangentially fired CE boiler that burns a 2.5%-sulfur blend of Illinois No. 5 and Illinois No. 6 bituminous coals. It uses an electrostatic precipitator to control particulate matter, and the Chiyoda Thoroughbred-121 process controls sulfur dioxide emissions from the entire flue gas stream.

## **Process Description**

The Chiyoda Thoroughbred-121 is a second-generation FGD process employing a unique absorber design, called a jet bubbling reactor, to combine conventional SO<sub>2</sub> absorption, neutralization, sulfite oxidation, and gypsum crystallization in one reaction vessel. The process is designed to operate in a pH range of 3 to 5, where the driving force for limestone dissolution is high, resulting in nearly complete reagent utilization. Oxidation of sulfite to sulfate is also promoted at the lower pH because of the increased solubility of innate

oxidation catalysts such as iron. Because all the absorbed SO<sub>2</sub> is oxidized, there is sufficient surface area for gypsum crystal growth to prevent the slurry from becoming significantly supersaturated with respect to calcium sulfate. This significantly reduces the potential for gypsum scaling.

# Sampling Locations

Three flue gas stream locations were identified for testing: the ESP inlet, the ESP outlet (FGD inlet), and the stack. The solid streams sampled were raw coal, pulverized feed coal, pulverizer rejects, individual ESP hopper ash, and raw limestone. Samples collected as slurried or sluiced streams include the bottom ash, the combined ESP hopper ash, limestone, and FGD slurry solids. The following liquid streams were sampled: ash pond water, gypsum pond water, ash sluice water (from the bottom ash and fly ash), FGD slurry blowdown filtrate, limestone slurry filtrate, coal pile run-off, and cooling water at the condenser inlet.

# Sample Collection

Radian's approach to meeting the test objectives utilized established sampling methods (where possible) and a sampling strategy consistent with that of the EPRI-sponsored Field Chemical Emissions Monitoring (FCEM) program.<sup>1</sup> Samples were collected with the boiler operating within 10% of full load, at steady-state conditions, and in triplicate over two periods of three days each: June 21-23 and June 25-27, 1993.

#### **Detection Limits**

Detection limits for the gaseous phase target metals of interest are presented in Table ES-1. These numbers were derived from instrument method detection limits, the volume of gas sampled, and the amount of solid sample that was analyzed. Data are presented for detection limits derived from gas samples collected from the stack. This location was chosen to illustrate typical detection limits, as it represents the highest level of particulate detection limits, due to the low particulate loading at this location. Loading at the stack averaged 0.0145 g/Nm³, and the numbers presented in the table represent the analysis of approximately 35 mg of particulate collected from a nominal 3 m³ sample size.

# **Quality Assurance and Quality Control**

During sample collection, quality assurance audits were conducted by Radian's internal QA auditor and by Research Triangle Institute, under contract with EPA. Radian's auditor also conducted a performance evaluation audit by submitting "double-blind" (identity and composition unknown) samples to the analytical laboratories. Quality control procedures involved the evaluation of results for field and laboratory blank samples, duplicate field samples, matrix-spiked and surrogate-spiked samples, and laboratory control samples.

Overall, QA/QC data associated with this program indicate that measurement data are acceptable and defensible. The QA/QC data indicate that the quality control mechanisms

Table ES-1
Detection Limits for Gaseous Phase Target Metals

Detection Limits, µg/Nm<sup>3</sup>

|            |         | Detection Da | με/11111 |
|------------|---------|--------------|----------|
| Specie     | Method  | Vapor        | Solids   |
| Antimony   | ICP-MS  | 0.004        | 0.0008   |
| Arsenic    | GF-AAS  | 0.2          | 0.04     |
| Barium     | ICP-AES | 0.16         | 0.09     |
| Beryllium  | ICP-AES | 0.17         | 0.03     |
| Boron      | ICP-AES | 4.6          | NA       |
| Cadmium    | GF-AAS  | 0.07         | 0.17     |
| Chromium   | ICP-AES | 0.76         | 0.44     |
| Cobalt     | ICP-AES | 1.0          | 0.59     |
| Copper     | ICP-AES | 1.2          | 0.44     |
| Lead       | GF-AAS  | 0.25         | 0.04     |
| Manganese  | ICP-AES | 0.12         | 0.46     |
| Mercury    | CV-AAS  | 0.13         | 0.01     |
| Molybdenum | ICP-AES | 1.4          | 0.15     |
| Nickel     | ICP-AES | 3.0          | 1.0      |
| Selenium   | GF-AAS  | 0.26         | 0.12     |
| Vanadium   | ICP-AES | 0.72         | 0.66     |
|            |         |              |          |

NA = Not analyzed, insufficient sample size.

were effective in ensuring measurement data reliability within the expected limits of sampling and analytical error.

# **Plant Operating Conditions**

During sample collection, operating conditions were continuously monitored using a computerized data acquisition system which logged process information as 15-minute averages. In addition, boiler operating data were logged hourly by control room operators. Overall, all processes were very stable, and the key operating parameters were within the targeted range during the entire test period.

Three continuous emission monitors were operated during the test period, providing data for sulfur dioxide, nitrogen oxides, and carbon monoxide. ESP characteristics were monitored by ADA Technologies, Inc.

# **Analytical Results**

Samples were analyzed for trace elements, minor and major elements, volatile organic compounds, and semivolatile organic compounds. Analytical results have been tabulated in detail with 95% confidence intervals and detection limit ratios.

Procedures were provided by DOE for results below the detection limit, values outside the calibration range, and blanks. In the detailed data tabulations, some data have been flagged; for example, some background contamination was encountered.

# Data Analysis: Mass Balances, Removal Efficiencies, and Emission Factors

Emission factors, removal efficiencies, and other results rely on measurement data that are near the limit of detection or below it for many of the substances of interest. For that reason, uncertainty analyses and the calculation of confidence intervals were performed as part of this program.

Following are observations as a result of the data analysis:

- Material balances were calculated for 27 elements. Sixty-percent of these met the target closure objectives of 70-130% for balance around the plant. Eight-five percent met a closure criteria of 50-150 percent.
- Removal efficiencies for non-volatile particulate metals averaged greater than 98% across the ESP. The JBR was also effective in further reducing the emission of several metals, due primarily to its effectiveness as a particulate control device.
- Emission factors have been calculated for the target trace elements and are presented in Table ES-2. Thirteen of these elements have emission rates of less than 10 pounds per billion Btu of coal.

Table ES-2 Emission Factors

|                       | lb/10 12 Btu | 95% CI |
|-----------------------|--------------|--------|
| Anions                |              |        |
| Chloride              | 742          | 647    |
| Fluoride              | 122          | 67     |
| Selected Elements *   |              |        |
| Antimony              | 0.06         | 0.01   |
| Arsenic               | 1.2          | 0.2    |
| Barium                | 2.8          | 9.9    |
| Beryllium             | 0.1          | 0.1    |
| Cadmium               | 0.6          | 2.1    |
| Chromium              | 5.3          | 49.5   |
| Cobalt                | 0.7          | 0.8    |
| Copper                | 2.0          | 2.3    |
| Lead                  | 0.6          | 0.6    |
| Manganese             | 7.2          | 48     |
| Mercury               | 3.0          | 0.3    |
| Molybdenum            | 1.5          | 2.6    |
| Nickel                | 40.1         | 435    |
| Selenium              | 26.5         | 58     |
| Vanadium              | 2.1          | 0.5    |
| Aldehydes             |              |        |
| Acetaldehyde          | 8.6          | 9.2    |
| Formaldehyde          | 24           | 36     |
| Volatile Organics b,c |              |        |
| Benzene               | 1.3          | 0.3    |
| Carbon Disulfide      | 2.2          | 1.2    |
| Toluene               | 2.0          | 1.0    |

Table ES-2 (Continued)

|                           | lb/10 12 Btu | 95% CI |
|---------------------------|--------------|--------|
| Semivolatile Organics d   |              |        |
| 2-Methylphenol (o-cresol) | 2.9          | 3.8    |
| 4-Methylphenol (p-cresol) | 0.95         | 1.9    |
| Acetophenone              | 3.2          | 0.7    |
| Benzoic Acid              | 120          | 7      |
| Benzyl Alcohol            | 2.8          | 12     |
| Naphthalene               | 1.5          | 1.0    |
| Phenol                    | 9.2          | 8.8    |

<sup>\*</sup> Run 1 particulate-phase data were invalidated for all elements included here except arsenic, selenium, and vanadium due to the filter background comprising 20% or greater of the measured concentration.

<sup>&</sup>lt;sup>b</sup> Only those compounds with an average concentration above the detection limit are included.

<sup>&</sup>lt;sup>e</sup> Methylene chloride, acetone, and other halogenated hydrocarbons are not included because their presence is strongly suspected to be the result of contamination.

<sup>&</sup>lt;sup>d</sup> Phthalate esters are not included because their presence is suspected to be the results of contamination.

The method used to determine uncertainties in calculated results is based on "Measurement Uncertainty" and is consistent with the approach to handling data used in the FCEM program.

# Comparison of Vapor and Particulate Composition

Most of the substances measured at Plant Yates are distributed between the flue gas (vapor) and the particulate matter associated with bottom ash, collected ESP ash, ash removed in the FGD system, or emitted ash which exits with the flue gas through the stack. (The sampling and analytical techniques used for organic compounds did not quantify distribution between particulate and vapor phases.)

At ESP inlet conditions, more than 99% of most of the substances of interest are in the particulate phase. Exceptions are chloride, fluoride, selenium, and mercury. With these same exceptions, the particulate phase is the predominant phase at the ESP outlet and stack.

# Distribution of HAPs as a Function of Particle Size in the Flue Gas and the Particle Size Distribution of the ESP

Most of the metals are removed across the ESP at a rate that is approximately the same as that of the total particulate. Exceptions are arsenic, cadmium, phosphorus, and selenium. Arsenic, cadmium, and phosphorus penetration could be due to low concentrations or to association with particles in the range of 0.5 to 2  $\mu$ m. The selenium penetration is thought to be due to sampling or analytical error.

# Mercury Methods Comparison and Speciation Determinations

Two different methods were used to measure mercury concentrations in the flue gas. The Bloom mercury speciation train<sup>3</sup> was used to measure the concentrations of individual vaporphase mercury species: ionic mercury, elemental mercury, and methyl mercury. Total mercury, particulate and vapor phases, was measured using a multi-metals train.<sup>4</sup>

Ionic mercury appears to be the predominant species in the ESP inlet and ESP outlet gas streams, but ionic mercury is more efficiently removed by the scrubber. Methyl mercury concentrations also appear to decrease across the scrubber.

# **Hexavalent Chromium Determinations**

Hexavalent chromium as well as total chromium were nondetectable in the samples collected after appropriate blank correction had been applied. Although samples were collected as specified by the published method,<sup>5</sup> it should be noted that the collection procedure for obtaining Cr<sup>6+</sup> samples from a flue gas matrix containing SO<sub>2</sub> has not been validated.

#### **Determinations of Toxics on Particle Surfaces**

Because of the health and environmental importance of toxic substances that are found on the surfaces of particles and because these substances are more available to biological and ecological systems, a comparison between bulk composition and surface leachability was performed. Results have been tabulated, and some conclusions can be drawn for individual elements, but no overall trends are clearly evident.

#### **Recommendations and Considerations**

Some technical issues have been identified during this study that may warrant further consideration. Among these are the following sampling, analytical and/or process related issues:

- Selenium sampling and analysis;
- Mercury partitioning and speciation; and
- Fly ash penetration of the FGD process.

#### Selenium

Selenium could not be accurately quantified throughout the process. Apparent problems were associated with both the collection and the analysis of selenium. Further directed study of selenium is recommended. Problems associated with the quantification of selenium are discussed in Section 8.

#### Mercury

Mercury was collected and analyzed by both Method 296 and by the Bloom method<sup>7</sup> which uses charcoal tubes for the absorption and speciation of mercury. Results obtained from these two methods are presented in Section 9. One of the phenomena observed is an apparent increase in the elemental mercury concentration across the FGD system. Another anomaly is the apparent enrichment in fly ash particles of mercury when collected from the flue gas via filtration. These two items warrant further study and investigation.

## Fly Ash Penetration of FGD System

The link between particle size, surface orientation of trace elements, and the penetration of fine particles cannot be demonstrated by comparing the extractable and total metal concentrations of the particulate emissions from the FGD system. Fly ash penetration, the mass contribution from sulfuric acid mist and scrubber mist soluble salts (gypsum) add additional variables to the assessment of air toxic emissions as a function of surface orientation. The following penetration mechanisms can potentially impact the analysis of the particulate emissions from wet scrubbers:

- Direct penetration of the fly ash;
- Capture of the ash particles in the scrubber liquor and re-entrainment during recycle;
- Entrainment of scrubber-generated solids;
- Evaporation and penetration of scrubber mist as soluble salts; and
- Condensation and recovery of sulfuric acid mist as particulate.

Controlled condensation test methods should be used in future test efforts for measuring sulfuric acid emissions apart from gypsum, and SO<sub>2</sub> artifacts. The analysis of tracer elements associated only with the coal ash may be warranted to determine ash penetration and dilution from scrubber solids. Analysis of size-fractionated particulate emissions could potentially identify the predominant size ranges associated with individual components.

Test efforts to quantify the relative contribution of each phenomenon to particulate emissions may be of interest to those considering wet scrubbers for the control of air toxics as well as  $SO_2$ . This data would provide a basis of comparison between the surface extractability of the dry ash entering an FGD system and the particulate emissions downstream.

#### References

- 1. Electric Power Research Institute. Field Chemical Emissions Monitoring (FCEM)
  Generic Sampling and Analytical Plan. Draft Report. Palo Alto, CA (May 1994).
- 2. American Society of Mechanical Engineers. Measurement Uncertainty: Instruments and Apparatus. PTC 19.1-1985 (reaffirmed 1990), pp 1-65. United Engineering Center, New York, NY. Published by the American National Standards Institute.
- 3. Nicolas S. Bloom, Eric M. Prestbo, and Vesna L. Miklavicic, "Fluegas Mercury Emissions and Speciations from Fossil Fuel Combustion." Published in the proceedings of the Second International Conference on Managing Hazardous Air Pollutants (sponsored by the Electric Power Research Institute) Washington, D.C. (July 1993).
- 4. 40 CFR 266, Subpart H, "Method 29: Determination of Metals Emissions in Exhaust Gases from Hazardous Waste Incineration and Similar Combustion Processes: Proposed Method."
- 40 CFR 266, Appendix IX: Methods Manual for Compliance with the BIF Regulations.
   "Determination of Hexavalent Chromium Emissions from Stationary Sources (Method Cr<sup>+6</sup>)."
- 6. 40 CFR 266, Subpart H, "Method 29: Determination of Metals Emissions in Exhaust Gases from Hazardous Waste Incineration and Similar Combustion Processes: Proposed Method."

## **Executive Summary**

7. Nicolas S. Bloom, Eric M. Prestbo, and Vesna L. Miklavicic, "Fluegas Mercury Emissions and Speciations from Fossil Fuel Combustion." Published in the proceedings of the Second International Conference on Managing Hazardous Air Pollutants (sponsored by the Electric Power Research Institute) Washington, D.C. (July 1993).

# INTRODUCTION

## Background

The U.S. Department of Energy is performing comprehensive assessments of toxic emissions from eight selected coal-fired electric utility units. These data are being collected in response to the Clean Air Act Amendments of 1990, which require that EPA conduct a study of the emissions of hazardous air pollutants (HAPs) from electric utility power plants, and these emissions be evaluated for potential health risks. The data will be compiled and combined with similar data that are being collected as part of the Field Chemical Emissions Monitoring program¹ sponsored by the Electric Power Research Institute (EPRI) and will then be furnished to the U.S. Environmental Protection Agency for emissions factor and health risk determinations.

The assessments of emissions involve the collection and analysis of samples from the major input and output streams of each of the eight power plants for selected hazardous pollutants contained in Title III of the Clean Air Act. Additional goals of these assessments are to collect data from the selected plants that may be helpful in characterizing removal efficiencies of pollution control subsystems for these selected pollutants and to determine the concentrations associated with the particulate fraction of the flue gas stream as a function of particle size. Material balances will be performed for selected pollutants around the entire power plant and various subsystems to determine the fate of hazardous substances in each utility system.

Radian Corporation was selected to perform one toxics assessment at a plant demonstrating an Innovative Clean Coal Technology (ICCT) Project. The selected site is the Plant Yates Unit No. 1 of Georgia Power Company, which includes the ICCT CT-121 demonstration project.

# **Objectives**

The specific objectives of this project are:

• To collect and subsequently analyze representative solid, liquid, and gas samples of all specified input and output streams of the Plant Yates, Unit No. 1, including the CT-121 flue gas desulfurization system, for selected hazardous air pollutants that are contained in Title III of the 1990 Clean Air Act Amendments and to assess the potential level of release (concentration) of these pollutants;

#### Introduction

- To determine the removal efficiencies of specified pollution control subsystems for selected pollutants at Plant Yates Unit No. 1;
- To determine material balances for selected pollutants in specified subsystems of the power plant and an overall material balance for the power plant;
- To determine the concentration as a function of particle size of the respective pollutants associated with the particulate fraction of the flue gas stream of Plant Yates Unit No. 1;
- To determine the concentration of the respective pollutants associated with the particulate and vapor-phase fractions of the specified flue gas streams of Plant Yates Unit No. 1;
- To determine the concentrations of toxic substances on the surfaces of fly ash particles;
- To provide data for EPA for use in risk assessments and in updating publication AP-42<sup>2</sup>;
- To determine hexavalent chromium stack emissions; and
- To compare Method 29<sup>3</sup> vapor-phase mercury results with those obtained via charcoal absorption.

Table 1-1 lists the chemical substances analyzed during this project.

Emission factors, removal efficiencies, and other results rely on measurement data that vary and/or may be near the limit of detection or below it for many of the substances of interest. This report includes uncertainty analysis and confidence intervals in order to assess the quality of the data.

# **Auditing**

During the field sampling program conducted at Plant Yates in June 1993, quality assurance audits were conducted by Radian Corporation's internal QA auditor as well as by Research Triangle Institute, under contract with the U.S. Environmental Protection Agency.

Radian's audit was conducted with the purpose of providing an objective, independent assessment of the sampling effort, ensuring that the sampling procedures, data generating, data gathering, and measurement activities produce reliable and useful results. The audit provided a review of calibration documentation, documentation of QC data, completeness of data forms and notebooks, data review/validation procedures, sample logging procedures, and others.

# Table 1-1 Target Analytes

## **Trace Elements**

Antimony

Boron Cadmium

Arsenic Barium

Chromium, total

Beryllium

Calak

Cobalt

Manganese Mercury

Copper Lead Molybdenum

Nickel

Selenium Vanadium

# Radionuclides

## **Hexavalent Chromium**

# Mercury Speciation/Comparison

#### Anions

Chloride (HCl) Fluoride (HF) Sulfates Phosphates

#### Reduced Species

Ammonia Cyanide

#### **Organics**

Formaldehyde Dioxins Furans

#### **Volatile Organics**

Benzene
Bromoform
Carbon Disulfide
Carbon Tetrachloride
Chlorobenzene
Chloroform

1,4-Dichlorobenzene cis-1,3-Dichloropropene trans-1,3-Dichloropropene

Ethyl Benzene

Ethyl Chloride (Chloroethane)

Ethylene Dichloride (1,2-Dichloroethane) Ethylidene Dichloride (1,1-Dichloroethane)

Methyl Bromide (Bromomethane) Methyl Chloride (Chloromethane) Methyl Chloroform (1,1,1-Trichloroethane)
Methyl Ethyl Ketone (2-Butanone)
Methylene Chloride (Dichloromethane)
Propylene Dichloride (1,2-Dichloropropane)

Styrene 1,1,2,2-Tetrachloroethane

Tetrachloroethene

Toluene

1,1,2-Trichloroethane Trichloroethene Vinyl Acetate Vinyl Chloride

Vinylidene Chloride (1,1-Dichloroethene)

m,p-Xylene o-Xylene

## Table 1-1 (Continued)

#### Semivolatile Organics

Acenaphthene Indeno(1,2,3-cd)pyrene 7,12-Dimethylbenz(a)anthracene Acenaphthylene Dimethylphenethylamine Isophorone Acetophenone Methyl Methanesulfonate 2,4-Dimethylphenol 4-Aminobiphenyl 3-Methylchlolanthrene Dimethylphthalate Aniline 2-Methylnaphthalene 4,6-Dinitro-2-methylphenol Anthracene 2-Methylphenol (o-cresol) 2,4-Dinitrophenol Benzidine 4-Methylphenol (p-cresol) 2,4-Dinitrotoluene N-Nitroso-di-n-butylamine Benzo(a)anthracene 2,6-Dinitrotoluene Benzo(a)pyrene N-Nitrosodimethylamine Diphenylamine N-Nitrosodiphenylamine 1,2-Diphenylhydrazine Benzo(b)fluoranthene N-Nitrosopropylamine Ethyl Methanesulfonate Benzo(g,h,i)perylene Benzo(k)fluoranthene N-Nitrosopiperidine 2-Nitrophenol 4-Nitrophenol Benzoic Acid Naphthalene 1-Naphthylamine Pentachlorobenzene Benzyl Alcohol 2-Naphthylamine Pentachloronitrobenzene 4-Bromophenyl Phenyl Ether 2-Nitroaniline Butylbenzylphthalate Pentachlorophenol 4-Chloro-3-Methylphenol 3-Nitroaniline Phenacetin 4-Nitroaniline Phenanthrene p-Chloraniline Nitrobenzene Phenol bis(2-Chloroethoxy)methane Di-n-octylphthalate 2-Picoline bis(2-Chioroethyl)ether bis(2-Chloroisopropyl)ether Dibenz(a,h)anthracene Pronamide Dibenz(a,j)acridine 1-Chloronaphthalene Pyrene 2-Chloronaphthalene Dibenzofuran Pyridine Dibutylphthalate 1,2,4,5-Tetrachlorobenzene 2-Chlorophenol 1,2-Dichlorobenzene 4-Chlorophenyl Phenyl Ether 2,3,4,6-Tetrachlorophenol 1,3-Dichlorobenzene 1,2,24-Trichlorobenzene Chrysene bis(2-Ethylhexyl)phthalate 1.4-Dichlorobenzene 2,4,5-Trichlorophenol Fluoranthene 3.3'-Dichlorobenzidine 2,4,6-Trichlorophenol 2-Fluorobiphenyl Fluorene 2,4-Dichlorophenol Hexachlorobenzene 2,6-Dichlorophenol 2-Fluorophenol Nitrobenzene-d5 Hexachlorobutadiene 2,6-Dichlorophenol Hexachlorocyclopentadiene Diethylphthalate Phenol-d5 Hexachloroethane p-Dimethylaminoazobenzene Terphenyl-d14 2,4,6-Tribromophenol

#### Additional Elements

| Aluminum | Magnesium | Silicon   | Zinc                |
|----------|-----------|-----------|---------------------|
| Calcium  | Potassium | Strontium | Uranium (coal only) |
| Iron     | Sodium    | Titanium  | Thorium (coal only) |

The completeness of the quality assurance data was reviewed to judge whether the quality of the measurement data could be evaluated with the available information. In general, the results of the QC checks available indicate that the samples are well characterized. An evaluation of the accuracy, precision, and bias of the data, even if only on a qualitative level, is considered to be an important part of the data evaluation. A full discussion of each of these components can be found in Appendix D.

RTI was on site during the field sampling program to conduct a systems audit and a performance audit. These audits addressed the Radian sampling program. Results of the RTI audit are presented in Appendix A.

# **Project Organization**

Figure 1-1 shows the organization of this project.

# Report Organization

Table 1-2 lists the contents of the major sections and appendices of this final report.

#### References

- 1. Electric Power Research Institute. Field Chemical Emissions Monitoring (FCEM)
  Generic Sampling and Analytical Plan. Draft Report. Palo Alto, CA (May 1994).
- 2. U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards. Compilation of Air Pollutant Emission Factors, Vol. 1: Stationary Point and Area Sources. AP 42, 4th ed., Research Triangle Park, NC (September 1985 with periodic updates).
- 3. 40 CFR 266, Subpart H, "Method 29: Determination of Metals Emissions in Exhaust Gases from Hazardous Waste Incineration and Similar Combustion Processes: Proposed Method."

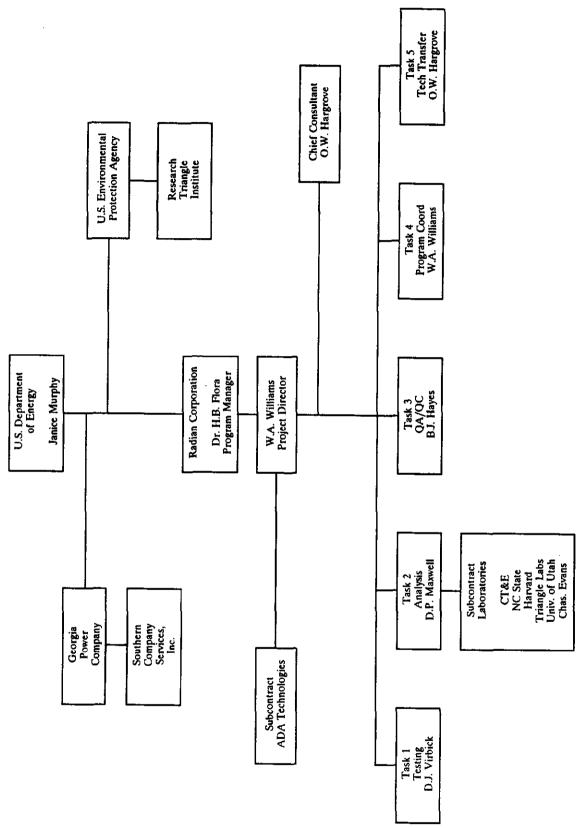



Figure 1-1 Project Organization

Table 1-2 Report Organization

| Section                                               | Contents                                                                                                                                                                    |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Glossary                                              | Acronyms, abbreviations, and definitions.                                                                                                                                   |  |
| Executive Summary                                     | Stand-alone summary of the document.                                                                                                                                        |  |
| Introduction (p. 1-1)                                 | Background, objectives, auditing, contractor organization, and report organization.                                                                                         |  |
| Auditing (p. A-1, App. A)                             | Information on audits conducted by RTI.                                                                                                                                     |  |
| Site Description (p. 2-1)                             | Power plant configuration, process description, sampling locations, and plant operating conditions.                                                                         |  |
| Sample Collection (p. 3-1)                            | Sampling schedule, test matrix, samples collected, sample handling, sample presentation, sample compositing.                                                                |  |
| Sampling Protocol (p. B-1, App. B)                    | Method descriptions, sample train disassembly, sample preparation for transportation, and storage.                                                                          |  |
| Sample Preparation and Analysis<br>Methods (p. 4-1)   | Preparation procedures and chemical analysis methods for gases, liquids, and solids.                                                                                        |  |
| Analytical Protocol (p. E-1, App. E)                  | Method descriptions, deviations, and modifications.                                                                                                                         |  |
| Analytical Results (p. 5-1)                           | Tabulated analytical information for gases, liquids, and solids.                                                                                                            |  |
| Sampling Data Sheets (p. C-1, App. C)                 | Data for gas samples, including calculations for samples at the stack outlet.                                                                                               |  |
| Data Analysis and Interpretation (p. 6-1)             | An evaluation of the overall quality of the data, material balances, trace species removal efficiencies, and emission factor determinations.                                |  |
| Quality Assurance/Quality<br>Control (p. D-1, App. D) | Radian systems and performance audits: precision, accuracy, and completeness in the areas of sample collection, analysis, and DQOs. Detailed QA/QC results in tabular form. |  |

Introduction

# Table 1-2 (Continued)

# Uncertainty Analysis (p. F-1, App. F) Uncertainty Analysis (p. F-1, App. Description of how the error propagation analysis was performed on calculated results. Treatment of Non-Detects, Values Outside of the Calibration Range, and Blanks (P. G-1, App. G)

# SITE DESCRIPTION

# **Power Plant Configuration**

The Plant Yates Unit No. 1 is a bituminous coal-fired steam electricity-generating unit with a net generating capacity of 100 megawatts. Located in Newnan, Georgia, the station is owned and operated by Georgia Power Company. Unit 1 includes a tangentially fired CE boiler that burns a 2.5% sulfur blend of Illinois No. 5 and Illinois No. 6 bituminous coals, an electrostatic precipitator for particulate control, and the CT-121 flue gas desulfurization system for sulfur dioxide (SO<sub>2</sub>) emissions control during the ICCT demonstration.<sup>1</sup>

A process flow diagram of the Plant Yates facility that includes sampling locations is presented in Figure 2-1. Flue gas flows through a single duct into the ESP, which is four chambers wide and three rows of chambers deep; however, only the first two rows of chambers are energized. The ESP has a separate row of hoppers to collect the fly ash from each field, i.e., one row of hoppers per field. After the ESP, the flue gas flows through a single ID fan and then to the CT-121 system. The flue gas exiting the CT-121 unit is vented to the atmosphere through a 250-foot exhaust stack. No other units at the station use this stack.

**Process Description: Major Process Streams** 

#### CT-121 Wet FGD System

The CT-121 is a second-generation FGD process which employs a unique absorber design, called a jet bubbling reactor (JBR), to combine conventional SO<sub>2</sub> absorption, neutralization, sulfite oxidation, and gypsum crystallization in one reaction vessel. The process is designed to operate in a pH range (3 to 5) where the driving force for limestone dissolution is high, resulting in nearly complete reagent utilization. Oxidation of sulfite to sulfate is also promoted at the lower pH because of the increased solubility of innate oxidation catalysts such as iron (Fe). Because all of the absorbed SO<sub>2</sub> is oxidized, there is sufficient surface area for gypsum crystal growth to prevent the slurry from becoming significantly supersaturated with respect to calcium sulfate. This significantly reduces the potential for gypsum scaling, a problem that frequently occurs in natural-oxidation FGD systems. Since much of the crystal attrition and secondary nucleation associated with the large centrifugal pumps in conventional FGD systems is also eliminated in the CT-121 design, large, easily dewatered gypsum crystals can be produced.

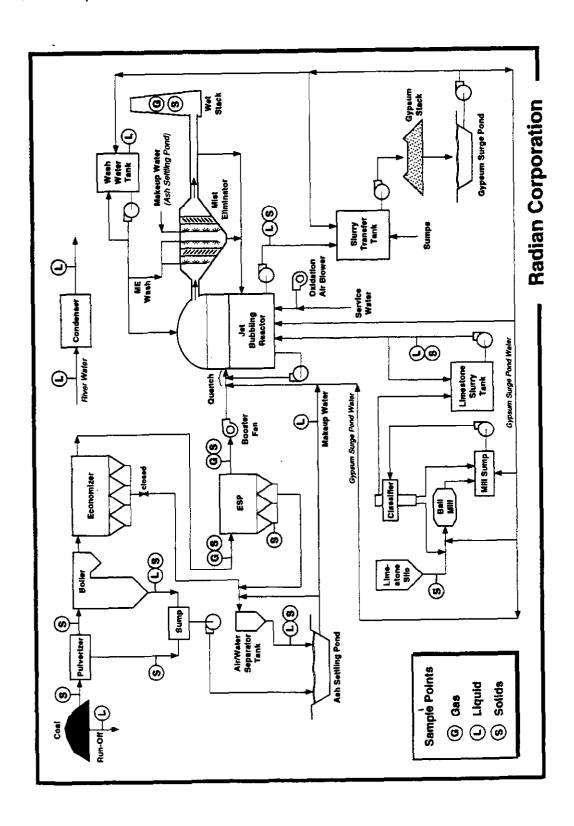



Figure 2-1 Simplified Process Flow Diagram Illustrating Sampling Locations and Flue Gas Flow

Gas Cooling Section. Flue gas from the boiler passes through the ESP and is pressurized by the Unit 1 I.D. fan. From the fan, the flue gas enters the gas cooling section. Here the flue gas is cooled and saturated with a mixture of JBR slurry, makeup water, and pond water. The quench slurry is sprayed into the gas at a liquid-to-gas ratio of about 10 gal/1000 acf at full boiler load using two centrifugal gas cooling pumps. The suction for the gas cooling pumps is located near the bottom of the JBR.

JBR. From the gas cooling section, the flue gas enters the JBR. The JBR is the central feature of the CT-121 process. The gas enters an enclosed plenum chamber formed by an upper deck plate and a lower deck plate. Sparger tube openings in the lower deck plate force the gas into the slurry contained in the jet bubbling (froth) zone of the JBR vessel. After bubbling through the slurry, the gas flows upward through gas risers which pass through both the lower and upper deck plates. Entrained liquor in the gas disengages in a second plenum above the upper deck plate, and the cleaned gas passes to the mist eliminator.

The slurry in the JBR can be divided into two zones: the jet bubbling or froth zone and the reaction zone. SO<sub>2</sub> absorption occurs in the froth zone, while neutralization, sulfite oxidation, and crystal growth occur in both the froth and reaction zones.

The froth zone is formed when the untreated gas is accelerated through the sparger tubes in the lower deck and bubbled beneath the surface of the slurry at a depth of 6 to 16 inches. The froth zone provides the gas-liquid interfacial area for  $SO_2$  mass transfer to the slurry. The bubbles in the froth zone are continually collapsing and reforming to generate new and fresh interfacial areas and to transport reaction products away from the froth zone to the reaction zone. The amount of interfacial area can be varied by changing the level in the JBR, and consequently, the injection depth of flue gas. The deeper the gas is injected into the slurry, the greater the interfacial area for mass transfer and the greater the  $SO_2$  removal. In addition, at deeper sparger depths, there is an increase in the gas-phase residence time.  $SO_2$  removal can also be increased by increasing the pH of the slurry in the froth zone, since a higher pH results in higher slurry alkalinity. The pH is controlled by the amount of limestone fed to the reaction zone of the JBR.

The solids concentration in the JBR is maintained at a constant level by removing a slurry stream from the bottom of the reaction zone and pumping this stream to a holding tank (gypsum slurry transfer tank), where it is diluted with pond water before being pumped to the gypsum stack. This is done to keep the velocity high over a range of operating conditions.

The oxygen which reacts with absorbed SO<sub>2</sub> to produce sulfate is provided to some extent by oxygen diffusion from the flue gas, but the predominant source is air bubbled into the reaction zone of the JBR. The oxidation air lines enter through the very top of the JBR vessel, penetrate the upper and lower deck plates, and introduce the air near the bottom of the JBR. Oxygen diffuses from the air into the slurry as the bubbles rise to the froth zone of the JBR. Excess air mixes with the flue gas and exits the JBR to the mist eliminator. Before the oxidation air enters the JBR, it is saturated with service water to prevent a wetdry interface at the discharge of the oxidation air lines.

# Ash and Cooling System

Plant Yates uses an ash settling and storage area consisting of one ash-settling pond. Bottom ash from the boiler and pyrites from the pulverizers are sluiced together and are disposed of in the ash-settling pond. The ESP ash, economizer ash, and air preheater ash are also sluiced together and disposed of in the same ash-settling pond. Water from the Chattahoochee River is used for cooling water in a once-through type steam condenser.

## ESP Design

The ESP is a conventional weighted wire configuration typical of many of the older ESPs found on coal-fired utility boilers in the Midwest and Eastern parts of the United States. Details of the ESP are provided in Table 2-1. The specific collection area (SCA) is 210 ft²/kacfm at full load. This size is representative of the ESPs built during the 1970s to provide collection efficiencies of 95 to 99 percent. The plate-to-plate spacing is 9 inches, which is typical for this vintage ESP. Current ESP design standards use 12- to 16-inch spacing to reduce the impact of plate or wire misalignment which can cause sparking at lower voltages. The velocity is somewhat lower than many of the older ESPs which often operate at velocities of 6 or 7 ft/sec. The average ESP velocity of 4.4 ft/sec is more characteristic of modern design practices.

Figure 2-2 shows a schematic layout of the ESP. The ESP is configured with three mechanical sections and four electrical sections. As shown in the schematic, the arrangement is somewhat unusual in that the mechanical sections are not aligned with the electrical sections. This provided some minor difficulties in modeling the performance of the ESP, as described in Section 8.

Figure 2-2 also identifies the rapping components. The Plant Yates ESP uses a Forry Rapper Control System programmed to operate vibrators on the high voltage wire frames and electromechanical rappers on the collector plate assemblies. Table 2-2 presents a detailed breakdown of the rapping frequencies. The high-voltage wire frame vibrators are on a 12 minute repeat cycle and have 2 second on-times. The collector plate rappers have a 30 minute repeat cycle and are energized to lift the 20-pound solenoids nominally four inches before releasing them. The rapping cycles are offset so that only one section of the plates is rapped at any single period of time. This rapping procedure results in smaller but more frequent spikes in opacity.

# **Process Description: Sampling Locations**

Samples were collected from streams representing three types of matrices: gases, solids, and liquids. Gaseous samples were collected from the inlet and outlet of the ESP and from the stack. Solids were collected of the coal feed, bottom and fly ashes, limestone,

Table 2-1 Summary of Design Data on the Yates Unit #1 ESP

| Manufacturer                | Bueil                                   |  |
|-----------------------------|-----------------------------------------|--|
| Housing                     | 1 ESP Box                               |  |
| Mechanical Sections         | 3                                       |  |
| Electrical Sections         | 4                                       |  |
| Gas Flow Passages           | 82                                      |  |
| Collector Electrodes        |                                         |  |
| Plate Spacing               | 9 inches                                |  |
| Plate Height                | 30 ft                                   |  |
| Total Plate Length          | 21 ft                                   |  |
| Length of Sections          | 9 ft Section 1, 6 ft for Sections 2 & 3 |  |
| Total Plate Area            | 103,320 ft <sup>2</sup>                 |  |
| Total Cross Section Area    | 1845 ft <sup>2</sup>                    |  |
| Gas Conditions              |                                         |  |
| Gas Flow at Full Load       | 491,000 acfm                            |  |
| Gas Velocity at Full Load   | 4.4 ft/second                           |  |
| Residence Time at Full Load | 4.7 seconds                             |  |
| SCA at Full Load            | 210 ft <sup>2</sup> /kacfm              |  |
| Emitter Design              |                                         |  |
| Design                      | Weighted Wire                           |  |
| Diameter                    | 0.110 inches                            |  |
| Spacing                     | 8 inches                                |  |
| Number                      | 2,296                                   |  |
| Total Wire Length           | 68,880 ft                               |  |

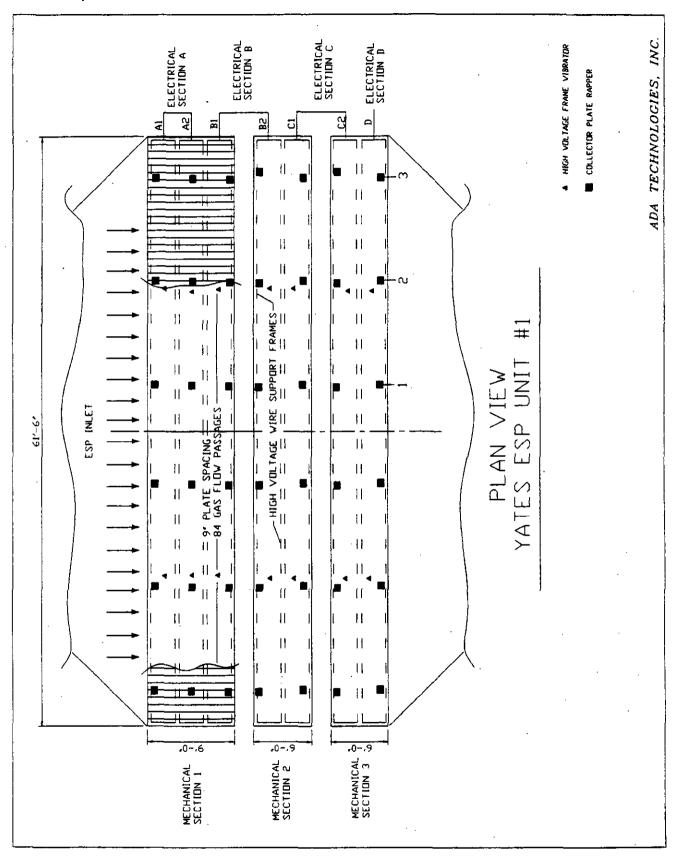



Figure 2-2 Plan View Plant Yates ESP Unit #1

Table 2-2 ESP Rapping Schedule Plant Yates Unit #1

| Mechanical<br>Section | Rapper Type                                     | Cycle<br>Repeat Time | Rapper<br>Identification                  | Activated (minutes into cycle) |
|-----------------------|-------------------------------------------------|----------------------|-------------------------------------------|--------------------------------|
| 1                     | HV Vibrator (1 vibrator per frame)              | 12 minutes           | HV: A1<br>HV: A2<br>HV: B1                | 4<br>8<br>12                   |
| 2                     | HV Vibrator                                     | 12 minutes           | HV: B2<br>HV: C1                          | 5<br>10                        |
| 3                     | HV Vibrator                                     | 12 minutes           | HV: C2<br>HV: D                           | 6<br>12                        |
| 1                     | Plate Rapper<br>(1 rapper per<br>plate support) | 30 minutes           | Plate: A1-1<br>Plate: A1-2<br>Plate: A1-3 | 4<br>8<br>12                   |
| 1                     | Plate Rapper                                    | 30 minutes           | Plate: A2-1<br>Plate: A2-2<br>Plate: A2-3 | 5<br>10<br>15                  |
| 1                     | Plate Rapper                                    | 30 minutes           | Plate: B1-1<br>Plate: B1-1<br>Plate: B1-3 | 6<br>12<br>18                  |
| 2                     | Plate Rapper                                    | 30 minutes           | Plate: B2-1<br>Plate: B2-2<br>Plate: B2-3 | 7<br>14<br>21                  |
| 2                     | Plate Rapper                                    | 30 minutes           | Plate: C1-1<br>Plate: C1-2<br>Plate: C1-3 | 8<br>16<br>24                  |
| 3                     | Plate Rapper                                    | 30 minutes           | Plate: C2-1<br>Plate: C2-2<br>Plate: C2-3 | 9<br>18<br>27                  |
| 3                     | Plate Rapper                                    | 30 minutes           | Plate: D-1<br>Plate: D-2<br>Plate: D-3    | 10<br>20<br>30                 |

Note: Rapping frequency and cycles are duplicated for each side of the ESP.

and FGD slurry. Liquids included the makeup waters, sluice waters associated with the ash steams, and filtrate from the limestone and FGD slurry streams, cooling water, and coal pile runoff. Figure 2-1 illustrates the sampling locations which are described in detail in the following sections.

### Flue Gas Sample Streams

Three flue gas stream locations were identified for testing:

- ESP inlet;
- ESP outlet (FGD inlet); and
- Stack.

The ESP inlet sampling location is located at ground level. Sixteen four-inch ports are located horizontally just downstream of where two ducts which exit the air preheater are combined.

The ESP outlet location is located approximately 60 feet above ground level. Six four-inch ports are located vertically across the duct.

The stack sampling location is approximately 120 feet above ground level and has four four-inch ports, equally spaced at 90 degrees.

### Solid Sample Streams

Solid streams sampled were the following:

- Raw coal;
- Pulverized feed coal;
- Pulverizer rejects;
- Bottom ash;
- ESP fly ash;
- Raw limestone;
- Limestone slurry solids; and
- FGD slurry solids.

Solid samples were collected concurrent with the gas stream testing and are considered to be representative of process operation.

Coal Samples. The sample locations for collecting coal samples are located around each of the four coal pulverizers serving Unit 1. Samples of raw coal were collected from each pulverizer feed chute after the weigh belt. Feed coal samples were collected at the exit of each pulverizer, just prior to the boiler feed, and the pulverizer rejects were collected at the inlet to each reject hopper.

Ash Samples. Bottom ash samples were collected wet at the bottom ash sluice water sump upstream of the bottom ash sluice pumps. Bottom ash was separated from the sluice water by allowing the solids to settle and siphoning off the sluice water. ESP fly ash was collected dry from the clean-out ports of the two energized banks of ESP hoppers, and sluiced ESP fly ash was also collected at the sluice water discharge to the ash pond.

Limestone. Limestone samples were collected from two sampling locations. Raw limestone was collected off the weigh belt feed to the grinding mill, and limestone slurry was collected from a sample tap on the recirculating limestone slurry feed line to the JBR. Slurry samples were filtered to obtain the solids.

**FGD Solids.** FGD solids were sampled from a sample tap at the discharge of the JBR underflow slurry pumps. The solids were filtered through a filter press to separate the solid and liquid phases at the time of collection.

### Liquid Sample Streams

The following liquid streams were sampled:

- Ash pond water;
- Gypsum pond water;
- Ash sluice water (bottom ash and fly ash);
- FGD slurry blowdown filtrate;
- Limestone slurry filtrate;
- Coal pile run-off; and
- Cooling water at the condenser inlet.

Liquid samples were collected concurrent with the gas-phase testing and are considered to be representative of process operation during that time period.

**Pond Waters.** Ash and gypsum pond water were sampled from sample taps. The ash pond water sample tap is located near the limestone slurry tank containment area where ash pond water is used in limestone slurry preparation. Gypsum pond water was collected from a sample tap located on the mist eliminator wash water tank.

Ash Sluice Water. Bottom ash and ESP fly ash sluice water samples were obtained by siphoning the aqueous phase of the ash/water sluice mixture from the solid phase after allowing approximately 2 hours for the solids to settle. The collection points for the ash sluice samples are described in the section on solid sample streams.

Limestone and FGD Filtrates. The aqueous phases of the limestone slurry and JBR underflow slurry were obtained from filtration of the collected solids samples described earlier. Limestone slurry and all FGD filtrates for organic compound analyses were sampled from a filter press at the point of collection to avoid loss of organics and to prevent further reactions in the FGD slurry matrix.

Coal Pile Run-off. Coal pile run-off collection was performed after a rain storm. Samples were collected from shallow trenches leading from the coal pile to the run-off collection pond.

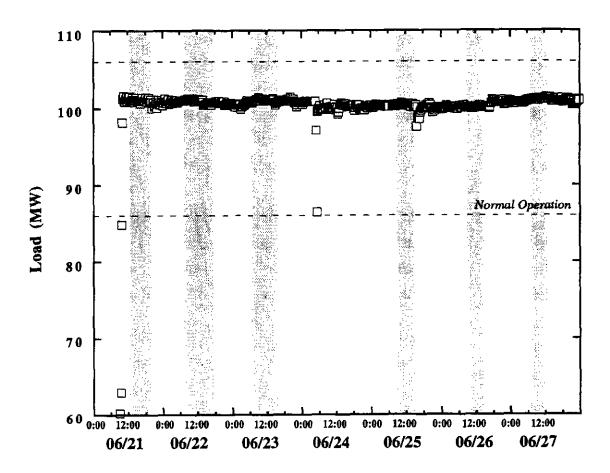
Condenser Water Samples. Cooling water samples at the inlet of the turbine steam condenser were collected from a sample tap located at the discharge of the cooling water pumps.

### **Plant Operating Conditions**

Operating conditions were continuously monitored via a computerized data acquisition system (DAS) which logged process information as 15 minute averages. In addition, boiler operating data were logged hourly by the control room operators. Of the total amount of data collected, key parameters have been summarized and are presented in Table 2-3. These data reflect the general stability of the process. Unit load and furnace gas oxygen concentrations are shown graphically in Figures 2-3 and 2-4. The dashed lines represent the bounds of what is considered normal operation. Also, the grey shaded areas represent the periods during which testing was being performed. Key operating parameters for the CT-121 process are shown in Figures 2-5 and 2-6. Overall, all processes were very stable and the key operating parameters were within the targeted range during the entire test period.

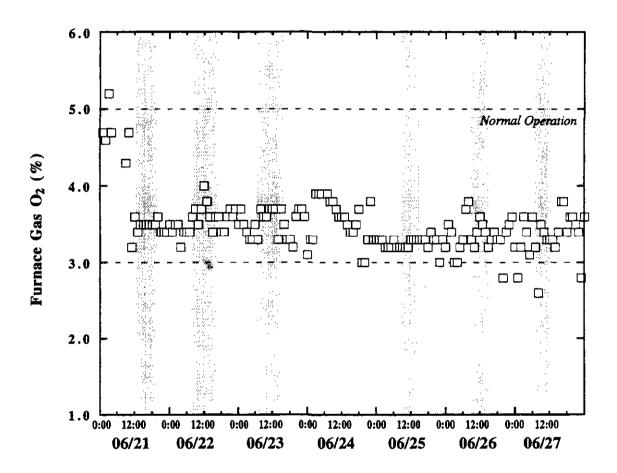
Three continuous emission monitors were operated during the test period. Sulfur dioxide and nitrogen oxides were monitored continuously by existing Plant Yates instrumentation. Carbon monoxide was monitored using an instrument supplied by Radian. The results of the CEM monitoring are presented in Figures 2-7, 2-8, and 2-9.

Table 2-3 Summary of Process Monitoring Data\*


| Parameter                                | 6/21 | 6/22 | 6/23 | 6/25 | 6/26 | 6/27 |
|------------------------------------------|------|------|------|------|------|------|
| Boiler:                                  |      |      |      |      |      |      |
| Load (MW)                                | 101  | 101  | 101  | 100  | 100  | 101  |
| Coal Flow (1,000 lb/hr, wet)             | 89   | 88   | 89   | 90   | 91   | 92   |
| Furnace O <sub>2</sub> (%)               | 3.5  | 3.6  | 3.5  | 3.3  | 3.3  | 3.4  |
| Burners in Service                       | 16   | 16   | 16   | 16   | 16   | 16   |
| ESP:                                     |      |      |      |      |      | •    |
| Opacity (%)                              | 15.0 | 14.4 | 16.0 | 17.1 | 17.7 | 18.6 |
| JBR:                                     |      |      |      |      |      |      |
| SO <sub>2</sub> removal <sup>b</sup> (%) | 93.0 | 91.6 | 90.7 | 88.8 | ¢    | ¢    |
| Scrubber pH                              | 4.6  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  |
| JBR &P (Inches H <sub>2</sub> O)         | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 | 14.1 |
| Stack:                                   |      |      |      |      |      |      |
| O <sub>2</sub> (%, dry)                  | 8.2  | 8.0  | 7.9  | 7.7  | 7.7  | 7.6  |
| SO <sub>2</sub> (ppmv, dry)              | 160  | 181  | 202  | 236  | 182  | 186  |
| NO <sub>x</sub> (ppmv, dry)              | 430  | 490  | 470  | 430  | 420  | 320  |
| CO (ppmv, dry)                           | 3.5  | d    | 2.6  | 2.6  | 2.0  | 5.7  |

<sup>\*</sup> Daily averages.

<sup>&</sup>lt;sup>b</sup> Based upon SO<sub>2</sub> corrected to 3% O<sub>2</sub>.


<sup>&</sup>lt;sup>c</sup> Inlet O<sub>2</sub> monitor not functioning properly.

<sup>&</sup>lt;sup>d</sup> CO monitor not functioning properly.



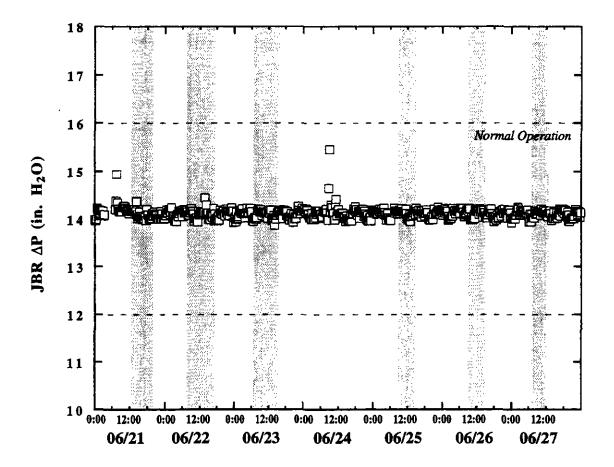

Load
Data points are 15-minute average values.

Figure 2-3 Unit 1 Load



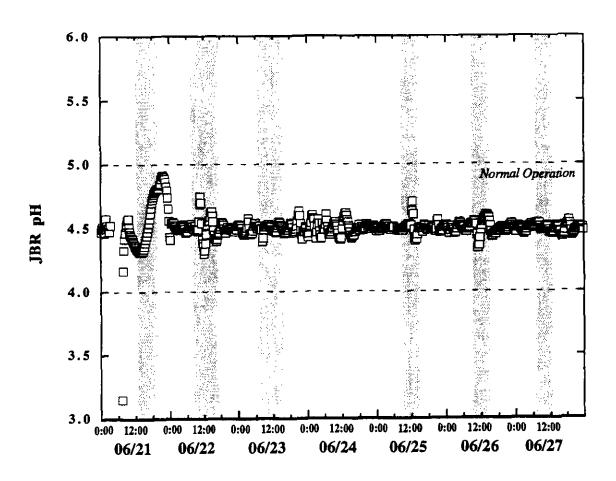

Furnace Gas O<sub>2</sub>
Data points are hourly values.

Figure 2-4
Furnace Gas Oxygen



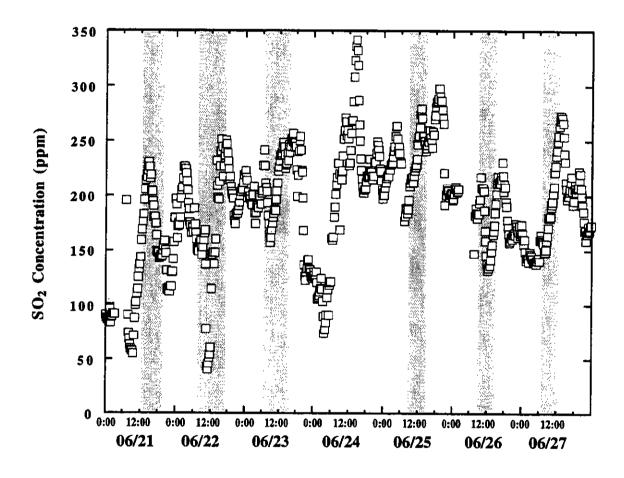

 $\begin{array}{c} \textbf{JBR Deck } \Delta \textbf{P} \\ \textbf{Data points are 15-minute average values}. \\ \hline \end{array}$ 

Figure 2-5
JBR Pressure Drop



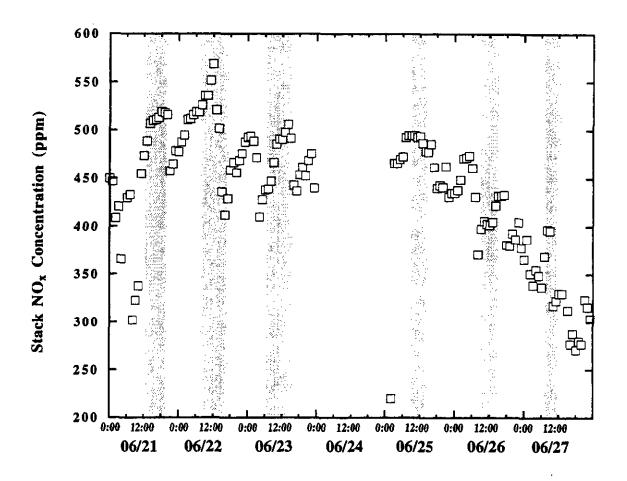

JBR pH
Data points are 15-minute average values.

Figure 2-6 JBR pH



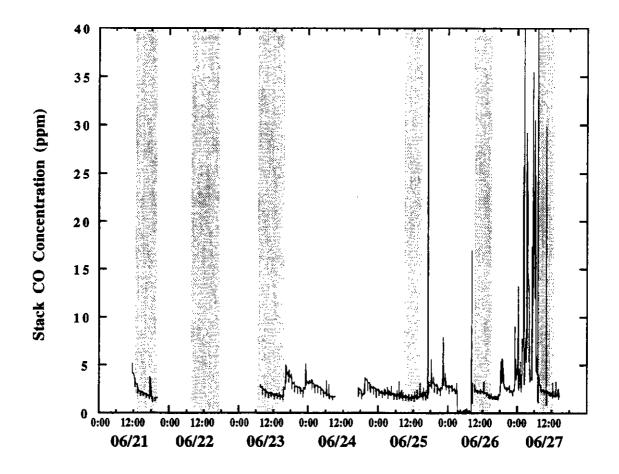

Stack SO<sub>2</sub> Concentration @ 3% O<sub>2</sub> Data points are 15-minute average values.

Figure 2-7 Stack SO<sub>2</sub>



Stack  $NO_x$  Concentration @ 3%  $O_2$  Data points are hourly values.

Figure 2-8 Stack NO<sub>x</sub>



Stack CO Concentration

Data points are 15-minute average values.

Figure 2-9 Stack CO

### **Problems**

Only slight operational problems were encountered during the test effort. On the first day of testing, a steam leak was detected and, although the leak was minor, plant personnel opted to bring the plant down to fix the leak, rather than run the risk of having a major problem occur while the testing was in progress. Repairing the leak resulted in a six-hour delay in the start of the testing activities on day one.

The average JBR SO<sub>2</sub> removal efficiency dropped below 90% on June 25. A change in the JBR piping is believed to have resulted in a high bias in the pH indicators. For this reason, SO<sub>2</sub> removal was generally lower than expected. However, with respect to the range of SO<sub>2</sub> removal achieved over the previous four days, the 88.8% removal is within normal operating limits and had no effect on the test results.

### **Deviations from Sampling Plan**

The sampling approach was defined with soot blowing confined to the evening shifts and no testing was to be performed during soot blowing events (with the exception of round-theclock sample collection for PSD at the stack and bulk particulate collection at the stack and ESP Outlet). However, during the second day of the material balance period a high pressure drop was encountered across the air pre-heater (APH). Sampling was delayed for two hours while the APH soot-blowers were activated. A full pressure drop reduction could not be achieved and the decision was made to continue testing with the APH soot blowers activated continuously. Testing on the third day was also done with the APH soot blowers activated. This approach provided consistent process operation for the testing. Soot blowing at all other boiler locations was not performed until after the testing was completed each day. A post-test inspection of boiler operator logs indicated that APH soot-blowing was probably done continuously during the first day of the material balance period also. Although boiler control room instructions were for "no soot blowing," the post-test inspection revealed a steadily decreasing pressure drop across the APH on Day 1 of the material balance period. Typically, this only happens if the APH soot blowers are on. There was, however, no way to confirm this after the fact. The impact of the APH soot blowing is currently judged not to have an impact on the data quality or the overall test results.

### References

1. David P. Burford, Oliver W. Hargrove, and Harry J. Ritz, "Demonstration of Innovative Applications of Technology for the CT-121 FGD Process." Published in the proceedings of the First Annual Clean Coal Technology Conference (sponsored by the U.S. Department of Energy), Cleveland, OH (September 1992).

## SAMPLE COLLECTION

Radian used established sampling methods (where possible) and a sampling strategy consistent with that of the EPRI-sponsored Field Chemical Emissions Monitoring (FCEM) program¹ to accomplish the project goals. Samples were collected with Plant Yates operating within 10% of full load, at steady-state conditions, and in triplicate over two three-day periods.

### Sampling Schedule

Radian performed the test program at the Yates facility in two discrete three-day sampling periods. During the first three-day period (Phase I), samples were collected for the characterization of organic species and particle size distribution, and ADA Technologies performed an assessment of the ESP operating characteristics. The second three-day sampling period (Phase II) was a "material balance period," during which samples were collected for analysis of inorganic components.

Figures 3-1 and 3-2 illustrate the sampling periods for each sample stream. Field blank samples were collected June 20, 1993 for the organic-phase test parameters and field blank samples were collected for the "material balance" parameters on June 24, 1993.

### Samples Collected

All sampling was performed according to the procedures detailed in the Management Plan for the Plant Yates CT-121 FGD Project.

Only two deviations were noted from the specifications provided in the Management Plan. The first involves the collection of dry ash from the ESP ash hoppers. The management plan specified for the collection of samples from three rows of hoppers; however, after arrival on site, it was discovered that only the first two rows were energized. The sampling approach was modified to limit the sampling to just the first two rows of hoppers. These first two rows (four hoppers per row) of hoppers were to be sampled individually; however, only seven of the eight hoppers could be sampled. A valve stuck open on hopper number 7, and the system could not be isolated from the sluice system.

The second deviation concerned the collection of condenser water. No condenser outlet samples could be collected, as the two valves located at the condenser outlet were not operational.

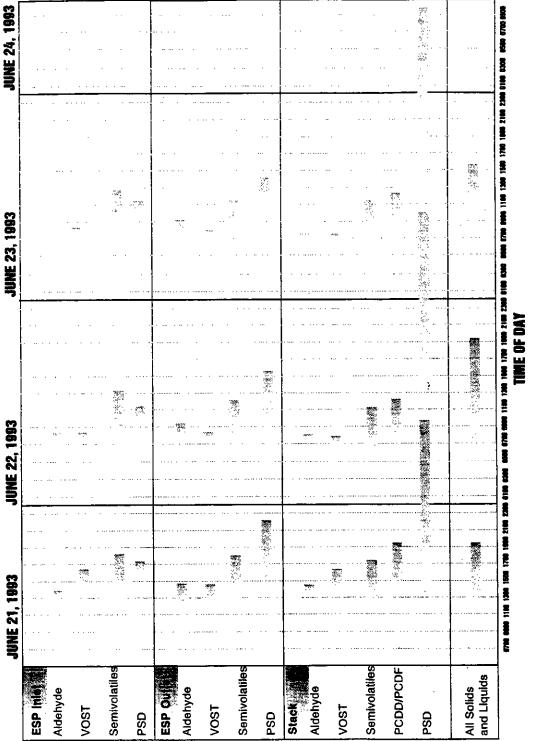



Figure 3-1 Sample Collection Schedule for June 21-24, 1993

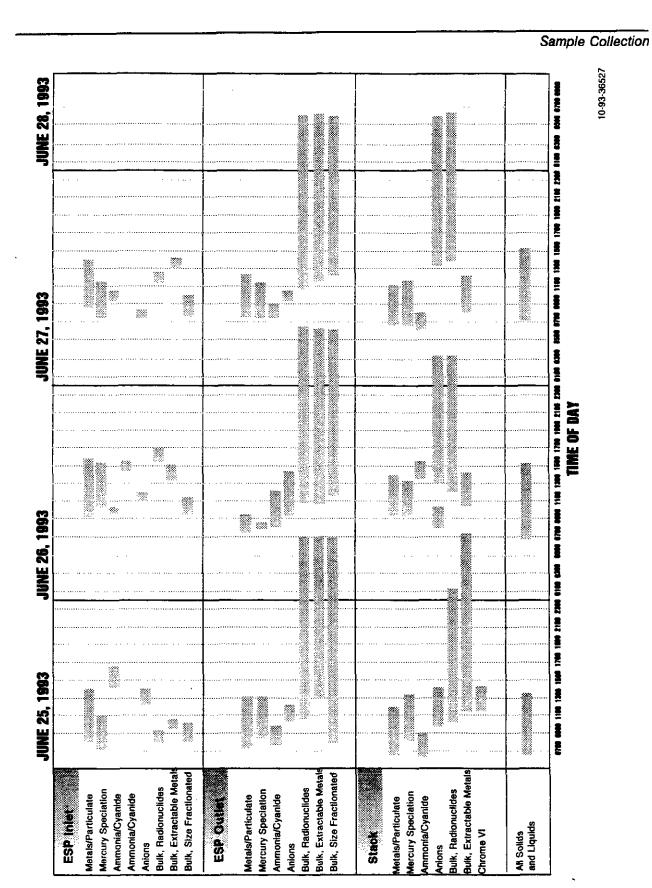



Figure 3-2 Sample Collection Schedule for June 25-28, 1993

### Gas Samples

Samples were collected from three separate gas locations during the toxics emission study, namely the ESP inlet, the ESP outlet, and the stack. Sampling was performed concurrently at each location with specific run times varying due to effluent conditions.

A summary of the samples collected from the gaseous locations is presented in Table 3-1. The summary identifies the sample type, collection method, the number of samples collected and analyzed from each location, and the sample preservation techniques. Samples collected as part of the QA/QC program for gaseous samples are identified in Table 3-2.

Gas sampling data sheets are available in Appendix C. Data presented in Appendix C include the sample run times and sample volumes. In addition to the summarized field data, the calculations used for data reduction are also presented.

### Liquid Samples

Liquid samples were collected concurrently with the gaseous sampling. The primary liquid collection technique was grab sampling. Table 3-3 identifies each of the streams sampled as well as the collection method, number of samples collected and analyzed, and the sample preservation techniques. Table 3-4 lists the liquid samples which were collected and/or analyzed as part of the QA/QC program.

Liquid samples were composited daily during each test run with the exception of the aldehydes and volatile organic compound (VOC) samples which were collected as single grab samples. The sluices and slurry filtrates were also collected as composite samples during each test run and the solids removed either by settling and decantation, or direct filtration from the process sample point. Detailed descriptions of the sampling techniques are presented in Appendix B.

### Solid Samples

Solid samples were collected concurrently with the gaseous and liquid sampling. Sampling was performed by compositing grab samples that were collected at regular intervals during the gas sampling period. In addition to the grab sampling, solids were also collected during sluicing operations of the bottom ash and ESP ash. These samples were collected by grab sampling techniques through the duration of the sluicing and composited into one sample per test run.

Detailed descriptions of the solids sampling techniques are presented in Appendix B. Table 3-5 summarizes the solid sampling effort during this program. The table identifies the sample location or sample type, the collection method, the number of samples collected and analyzed, and the sample preservation techniques. Samples collected or submitted to support the QA/QC program for the solids are listed in Table 3-6.

Table 3-1 Gaseous Sampling Summary

| Samples         Samples <t< th=""><th></th><th></th><th>ESP</th><th>ESP Inlet</th><th>ESP (</th><th>ESP Outlet</th><th>Stack</th><th>농</th><th></th></t<> |   |                       | ESP                  | ESP Inlet           | ESP (                | ESP Outlet          | Stack                | 농                   |                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|----------------------|---------------------|----------------------|---------------------|----------------------|---------------------|-------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Collection<br>Method* | Samples<br>Collected | Samples<br>Analyzed | Samples<br>Collected | Samples<br>Analyzed | Samples<br>Collected | Samples<br>Analyzed | Sample Handling<br>and Preservation |
| O     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E     E <td></td> <td>EPA Method 0011</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>Cooled to &lt;4 °C prior to analysis</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | EPA Method 0011       | 3                    | 3                   | 3                    | 3                   | 3                    | 3                   | Cooled to <4 °C prior to analysis   |
| <ul><li>ま こ の の の の 女 の の の こ こ</li><li>の こ の の の の の の の の の の の の の の の の の の</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | VOST                  | ٥                    | 6                   | 0                    | 6                   | 10                   | ٥                   | Cooled to <4 °C prior to analysis   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Modified Method 5     | 6                    | ю                   | 6                    | 6                   | e                    | e                   | Cooled to <4 °C prior to analysis   |
| <ul><li>の の の 女 の の の の し</li><li>の の の の の の の の し</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Method 23             | ,                    |                     |                      | •                   | е.                   | eı                  | Cooled to <4 °C prior to analysis   |
| <ul><li>・の</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Method 17             | E                    | ы                   | 3                    | е.                  | es                   | е                   | No special handling                 |
| 60 64 69 69 69 1<br>60 60 60 60 60 1<br>60 60 60 60 60 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~ | Method 5/Method 29    | 6                    | т                   | e.                   | т.                  | е.                   | ы                   | No special handling                 |
| т т т т т т т т т т т т т т т т т т т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Nick Bloom Method     | e                    | m                   | 3                    | ю                   | 6                    | e                   | No special handling                 |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Method 5 (Modified)   | ю                    | е,                  | 3                    | е                   | ო                    | c                   | No special handling                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ | Method 5 (Modified)   | 4                    | ю                   | e                    | m                   | es.                  | 60                  | Cooled to <4 °C prior to analysis   |
| 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Method 5/17           | ю                    | m                   | e                    | ю                   | т                    | es                  | No special handling                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Method 5/17           | ٣                    |                     | 3                    | 81                  | 80                   | EO.                 | No special handling                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Method 17             | en                   | co.                 | 3                    | m                   | •                    | ,                   | No special handling                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Method Cr*6           | 1                    | ,                   |                      | •                   | en                   | ы                   | Analyzed on-site                    |

\* Detailed references are shown in Appendix B.

Table 3-2 Number and Type of Gas Sample Analyses Plant Yates

| Parameter                              | Field<br>Samples | Matrix<br>Spike | Audit<br>Samples | Field<br>Blanks | Trip<br>Blanks | Total<br>Samples |
|----------------------------------------|------------------|-----------------|------------------|-----------------|----------------|------------------|
| Moisture                               | 9                |                 |                  |                 |                | 9                |
| Particulate Loading                    | 9                |                 |                  | 3               | 1              | 13               |
| Particle Size Distribution             | 9                |                 |                  |                 |                | 9                |
| Chloride (Particulate)                 | 9                | 1               |                  | 1               |                | 11               |
| Fluoride (Particulate)                 | 9                | 1               |                  | 1               |                | 11               |
| Sulfate (Particulate)                  | 9                | 1               |                  | 1               |                | 11               |
| ICP Screen (Particulate)               | 9                | 1               | 1                | 3               | 1              | 15               |
| GFAAS Metals* (Particulate)            | 9                | 1               | 1                | 3               | 1              | 15               |
| Mercury (Particulate)                  | 9                | 1               | 1                | 3               | 1              | 15               |
| Semivolatiles (Particulate & Flue Gas) | 9                | 2               |                  | 3               | 1              | 15               |
| PCDD/PCFD (Particulate)                | 3                |                 |                  | 1               | 1              | 5                |
| Radioactivity (Particulate)            | 9                |                 |                  | 1               |                | 12               |
| Ammonia (Flue gas)                     | 9                | 1               | 1                | 1               |                | 12               |
| Cyanide (Flue gas)                     | 9                | 1               | 1                | 1               |                | 12               |
| Chloride (Flue gas)                    | 9                | 1               | 1                | 1               |                | 12               |
| Fluoride (Flue gas)                    | 9                | 1               | 1                | 1               |                | 12               |
| Sulfate (Flue gas)                     | 9                | 1               | 1                | 1               | _              | 12               |
| ICP Screen (Flue gas)                  | 9                | 1               | 1                | 3               | 1              | 15               |
| GFAAS Metals' (Flue gas)               | 9                | 1               | 1                | 3               | 1              | 15               |
| Mercury (Flue gas)                     | 9                | 1               | 1                | 3               | 1              | 15               |
| Aldehydes (Flue gas)                   | 9                | 2               |                  | 3               | 2              | 16               |
| Volatile Organics (Flue gas)           | 27               |                 |                  | 9               | 1              | 37               |
| PCDD/PCDF (Flue gas)                   | 3                | -+              |                  | 1               | 1              | 5                |

<sup>\*</sup> GFAAS metals include As, Cd, Pb, and Se.

Table 3-3 Liquids Sampling Summary

|                       |            | 44        | Ash Pond           | Gypsum<br>Pond Water | Vader    | Ash Sluice<br>Fikrates                                                                         | luice<br>ntes | JBR       | <u> </u> | Limestone Slurry<br>Filtrate | e Sturry | Coal Pile<br>Rus-Off | Pile<br>Off | Condenser | a diser    |
|-----------------------|------------|-----------|--------------------|----------------------|----------|------------------------------------------------------------------------------------------------|---------------|-----------|----------|------------------------------|----------|----------------------|-------------|-----------|------------|
| Test Parameter        | Collection | Collected | Collected Analyzed | Collected            | Analyzed | Collected Analyzed Collected Analyzed Collected Analyzed Collected Analyzed Collected Analyzed | Analyzed      | Collected | Analyzed | Collected                    | Analyzod | Collected            | Analyzed    | Collected | Analyzed   |
| Formaldehyde          | Grab       | 3         | 3                  | 3                    | 3        | 9                                                                                              | 9             | 3         | 3        | 3                            | 3        | 2                    | 2           | 3         | -          |
| Volatile Organics     | Grab       | e         | 6                  |                      | 7        | ۰                                                                                              | ۰             | m         | ٣        | ŧ                            | 60       | 2                    | -           | 6         |            |
| Semivolatile Organica | Grab       | en        |                    | •                    | 7        | •                                                                                              | •             | 4         | 8        | 4                            | 60       | 2                    | -           | 4         | €          |
| Metain, Soluble       | Grab       | m         | •                  | m                    | m        | ٠                                                                                              | ٠             | ۳         | m        | m                            | ю        |                      | ,           | •         | m          |
| Metala, Total         | Grab       | m         |                    | 6                    | m        |                                                                                                |               | ,         | ,        |                              | ,        | •                    |             | €         | m          |
| Anion                 | Grab       | ۳.        | E0                 | F.                   | *        | ø                                                                                              | vo            | ₩.        | •        | ₩.                           | 6        | •                    |             | E         | •          |
| Ammonia               | Grab       | е.        | •                  | •                    | m        | v                                                                                              | v             | •         | •        | €                            | •        |                      | •           | m         | <b>6</b> 0 |
| Cynnide               | Grab       | •         | €                  | <b>m</b>             | E        | ø                                                                                              | ٠             | m         | m        |                              |          |                      | ,           | €0        | 6          |

Table 3-4 Liquid Stream QA/QC Samples

| Parameter             | Field<br>Samples | Field<br>Dups | Matrix<br>Spike | Audit<br>Samples | Trip<br>Blanks | Total<br>Samples |
|-----------------------|------------------|---------------|-----------------|------------------|----------------|------------------|
| Chloride              | 21               | 7             | 3               | 1                |                | 32               |
| Fluoride              | 21               | 7             | 3               | 1                |                | 32               |
| Phosphate             | 21               | 7             | 3               | 1                |                | 32               |
| Sulfate               | 21               | 7             | 3               | 1                |                | 32               |
| Sulfite               | 3                | 1             |                 |                  |                | 4                |
| Ammonia               | 21               | 7             | 3               | 1                |                | 32               |
| Cyanide               | 21               | 7             | 3               | 1                |                | 32               |
| ICP Screen (Soluble)  | 30               | 10            | 4               | 2                |                | 46               |
| Arsenic               | 30               | 10            | 4               | 2                |                | 46               |
| Cadmium               | 30               | 10            | 4               | 2                | ••             | 46               |
| Lead                  | 30               | 10            | 4               | 2                |                | 46               |
| Mercury               | 30               | 10            | 4               | 2                |                | 46               |
| Selenium              | 30               | 10            | 4               | 2                |                | 46               |
| Aldehydes             | 23               | 7             | 6               |                  |                | 36               |
| Semivolatile Organics | 22               | 7             | 6               |                  |                | 35               |
| Volatile Organics     | 22               | 7             |                 |                  | 1              | 30               |

Table 3-5 Solids Sampling Summary

|                               |                      |           |          |                                               |           |           |            |           |               | Limenton  | Limentone Sturry |            |          |             |          |                                                                                                                            |           |
|-------------------------------|----------------------|-----------|----------|-----------------------------------------------|-----------|-----------|------------|-----------|---------------|-----------|------------------|------------|----------|-------------|----------|----------------------------------------------------------------------------------------------------------------------------|-----------|
|                               |                      | Kaw       | Raw Coal | Pulverizer                                    | r Rejects | Food      | Feed Coal  | Kaw Lá    | Raw Limentone | Solids    |                  | Bottom Ash | A A      | ESP Fly Ash | A A A    | FGD Sherry Solids                                                                                                          | ry Solids |
| Test<br>Parameter             | Collection<br>Method | Collected | Analyzed | Ollection Method Collected Analyzed Collected |           | Collected | Analyzed   | Collected | Analyzed      | Collected | Analyzed         | Collected  | Analyzed | Collected   | Analyzed | Analyzed Collected Analyzed Collected Analyzed Collected Analyzed Collected Analyzed Collected Analyzed Collected Analyzed | Analyzod  |
| Formaldehyde                  | Grab                 | ,         |          |                                               |           |           |            | ,         |               |           |                  |            | ŀ        |             | ,        | 6                                                                                                                          | 3         |
| Semivolatile<br>Organica      | Grub                 |           | ı        | ,                                             | •         | •         | ,          | •         | •             | •         | ,                | <b>6</b> 0 | ю.       | <b>\$</b>   | •        | m                                                                                                                          | €0        |
| Particle Size<br>Distribution | Grab                 |           | ,        |                                               | ı         | ,         | ,          | ,         |               | •         |                  | ,          | ı        | •           | v        | ı                                                                                                                          |           |
| Metals, Total                 | Grab                 | 60        | m        | <u></u>                                       | m         | e         |            | m         | €             | e         | en               | m          | ۴        | •           | vo       | <b>e</b> n                                                                                                                 | ĸ         |
| Anions                        | Grab                 | m         | m        | ~                                             |           | •         | 6          |           |               | €0        |                  | m          | E        | ٠           | •        | m                                                                                                                          | 6         |
| Radionuclides                 | Grab                 | •         | •        | •                                             |           | <b>m</b>  | 60         | €         | €0            | •         | ı                | m          | 6        | <b>3</b> 0  | ٠        | 6                                                                                                                          | en.       |
| Moisture,                     | Grap                 | en        | m        |                                               | ю         |           | <b>1</b> 0 | €0        | €.            |           | ,                | m<br>_     |          | •           | •        | •                                                                                                                          | •         |
| Ultimate/<br>Proximate        | Grab                 | en .      | m.       | m                                             | 6         | m         | en .       |           |               |           |                  |            | • • •    |             |          |                                                                                                                            |           |
| Heating Value                 | Grab                 | т.        | m        | •                                             | •         | <b>m</b>  | m          |           |               |           |                  |            |          |             |          |                                                                                                                            |           |

Table 3-6 Solid Stream QA/QC Samples

| Parameter                  | Field<br>Samples | Field<br>Dups | Matrix<br>Spike | Audit<br>Samples | Total<br>Samples |
|----------------------------|------------------|---------------|-----------------|------------------|------------------|
| Moisture                   | 12               | 4             | **              | <del></del>      | 16               |
| Particle Size Distribution | 6                | 2             |                 |                  | 8                |
| Ultimate/Proximate         | 9                | 3             |                 | 1                | 13               |
| Carbon                     | 12               | 4             |                 |                  | 16               |
| Sulfur                     | 9                | 3             |                 |                  | 12               |
| Heating Value              | 6                | 2             |                 | 1                | 9                |
| Chloride                   | 30               | 10            | 4               | 2                | <b>4</b> 6       |
| Fluoride                   | 30               | 10            | 4               | 2                | 46               |
| Phosphate (Phosphorus)     | 30               | 10            | 4               | 2                | 46               |
| Sulfate/Sulfite            | 3                | 1             | 1               |                  | 5                |
| ICP Screen                 | 30               | 10            | 4               | 2                | 46               |
| Metals                     | 9                | 3             |                 | 1                | 13               |
| Arsenic                    | 30               | 10            | 4               | 2                | 46               |
| Cadmium                    | 30               | 10            | 4               | 2                | 46               |
| Lead                       | 30               | 10            | 4               | 2                | 46               |
| Mercury                    | 30               | 10            | 4               | 2                | 46               |
| Selenium                   | 30               | 10            | 4               | 2                | 46               |
| Aldehydes                  | 3                | 1             | 2               |                  | 6                |
| Semivolatile Organics      | 12               | 4             | 4               |                  | 20               |
| Radioactivity              | 15               | 4             |                 |                  | 19               |

### **Process Stream Flow Rates**

Table 3-7 presents average process stream flow rates for Phase II of the testing. The methods used to measure and equations used to calculate these flow rates are described in Table 3-8. These flow rates were used in the material balance calculations, described in Section 6.2. Those flow rates measured directly are presented on a run-by-run basis. Others are presented as Phase II test period averages, since they are calculated from averaged data; i.e., the dry feed coal flow rate is calculated from the average wet raw coal flow rate and average water content. Gaseous flow rates were measured at three different locations at the site: ESP inlet, outlet, and the stack. The actual measurements from these locations averaged 293,000 dscfm  $\pm < 3\%$ , well within the expected limits of the measurement technique. However, given the various physical properties of the three locations, engineering judgment would indicate that the measurements from the stack were the most accurate of the three and, since the stack measurements also reflect ultimate emissions, the measurements from this location should be the reference point for consistency in the treatment of data and determination of internal mass flow rates. An average of 4,000 scfm of oxidation air was added to the flue gas as it passes through the JBR. Therefore, the rate of gas that enters and exits the ESP is that amount measured at the stack minus (-) the oxidation air added at the JBR. The stack flow rate was 288,000 dscfm - 4,000 dscfm (oxidation air) = 284,000dscfm as the flow rate for the INLET AND OUTLET of the ESP. The ESP operates at negative pressure; therefore, these numbers represent maximum rates, since any inleakage of gas would be measured at the stack.

Coal flow rates were determined from data obtained from the boiler control room. Raw coal is loaded into buckets which hold nominally 500 pounds of coal and a counter records each time a bucket is dumped. These readings, obtained over a 24-hour period, provide the basis for the coal feed rate. The dry feed coal rate was determined from the raw coal rate (corrected for moisture) less the pulverizer rejects. This method yields an average feed coal rate for the material balance period of 80,200 lb/hr. As a consistency check, the full-load unit heat rate was used to calculate a coal feed rate of 86,000 lb/hr, approximately 7% higher than measured. The calculated coal feed rate falls within the 95% confidence interval of the measured coal rate shown in Table 3-7. The bottom ash flow rate was determined by subtracting the ash flow rate measured at the ESP inlet from the ash contained in the feed coal.

Other flow rates used in mass balance calculations were measured by process instrumentation and are discussed in Section 6. Uncertainties for these calculated flow rates, expressed as 95% confidence intervals, were calculated using the method detailed in Appendix F.

### References

1. Electric Power Research Institute. Field Chemical Emissions Monitoring (FCEM) Generic Sampling and Analytical Plan. Draft Report. Palo Alto, CA (May 1994).

Table 3-7
Process Flow Rates During Phase II of Testing

|                                     | Run 1<br>6/25/93 | Run 2<br>6/26/93 | Run 3<br>6/27/93 | Mean    | Std.<br>Dev.    |
|-------------------------------------|------------------|------------------|------------------|---------|-----------------|
| Raw Coal Moisture (%)               | 12.7             | 11.2             | 11.2             | 11.7    | 0.9             |
| Feed Coal Ash (%, dry)              | 10.5             | 11.3             | 11.6             | 11.1    | 0.6             |
| Measured Flow Rates and Grain Lo    | adings:          |                  |                  |         |                 |
| Raw Coal (lb/hr, wet)               | 90,200           | 90,700           | 92,000           | 91,000  | 3,200*          |
| Coal Pulverizer Rejects (lb/hr)     | 110              | 130              | 110              | 120     | 15 <sup>6</sup> |
| ESP Inlet Loading (gr/dscf)         | 3.38             | 3.67             | 3.88             | 3.64    | 0.25            |
| ESP Outlet Loading, (gr/dscf)       | 0.0598           | 0.0489           | 0.0644           | 0.0577  | 0.0080          |
| Stack Gas (dscfm)                   | 290,000          | 287,000          | 285,000          | 288,000 | 2,500           |
| Stack Loading (gr/dscf)             | 0.0078           | 0.0048           | 0.0051           | 0.0059  | 0.0017          |
| Calculated Flow Rates:              |                  |                  |                  |         | 95% CI          |
| Feed Coal (lb/hr, dry)              |                  |                  |                  | 80,200  | 8,200           |
| ESP Inlet Gas (dscfm) <sup>c</sup>  |                  |                  |                  | 284,000 | 6,200           |
| ESP Outlet Gas (dscfm) <sup>c</sup> |                  |                  |                  | 284,000 | 6,200           |
| ESP Inlet Ash, (lb/hr) <sup>d</sup> |                  |                  |                  | 8,870   | 1,500           |
| ESP Outlet Ash, (lb/hr)             |                  | _                |                  | 140     | 49              |
| ESP Collected Ash (lb/hr)           |                  |                  |                  | 8,730   | 2,500           |
| Bottom Ash (lb/hr) <sup>e</sup>     | _                |                  |                  | 440     | 1,100           |
| Particulate Emissions:              |                  |                  |                  |         |                 |
| Emissions (lb/hr)                   |                  |                  |                  | 14.6    | 10.4            |
| Emissions (lb/10 <sup>6</sup> Btu)  |                  |                  |                  | 0.014   | 0.009           |
|                                     |                  |                  |                  |         |                 |

<sup>\*</sup> Standard deviation calculated from 71 hourly values measured over the three days of testing.

<sup>&</sup>lt;sup>b</sup> Standard deviation calculated from 9 values measured over the three days of testing.

<sup>&</sup>lt;sup>c</sup> The stack gas flow rate was considered to be the most accurate measurement of the gas flow rate; the ESP inlet and outlet flow rates were assumed equal to the stack gas less the JBR oxidation air (4,100 scfm).

<sup>&</sup>lt;sup>d</sup> Includes 4.5% unburned carbon.

<sup>&</sup>lt;sup>e</sup> Includes 2.3% unburned carbon.

# Table 3-8 Flow Rate Calculations

### Raw Coal:

Counting of 500 lb (nominal) buckets

### Pulverizer Rejects:

Measured by bucket-and-stopwatch method

#### Stack Gas:

Measured by Pitot tube traverse

### Feed Coal, dry basis:

91,000 lb/hr Raw Coal - 91,000 lb/hr \* 0.117 lb Water/lb coal - 120 lb/hr Rejects = 80,200 lb/hr

### ESP Inlet and ESP Outlet Flue Gas:

288,000 dscfm Stack Gas - 4,100 scfm Oxidation Air = 284,000 dscfm

### **ESP Inlet Ash:**

284,000 dscfm \* 3.64 gr/dscf \* 0.000143 lb/gr \* 60 m/hr = 8,870 lb/hr

### **ESP Outlet Ash:**

284,000 dscfm \* 0.0577 gr/dscf \* 0.000143 lb/gr \* 60 m/hr = 140 lb/hr

### **ESP Collected Ash:**

8,870 lb/hr ESP Inlet Ash - 140 lb/hr ESP Outlet Ash = 8,730 lb/hr

### Bottom Ash:

[80,200 lb/hr Dry Feed Coal \* 0.111 lb ash/lb coal - (8,870 lb/hr ESP Inlet Ash- 8,870 lb/hr \*0.045 lb Carbon/lb Ash]/(1-0.023) lb Carbon-Free Bottom Ash/lb Bottom Ash = 440 lb/hr

### **Stack Emissions:**

288,000 dscfm Stack Gas \* 0.0059 gr/dscf \* 0.000143 lb/gr \* 60 m/hr = 14.6 lb/hr

### **Stack Emission Factor:**

 $14.6 \text{ lb/hr/}(80,200 \text{ lb/hr Feed coal} * 12,700 \text{ Btu/lb}) * 1,000,000 = 0.014 \text{ lb/10}^6 \text{ Btu}$ 

# 4

## SAMPLE PREPARATION AND ANALYSIS METHODS

Preparation procedures and chemical analysis methods for gases are shown in Figures 4-1 through 4-12.

Procedures for liquid sample preparation and analysis are shown in Figure 4-13. Procedures for coal are shown in Figure 4-14 and Table 4-1. Procedures for ash are in Figure 4-15. Procedures for limestone and FGD solids are shown in Figure 4-16.

Appendix E of this technical note contains descriptions of and references for the methods used for this project.

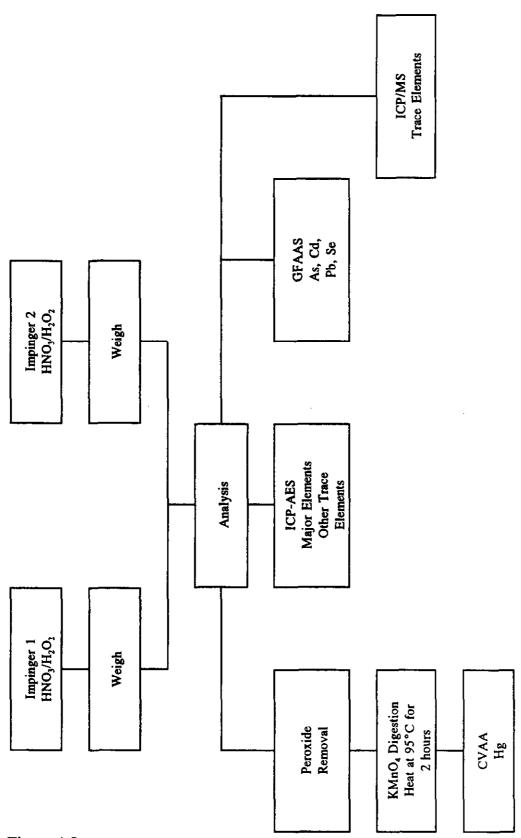



Figure 4-2
Flue Gas Impinger Sample Preparation and Analysis Plan for Metals

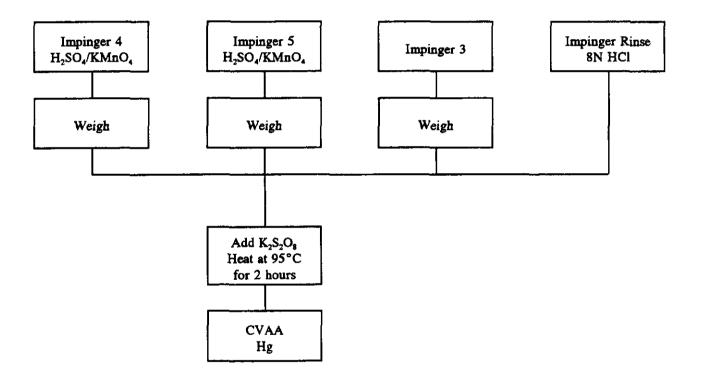



Figure 4-3
Flue Gas Impinger Sample Preparation and Analysis Plan for Mercury

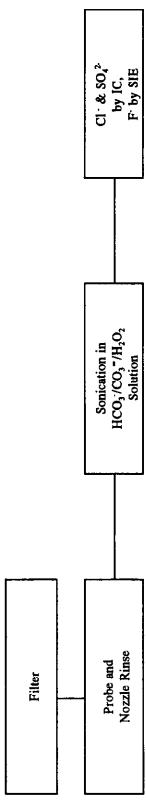



Figure 4-4
Gas Particulate Sample Preparation and Analysis Plan for Anions

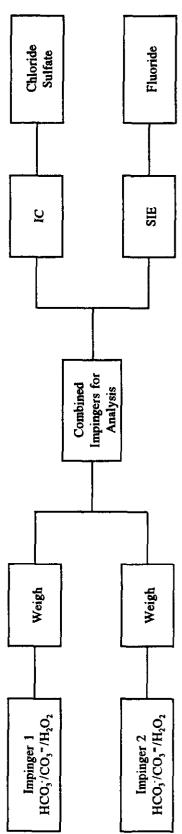



Figure 4-5
Flue Gas Impinger Sample Preparation and Analysis Plan for Anions

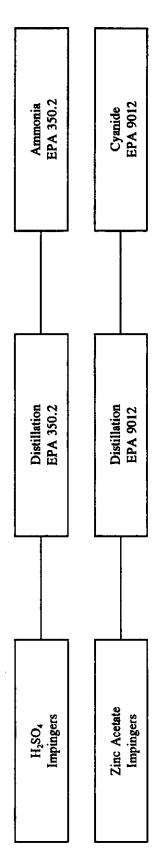



Figure 4-6
Flue Gas Impinger Sample Preparation and Analysis Plan for Ammonia and Cyanide

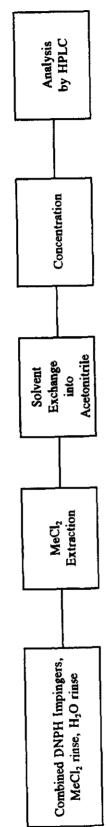



Figure 4-7
Flue Gas Impinger Sample Preparation and Analysis Plan for Formaldehyde

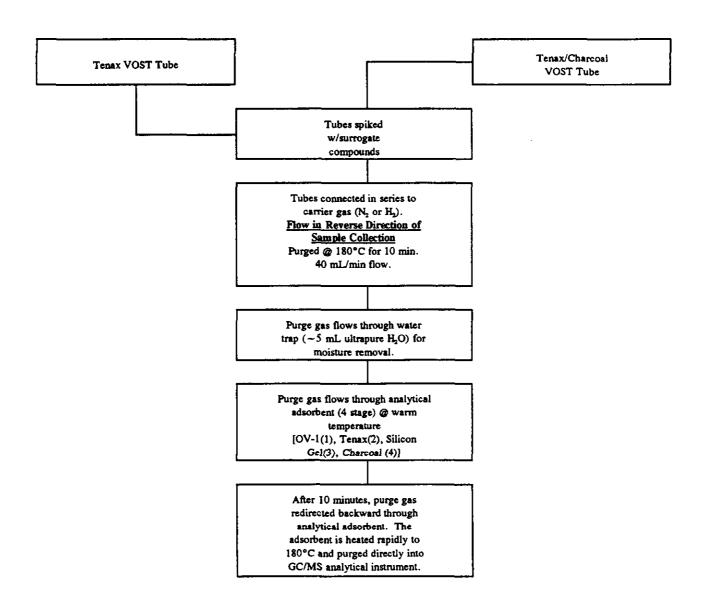



Figure 4-8
VOST Sorbent Sample Preparation and Analysis Plan for Volatile Organic Compounds

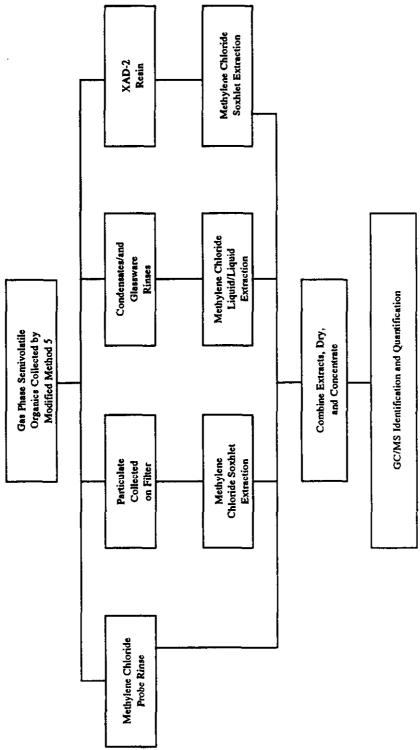



Figure 4-9
Flue Gas Sample Preparation and Analysis Plan for Semivolatile Organic Compounds

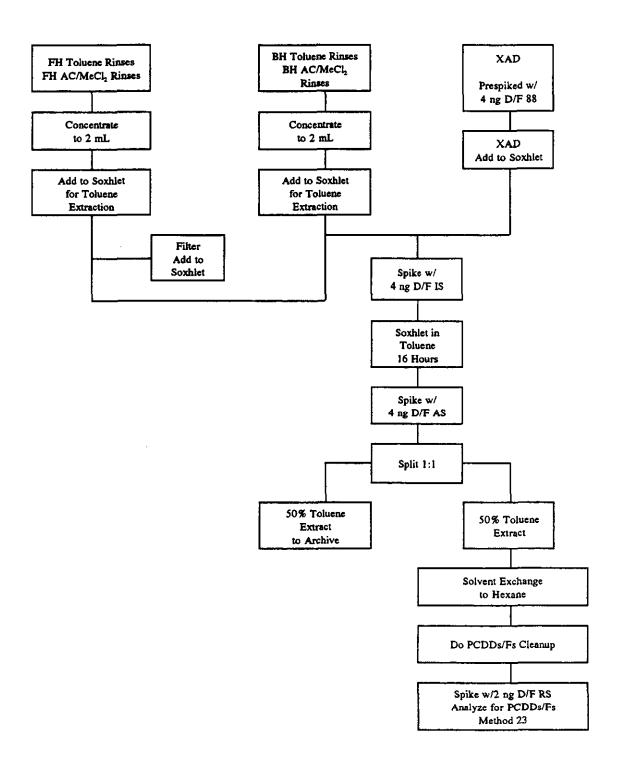



Figure 4-10 Flue Gas Sample Preparation and Analysis Plan for Dioxins and Furans

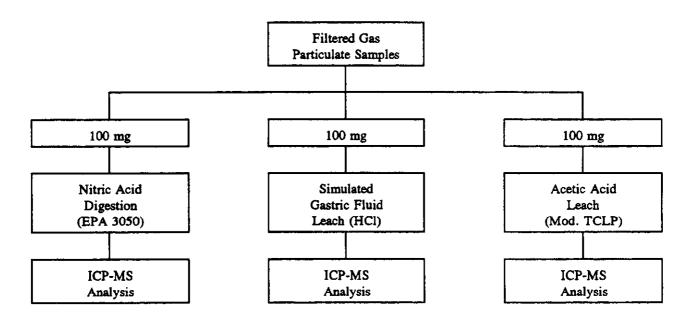



Figure 4-11
Gas Particulate Sample Preparation and Analysis Plan for Extractable Metals

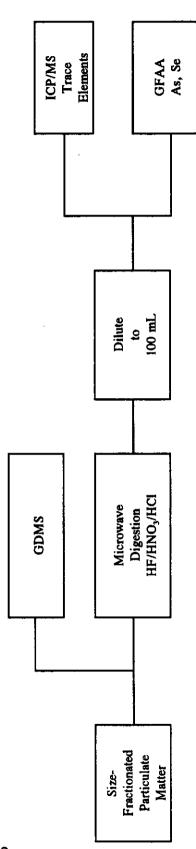



Figure 4-12
Size-Fractionated Particulate Sample Preparation and Analysis Plan for Metals

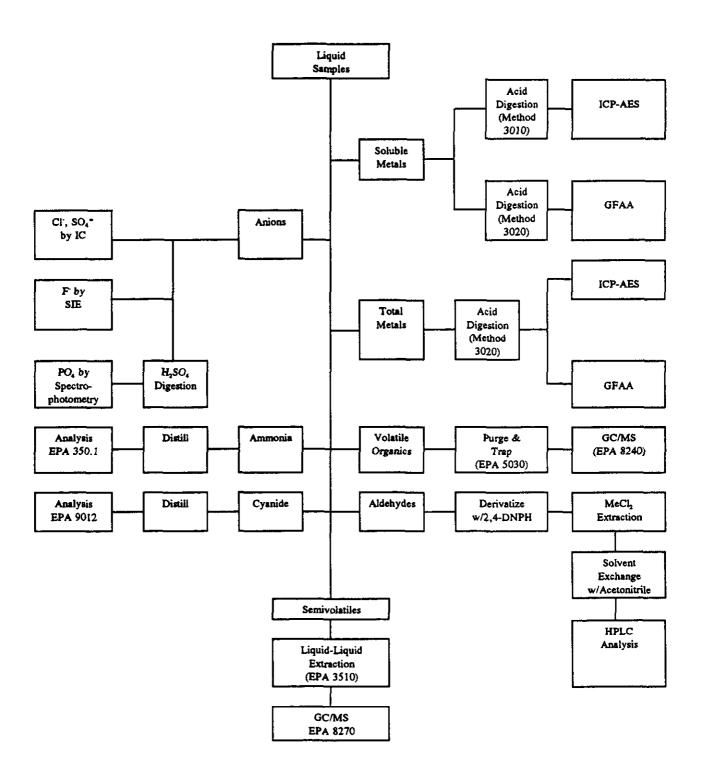



Figure 4-13 Liquid Sample Preparation and Analysis Plan

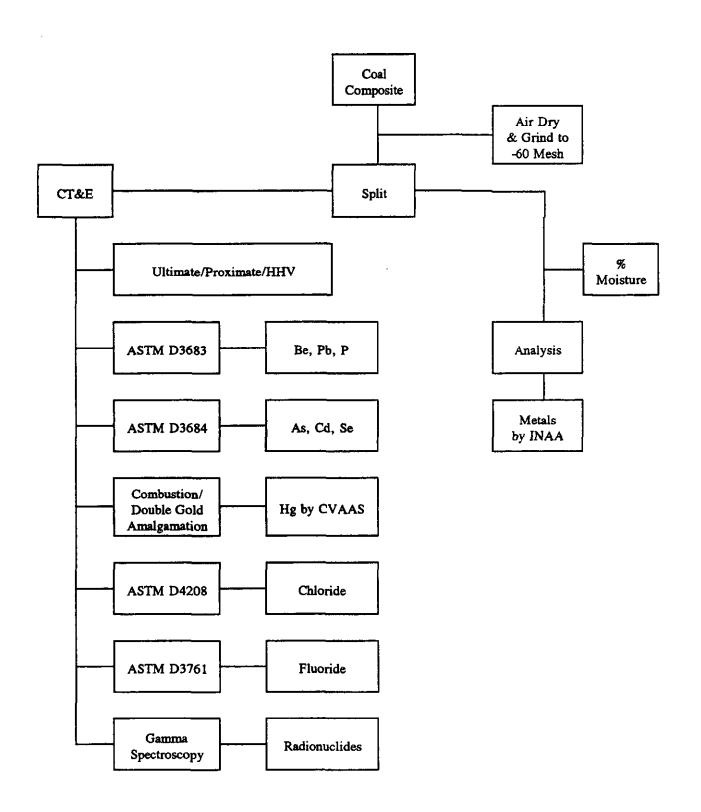



Figure 4-14 Coal Sample Preparation and Analysis Plan

Sample Preparation and Analysis Methods

Table 4-1 Summary of Coal Analytical Methods

| Chemical Substance                      | Analytical Method           |
|-----------------------------------------|-----------------------------|
| Ultimate/Proximate/Higher Heating Value |                             |
| Moisture                                | <b>ASTM D3173</b>           |
| Ash                                     | <b>ASTM</b> D3174           |
| Carbon, Hydrogen, Nitrogen              | ASTM D5373                  |
| Sulfur                                  | ASTM D4239                  |
| Volatile Matter                         | ASTM D3175                  |
| Heating Value                           | ASTM D2015                  |
| Chlorine in Coal                        | ASTM D4208                  |
| Fluorine in Coal                        | ASTM D3761                  |
| Radionuclides                           | Gamma Emission Spectroscopy |

ASTM = American Society for Testing and Materials.

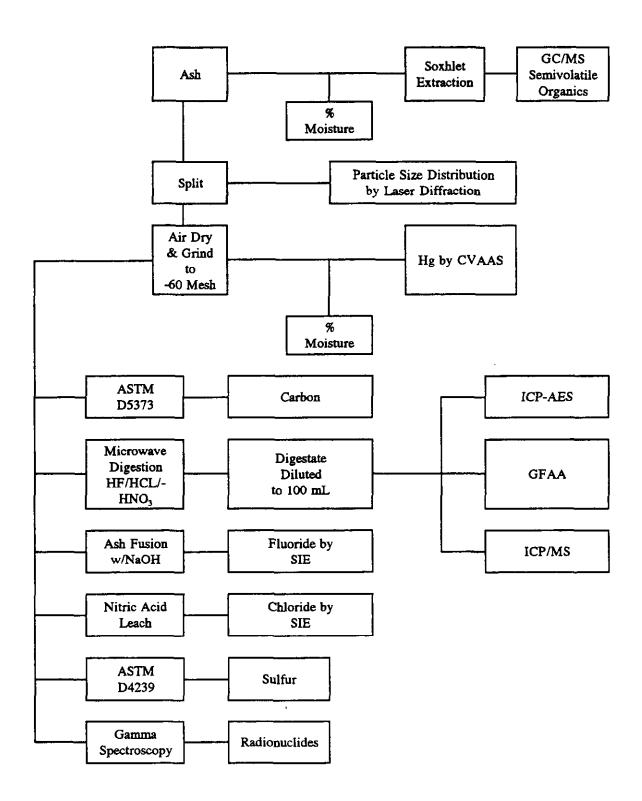



Figure 4-15
Ash Sample Preparation and Analysis Plan

# 5

## **Analytical Results**

The results of the analyses performed on samples collected during the emissions test program are presented in this section. The results are reported by stream matrix, i.e., gaseous, solid, or liquid, and are presented as averages for individual process streams along with the 95% confidence interval (CI) and the detection limit (DL) ratio. The detection limit ratio represents the percentage of the average value that is contributed by data which were below the detection limit. The analytical results for organic species reported in the following tables have been limited to only those compounds which were detected in any of the three test runs. Complete details of the analytical results may be found in Appendix H. Appendix H contains results on a per run basis, the analytical method used for each analysis, appropriate data flags for each value, additional analytical results for compounds which were not part of the scope of work but which information was obtained by virtue of the particular analytical method used, along with the averages of Runs 1-3, 95% CI, and DL ratios. Treatment of values that were less than the method detection limit are explained in Appendix G. Confidence intervals and error propagation are described in Appendix F.

Some data in Appendix H have been flagged. These data (which have been shaded) are suspect due to extremely high background contamination and have been excluded from the mean and CI calculations. High background contamination was encountered in gaseous particulate samples obtained from three of the multi-metals runs performed at the ESP outlet and the stack. This problem arose from the misidentification (during the field prep phase) of three glass fiber filter substrates. These glass fiber substrates were prepped, labelled and treated as quartz filters. The error was discovered during analysis when very high levels of barium and zinc were identified. The glass fiber substrates were used in Runs 1 and 3 at the ESP outlet and in Run 1 at the stack. Table 5-1 shows results for a blank analysis of a quartz and glass fiber filter. Background results are similar for Sb, As, Se, and V. All other species (except Mo) are substantially higher in the glass fiber matrix. Again, shaded data have been invalidated and are not included in the reported mean values.

#### Gases

The particulate loading and analytical results for the ESP inlet, ESP outlet and the stack are presented in Table 5-2. Concentration of trace elements as a function of particle size is given for three approximate size ranges; less than  $3 \mu m$ ,  $3-10 \mu m$ , and greater than  $10 \mu m$  on an aerodynamic basis. The analysis of boron and silicon in the fly ash samples filtered from the flue gas streams was not performed due to the limited quantity of sample and the limitations of the sampling and sample preparation techniques. For gas particulate samples, the filtered solids are prepared for analysis by digesting the entire filter with a mixed acid solution containing hydrochloric, nitric, and hydrofluoric acids.

Table 5-1
Filter Substrate Data Comparison

| Specie                           | Quartz<br>(μg)             | Glass Fiber<br>(µg)         |
|----------------------------------|----------------------------|-----------------------------|
| Aluminum                         | 122                        | 36,500                      |
| Antimony                         | <9                         | <9                          |
| Arsenic                          | 0.14                       | <0.12                       |
| Barium                           | 8.6                        | 57,600                      |
| Beryllium                        | 0.08                       | 6                           |
| Cadmium                          | <0.13                      | 4                           |
| Calcium                          | 101                        | 15,500                      |
| Chromium                         | 1.4                        | 21                          |
| Cobalt                           | 0.25                       | 22                          |
| Copper                           | 0.57                       | 4                           |
| Iron                             | 15                         | 312                         |
| Lead                             | <0.13                      | 35                          |
| Magnesium                        | 14                         | 2,700                       |
| Manganese                        | 0.60                       | 15                          |
| Mercury                          | 0.07                       | 0.1                         |
| Molybdenum                       | 19                         | 2                           |
| Nickel                           | 2.6                        | 8                           |
| Phosphorus                       | <7.5                       | 144                         |
| Potassium                        | <205                       | 30,000                      |
| Selenium                         | 0.06                       | <0.09                       |
| Sodium                           | 224                        | 88,800                      |
| Strontium Titanium Vanadium Zinc | 0.80<br>8.2<br>0.65<br>6.3 | 664<br>78<br>0.15<br>39,900 |

Table 5-2
Gas Process Stream Data Summary

|                                            |                | E          | SP Inlet |       | E         | SP Outlet |       |         | Stack   |       |
|--------------------------------------------|----------------|------------|----------|-------|-----------|-----------|-------|---------|---------|-------|
| Analyte Group/                             |                |            | 95%      | DL    |           | 95%       | DL    |         | 95%     | DL    |
| Specie                                     | Units          | Average    | CI       | Ratio | Average   | CI        | Ratio | Average | CI      | Ratio |
| Particulate Loading                        | g/Nm³          | 8.95       | 1.5      |       | 0.142     | 0.05      |       | 0.0145  | 0.010   |       |
| Reduced Species                            |                |            |          |       |           |           |       |         |         |       |
| Ammonia as N                               | $\mu g/Nm^3$   | 29.0       | 7.4      |       | 27        | 16        |       | 11      | 17      |       |
| Hydrogen Cyanide                           | μg/Nm³         | 0.15       | 0.24     |       | 0.90      | 1.7       |       | 28      | 94      |       |
| Anions-Vapor                               |                |            |          |       |           |           |       |         |         |       |
| Chloride                                   | μg/Nm³         | 112,000    | 34,300   |       | 136,000   | 67,000    |       | 540     | 820     |       |
| Fluoride                                   | μg/Nm³         | 8,300      | 1,400    |       | 7,900     | 3,200     |       | 124     | 66      |       |
| Sulfate                                    | μg/Nm³         | 7,460,000  | 432,000  |       | 6,900,000 | 1,500,000 |       | 680,000 | 160,000 |       |
| Anions-Particulate                         |                |            |          |       |           |           |       |         |         |       |
| Chloride                                   | μg/Nm³         | 6,100      | 9,100    |       | 45        | 94        |       | 210     | 310     |       |
| Fluoride                                   | μg/Nm³         | 1.3        | 2.4      |       | 0.12      | 0.21      |       | 0.051   | 0.041   |       |
| Sulfate                                    | μg/Nm³         | 79,000     | 98,000   |       | 4,200     | 760       |       | 5,900   | 8,700   |       |
| Anions-Total                               | •              | •          |          |       |           |           |       |         |         |       |
| Chloride                                   | μg/Nm³         | 118,000    | 31,000   |       | 136,000   | 67,000    |       | 750     | 800     |       |
| Fluoride                                   | μg/Nm³         | 8,300      | 1,400    |       | 7,900     | 3,200     |       | 124     | 66      |       |
| Sulfate                                    |                | 7,500,000  |          |       | 6,900,000 | 1,500,000 |       | 690,000 | 170,000 |       |
| Radionuclides                              | F-6            | .,,        | ,        |       | -,,       | -,,       |       | ,       | ,       |       |
| Actinium-228 @ 338 KeV                     | pCi/g          | 25         | 36       | 11%   |           |           |       |         |         |       |
| Actinium-228 @ 911 KeV                     | pCi/g          | 20         | 15       |       |           |           |       |         |         |       |
| Actinium-228 @ 968 KeV                     | pCi/g          | 29         | 41       | 13%   |           |           |       |         |         |       |
| Bismuth-212 @ 727 KeV                      | pCi/g          | <39        |          | 100%  |           |           |       |         |         |       |
| Bismuth-214 @ 1120.4 KeV                   | pCi/g          | <24        |          | 100%  |           |           |       |         |         |       |
| Bismuth-214 @ 1764.7 KeV                   | pCi/g          | 49         | 71       | 12%   |           |           |       |         |         |       |
| Bismuth-214 @ 609.4 KeV                    | pCi/g          | 28         | 17       |       |           |           |       |         |         |       |
| K-40 @ 1460 KeV                            | pCi/g          | 230        | 317      |       | 73        | 31        |       | <56     |         | 48%   |
| Lead-210 @ 46 KeV                          | pCi/g<br>pCi/g | 79         | 33       |       | , ,       | 31        | -     | 730     | -       | 40 %  |
|                                            | pCi/g<br>pCi/g | 19         | 19       |       |           |           |       | •       |         |       |
| Lead-212 @ 238 KeV<br>Lead-214 @ 295.2 KeV | pCi/g<br>pCi/g | 24         | 20       |       |           |           |       |         |         |       |
| <del>-</del>                               | pCi/g<br>pCi/g | 25         | 8.0      |       |           |           |       |         |         |       |
| Lead-214 @ 352.0 KeV                       |                |            | 50       |       |           |           |       |         |         |       |
| Radium-226 @ 186.0 KeV                     | pCi/g          | 130<br>17  | 11       |       |           |           |       |         |         |       |
| Thallium-208 @ 583 KeV                     | pCi/g<br>pCi/g |            |          | 100%  |           |           |       |         |         |       |
| Thallium-208 @ 860 KeV                     |                | < 67<br>79 | 25       |       |           |           |       |         |         |       |
| Thorium-234 @ 1001 KeV                     | pCi/g          |            | 35       |       |           |           |       |         |         |       |
| Thorium-234 @ 63.3 KeV                     | pCi/g          | 69         | 43       | ***   |           |           |       |         |         |       |
| Uranium-235 @ 143 KeV                      | pCi/g          | 69         | 43       |       |           |           |       |         |         |       |
| Part Metals by Wt.                         |                | OT 000     |          |       | 101 000   |           |       |         |         |       |
| Aluminum                                   | μg/g           | 97,000     | 11,000   |       | 101,000   |           |       | 13,800  | 7,300   |       |
| Antimony                                   | μg/g           | 3.6        | 2.4      |       | 2.7       | 0.65      |       | 3.8     | 5.7     |       |
| Arsenic                                    | μg/g           | 45         | 12       |       | 117       | 48        |       | 81      | 71      |       |
| Barium                                     | μg/g           | 490        | 106      |       | 620       |           |       | 210     | 1,100   |       |
| Beryllium                                  | μg/g           | 10         | 0.57     |       | 14        |           |       | 2.9     | 2.1     |       |
| Cadmium                                    | µ8/g           | 2.70       | 1.4      |       | 8.9       |           |       | 41      | 79      |       |
| Calcium                                    | μg/g           | 18,100     | 3,900    |       | 14,800    |           |       | 18,600  | 31,000  |       |
| Chromium                                   | μ <b>8/</b> g  | 320        | 500      |       | 190       |           |       | 330     | 3,000   |       |
| Cobalt                                     | μg/g           | 31         | 0.83     |       | 37        |           |       | < 150   |         | 52%   |

Table 5-2 (Continued)

|                    |              | E                                     | SP Inlet |       | E       | SP Outlet |       | Stack   |        |       |  |
|--------------------|--------------|---------------------------------------|----------|-------|---------|-----------|-------|---------|--------|-------|--|
| Analyte Group/     | •            | · · · · · · · · · · · · · · · · · · · | 95%      | DL    |         | 95%       | DL    | -       | 95%    | DL    |  |
| Specie             | Units        | Average                               | CI       | Ratio | Average | CI        | Ratio | Average | CI     | Ratio |  |
| Copper             | µg/g         | 86                                    | 2.6      |       | 116     | 35        |       | 56      | 49     |       |  |
| Iron               | μg/g         | 91,000                                | 27,000   | -     | 61,000  | 14,000    |       | 11,700  | 22,000 |       |  |
| Lead               | μg/g         | 79                                    | 19       | -     | 153     |           |       | 36      | 20     |       |  |
| Magnesium          | μg/g         | 4,690                                 | 480      |       | 5,500   | -         |       | 2,800   | 10,700 |       |  |
| Manganese          | μg/g         | 237                                   | 32       |       | 243     | 68        |       | 490     | 2,600  |       |  |
| Mercury            | μg/g         | 0.79                                  | 0.59     |       | 0.90    | 0.3       |       | 0.57    | 5.2    | 14%   |  |
| Molybdenum         | μg/g         | 35                                    | 39       |       | 58      | 31        |       | 73      | 120    |       |  |
| Nickel             | μg/g         | 230                                   | 250      |       | 157     | 25        |       | 2,500   | 27,000 |       |  |
| Phosphorus         | μg/g         | 230                                   | 150      |       | 830     |           |       | < 220   |        | 100%  |  |
| Potassium          | μg/g         | 17,500                                | 1,900    |       | 17,900  |           |       | 2,900   | 1,600  |       |  |
| Selenium           | μg/g         | 15                                    | 7.0      |       | 570     | 860       |       | 1,700   | 3,500  |       |  |
| Sodium             | μg/g         | 5,120                                 | 190      |       | 6,700   |           |       | 4,200   | 1,900  |       |  |
| Strontium          | μg/g         | 324                                   | 12       | *-    | 360     |           |       | 106     | 53     |       |  |
| Titanium           | μg/g         | 6,140                                 | 790      |       | 5,400   | 1,600     |       | 910     | 1,700  |       |  |
| Vanadium           | μg/g         | 308                                   | 5.7      |       | 381     | 93        |       | 112     | 46     |       |  |
| Part Metals by Vol |              |                                       |          |       |         |           |       |         |        |       |  |
| Aluminum           | μg/Nm³       | 870,000                               | 240,000  |       | 12,100  |           |       | 190     | 260    |       |  |
| Antimony           | μg/Nm³       | 33                                    | 26       |       | 0.39    | 0.11      |       | 0.052   | 0.019  |       |  |
| Arsenic            | μg/Nm³       | 400                                   | 170      |       | 16      | 6.6       |       | 1.1     | 0.24   |       |  |
| Barium             | μg/Nm³       | 4,400                                 | 1,700    |       | 74      |           |       | 2.8     | 10     |       |  |
| Beryllium          | μg/Nm³       | 93                                    | 16       |       | 1.7     |           |       | 0.041   | 0.047  |       |  |
| Cadmium            | μg/Nm³       | 24                                    | 15       |       | 1.1     |           |       | 0.59    | 2.2    |       |  |
| Calcium            | μg/Nm³       | 161,300                               | 7,200    |       | 1,800   |           |       | 270     | 920    |       |  |
| Chromium           | μg/Nm³       | 2,900                                 | 4,600    |       | 23      | **        |       | 5.1     | 50     |       |  |
| Cobalt             | μg/Nm³       | 275                                   | 48       |       | 4.5     |           |       | < 0.6   |        | 59%   |  |
| Copper             | μg/Nm³       | 770                                   | 130      | **    | 16      | 1.2       |       | 0.77    | 0.76   |       |  |
| Iron               | μg/Nm³       | 808,000                               | 99,000   |       | 8,500   | 1,100     | **    | 170     | 600    |       |  |
| Lead               | μg/Nm³       | 710                                   | 290      |       | 18      |           |       | 0.50    | 0.64   |       |  |
| Magnesium          | μg/Nm³       | 42,000                                | 11,000   |       | 660     | •         |       | 41      | 220    |       |  |
| Manganese          | μg/Nm³       | 2,120                                 | 120      |       | 34      | 3.7       |       | 7.2     | 49     |       |  |
| Mercury            | μg/Nm³       | 7.1                                   | 5.6      |       | 0.126   | 0.037     |       | 0.0071  | 0.057  | 18%   |  |
| Molybdenum         | μg/Nm³       | 320                                   | 390      |       | 8.1     | 1.3       |       | 1.4     | 2.6    |       |  |
| Nickel             | μg/Nm³       | 2,000                                 | 2,300    |       | 22      | 5.7       |       | 39      | 440    |       |  |
| Phosphorus         | μg/Nm³       | 2,100                                 | 1,600    | **    | 100     |           |       | < 2.6   |        | 100%  |  |
| Potassium          | μg/Nm³       | 157,000                               | 43,000   |       | 2,150   |           |       | 40      | 53     |       |  |
| Selenium           | μg/Nm³       | 133                                   | 73       |       | 82      | 130       |       | 26      | 58     |       |  |
| Sodium             | μg/Nm³       | 45,800                                | 6,200    |       | 800     |           |       | 59      | 140    | +-    |  |
| Strontium          | μg/Nm³       | 2,910                                 | 570      |       | 43      |           |       | 1.5     | 3.5    |       |  |
| Titanium           | μg/Nm³       | 55,000                                | 16,000   |       | 760     | 230       |       | 12.5    | 0.59   |       |  |
| Vanadium           | μg/Nm³       | 2,760                                 | 430      |       | 54      | 11        | **    | 1.6     | 0.47   |       |  |
| Metals, Vapor      | r.e          | _,, •••                               |          |       | - •     |           |       |         |        |       |  |
| Aluminum           | $\mu g/Nm^3$ | 150                                   | 940      |       | 58      | 48        |       | < 8.7   |        | 50%   |  |
| Antimony           | μg/Nm³       | 0.56                                  | 6.5      |       | 0.021   | 0.0096    |       | 0.012   | 0.0019 |       |  |
| Arsenic            | μg/Nm³       | < 0.17                                |          | 100%  | < 0.18  |           | 100%  | < 0.18  |        | 100%  |  |
| Barium             | μg/Nm³       | 1.5                                   | 7.9      |       | 1.0     | 1.1       |       | < 0.14  |        | 54%   |  |
| Beryllium          | μg/Nm³       | 0.06                                  | 0.25     |       | < 0.16  |           | 57%   | < 0.17  |        | 82%   |  |
| <b>,</b>           | F-8          |                                       |          |       |         |           | 2.70  |         |        | /-    |  |

Table 5-2 (Continued)

|                    |                    | E       | SP Inlet |       | ES      | SP Outlet |       | Stack   |       |            |
|--------------------|--------------------|---------|----------|-------|---------|-----------|-------|---------|-------|------------|
| Analyte Group/     | •                  |         | 95%      | DL    |         | 95%       | DL    |         | 95%   | DL         |
| Specie             | Units              | Average | CI       | Ratio | Average | CI        | Ratio | Average | CI    | Ratio      |
| Boron              | μg/Nm³             | 6,400   | 12,000   |       | 6,900   | 1,200     |       | 440     | 70    | **         |
| Cadmium            | μg/Nm³             | 0.11    | 0.93     | 16%   | 0.10    | 0.31      | 21%   | < 0.064 |       | 100%       |
| Calcium            | μg/Nm³             | 300     | 110      |       | 184     | 87        |       | <40     |       | 52%        |
| Chromium           | $\mu g/Nm^3$       | 11      | 140      |       | < 0.73  |           | 42%   | < 0.67  | ••    | 100%       |
| Cobalt             | $\mu g/Nm^3$       | < 0.74  |          | 55%   | < 1.0   |           | 31%   | 0.39    | 0.77  |            |
| Copper             | $\mu g/Nm^3$       | 1.1     | 1.6      |       | 1.1     | 1.2       | 16%   | 1.2     | 2.4   | 14%        |
| Iron               | $\mu g/Nm^3$       | 140     | 120      |       | 50      | 78        |       | < 1.8   |       | 50%        |
| Lead               | $\mu g/Nm^3$       | < 0.21  |          | 100%  | 0.40    | 1.1       | 20%   | < 0.22  |       | 100%       |
| Magnesium          | μg/Nm³             | 20      | 18       |       | 12      | 6.4       |       | <7.0    |       | 24%        |
| Manganese          | μg/Nm³             | < 0.10  |          | 100%  | < 0.11  | ~~        | 100%  | < 0.11  | •-    | 100%       |
| Mercury            | μg/Nm³             | 5.5     | 5.6      |       | 5.6     | 1.1       |       | 3.0     | 0.27  |            |
| Molybdenum         | μg/Nm³             | < 1.4   |          | 52%   | < 1.4   |           | 37%   | 0.12    | 0.048 | •          |
| Nickel             | μg/Nm³             | 7       | 7%       | 8%    | < 2.9   |           | 59%   | < 2.6   |       | 46%        |
| Phosphorus         | μg/Nm³             | < 16    |          | 100%  | <17     |           | 100%  | < 16    |       | 100%       |
| Potassium          | μg/Nm³             | 10      | 130      | 2%    | 20      | 100       | 1%    | 37      | 96    | 0.4%       |
| Selenium           | μg/Nm³             | < 0.22  |          | 100%  | < 0.23  | **        | 100%  | 0.80    | 1.6   |            |
| Sodium             | μg/Nm³             | 240     | 360      |       | 290     | 280       |       | <11     | ••    | 100%       |
| Strontium          | μg/Nm³             | 2       | 4        |       | 1.4     | 0.28      | ••    | < 0.045 |       | 100%       |
| Titanium           | μg/Nm³             | 9       | 71       |       | 2.5     | 3.4       |       | < 0.27  | _     | 58%        |
| Vanadium           | μg/Nm³             | 1.2     | 3        |       | 1.0     | 1.3       | 12%   | 0.55    | 0.57  |            |
| Total Metals       | P.B. 3             |         |          |       | 1.0     | 22        |       | 0.00    | •••   |            |
| Aluminum           | μg/Nm³             | 870,000 | 240,000  |       | 12,200  |           |       | 200     | 250   | <b>-</b> - |
| Antimony           | μg/Nm³             | 33      | 25       |       | 0.41    | 0.12      |       | 0.065   | 0.026 |            |
| Arsenic            | μg/Nm³             | 410     | 170      |       | 17      | 6.6       |       | 1.2     | 0.24  |            |
| Barium             | μg/Nm³             | 4,400   | 1,700    |       | 75      |           |       | 2.9     | 10    |            |
| Beryllium          | μg/Nm³             | 93      | 16       |       | 1.7     |           |       | 0.099   | 0.29  |            |
| Boron (vapor only) | μg/Nm³             | 6,600   | 2,500    |       | 6,900   | 1.200     |       | 440     | 70    |            |
| Cadmium            | μg/Nm³             | 24      | 15       |       | 1.3     |           |       | 0.63    | 2.2   |            |
| Calcium            | μg/Nm³             | 163,300 | 6,200    |       | 1,900   |           |       | 290     | 830   |            |
|                    | μg/Nm <sup>3</sup> | 2,900   |          |       |         |           |       | 5.4     | 50    |            |
| Chromium           | . •                |         | 4,700    |       | 23      |           | *-    |         |       |            |
| Cobalt             | μg/Nm³             | 276     | 48       |       | 5       |           |       | 0.74    | 4     |            |
| Copper             | μg/Nm³             | 770     | 130      | **    | 17      | 1.9       |       | 2.0     | 1.8   |            |
| Iron               | μg/Nm³             | 809,000 | 98,000   |       | 8,600   | 1,100     |       | 170     | 600   |            |
| Lead               | μg/Nm³             | 710     | 290      |       | 19      |           |       | 0.61    | 0.54  |            |
| Magnesium          | μg/Nm³             | 42,000  | 11,200   |       | 670     |           |       | 45      | 230   |            |
| Manganese          | μg/Nm³             | 2,120   | 130      |       | 34      | 3.7       |       | 7.3     | 49    |            |
| Mercury            | μg/Nm³             | 13      | 5.6      |       | 5.7     | 1.1       |       | 3.1     | 0.44  |            |
| Molybdenum         | μg/Nm³             | 320     | 390      |       | 8.7     | 1.4       |       | 1.5     | 2.4   |            |
| Nickel             | μg/Nm³             | 2,100   | 2,300    |       | 24      | 6.3       |       | 41      | 430   | ••         |
| Phosphorus         | $\mu g/Nm^3$       | 2,100   | 1,600    |       | 110     |           |       | < 10    |       | 100%       |
| Potassium          | μg/Nm³             | 157,000 | 43,000   |       | 2,200   |           |       | 79      | 540   |            |
| Selenium           | $\mu g/Nm^3$       | 133     | 73       |       | 80      | 130       |       | 27      | 57    |            |
| Sodium             | $\mu g/Nm^3$       | 46,100  | 6,200    |       | 1,000   |           |       | 65      | 130   |            |
| Strontium          | μg/Nm³             | 2,920   | 580      |       | 45      |           |       | 1.5     | 3.5   |            |
|                    |                    |         |          |       |         |           |       |         |       |            |

Table 5-2 (Continued)

|                         |              | E       | SP Inlet |       | E       | SP Outlet |       | Stack   |       |       |
|-------------------------|--------------|---------|----------|-------|---------|-----------|-------|---------|-------|-------|
| Analyte Group/          | •            |         | 95%      | DL    |         | 95%       | DL    |         | 95%   | DL    |
| Specie                  | Units        | Average | CI       | Ratio | Average | CI        | Ratio | Average | CI    | Ratio |
| Titanium                | μg/Nm³       | 55,000  | 16,000   |       | 760     | 230       |       | 13      | 0.26  |       |
| Vanadium                | $\mu g/Nm^3$ | 2,770   | 440      |       | 55      | 10        |       | 2.2     | 1     | -     |
| Hg Vapor, Bloom         |              |         |          |       |         |           |       |         |       |       |
| Mercury, Elemental      | $\mu g/Nm^3$ | 2.0     | 1.8      |       | 2.5     | 0.28      |       | 2.8     | 1.1   |       |
| Mercury II              | $\mu g/Nm^3$ | 4.1     | 1.4      |       | 4.2     | 2         |       | 0.47    | 0.33  |       |
| Mercury, Methyl         | $\mu g/Nm^3$ | 0.31    | 0.59     |       | 0.63    | 0.45      |       | 0.044   | 0.041 |       |
| Mercury, Total          | μg/Nm³       | 6.4     | 1.1      |       | 7.3     | 2.4       |       | 3.3     | 0.88  |       |
| Hexavalent Chromium     |              |         |          |       |         |           |       |         |       |       |
| Chromium VI             | $\mu g/Nm^3$ |         |          |       |         |           |       | < 0.190 |       | 100%  |
| Total Chromium          | $\mu g/Nm^3$ |         |          |       |         |           |       | < 0.560 | **    | 100%  |
| Extract Metals, Nitric  |              |         |          |       |         |           |       |         |       |       |
| Antimony                | μg/g         | 2.7     | 1        |       | 3.2     | 3.4       |       | 5.8     |       |       |
| Arsenic                 | µg/g         | 43      | 45       |       | 98      | 40        |       | 160     |       |       |
| Barium                  | μg/g         | 220     | 145      |       | 318     | 8.4       | -     | 350     |       |       |
| Beryllium               | μg/g         | 4.1     | 2.3      |       | 5.4     | 5.8       |       | 10      |       | ~-    |
| Boron                   | μg/g         | 1,520   | 857      |       | 1,900   | 1,200     |       | < 15    |       | 100%  |
| Cadmium                 | μg/g         | 2.2     | 5        | 5%    | 10      | 18        | -     | 67      |       |       |
| Chromium                | μg/g         | 29      | 30       |       | 64      | 61        |       | 44      |       |       |
| Cobalt                  | μg/g         | 5.0     | 10       |       | 17      | 3.8       |       | < 0.90  |       | 100%  |
| Copper                  | µg/g         | 32      | 36       |       | 98      | 32        |       | 120     |       |       |
| Lead                    | μg/g         | 39      | 52       |       | 116     | 31        |       | 91      | ••    |       |
| Manganese               | μg/g         | 120     | 87       |       | 1000    | 3,500     |       | 330     |       | ***   |
| Mercury                 | μg/g         | 80      | 230      | 0.4%  | 4.0     | 11        | 8.1%  | <7.0    |       | 100 % |
| Molybdenum              | μg/g         | 43      | 59       |       | 72      | 21        |       | 51      |       |       |
| Nickel                  | μg/g         | 45      | 30       |       | 84      | 46        |       | 390     |       |       |
| Selenium                | μg/g         | < 23    |          | 100%  | <23     |           | 100%  | <87     |       | 100%  |
| Vanadium                | μg/g         | 150     | 160      | *-    | 270     | 260       |       | 390     |       |       |
| Extract Metals, Gastric |              |         |          |       |         |           |       |         |       |       |
| Antimony                | μg/g         | 0.71    | 0.095    |       | 1.0     | 0.4       |       | 3.4     |       |       |
| Arsenic                 | μg/g         | < 0.68  |          | 100 % | < 0.66  |           | 100 % | < 2.5   |       | 100 % |
| Barium                  | μg/g         | 103     | 55       |       | 125     | 22        |       | 210     |       |       |
| Beryllium               | μg/g         | 1.1     | 0.61     |       | 2.7     | 0.66      |       | 4.2     |       |       |
| Boron                   | μg/g         | 698     | 4.6      |       | 822     | 88        |       | 150     |       |       |
| Cadmium                 | µg∕g         | 1.8     | 3.0      |       | 5.9     | 3.2       |       | 12      |       |       |
| Chromium                | µg/g         | 27      | 13       |       | 54      | 18        |       | 85      |       |       |
| Cobalt                  | μg/g         | 1.8     | 1.4      |       | 5.5     | 2         |       | 11      |       |       |
| Copper                  | μg/g         | 10      | 5.3      |       | 33      | 9.3       |       | 51      |       |       |
| Lead                    | μg/g         | 9.4     | 9.6      |       | 33      | 7.1       |       | 66      |       |       |
| Manganese               | μg/g         | 60      | 65       |       | 46      | 11        |       | 350     |       |       |
| Mercury                 | μg/g         | 1.9     | 3.0      |       | 0.38    | 0.22      |       | < 0.15  |       | 100 % |
| Molybdenum              | μg/g         | 29      | 22       |       | 61      | 12        |       | 49      |       |       |
| Nickel                  | µg/g         | 10      | 21       |       | 38      | 22        |       | 170     |       |       |
| Selenium                | μg/g         | <0.88   | ••       | 100%  | 18      | 6.8       |       | 140     |       |       |
| Vanadium                | μg/g         | < 0.36  |          | 100 % | 122     | 79        |       | <1.3    |       | 100 % |

Table 5-2 (Continued)

|                        |               | E       | SP Inlet |       | E       | SP Outlet |       | Stack   |     |       |
|------------------------|---------------|---------|----------|-------|---------|-----------|-------|---------|-----|-------|
| Analyte Group/         |               |         | 95%      | DL    |         | 95%       | DL    |         | 95% | DL    |
| Specie                 | Units         | Average | CI       | Ratio | Average | CI        | Ratio | Average | CI  | Ratio |
| Extract Metals, Acetic |               |         |          |       |         |           |       |         |     |       |
| Antimony               | μg/g          | 0.80    | 1.1      |       | 0.88    | 0.38      |       | < 0.03  |     | 100%  |
| Arsenic                | μg/g          | 1.0     | 0.63     |       | 3.4     | 3.9       |       | < 0.5   |     | 100%  |
| Barium                 | μg/g          | 48      | 30       |       | 44      | 13        |       | 17      |     |       |
| Beryllium              | μg/g          | 0.32    | 0.54     |       | 0.98    | 0.53      |       | 2.9     |     |       |
| Boron                  | μg/g          | 1,010   | 240      |       | 910     | 280       |       | < 0.82  |     | 100%  |
| Cadmium                | μg/g          | 1.6     | 2.9      |       | 10      | 27        |       | 5.9     |     |       |
| Chromium               | μg/g          | 7.4     | 1        |       | 19      | 7.2       |       | 36      |     |       |
| Cobalt                 | μg/g          | 1.5     | 0.87     |       | 6.0     | 7.4       |       | 7.5     |     |       |
| Copper                 | μg/g          | 11      | 14       |       | 18      | 4.9       |       | 64      |     |       |
| Lead                   | μg/g          | 0.21    | 0.35     |       | 1.5     | 0.98      |       | 20      |     |       |
| Manganese              | μg/g          | 51      | 52       |       | 39      | 8.5       |       | 470     |     |       |
| Mercury                | μg/g          | 0.70    | 1.9      |       | 0.13    | 0.38      |       | < 0.38  | **  | 100%  |
| Molybdenum             | μg/g          | 1.5     | 5.3      |       | 4.0     | 12        |       | 3.5     |     |       |
| Nickel                 | μg/g          | 8.6     | 5.6      |       | 23      | 1.0       |       | 66      |     |       |
| Selenium               | μg/g          | < 0.54  |          | 41%   | 4.1     | 3.3       |       | 61      |     |       |
| Vanadium               | μg/g          | 1.5     | 1.0      | +-    | 5.0     | 10        |       | < 0.19  |     | 100%  |
| Metals by Size, >10 μm |               |         |          |       |         |           |       |         |     |       |
| Percent of Total Mass  | %             | 57      |          |       | 16      |           |       |         |     |       |
| Aluminum               | μg/g          | 109,000 | 35,000   |       | 72,000  | 16,000    |       |         |     |       |
| Antimony               | μg/g          | 2.0     | 1.1      |       | 3.2     | 1.0       |       |         |     |       |
| Arsenic                | μg/g          | 26      | 8.4      |       | 49      | 21        |       |         |     |       |
| Barium                 | μg/g          | 520     | 130      | ••    | 390     | 100       |       |         |     |       |
| Beryllium              | μ <b>g</b> /g | 10      | 5.6      |       | 10      | 18        |       |         |     |       |
| Cadmium                | μg/g          | 1.7     | 0.88     |       | 3.6     | 1.8       |       |         |     |       |
| Calcium                | μg/g          | 22,100  | 10,000   |       | 14,000  | 3,900     |       |         |     |       |
| Chromium               | μg/g          | 184     | 4.3      |       | 213     | 35        |       |         |     |       |
| Cobalt                 | μg/g          | 32      | 4.4      |       | 32      | 18        |       |         |     |       |
| Copper                 | μg/g          | 87      | 23       |       | 102     | 33        |       |         |     |       |
| Iron                   | μg/g          | 102,000 | 2,500    |       | 160,000 | 140,000   |       |         |     |       |
| Lead                   | μg/g          | 51      | 19       |       | 72      | 31        |       |         |     |       |
| Magnesium              | μg/g          | 5,400   | 2,000    |       | 3,700   | 1,600     |       |         |     |       |
| Manganese              | μg/g          | 238     | 17       |       | 700     | 1,100     |       |         |     |       |
| Mercury                | μg/g          | 0.50    | 0.47     |       | 0.55    | 0.21      |       |         |     |       |
| Molybdenum             | μg/g          | 16      | 20       |       | 43      | 13        |       |         |     |       |
| Nickel                 | μg/g          | 121     | 34       |       | 129     | 96        |       |         |     |       |
| Phosphorus             | μg/g          | <72     |          | 100%  | <71     |           | 100%  |         |     |       |
| Potassium              | μg/g          | 18,500  | 2,700    |       | 14,600  | 2,900     |       |         |     |       |
| Selenium               | μg/g          | 11      | 1        |       | 160     | 210       |       |         |     |       |
| Silicon                | μg/g          | 218,000 | 20,000   |       | 175,000 | 77,000    |       |         |     |       |
| Sodium                 | μg/g          | 4,600   | 1,900    |       | 5,500   | 4,000     |       |         |     |       |
| Strontium              | μg/g          | 357     | 97       |       | 294     | 58        |       |         |     |       |
| Titanium               | μg/g          | 6,150   | 560      |       | 5,300   | 2,000     |       |         |     |       |
| Vanadium               | μg/g          | 293     | 45       | =     | 290     | 120       |       |         |     |       |

Table 5-2 (Continued)

|                         |                                | E            | SP Inlet |       | E       | SP Outlet   |       |         | Stack |       |
|-------------------------|--------------------------------|--------------|----------|-------|---------|-------------|-------|---------|-------|-------|
| Analyte Group/          |                                |              | 95%      | DL    |         | 95%         | DL    |         | 95%   | DL    |
| Specie                  | Units                          | Average      | CI       | Ratio | Average | CI          | Ratio | Average | CI    | Ratio |
| Metals by Size, 3-10 μm |                                |              |          |       |         |             |       |         |       |       |
| Percent of Total Mass   | %                              | 27           |          |       | 44      |             |       |         |       |       |
| Aluminum                | μg/g                           | 118,000      | 23,000   | **    | 105,000 | 63,000      | ~**   |         |       |       |
| Antimony                | µg∕g                           | 4.8          | 2.7      |       | 8.6     | 1.1         |       |         |       |       |
| Arsenic                 | $\mu g/g$                      | 71           | 31       |       | 127     | 11          |       |         |       |       |
| Barium                  | μg/g                           | 630          | 250      |       | 629     | <b>8</b> 5  |       |         |       |       |
| Beryllium               | μg/g                           | 13           | 8.1      |       | 18      | 15          |       |         |       |       |
| Cadmium                 | $\mu g/g$                      | 5.8          | 3.6      |       | 11      | 2.4         |       |         |       |       |
| Calcium                 | μg/g                           | 19,000       | 17,000   |       | 14,000  | 1,600       |       |         |       |       |
| Chromium                | μg/g                           | 218          | 16       |       | 275     | 65          | •     |         |       |       |
| Cobalt                  | μg/g                           | 43           | 5.6      |       | 51      | 10          |       |         |       |       |
| Copper                  | μg/g                           | 142          | 22       |       | 170     | 39          |       |         |       |       |
| Iron                    | μg/g                           | 64,000       | 19,000   |       | 63,000  | 14,000      |       |         |       |       |
| Lead                    | μg/g                           | 119          | 82       |       | 191     | 5.2         |       |         |       |       |
| Magnesium               | μg/g                           | 6,350        | 520      |       | 5,000   | 4,200       |       |         |       |       |
| Manganese               | μg/g                           | 226          | 34       |       | 280     | 110         |       |         |       |       |
| Mercury                 | μg/g                           | 0.47         | 0.54     |       | < 0.48  |             | 18%   |         |       |       |
| Molybdenum              | μg/g                           | 46           | 34       |       | 80      | 25          |       |         |       |       |
| Nickel                  | μg/g                           | 152          | 69       |       | 211     | 73          |       |         |       |       |
| Phosphorus              | μg/g                           | <73          |          | 100%  | 228     | 100         |       |         |       |       |
| Potassium               | μg/g                           | 21,800       | 3,300    |       | 21,300  | 7,200       | **    |         |       |       |
| Selenium                | μg/g                           | 3.1          | 7.3      | 6%    | 45      | 33          | ••    |         |       |       |
| Silicon                 | μg/g                           | 231,000      | 14,000   |       | 218,000 | 20,000      |       |         |       |       |
| Sodium                  | μg/g                           | 6,700        | 2,600    |       | 7,900   | 1,500       |       |         |       |       |
| Strontium               | μg/g                           | 384          | 11       |       | 370     | 120         |       |         |       |       |
| Titanium                | μg/g                           | 6,830        | 960      |       | 6,860   | 850         |       |         |       |       |
| Vanadium                | μg/g                           | 390          | 190      |       | 509     | 91          |       |         |       |       |
| Metals by Size, <3 μm   | , , ,                          |              |          |       |         |             |       |         |       |       |
| Percent of Total Mass   | %                              | 16           |          |       | 40      |             |       |         |       |       |
| Aluminum                | μg/g                           | 135,000      | 18,000   |       | 122,000 | 10,000      |       |         |       |       |
| Antimony                | μg/g                           | 10           | 5.7      |       | 13      | 0.94        |       |         |       |       |
| Arsenic                 | μg/g                           | 160          | 110      |       | 202     | 54          |       |         |       |       |
| Barium                  | μg/g                           | 780          | 400      |       | 758     | 85          |       |         |       |       |
| Beryllium               | μg/g                           | 17           | 9.8      |       | 15      | 5.0         |       |         |       |       |
| Cadmium                 | μg/g                           | 15           | 12       |       | 21      | 8.0         |       |         |       |       |
| Calcium                 | μ <u>ε</u> /g                  | 19,000       | 13,000   | -     | 16,200  | 2,100       |       |         |       |       |
| Chromium                | μ <u>ε</u> /ε<br>μ <u>ε</u> /ε | 246          | 65       |       | 290     | 84          |       |         |       |       |
| Cobalt                  | #8/8<br>#8/8                   | 63           | 28       |       | 64      | 15          |       |         |       |       |
| Copper                  | μg/g                           | 195          | 52       |       | 250     | 180         |       |         |       |       |
| Iron                    | <i>не/ в</i><br>µg/g           | 58,600       | 4,700    |       | 67,900  | 5,100       |       |         |       |       |
| Lead                    | με/ε<br>με/ε                   | 180          | 120      |       | 220     | 230         |       |         |       |       |
| Magnesium               | μ <u>ε</u> /ε<br>μ <b>g/</b> g | 7,500        | 1,500    | -     | 6,700   | 3,500       |       |         |       |       |
| Manganese               | μ <u>ε</u> /ε<br>μ <u>g</u> /g | 7,500<br>267 | 79       |       | 319     | 3,300<br>29 |       |         |       |       |
| Mercury                 |                                | 0.63         | 0.25     |       | 0.39    | 0.15        |       |         |       |       |
| Molybdenum              | μg/g                           | 103          |          | ••    |         |             |       |         |       |       |
| *                       | μ <b>g/g</b>                   |              | 72       |       | 118     | 49          |       |         |       |       |
| Nickel                  | μg/g                           | 202          | 49       |       | 235     | 52          |       |         |       |       |

Table 5-2 (Continued)

|                            |               | E       | SP Inlet |       | E       | SP Outlet |       |         | Stack   |       |
|----------------------------|---------------|---------|----------|-------|---------|-----------|-------|---------|---------|-------|
| Analyte Group/             |               |         | 95%      | DL    |         | 95%       | DL    |         | 95%     | DL    |
| Specie                     | Units         | Average | CI       | Ratio | Average | CI        | Ratio | Average | CI      | Ratio |
| Phosphorus                 | μg/g          | < 499   |          | 35%   | 820     | 790       |       |         |         |       |
| Potassium                  | μg/g          | 24,500  | 2,600    |       | 22,700  | 5,700     | ••    |         |         |       |
| Selenium                   | μg/g          | < 8.0   | -        | 36%   | 60      | 43        |       |         |         |       |
| Silicon                    | μg/g          | 223,000 | 38,000   |       | 207,000 | 18,000    |       |         |         |       |
| Sodium                     | μg/g          | 8,000   | 2,300    |       | 8,300   | 2,800     |       |         |         |       |
| Strontium                  | μ <b>g</b> /g | 430     | 120      |       | 429     | 91        |       |         |         |       |
| Titanium                   | μg/g          | 6,970   | 480      |       | 6,890   | 170       |       |         |         |       |
| Vanadium                   | μg/g          | 2,700   | 9,100    |       | 770     | 230       |       |         |         |       |
| Organics, Aldehydes        |               |         |          |       |         |           |       |         |         |       |
| Acetaldehyde               | $\mu g/Nm^3$  | 130     | 170      |       | 1.2     | 2.8       |       | 8.7     | 9.2     |       |
| Formaldehyde               | μg/Nm³        | 61      | 56       |       | 0.50    | 1.1       |       | 24      | 35      |       |
| Organics, Semivolatile     |               |         |          |       |         |           |       |         |         |       |
| 2-Methylphenol(o-cresol)   | ng/Nm³        | 1,500   | 4,500    | 1%    | 5,000   | 11,000    | _     | 3,000   | 3,700   |       |
| 4-Methylphenol(p-cresol)   | ng/Nm³        | 1,100   | 2,700    | 3 %   | 1,730   | 780       |       | 960     | 2,000   | 3 %   |
| Acetophenone               | ng/Nm³        | 2,400   | 5,000    | 1 %   | 3,260   | 750       |       | 3,300   | 710     |       |
| Benzoic acid               | ng/Nm³        | 140,000 | 100,000  |       | 130,000 | 70,000    |       | 119,000 | 5,000   |       |
| Benzyl alcohol             | ng/Nm³        | 2,300   | 9,100    | 4%    | 4,000   | 18,000    | 2%    | 2,800   | 1,100   | 3 %   |
| Butylbenzylphthalate       | ng/Nm³        | < 230   |          | 39%   | 340     | 170       |       | 300     | 130     |       |
| Dibutylphthalate           | ng/Nm³        | 2,600   | 10,000   |       | < 160   |           | 39%   | 170     | 260     |       |
| Diethylphthalate           | ng/Nm³        | 260     | 360      | 12%   | 190     | 530       | 24%   | 240     | 140     |       |
| Dimethylphthalate          | ng/Nm³        | < 110   |          | 100%  | < 96    |           | 100 % | 180     | 560     | 18%   |
| Naphthalene                | ng/Nm³        | 900     | 460      |       | 1,100   | 1,000     |       | 1,500   | 980     |       |
| Phenol                     | ng/Nm³        | 8,000   | 11,000   |       | 9,000   | 15,000    |       | 9,300   | 8,700   |       |
| bis(2-Ethylhexyl)phthalate | ng/Nm³        | 1,400   | 1,700    |       | 15,000  | 41,000    |       | 1,400   | 1,400   |       |
| Organics, Volatile         |               |         |          |       |         |           |       |         |         |       |
| 1,1,1-Trichloroethane      | ng/Nm³        | 700     | 270      | -     | 690     | 190       | _     | 640     | 810     | 14%   |
| Acetone                    | ng/Nm³        | 16,000  | 63,000   | 6%    | < 2,600 |           | 100%  | 3,600   | 6,300   | 13 %  |
| Benzene                    | ng/Nm³        | 1,100   | 680      |       | 1,470   | 240       |       | 1,310   | 360     |       |
| Carbon Disulfide           | ng/Nm³        | 7,000   | 25,000   |       | 3,400   | 7,700     |       | 2,300   | 1,200   |       |
| Chloromethane              | ng/Nm³        | < 460   |          | 100%  | <530    |           | 100%  | 6,000   | 13,000  | 1%    |
| Methylene Chloride         | ng/Nm³        | 170,000 | 540,000  |       | 33,000  | 37,000    |       | 130,000 | 280,000 |       |
| Tetrachloroethene          | ng/Nm³        | 1,000   | 800      |       | 820     | 470       |       | 1,500   | 2,300   |       |
| Toluene                    | ng/Nm³        | 1,200   | 2,000    |       | 1,200   | 1,100     |       | 2,000   | 1,000   |       |
| Trichlorofluoromethane     | ng/Nm³        | 9,000   | 27,000   |       | < 540   |           | 44%   | 1,100   | 1,700   |       |
| m,p-Xylene                 | ng/Nm³        |         |          |       | < 540   |           | 40%   |         |         |       |
| Dioxins/Furans             |               |         |          |       |         |           |       |         |         |       |
| Total TCDD                 | ng/Nm³        |         |          |       |         |           |       | 0.0067  | 0.008   | 16%   |

Boric acid is added to dissolve the insoluble metal fluorides that are produced during digestion. This addition of boric acid makes the quantification of boron in the sample impossible. Silicon in the gas particulate sample cannot be isolated due to the overwhelming contribution of silicon from the filter media.

The results presented in the data tables in this section of the report have been corrected for significant figures and may vary slightly from the detailed data summary presented in Appendix H. The number of significant figures reported is directly related to the order of magnitude of the 95% CI. Therefore, numbers with a small degree of variability will contain more significant figures than those whose CI is extremely broad.

Detection limit ratios are presented where the mean value is derived in some part from results that are below the method detection limit. If all values used in determining the mean value were above the detection limit, then no DL ratio was calculated and is represented by "--- "

#### Flue Gas Particle Size Distribution Results

Flue gas particle size distributions were measured in three runs at the ESP inlet, ESP outlet, and the stack. All of these measurements were performed with inertial sizing devices. The Andersen High Capacity Source Sampler was used at the ESP inlet. This device has two impaction stages, a cyclone, and a final filter. The University of Washington Mark V cascade impactor was used at the ESP outlet and at the stack. This impactor was equipped with a right angle pre-cutter, eleven impaction stages, and a final filter. Because the cutpoint of the pre-cutter was close to the cutpoints of the first two stages, the weights of the pre-cutter and first two impaction stages were combined for the size distribution calculations.

Since these particle sizing devices are inertial sizing devices, the particle cutpoints are reported from the field in aerodynamic micrometers. Conversion of aerodynamic diameter to physical diameter will be described and used in Section 8. Table 5-3 gives the average cumulative particle size distributions for the ESP inlet, ESP outlet, and stack in terms of aerodynamic particle size for the three runs. As an example of how to read the tables, Table 5-3 shows that at the ESP outlet, 15.5% of the particulate mass was found in particles with aerodynamic diameters less than 2.1 aero  $\mu$ m.

## **ESP Hopper Particle Size Distribution Results**

The particle size distributions of ESP hopper catches were also measured. ESP hopper catches were collected once during Runs 1 and 2 and twice during Run 3. Field 1 and Field 2 hopper catch composites were made and analyzed by Microtracs laser diffraction. This method measures particle volumes as a function of physical particle diameter. Table 5-4 shows the average cumulative percent particle volumes as a function of physical particle diameter for the ESP Field 1 composites and the ESP Field 2 composites, respectively. These results are discussed in Section 8.

Table 5-3
Flue Gas Particle Size Distribution

|            | Aerodynamic Particle<br>Diameter (Aero μm) | Average Mass Percent Less<br>than Indicated Diameter |
|------------|--------------------------------------------|------------------------------------------------------|
| ESP Inlet  | 12.0                                       | 32.6                                                 |
|            | 6.5                                        | 20.3                                                 |
|            | 1.8                                        | 3.8                                                  |
| ESP Outlet | 10.1                                       | 66.3                                                 |
|            | 4.3                                        | 35.0                                                 |
|            | 2.1                                        | 15.5                                                 |
|            | 1.14                                       | 7.4                                                  |
|            | 0.74                                       | 4.1                                                  |
|            | 0.57                                       | 3.1                                                  |
|            | 0.43                                       | 2.1                                                  |
|            | 0.33                                       | 1.4                                                  |
|            | 0.27                                       | 0.7                                                  |
|            | 0.16                                       | 0.7                                                  |
| Stack      | 10.7                                       | 60.8                                                 |
|            | 4.6                                        | 52.6                                                 |
|            | 2.3                                        | 43.2                                                 |
|            | 1.26                                       | 30.0                                                 |
|            | 0.85                                       | 17.7                                                 |
|            | 0.67                                       | 11.7                                                 |
|            | 0.52                                       | 7.3                                                  |
|            | 0.41                                       | 3.7                                                  |
|            | 0.34                                       | 0.6                                                  |
|            | 0.21                                       | 0.6                                                  |

Table 5-4
ESP Fields 1 and 2 Hopper Composite Catches

| Ho                                       | pper 1                                              | Hopper 2                                 |                                                           |  |  |  |
|------------------------------------------|-----------------------------------------------------|------------------------------------------|-----------------------------------------------------------|--|--|--|
| Physical Particle Diameter (physical µm) | Average Volume Percent Less than Indicated Diameter | Physical Particle Diameter (physical μm) | Average Volume<br>Percent Less than<br>Indicated Diameter |  |  |  |
| 106                                      | 100.0                                               | 42                                       | 100.0                                                     |  |  |  |
| 75                                       | 90.6                                                | 30                                       | 93.4                                                      |  |  |  |
| <b>5</b> 3                               | 76.6                                                | 21                                       | 83.9                                                      |  |  |  |
| 38                                       | 67.7                                                | 15                                       | 72.5                                                      |  |  |  |
| 27                                       | 57.3                                                | 10.6                                     | 60.5                                                      |  |  |  |
| 19                                       | 46.4                                                | 7.5                                      | 47.9                                                      |  |  |  |
| 13                                       | 38.4                                                | 5.3                                      | 34.6                                                      |  |  |  |
| 9.4                                      | 30.5                                                | 3.7                                      | 24.5                                                      |  |  |  |
| 6.6                                      | 21.2                                                | 2.6                                      | 17.2                                                      |  |  |  |
| 4.7                                      | 15.0                                                | 1.7                                      | 11.1                                                      |  |  |  |
| 3.3                                      | 8.2                                                 | 1.01                                     | 6.0                                                       |  |  |  |
| 2.4                                      | 3.5                                                 | 0.66                                     | 2.7                                                       |  |  |  |
| 1.7                                      | 2.1                                                 | 0.43                                     | 0.8                                                       |  |  |  |
| 1.0                                      | 0.7                                                 | 0.34                                     | 0.3                                                       |  |  |  |
| 0.66                                     | 0.1                                                 | 0.24                                     | 0.1                                                       |  |  |  |

### **FGD System**

Analytical results for influent and effluent streams associated with the JBR have been compiled and are presented in Table 5-5. Mean results are presented for the limestone slurry, the JBR underflow slurry and the inlet and outlet gaseous streams. These data are also presented elsewhere in this section with 95% CI and DL ratios.

#### Solids

Data for the solid streams have been summarized and are presented in Tables 5-6 to 5-9. Table 5-6 contains data representing the coal feed section of the process. Table 5-7 represents the primary ash streams exiting the boiler, Table 5-8 contains ESP hopper ash data and Table 5-9 contains data from the JBR/FGD removal process.

#### Liquids

Liquid streams data have been summarized and are presented in Tables 5-10 to 5-12. Table 5-10 contains data from the ash sluice system. Table 5-11 presents the FGD process stream data and ancillary streams such as the cooling water and coal pile run-off are in Table 5-12. As with the gaseous results, the only organic results that are presented are for those species which were detected. Detailed results are contained in Appendix H.

Table 5-5 FGD System Summary

|            | Limestone<br>Slurry |                  | JBR Und<br>Slur    |                  | ESP<br>Outlet     | Stack             |
|------------|---------------------|------------------|--------------------|------------------|-------------------|-------------------|
| Specie     | Aqueous<br>(μg/mL)  | Solids<br>(µg/g) | Aqueous<br>(μg/mL) | Solids<br>(µg/g) | Total<br>(μg/Nm³) | Total<br>(μg/Nm³) |
| Aluminum   | 0.26                | 760              | 12.3               | 1,100            | 12,200            | 200               |
| Antimony   | < 0.24              | 0.019            | < 0.19             | 0.073            | 0.53              | 0.41              |
| Arsenic    | 0.07                | < 0.33           | 0.20               | < 0.41           | 17                | 1.9               |
| Barium     | 4                   | 5.39             | 3.39               | 4.02             | 75                | 3.2               |
| Beryllium  | < 0.0055            | 0.143            | 0.0069             | 0.129            | 2.4               | 0.43              |
| Boron      | 1,400               | 202              | 1,400              | 425              | 6,900             | 440               |
| Cadmium    | 0.0067              | 0.608            | 0.456              | 0.247            | 1.3               | 1.2               |
| Calcium    | 7,070               | 392,000          | 17,000             | 255,-            | 1,900             | 300               |
| Chromium   | 0.063               | 13.4             | 0.07               | 000              | 24                | 6.4               |
|            |                     |                  |                    | 11.3             |                   |                   |
| Cobalt     | 0.09                | 1.48             | 0.304              | 0.99             | 6.0               | 0.74              |
| Copper     | 0.04                | 3.71             | 0.239              | 2.73             | 18                | 2.0               |
| Iron       | < 0.06              | 2,510            | < 0.048            | 2,190            | 8,600             | 170               |
| Lead       | 0.0017              | 0.98             | 0.013              | 0.84             | 19                | 1.3               |
| Magnesium  | 1,900               | 1,390            | 1,800              | 810              | 670               | 47                |
| Manganese  | 40                  | 429              | 307                | 103              | 35                | 7.9               |
| Mercury    | 0.00006             | < 0.012          | 0.001              | 0.178            | 5.7               | 3.1               |
| Molybdenum | 0.21                | 0.23             | 0.064              | 1.48             | 9.1               | 1.5               |
| Nickel     | 0.8                 | 4.0              | 1.52               | 2.8              | 25                | 42                |
| Phosphorus | 0.16                | 110              | 0.720              | 88               | 120               | < 19              |
| Potassium  | 140                 | 338              | 123                | 310              | 2,200             | 80                |
| Selenium   | 0.128               | 8.4              | 0.50               | 25.5             | 80                | 27                |
| Silicon    | 7                   | 370              | 42.4               | 447              |                   |                   |
| Sodium     | 290                 | 55               | 244                | 84.1             | 1,000             | 71                |
| Strontium  | 40                  | 112              | 32.9               | 73.8             | 45                | 2.1               |
| Titanium   | 0.5                 | < 0.16           | 0.82               | 20.9             | 760               | 13                |
| Vanadium   | 0.19                | 6.7              | 0.24               | 9.9              | 55                | 2.2               |

Table 5-6 Coal Data

| Analyte<br>Group   |                     |                             | F       | eed Coal | !     | F       | taw Coal |       | Pulve       | erizer Reje | ects  |
|--------------------|---------------------|-----------------------------|---------|----------|-------|---------|----------|-------|-------------|-------------|-------|
| Analyte            |                     |                             |         | 95%      | DL    |         | 95%      | DL    |             | <del></del> | DL    |
| Group              | Specie              | Units                       | Average | CI       | Ratio | Average | CI       | Ratio | Average     | CI          | Ratio |
| Anions             | Chloride            | μ <b>8</b> /8               | 1,400   | 90       |       | 1,350   | 220      |       | 510         | 100         | •     |
|                    | Fluoride            | μ <u>8</u> /8               | 100     | 0        |       | 123     | 38       |       | 323         | 29          |       |
| Metals             | Aluminum            | μ <u>8</u> /g               | 14,500  | 1,400    |       | 14,300  | 3,100    |       | 27,200      | 9,600       |       |
|                    | Antimony            | μg/g                        | 0.61    | 0.16     |       | 0.62    | 0.33     |       | 1.2         | 0.45        |       |
|                    | Arsenic             | μ <u>g</u> /g               | 2.3     | 1.4      |       | 3.0     | 0        |       | 47          | 45          |       |
|                    | Barium              | μg/g                        | 80      | 51       |       | 112     | 19       |       | 330         | 520         |       |
|                    | Beryllium           | μ <b>g</b> /g               | 1.1     | 0        |       | 1.13    | 0.14     |       | 1.5         | 1.9         |       |
|                    | Boron               | µg/g                        | 100     | 0        |       | 110     | 25       |       | 120         | 120         |       |
|                    | Bromine             | μg/g                        | 7.44    | 0.53     |       | 7.4     | 1        |       | 4.3         | 1.5         |       |
|                    | Cadmium             | μg/g                        | 0.30    | 0        |       | 0.53    | 0.72     |       | 4.1         | 8.6         |       |
|                    | Calcium             | μ <b>g</b> /g               | 2,100   | 1,300    |       | 3,000   | 1,300    |       | 12,700      | 6,500       |       |
|                    | Chlorine            | μ <u>g</u> /g               | 1,240   | 100      |       | 1,210   | 140      |       | <b>59</b> 0 | 130         |       |
|                    | Chromium            | μg/g                        | 24.8    | 2.9      |       | 25.8    | 0.37     |       | 64          | 14          |       |
|                    | Cobalt              | μg/g                        | 3.5     | 1.9      |       | 4.08    | 0.19     |       | 7.8         | 0.8         |       |
|                    | Copper              | μ <u>8</u> /g               | 36      | 62       |       | 42      | 50       |       | 68          | 85          | 14%   |
|                    | Iron                | μ <u>8</u> /g               | 11,400  | 1,100    |       | 12,800  | 1,700    |       | 127,000     | 17,000      |       |
|                    | Lead                | μ <u>g</u> /g               | 8.0     | 2.5      |       | 9.0     | 4.3      |       | 37          | 32          |       |
|                    | Magnesium           | μg/g                        | 570     | 170      |       | 660     | 58       |       | 1,370       | 320         |       |
|                    | Manganese           | μ <u>α</u> /g               | 23.4    | 3.3      |       | 24.4    | 5.9      |       | 99          | 53          |       |
|                    | Mercury             | μg/g                        | 0.077   | 0.029    |       | 0.043   | 0.014    |       | 0.13        | 0.29        |       |
|                    | Molybdenum          | $\mu g/g$                   | 22.3    | 6.1      |       | 18      | 11       |       | 13          | 20          |       |
|                    | Nickel              | $\mu g/g$                   | 30.0    | 6.4      |       | 40      | 14       |       | <120        | _           | 66%   |
|                    | Phosphorus          | μg/g                        | 84      | 16       |       | 100     | 120      |       | 1,500       | 2,200       |       |
|                    | Potassium           | $\mu_{\rm g}/{\rm g}$       | 3,300   | 720      |       | 3,100   | 2,300    |       | 2,700       | 6,600       |       |
|                    | Selenium            | μg/g                        | 2.3     | 1.4      |       | 2.3     | 1.4      |       | 8.7         | 3.8         |       |
|                    | Silver              | $\mu \mathbf{g}/\mathbf{g}$ | < 0.52  | _        | 100%  | < 0.41  |          | 100%  | <1.9        |             | 59%   |
|                    | Sodium              | μg/g                        | 631     | 82       |       | 679     | 89       |       | 1,110       | 240         |       |
|                    | Strontium           | μg/g                        | 74.9    | 9.3      |       | 88      | 14       |       | 450         | 460         |       |
|                    | Tin                 | $\mu \mathbf{g}/\mathbf{g}$ | < 16    | -        | 100%  | < 17    | -        | 100%  | <31         |             | 49 %  |
|                    | Titanium            | μg/g                        | 890     | 170      |       | 850     | 170      |       | 1,980       | 110         |       |
|                    | Uranium             | μg/g                        | 1.8     | 0.6      |       | 1.60    | 0.37     |       | 4.1         | 1.9         |       |
|                    | Vanadium            | μg/g                        | 39.4    | 1.2      |       | 37.7    | 6.3      |       | 59.8        | 8.2         |       |
| Ultimate/Proximate | % Ash               | %                           | 11.1    | 1.4      |       | 12.2    | 2.5      |       |             |             |       |
|                    | % Carbon            | %                           | 72.0    | 0.52     |       | 70.8    | 1.2      |       | 38.5        | 4.2         |       |
|                    | % Hydrogen          | %                           | 4.83    | 0.014    |       | 4.76    | 0.17     |       |             |             |       |
|                    | % Moisture          | %                           |         |          |       | 11.7    | 2.2      |       |             |             |       |
|                    | % Nitrogen          | % .                         | 1.52    | 0.14     |       | 1.45    | 0.052    |       |             |             |       |
|                    | % Oxygen (diff.)    | %                           | 7.74    | 0.62     |       | 7.92    | 0.93     |       |             |             |       |
|                    | % Sulfur            | %                           | 2.74    | 0.29     |       | 2.90    | 0.36     |       | 16.0        | 2.3         |       |
|                    | Fixed Carbon        | %                           | 50.8    | 2.5      |       | 50.7    | 0.74     |       |             |             |       |
|                    | Higher Heating      | Btu/lb                      | 12,697  | 64       |       | 12,590  | 270      |       |             |             |       |
|                    | Value               |                             |         |          |       |         |          |       |             |             |       |
|                    | Heating Value (MAF) | MAF Btu                     | 14,290  | 160      |       | 14,330  | 150      |       |             |             |       |
|                    | Volatile Matter     | %                           | 37.0    | 2.7      |       | 37.1    | 1.9      |       |             |             |       |

Table 5-6 (Continued)

| Analyte       |                             |       | F       | eed Coa | ı     | R       | aw Coal | l     | Pulve   | rizer Rej | ects  |
|---------------|-----------------------------|-------|---------|---------|-------|---------|---------|-------|---------|-----------|-------|
| Analyte       |                             |       |         | 95%     | DL    |         | 95%     | DL    |         | 95%       | DL    |
| Group         | Specie                      | Units | Average | CI      | Ratio | Average | CI      | Ratio | Average | CI        | Ratio |
| Radionuclides | Actinium-228 @<br>338 KeV   | pCi/g | 0.33    | 0.29    |       |         | *       |       |         |           |       |
|               | Actinium-228 @<br>911 KeV   | pCi/g | 0.33    | 0.14    |       |         |         |       |         |           |       |
|               | Actinium-228 @<br>968 KeV   | pCi/g | 0.07    | 0.29    |       |         |         |       |         |           |       |
|               | Bismuth-212 @ 727 KeV       | pCi/g | ND      | -       |       |         |         |       |         |           |       |
|               | Bismuth-214 @               | pCi/g | 0.93    | 0.38    |       |         |         |       |         |           |       |
|               | Bismuth-214 @<br>1764.7 KeV | pCi/g | 0.10    | 0.43    |       |         |         |       |         |           |       |
|               | Bismuth-214 @ 609.4 KeV     | pCi/g | 0.67    | 0.14    |       |         |         |       |         |           |       |
|               | K-40 @ 1460<br>KeV          | pCi/g | 1.4     | 3.6     |       |         |         |       |         |           |       |
|               | Lead-210 @ 46<br>KeV        | pCi/g | 1.3     | 0.9     |       |         |         |       |         |           |       |
|               | Lead-212 @ 238<br>KeV       | pCi/g | 0.20    | 0       |       |         |         |       |         |           |       |
|               | Lead-214 @<br>295.2 KeV     | pCi/g | 0.63    | 0.14    |       |         |         |       |         |           |       |
|               | Lead-214@ 352.0<br>KeV      | pCi/g | 0.63    | 0.14    |       |         |         |       |         |           |       |
|               | Radium-226 @<br>186.0 KeV   | pCi/g | 1.17    | 0.72    |       |         |         |       |         |           |       |
|               | Thailium-208 @<br>583 KeV   | pCi/g | 0.30    | 0.25    |       |         |         |       |         |           |       |
|               | Thailium-208 @<br>860 KeV   | pCi/g | ND      | _       |       |         |         |       |         |           |       |
|               | Thorium-234 @<br>63.3 KeV   | pCi/g | 1.0     | 1.4     |       |         |         |       |         |           |       |
|               | Thorium-234 @<br>92.6 KeV   | pCi/g | 0.67    | 0.38    |       |         |         |       |         |           |       |
|               | Uranium-235 @<br>143 KeV    | pCi/g | 0.07    | 0.29    |       |         |         |       |         |           |       |

Table 5-7
Boiler Process Solids Data

|                    |                          |               | E          | lottom Ash | ·           | Sl      | niced Fly A | <b>lsh</b>  |
|--------------------|--------------------------|---------------|------------|------------|-------------|---------|-------------|-------------|
| Analyte<br>Group   | Specie                   | Units         | Average    | 95%<br>CI  | DL<br>Ratio | Average | 95%<br>CI   | DL<br>Ratio |
| Anions             | Chloride                 | μg/g          | 130        | 170        | 13 %        | <100    | -           | 100%        |
|                    | Fluoride                 | μg/g          | 32         | 26         |             | 99      | 67          |             |
| Metals             | Aluminum                 | μg/g          | 76,000     | 11,000     |             | 98,000  | 8,000       |             |
|                    | Antimony                 | μg/g          | 1.14       | 0.20       |             | 339     | 2.04        |             |
|                    | Arsenic                  | μg/g          | 7.2        | 6.2        |             | 61      | 37          |             |
|                    | Barium                   | μ <b>g/g</b>  | 457        | 66         |             | 496     | 87          |             |
|                    | Beryllium                | μg/g          | 7.7        | 2.9        |             | 11.1    | 3.1         |             |
| •                  | Boron                    | μg/g          | 280        | 170        |             | 470     | 230         |             |
|                    | Cadmium                  | μg/g          | 0.32       | 0.39       |             | 4.10    | 3           |             |
|                    | Calcium                  | μg/g          | 20,300     | 3,400      |             | 13,800  | 2,000       |             |
|                    | Chromium                 | μg/g          | 192        | 18         |             | 185     | 21          |             |
|                    | Cobalt                   | μg/g          | 31.6       | 4.3        |             | 36.9    | 5.8         |             |
|                    | Copper                   | μ <b>g</b> /g | <b>7</b> 7 | 18         |             | 104     | 23          |             |
|                    | Iron                     | μg/g          | 130,000    | 31,000     |             | 89,000  | 22,000      |             |
|                    | Lead                     | μg/g          | 20         | 3.8        |             | 83      | 40          |             |
|                    | Magnesium                | μg/g          | 3610       | 820        |             | 4,880   | 350         |             |
|                    | Manganese                | μg/g          | 270        | 56         |             | 245     | 46          |             |
|                    | Mercury                  | μg/g          | < 0.011    | _          | 70%         | 0.150   | 0.12        |             |
|                    | Molybdenum               | μg/g          | <3.0       | -          | 39%         | < 14    | _           | 29%         |
|                    | Nickel                   | μg/g          | 131        | 15         |             | 143     | 32          |             |
|                    | Phosphorus               | μg/g          | 400        | 210        |             | 70      | 140         |             |
|                    | Potassium                | μg/g          | 14,200     | 1,100      |             | 18,210  | 1,000       |             |
|                    | Selenium                 | μg/g          | <1         | -          | 100%        | 12      | 11          |             |
|                    | Silicon                  | μg/g          | 213,000    | 11,000     |             | 219,000 | 7,600       |             |
|                    | Sodium                   | μg/g          | 36,10      | 580        |             | 5,100   | 1,200       |             |
|                    | Strontium                | μg/g          | 280        | 41         |             | 322     | 30          |             |
|                    | Titanium                 | $\mu g/g$     | 5,550      | 560        |             | 6,330   | 750         |             |
|                    | Vanadium                 | μg/g          | 277        | 29         |             | 327     | 58          |             |
| Ultimate/Proximate | % Carbon                 | %             | 2.3        | 4.2        |             | 4.50    | 2.7         |             |
|                    | % Sulfur                 | %             | 0.15       | 0.41       |             | 0.134   | 0.041       |             |
| Radionuclides      | Actinium-228 @ 338 KeV   | pCi/g         | 2.1        | 0          |             | 2.37    | 0.14        |             |
|                    | Actinium-228 @ 911 KeV   | pCi/g         | 2.20       | 0.25       |             | 2.33    | 0.14        |             |
|                    | Actinium-228 @ 968 KeV   | pCi/g         | 2.2        | 1          |             | 2.50    | 0.25        |             |
|                    | Bismuth-212 @ 727 KeV    | pCi/g         | 3.0        | 1.2        |             | 2.60    | 0.99        |             |
|                    | Bismuth-214 @ 1120.4 KeV | pCi/g         | 7.4        | 1.3        |             | 6.50    | 2.4         |             |
|                    | Bismuth-214 @ 1764.7 KeV | pCi/g         | 6.8        | 2.2        |             | 5.90    | 1.8         |             |
|                    | Bismuth-214 @ 609.4 KeV  | pCi/g         | 7.1        | 1.5        |             | 6.50    | 1.4         |             |
|                    | K-40 @ 1460 KeV          | pCi/g         | 16.7       | 2.9        |             | 18.0    | 2.5         |             |
|                    | Lead-210 @ 46 KeV        | pCi/g         | 1.37       | 0.52       |             | 6.40    | 2.7         |             |
|                    | Lead-212 @ 238 KeV       | pCi/g         | 2.03       | 0.72       |             | 2.20    | 0.25        |             |

## Analytical Results

Table 5-7 (Continued)

|                        |                            |       | В       | ottom Asl | h           | Sh      | riced Fly | Ash         |
|------------------------|----------------------------|-------|---------|-----------|-------------|---------|-----------|-------------|
| Analyte<br>Group       | Specie                     | Units | Average | 95%<br>CI | DL<br>Ratio | Average | 95%<br>CI | DL<br>Ratio |
| Radionuclides (Cont'd) | Lead-214 @ 295.2 KeV       | pCi/g | 7.3     | 1.9       |             | 6.50    | 1.4       |             |
|                        | Lead-214@ 352.0 KeV        | pCi/g | 7.6     | 1.8       |             | 6.60    | 1.3       |             |
|                        | Radium-226 @ 186.0 KeV     | pCi/g | 10.3    | 1.5       |             | 9.9     | 2.9       |             |
|                        | Thallium-208 @ 583 KeV     | pCi/g | 2.20    | 0.43      |             | 2.23    | 0.29      |             |
|                        | Thallium-208 @ 860 KeV     | pCi/g | 1.9     | 4.2       |             | 2.97    | 0.14      |             |
|                        | Thorium-234 @ 63.3 KeV     | pCi/g | 5.77    | 0.76      |             | 6.60    | 4.3       |             |
|                        | Thorium-234 @ 92.6 KeV     | pCi/g | 5.0     | 1.3       |             | 5.00    | 2.2       |             |
|                        | Uranium-235 @ 143 KeV      | pCi/g | 0.31    | 0.16      |             | 0.220   | 0.15      |             |
| Organics, Semivolatile | 2-Methylnaphthalene        | ng/g  | 34      | 97        | 22%         | <26     | -         | 100%        |
|                        | bis(2-Ethylhexyl)phthalate | ng/g  | <86     | -         | 26%         | 230     | 520       | 2%          |

Table 5-8 ESP Hopper Ash

|                  |                             |               | ESP Ho  | pper Ash-Fio | ald 1       | ESP Hop | per Ash-F | ield 2      |
|------------------|-----------------------------|---------------|---------|--------------|-------------|---------|-----------|-------------|
| Analyte<br>Group | Specie                      | Units         | Average | 95%<br>CI    | DL<br>Ratio | Average | 95%<br>CI | DL<br>Ratio |
| Anions           | Chloride                    | μg/g          | 350     | 650          | 5%          | <100    |           | 100%        |
|                  | Fluoride                    | μg/g          | 90      | 49           |             | 125     | 91        |             |
| Metals           | Aluminum                    | μg/g          | 97,000  | 51,000       |             | 89,000  | 11,000    |             |
|                  | Antimony                    | μg/g          | 2.99    | 1.01         |             | 4.19    | 1.38      |             |
|                  | Arsenic                     | μg/g          | 46      | 11           |             | 71.9    | 9.8       |             |
|                  | Barium                      | μg/g          | 490     | 150          |             | 493     | 98        |             |
|                  | Beryllium                   | μg/g          | 10.9    | 3.3          |             | 17.2    | 3.4       |             |
|                  | Cadmium                     | μg/g          | 3.26    | 0.72         |             | 5.42    | 0.69      |             |
|                  | Calcium                     | μg/g          | 17,900  | 6,400        |             | 15,640  | 960       |             |
|                  | Chromium                    | μg/g          | 183     | 31           |             | 220     | 110       |             |
|                  | Cobalt                      | μg/g          | 34.0    | 4.1          |             | 42      | 6         |             |
|                  | Copper                      | μ <b>g</b> /g | 98      | 26           |             | 150     | 150       |             |
|                  | Iron                        | μg/g          | 90,000  | 17,000       |             | 80,000  | 8,600     |             |
|                  | Lead                        | μg/g          | 72      | 11           |             | 96      | 20        |             |
|                  | Magnesium                   | μg/g          | 4,600   | 2,700        |             | 4,100   | 1,000     |             |
|                  | Manganese                   | μg/g          | 219     | 52           |             | 216     | 25        |             |
|                  | Mercury                     | μg/g          | 0.119   | 0.087        |             | 0.18    | 0.18      |             |
|                  | Molybdenum                  | μg/g          | 25      | 19           |             | 49      | 32        |             |
|                  | Nickel                      | μg/g          | 127     | 28           |             | 158     | 31        |             |
|                  | Phosphorus                  | μg/g          | 100     | 140          | 12%         | <72     | _         | 1005        |
|                  | Potassium                   | μg/g          | 17,400  | 3,100        |             | 18,100  | 1,100     |             |
|                  | Selenium                    | μ <b>g</b> /g | 9.3     | 4.7          |             | 16.6    | 3.3       |             |
|                  | Silicon                     | μg/g          | 223,000 | 35,000       |             | 215,000 | 15,000    |             |
|                  | Sodium                      | μg/g          | 5,200   | 1,200        |             | 6,000   | 1,400     |             |
|                  | Strontium                   | μg/g          | 320     | 120          |             | 327     | 41        |             |
|                  | Titanium                    | μg/g          | 6,120   | 190          |             | 6,450   | 290       |             |
|                  | Vanadium                    | μg/g          | 305     | 37           |             | 357     | 55        |             |
| Radionuclides    | Actinium-228 @ 338 KeV      | pCi/g         | 2.13    | 0.38         |             | 2.17    | 0.38      |             |
|                  | Actinium-228 @ 911 KeV      | pCi/g         | 2.10    | 0.43         |             | 2.2     | 0.5       |             |
|                  | Actinium-228 @ 968 KeV      | pCi/g         | 2.43    | 0.87         |             | 2.63    | 0.14      |             |
|                  | Bismuth-212 @ 727 KeV       | pCi/g         | 2.8     | 1.6          |             | 2.8     | 1.3       |             |
|                  | Bismuth-214 @ 1120.4<br>KeV | pCi/g         | 6.1     | 2.6          |             | 6.27    | 0.76      |             |
|                  | Bismuth-214 @ 1764.7<br>KeV | pCi/g         | 5.9     | 2.3          |             | 5.7     | 0.9       |             |
|                  | Bismuth-214 @ 609.4 KeV     | pCi/g         | 6.2     | 2.1          |             | 6.0     | 1.9       |             |
|                  | K-40 @ 1460 KeV             | pCi/g         | 17.0    | 4.3          |             | 17.3    | 1.4       |             |
|                  | Lead-210 @ 46 KeV           | pCi/g         | 5.43    | 0.72         |             | 7.8     | 1.4       |             |
|                  | Lead-212 @ 238 KeV          | pCi/g         | 2.10    | 0.75         |             | 1.87    | 0.76      |             |
|                  | Lead-214 @ 295.2 KeV        | pCi/g         | 6.1     | 1.5          |             | 6.0     | 1.2       |             |
|                  | Lead-214@ 352.0 KeV         | pCi/g         | 6.2     | 2.1          |             | 6.1     | 1.1       |             |
|                  | Radium-226 @ 186.0 KeV      | pCi/g         | 9.0     | 2.2          |             | 9.7     | 2.8       |             |

## Analytical Results

Table 5-8 (Continued)

|                        |                            |       | ESP Hop | per Ash-Fi      | eld 1       | ESP Hopper Ash-Field 2 |           |             |  |
|------------------------|----------------------------|-------|---------|-----------------|-------------|------------------------|-----------|-------------|--|
| Analyte<br>Group       | Specie                     | Units | Average | 95%<br>CI       | DL<br>Ratio | Average                | 95%<br>CI | DL<br>Ratio |  |
| Radionuclides (Cont'd) |                            |       |         |                 |             |                        |           |             |  |
|                        | Thallium-208 @ 583 KeV     | pCi/g | 2.07    | 0.29            |             | 2.17                   | 0.38      |             |  |
|                        | Thallium-208 @ 860 KeV     | pCi/g | 2.1     | 1.9             |             | 2.2                    | 4.8       |             |  |
|                        | Thorium-234 @ 63.3 KeV     | pCi/g | 5.6     | 2.2             |             | 5.5                    | 1.6       |             |  |
|                        | Thorium-234 @ 92.6 KeV     | pCi/g | 4.3     | 1.6             |             | 4.8                    | 1.6       |             |  |
|                        | Uranium-235 @ 143 KeV      | pCi/g | 0.22    | 0.17            |             | 0.9                    | 2.8       |             |  |
| Organics, Semivolatile | bis(2-Ethylhexyl)phthalate | ng/g  | 190     | <del>7</del> 80 | 3 %         | 200                    | 590       | 2%          |  |

Table 5-9 FGD Process Solids Data

|                  |                           |       |         | Underflow<br>Ty Solids | ,           | Limeston | ie Shurry | Solids      | Raw l   | Limesto   | )ne          |
|------------------|---------------------------|-------|---------|------------------------|-------------|----------|-----------|-------------|---------|-----------|--------------|
| Analyte<br>Group | Specie                    |       | Average | 95%<br>CI              | DL<br>Ratio | Average  | 95%<br>CI | DL<br>Ratio | Average | 95%<br>CI | DL<br>Ratio  |
| Anions           | Chloride                  | μg/g  | 9,550   | 720                    |             | 4,100    | 2,900     |             | 179     | 47        |              |
|                  | Fluoride                  | μg/g  | 750     | 140                    |             | 85.0     | 46        |             | 59.0    | 19        |              |
|                  | Sulfate                   | μg/g  | 496,300 | 8,700                  |             |          |           |             |         |           |              |
|                  | Sulfite                   | μg/g  | <240    | -                      | 100%        |          |           |             |         |           |              |
| Metals           | Aluminum                  | μg/g  | 1,100   | 190                    |             | 760      | 320       |             | 980     | 160       |              |
|                  | Antimony                  | μg/g  | 0.073   | 0.028                  |             | 0.019    | 0.003     |             | 0.007   | 0.01      |              |
|                  | Arsenic                   | μg/g  | < 0.41  | _                      | 100%        | < 0.33   | -         | 100%        | < 0.33  | -         | 100%         |
|                  | Barium                    | μg/g  | 4.02    | 0.94                   |             | 5.39     | 0.66      |             | 4.87    | 0.59      |              |
|                  | Beryllium                 | μg/g  | 0.129   | 0.066                  |             | 0.143    | 0.017     |             | 0.137   | 0.028     |              |
|                  | Boron                     | μg/g  | 425     | 43                     |             | 202      | 88        |             | 3.5     | 1.3       |              |
|                  | Cadmium                   | μg/g  | 0.247   | 0.035                  |             | 0.608    | 0.042     |             | 0.332   | 0.016     |              |
|                  | Calcium                   | μg/g  | 255,000 | 15,000                 |             | 392,000  | 27,000    |             | 395,000 | 9,000     |              |
|                  | Chromium                  | μg/g  | 11.3    | 2.5                    |             | 13.4     | 2.3       |             | 9.80    | 0.64      |              |
|                  | Cobalt                    | μg/g  | 0.99    | 0.43                   |             | 1.48     | 0.51      |             | 1.30    | 0.62      |              |
|                  | Соррег                    | μg/g  | 2.73    | 0.81                   |             | 3.71     | 0.48      |             | 1.5     | 1.1       |              |
|                  | Iron                      | μg/g  | 2,190   | 370                    |             | 2,510    | 670       |             | 1,787   | 57        |              |
|                  | Lead                      | μg/g  | 0.84    | 0.21                   |             | 0.98     | 0.11      |             | 1.1     | 0.2       |              |
|                  | Magnesium                 | μg/g  | 810     | 100                    |             | 1,390    | 190       |             | 1,233   | 29        |              |
|                  | Manganese                 | μg/g  | 103     | 11                     |             | 429      | 33        |             | 207     | 6.6       |              |
|                  | Mercury                   | μg/g  | 0.178   | 0.055                  |             | < 0.012  | -         | 29 %        | 0.005   | 0.012     | 40%          |
|                  | Molybdenum                | μg/g  | 1.48    | 0.56                   |             | 0.230    | 0.4       |             | < 0.222 | _         | 50%          |
|                  | Nickel                    | μg/g  | 2.8     | 1.3                    |             | 4.00     | 2.5       |             | 3.16    | 0.88      |              |
|                  | Phosphorus                | μg/g  | 88      | 29                     |             | 110      | 10        |             | 108     | 31        |              |
|                  | Potassium                 | μg/g  | 310     | 160                    |             | 338      | 86        |             | 363     | 45        |              |
|                  | Selenium                  | μg/g  | 25.5    | 1.2                    |             | 8.40     | 2.8       |             | 3.9     | 2         |              |
|                  | Silicon                   | μg/g  | 447     | 73                     |             | 370      | 220       |             | 440     | 110       |              |
|                  | Sodium                    | μg/g  | 84.1    | 7.8                    |             | 55.0     | 19        |             | 20.9    | 2.5       |              |
|                  | Strontium                 | μg/g  | 73.8    | 7.4                    |             | 112      | 5.3       |             | 108     | 2.5       |              |
|                  | Titanium                  | μg/g  | 20.9    | 7.1                    |             | < 0.16   | -         | 100%        | 30      | 110       | 0.00-<br>2%  |
|                  | Vanadium                  | μg/g  | 9.9     | 2.1                    |             | 6.7      | 4.3       |             | 8.13    | 0.41      | <b>*</b> / · |
| Moisture         | Percent Moisture          | w1%   |         |                        |             |          |           |             | 8.7     | 1.4       |              |
| Radionuclides    | Actinium-228 @ 338<br>KeV | pCi/g | ND      | -                      |             |          |           |             | 0.30    | 0.19      |              |
|                  | Actinium-228 @ 911<br>KeV | pCi/g | 0.05    | 0.23                   |             |          |           |             | 0.17    | 0.38      |              |
|                  | Actinium-228 @ 968<br>KeV | pCi/g | ND      | -                      |             |          |           |             | ND      | -         |              |

Table 5-9 (Continued)

|                        |                                |       | JBR Und | ierflow S<br>Solids | lurry | Limeston | e Siurr | y Solids | Raw     | Limest | one   |
|------------------------|--------------------------------|-------|---------|---------------------|-------|----------|---------|----------|---------|--------|-------|
| Analyte                | •                              | -     |         | 95%                 | DL    |          | 95%     | DL       |         | 95%    | DL    |
| Group                  | Specie                         | Units | Average | CI                  | Ratio | Average  | CI      | Ratio    | Average | CI     | Ratio |
|                        | Bismuth-212 @ 727<br>KeV       | pCi/g | ND      | -                   |       |          |         |          | ND      | -      |       |
|                        | Bismuth-214 @<br>1120.4 KeV    | pCi/g | 0.25    | 0.54                |       |          |         |          | ND      |        |       |
|                        | Bismuth-214 @<br>1764.7 KeV    | pCi/g | 0.11    | 0.27                |       |          |         |          | 0.32    | 0.32   |       |
|                        | Bismuth-214 @ 609.4<br>KeV     | pCi/g | 0.11    | 0.23                |       |          |         |          | 0.15    | 0.14   |       |
|                        | K-40 @ 1460 KeV                | pCi/g | ND      | _                   |       |          |         |          | 0.39    | 0.86   |       |
|                        | Lead-210 @ 46 KeV              | pCi/g | 0.30    | 1.1                 |       |          |         |          | 0.2     | 1.1    |       |
|                        | Lead-212 @ 238 KeV             | pCi/g | 0.09    | 0.05                |       |          |         |          | 0.113   | 0.038  |       |
|                        | Lead-214 @ 295.2<br>KeV        | pCi/g | 0.05    | 0.23                |       |          |         |          | 0.19    | 0.11   |       |
|                        | Lead-214@ 352.0<br>KeV         | pCi/g | 0.140   | 0.075               |       |          |         |          | 0.193   | 0.072  |       |
|                        | Radium-226 @ 186.0<br>KeV      | pCi/g | 0.33    | 0.72                |       |          |         |          | 0.42    | 0.91   |       |
|                        | Thallium-208 @ 583<br>KeV      | pCi/g | 0.20    | 0.21                |       |          |         |          | 0.07    | 0.3    |       |
|                        | Thallium-208 @ 860<br>KeV      | pCi/g | ND      | -                   |       |          |         |          | ND      | -      |       |
|                        | Thorium-234 @ 63.3<br>KeV      | pCi/g | 0.19    | 0.8                 |       |          |         | ,        | 0.12    | 0.53   |       |
|                        | Thorium-234 @ 92.6<br>KeV      | pCi/g | 0.20    | 0.44                |       |          |         |          | 0.08    | 0.36   |       |
|                        | Uranium-235 @ 143<br>KeV       | pCi/g | ND      | -                   |       |          |         |          | ND      | _      |       |
| Aldehydes              | Acetaldehyde                   | μg    | < 0.10  |                     | 100%  |          |         |          |         |        |       |
|                        | Formaldehyde                   | μg    | < 0.10  | -                   | 100%  |          |         |          |         |        |       |
| Organics, Semivolatile | bis(2-Ethylhexyl)<br>phthalate | ng/g  | 100     | 350                 | 15%   |          |         |          |         |        |       |

Table 5-10 Liquid Ash Sluice System Data Summary

|                  |              |                     | Ash I     | Pond Water | r           |           | a Ash Slui<br>Filtrate | ce          |           | Ash Slu<br>Utrate | iice        |
|------------------|--------------|---------------------|-----------|------------|-------------|-----------|------------------------|-------------|-----------|-------------------|-------------|
| Analyte<br>Group | Specie       | Units               | Average   | 95%<br>CI  | DL<br>Ratio | Average   | 95%<br>CI              | DL<br>Ratio | Average   | 95%<br>CI         | DL<br>Ratio |
| Reduced Species  | Cyanide      | μg/mL               | 0.0019    | 0.0024     | _           | 0.002     | 0.0011                 |             | 0.0015    | 0.0016            |             |
|                  | Ammonia as N | μg/mL               | 0.20      | 0.12       | -           | 0.45      | 0.43                   |             | 0.38      | 0.08              | _           |
| Anions           | Chloride     | $\mu g/mL$          | 8.9       | 1.9        | _           | 7.9       | 1.1                    |             | 10.4      | 1.6               | -           |
|                  | Fluoride     | $\mu g/mL$          | 0.43      | 0.11       |             | 0.281     | 0.046                  | _           | 0.74      | 0.57              | _           |
|                  | Phosphate    | μg/mL               | < 0.014   | _          | 100%        | 0.025     | 0.037                  | 13 %        | 0.023     | 0.047             | 14%         |
|                  | Sulfate      | $\mu g/mL$          | 113       | 12         | -           | 81        | 34                     |             | 340       | 510               | _           |
| Metals, Soluble  | Aluminum     | $\mu g/mL$          | 0.014     | 0.012      | -           | 0.31      | 0.31                   |             | 1.0       | 3.3               | -           |
|                  | Antimony     | $\mu g/mL$          | < 0.024   | _          | 100%        | < 0.024   | _                      | 100%        | < 0.024   | _                 | 67%         |
|                  | Arsenic      | $\mu g/mL$          | < 0.00066 | _          | 100%        | 0.024     | 0.088                  | _           | 0.017     | 0.049             |             |
|                  | Barium       | $\mu g/mL$          | 0.155     | 0.028      | -           | 0.102     | 0.084                  |             | 0.24      | 0.16              |             |
|                  | Beryllium    | $\mu g/mL$          | < 0.00055 | _          | 31%         | < 0.00055 | -                      | 100%        | < 0.00055 |                   | 100%        |
|                  | Boron        | μg/mL               | 1.08      | 0.23       | _           | 0.87      | 0.64                   | _           | 10        | 15                | -           |
|                  | Cadmium      | $\mu \mathrm{g/mL}$ | 0.0011    | 0.0010     | _           | 0.0011    | 0.0021                 | 4%          | 0.0027    | 0.004             | -           |
|                  | Calcium      | μg/mL               | 32.8      | 3.5        | ••          | 39        | 23                     |             | 140       | 170               | _           |
|                  | Chromium     | $\mu { m g/mL}$     | < 0.0025  |            | 53%         | 0.0031    | 0.0026                 |             | 0.0480    | 0.051             |             |
|                  | Cobalt       | $\mu g/mL$          | < 0.0034  |            | 60%         | < 0.0034  | _                      | 100%        | < 0.0034  | _                 | 98%         |
|                  | Copper       | $\mu g/mL$          | 0.0044    | 0.0049     |             | 0.0180    | 0.047                  |             | 0.0026    | 0.0015            |             |
|                  | Iron         | $\mu g/mL$          | 5.40      | 3.8        | -           | 0.0280    | 0.034                  | _           | 0.0060    | 0.015             | _           |
|                  | Lead         | $\mu g/mL$          | 0.008     | 0.011      | -           | 0.0100    | 0.013                  |             | 0.0048    | 0.0036            |             |
|                  | Magnesium    | $\mu \mathrm{g/mL}$ | 3.11      | 0.17       | -           | 2.3       | 1.6                    | -           | 4.5       | 2                 |             |
|                  | Manganese    | $\mu \mathrm{g/mL}$ | 0.560     | 0.21       | _           | 0.05      | 0.12                   | -           | ó.020     | 0.045             | _           |
|                  | Mercury      | $\mu g/mL$          | 0.00006   | 0.000043   |             | 0.00004   | 0.00007                | _           | < 0.00004 |                   | 38%         |
|                  | Molybdenum   | $\mu g/mL$          | 0.035     | 0.021      | _           | 0.072     | 0.083                  | -           | 0.62      | 0.98              | _           |
|                  | Nickel       | $\mu \mathrm{g/ml}$ | 0.0197    | 0.0055     |             | 0.005     | 0.014                  | -           | 0.024     | 0.026             | -           |
|                  | Phosphorus   | $\mu g/mL$          | 0.070     | 0.18       | 16%         | 0.11      | 0.13                   |             | 0.14      | 0.26              | 7%          |
|                  | Potassium    | $\mu g/mL$          | 5.34      | 0.78       | -           | 4.4       | 2.7                    |             | 12        | 17                | _           |
|                  | Selenium     | $\mu g/mL$          | 0.0019    | 0.0037     | -           | 0.0039    | 0.0009                 | -           | 0.035     | 0.04              |             |
|                  | Silicon      | $\mu \mathrm{g/mL}$ | 3.45      | 0.7        | _           | 4.7       | 0.5                    |             | 4.1       | 2.7               | -           |
|                  | Sodium       | $\mu g/mL$          | 12.4      | 0.75       |             | 9.4       | 2.2                    | -           | 22        | 25                |             |
|                  | Strontium    | $\mu \mathrm{g/mL}$ | 0.342     | 0.020      | -           | 0.28      | 0.31                   | _           | 0.62      | 0.66              | -           |
|                  | Tin          | $\mu \mathrm{g/mL}$ | < 0.014   | -          | 84%         | < 0.014   | -                      | 43 %        | 0.0040    | 0.015             | -           |
|                  | Titanium     | μg/mL               | < 0.0024  | _          | 62%         | 0.0013    | 0.0022                 | 13%         | 0.016     | 0.067             |             |
|                  | Vanadium     | $\mu g/mL$          | 0.0050    | 0.016      | -           | 0.029     | 0.049                  | _           | 0.07      | 0.12              | -           |
| Metals, Total    | Aluminum     | $\mu$ g/mL          | 0.18      | 0.39       | -           |           |                        |             |           |                   |             |
|                  | Antimony     | μg/mL               | 0.018     | 0.012      | _           |           |                        |             |           |                   |             |
|                  | Arsenic      | μg/mL               | 0.0007    | 0.0014     | _           |           |                        |             |           |                   |             |
|                  | Barium       | $\mu \mathrm{g/mL}$ | 0.153     | 0.032      | -           |           |                        |             |           |                   |             |
|                  | Beryllium    | $\mu g/mL$          | 0.00026   | 0.00064    | -           |           |                        |             |           |                   |             |
|                  | Boron        | μg/mL               | 1.03      | 0.16       |             |           |                        |             |           |                   |             |

Table 5-10 (Continued)

|                           |                    |                     | Ash 1   | Pond Wate | •     |         | n Ash Slu<br>Filtrate | ice   | •       | / Ash Sh<br>Utrate | nice  |
|---------------------------|--------------------|---------------------|---------|-----------|-------|---------|-----------------------|-------|---------|--------------------|-------|
| Analyte                   |                    | •                   |         | 95%       | DL    |         | 95%                   | DL    |         | 95%                | DL    |
| Group                     | Specie             | Units               | Average | CI        | Ratio | Average | CI                    | Ratio | Average | CI                 | Ratio |
| Metals, Total<br>(Cont'd) | Cadmium            | μg/mL               | 0.0018  | 0.0039    | -     |         |                       |       |         |                    |       |
|                           | Calcium            | $\mu \mathrm{g/mL}$ | 33.7    | 2.7       | -     |         |                       |       |         |                    |       |
|                           | Chromium           | $\mu g/mL$          | 0.0016  | 0.0011    |       |         |                       |       |         |                    |       |
|                           | Cobalt             | $\mu g/mL$          | 0.00638 | 0.00077   |       |         |                       |       |         |                    |       |
|                           | Copper             | $\mu g/mL$          | 0.0073  | 0.0051    | -     |         |                       |       |         |                    |       |
|                           | Iron               | $\mu g/mL$          | 10.2    | 5.4       |       |         |                       |       |         |                    |       |
|                           | Lead               | μg/mL               | 0.017   | 0.057     | 1 %   |         |                       |       |         |                    |       |
|                           | Magnesium          | μg/mL               | 3.17    | 0.20      | -     |         |                       |       |         |                    |       |
|                           | Manganese          | $\mu g/mL$          | 0.56    | 0.21      | ~     |         |                       |       |         |                    |       |
|                           | Mercury            | μg/mL               | 0.00005 | 0.00007   | -     |         |                       |       |         |                    |       |
|                           | Molybdenum         | $\mu g/mL$          | 0.084   | 0.034     | -     |         |                       |       |         |                    |       |
|                           | Nickel             | $\mu g/mL$          | 0.024   | 0.013     | -     |         |                       |       |         |                    |       |
|                           | Phosphorus         | $\mu g/mL$          | 0.027   | 0.052     | -     |         |                       |       |         |                    |       |
|                           | Potassium          | $\mu g/mL$          | 5.74    | 0.83      | -     |         |                       |       |         |                    |       |
|                           | Selenium           | $\mu g/mL$          | 0.0048  | 0.0026    | -     |         |                       |       |         |                    |       |
|                           | Silicon            | $\mu g/mL$          | 3.70    | 0.73      | -     |         |                       |       |         |                    |       |
|                           | Sodium             | $\mu g/mL$          | 12.8    | 1.9       | -     |         |                       |       |         |                    |       |
|                           | Strontium          | μg/mL               | 0.34    | 0.026     | -     |         |                       |       |         |                    |       |
|                           | Tin                | $\mu g/mL$          | < 0.014 | -         | 50%   |         |                       |       |         |                    |       |
|                           | Titanium           | μg/mL               | 0.00068 | 0.00098   | -     |         |                       |       |         |                    |       |
|                           | Vanadium           | μg/mL               | 0.024   | 0.011     |       |         |                       |       |         |                    |       |
| Aldehydes                 | Acetaldehyde       | μg/mL               | 0.08    | 0.17      | -     | 0.080   | 0.16                  |       | 0.04    | 0.11               | -     |
|                           | Formaldehyde       | $\mu g/mL$          | 0.015   | 0.021     | -     | 0.023   | 0.036                 | -     | 0.03    | 0.048              | -     |
| Organics,<br>Semivolatile | Diethylphthalate   | μg/L                | < 0.39  | -         | 100%  | 0.5     | 1.3                   | 24%   | <0.38   | -                  | 100%  |
| Organics,<br>Volatile     | Methylene Chloride | μg/L                | <5.0    |           | 19%   | <5.0    | -                     | 46 %  | 4.9     | 2.9                | -     |

Table 5-11 Liquid FGD Process Stream Data Summary

|                  |              |                     | <b>Gypsu</b> | n Pond W  | ater        | JBR Und | ierflow (<br>Filtrate | Jurry       |          | tone Slau<br>Altrate | ту          |
|------------------|--------------|---------------------|--------------|-----------|-------------|---------|-----------------------|-------------|----------|----------------------|-------------|
| Analyte<br>Group | Specie       | Units               | Average      | 95%<br>CI | DL<br>Ratio | Average | 95%<br>CI             | DL<br>Ratio | Average  | 95%<br>CI            | DL<br>Ratio |
| Reduced Species  | Cyanide      | μg/mL               | 0.0486       | 0.0046    | _           | 0.082   | 0.1                   | _           | 0.050    | 0.1                  |             |
|                  | Ammonia as N | $\mu g/mL$          | 15           | 3         | _           | < 40    | -                     | 19%         | 14.1     | 2.4                  | _           |
| Anions           | Chloride     | μg/mL               | 16,400       | 4,100     | _           | 26,100  | 4,200                 |             | 13,100   | 2,100                | _           |
|                  | Fluoride     | $\mu g/mL$          | 14.9         | 3.1       | -           | 31.0    | 16                    | -           | 1.84     | 0.95                 | _           |
|                  | Phosphate    | $\mu \mathrm{g/mL}$ | 0.033        | 0.021     | _           | 0.050   | 0.15                  | 7%          | < 0.020  | -                    | 100%        |
|                  | Sulfate      | $\mu \mathrm{g/mL}$ | 980          | 140       | -           | 712     | 65                    |             | 780      | 160                  | _           |
|                  | Sulfite      | $\mu { m g/mL}$     | `            |           | _           | 0.033   | 0.038                 | _           | -        | _                    |             |
| Metals, Solubie  | Aluminum     | $\mu g/mL$          | 0.76         | 0.68      | -           | 12.3    | 4.7                   |             | 0.260    | 0.85                 | -           |
|                  | Antimony     | $\mu g/mL$          | < 0.24       | _         | 100%        | < 0.19  | _                     | 100%        | < 0.24   | -                    | 100%        |
|                  | Arsenic      | μg/mL               | 0.127        | 0.027     | _           | 0.200   | 0.26                  |             | 0.070    | 0.13                 | -           |
|                  | Barium       | $\mu g/mL$          | 1.19         | 0.057     | _           | 3.39    | 0.29                  |             | 4.00     | 11                   | _           |
|                  | Beryllium    | $\mu g/mL$          | < 0.0055     |           | 68%         | 0.0069  | 0.0047                |             | < 0.0055 | _                    | 56 <b>%</b> |
|                  | Boron        | μg/mL               | 533          | 89        | _           | 1,400   | 190                   |             | 1,400    | 4,100                |             |
|                  | Cadmium      | $\mu g/mL$          | 0.149        | 0.035     | _           | 0.456   | 0.065                 | _           | 0.0067   | 0.0026               |             |
|                  | Calcium      | μg/mL               | 8,100        | 2,100     |             | 17,000  | 10,000                |             | 7.070    | 190                  |             |
|                  | Chromium     | μg/mL               | 0.101        | 0.03      | -           | 0.070   | 0.091                 |             | 0.063    | 0.047                | _           |
|                  | Cobalt       | μg/mL               | 0.11         | 0.13      | -           | 0.304   | 0.0029                |             | 0.090    | 0.3                  | _           |
|                  | Copper       | μg/mL               | 0.057        | 0.048     | _           | 0.239   | 0.086                 |             | 0.040    | 11.0                 | •           |
|                  | Iron         | $\mu g/mL$          | < 0.060      |           | 100%        | < 0.048 | -                     | 100%        | < 0.060  | _                    | 100%        |
|                  | Lead         | μg/mL               | 0.0022       | 0.0072    | 16%         | 0.013   | 0.0089                | _           | 0.0017   | 0.0013               |             |
|                  | Magnesium    | μg/mL               | 690          | 120       | -           | 1,800   | 100                   |             | 1,900    | 5,600                |             |
|                  | Manganese    | $\mu g/mL$          | 120          | 20        | -           | 307     | 41                    |             | 40       | 110                  | _           |
|                  | Mercury      | μg/mL               | 0.00024      | 0.00022   | _           | 0.0010  | 0.0011                |             | 0.000057 | 1e-05                |             |
|                  | Molybdenum   | $\mu g/mL$          | 0.087        | 0.068     | -           | 0.064   | 0.016                 |             | 0.210    | 0.63                 | -           |
|                  | Nickel       | $\mu g/mL$          | 0.62         | 0.14      |             | 1.52    | 0.32                  |             | 0.800    | 2.3                  | -           |
|                  | Phosphorus   | μg/mL               | 0.34         | 0.13      | _           | 0.72    | 0.13                  |             | 0.160    | 0.19                 |             |
|                  | Potassium    | $\mu g/mL$          | 52           | 12        | _           | 123     | 8.6                   |             | 140      | 420                  | _           |
|                  | Selenium     | μg/mL               | 0.36         | 0.23      | _           | 0.5     | 1                     | 0%          | 0.128    | 0.049                | -           |
|                  | Silicon      | $\mu g/mL$          | 15.8         | 2.7       |             | 42      | 6                     |             | 7        | 21                   | -           |
|                  | Sodium       | μg/ml.              | 97           | 16        | _           | 244     | 5                     |             | 290      | 860                  | _           |
|                  | Strontium    | μg/mL               | 13:2         | 2.1       | _           | 32.9    | 4.3                   |             | 40       | 110                  | _           |
|                  | Tin          | μg/mL               | 0.18         | 0.6       | 13%         | < 0.14  |                       | 100%        | < 0.14   |                      | 95%         |
|                  | Titanium     | μg/mL               | 2.19         | 0.45      | _           | 0.82    | 0.13                  |             | 0.5      | 1                    | 0.3%        |
|                  | Vanadium     | μg/mL               | 0.322        | 0.065     |             | 0.24    | 0.22                  |             | 0.19     | 0.23                 | _           |
| Metals, Total    | Aluminum     | μg/mL               | 2.04         | 0.69      | _           |         |                       |             |          |                      |             |
|                  | Antimony     | μg/mL               | < 0.14       | _         | 100%        |         |                       |             |          |                      |             |
|                  | Arsenic      | μg/mL               | 0.127        | 0.031     | _           |         |                       |             |          |                      |             |
|                  | Barium       | μg/mL               | 1.19         | 0.25      | _           |         |                       |             |          |                      |             |
|                  | Beryllium    | μg/mL               | < 0.0055     | _         | 35%         |         |                       |             |          |                      |             |
|                  | Boron        | μg/mL               | 540          | 150       | _           |         |                       |             |          |                      |             |

Table 5-11 (Continued)

|                           |                            |                     | Gypsur  | n Pond W | ater  | JBR Und | erflow<br>Utrate | Slurry |         | tone Slu<br>Utrate | ггу   |
|---------------------------|----------------------------|---------------------|---------|----------|-------|---------|------------------|--------|---------|--------------------|-------|
| Analyte                   |                            |                     |         | 95%      | DL    |         | 95%              | DL     |         | 95%                | DL    |
| Group                     | Specie                     | Units               | Average | CI       | Ratio | Average | CI               | Ratio  | Average | CI                 | Ratio |
| Metals, Total<br>(Cont'd) | Calcium                    | μg/mL               | 9,500   | 6,000    | -     |         |                  |        |         | ·                  |       |
|                           | Cadmium                    | $\mu g/mL$          | 0.177   | 0.018    | -     |         |                  |        |         |                    |       |
|                           | Chromium                   | $\mu g/mL$          | 0.075   | 0.094    |       |         |                  |        |         |                    |       |
|                           | Cobalt                     | μg/mL               | 0.143   | 0.065    | _     |         |                  |        |         |                    |       |
|                           | Copper                     | $\mu g/mL$          | 0.053   | 0.029    | _     |         |                  |        |         |                    |       |
|                           | Iron                       | $\mu g/mL$          | 0.68    | 0.73     |       |         |                  |        |         |                    |       |
|                           | Lead                       | $\mu g/mL$          | 0.0036  | 0.0048   |       |         |                  |        |         |                    |       |
|                           | Magnesium                  | μg/mL               | 720     | 210      |       |         |                  |        |         |                    |       |
|                           | Manganese                  | $\mu g/mL$          | 123     | 39       | _     |         |                  |        |         |                    |       |
|                           | Mercury                    | $\mu g/mL$          | 0.00030 | 0.00004  | -     |         |                  |        |         |                    |       |
|                           | Molybdenum                 | μg/mL               | 0.076   | 0.012    | _     |         |                  |        |         |                    |       |
|                           | Nickel                     | μg/mL               | 0.63    | 0.18     | _     |         |                  |        |         |                    |       |
|                           | Phosphorus                 | $\mu g/mL$          | 0.236   | 0.024    | -     |         |                  |        |         |                    |       |
|                           | Potassium                  | $\mu g/mL$          | 52      | 13       | _     |         |                  |        |         |                    |       |
|                           | Selenium                   | $\mu \mathrm{g/mL}$ | 0.27    | 0.17     | _     |         |                  |        |         |                    |       |
|                           | Silicon                    | μg/mL               | 18.4    | 3.2      | _     |         |                  |        |         |                    |       |
|                           | Sodium                     | $\mu g/mL$          | 102     | 25       |       |         |                  |        |         |                    |       |
|                           | Strontium                  | $\mu g/mL$          | 13.7    | 4.6      | _     |         |                  |        |         |                    |       |
|                           | Tin                        | μg/mL               | < 0.086 |          | 100%  |         |                  |        |         |                    |       |
|                           | Titanium                   | μg/mL               | 1.10    | 2.8      | _     |         |                  |        |         |                    |       |
|                           | Vanadium                   | $\mu g/mL$          | 0.22    | 0.28     | _     |         |                  |        |         |                    |       |
| Aldehydes                 | Acetaldehyde               | μg/mL               | 0.05    | 0.11     | _     | 0.06    | 0.12             | ••     | 0.050   | 0.1                | -     |
|                           | Formaldehyde               | μg/mL               | 0.023   | 0.027    |       | 80.0    | 0.26             | -      | 0.021   | 0.025              | _     |
| Organics,<br>Semivolatile | Dimethylphthalate          | μg/L                | 1.3     | 2.2      | -     | 2.1     | 4.2              | 2%     | < 0.36  | -                  | 100%  |
|                           | bis(2-Ethylhexyl)phthalate | μg/L                | 8.0     | 81       | _     | 4.4     | 1.5              |        | 140     | 560                | -     |
| Organics,<br>Volatile     | Acetone                    | μg/L                | <10     | -        | 26%   | <10     |                  | 60%    | 22.3    | 7.2                | -     |

Table 5-12 Liquid Ancillary Stream Data Summary

|                  |              |       | Cooling Water |           |              | Coal Pile Run-off |           |             |
|------------------|--------------|-------|---------------|-----------|--------------|-------------------|-----------|-------------|
| Analyte<br>Group | Specie       | Units | Average       | 95%<br>CI | DL<br>Ratio  | Average           | 95%<br>CI | DL<br>Ratio |
| Reduced Species  | Cyanide      | μg/mL | 0.00148       | 0.00091   |              |                   |           |             |
| •                | Ammonia as N | μg/mL | 0.047         | 0.014     | _            |                   |           |             |
| Anions           | Chloride     | μg/mL | 5.7           | 1.8       | _            |                   |           |             |
|                  | Fluoride     | μg/mL | 0.134         | 0.018     | _            |                   |           |             |
|                  | Phosphate    | μg/mL | 0.094         | 0.07      | _            |                   |           |             |
|                  | Sulfate      | μg/mL | 6.3           | 1.4       | _            |                   |           |             |
| Metals, Soluble  | Aluminum     | μg/mL | 0.031         | 0.047     | _            |                   |           |             |
|                  | Antimony     | μg/mL | < 0.024       | _         | 65%          |                   |           |             |
|                  | Arsenic      | μg/mL | < 0.0007      |           | 100%         |                   |           |             |
|                  | Barium       | μg/mL | 0.0131        | 1800.0    | _            |                   |           |             |
|                  | Beryllium    | μg/mL | < 0.0006      | -         | 100%         |                   |           |             |
|                  | Boron        | μg/mL | 0.9           | 3.4       | _            |                   |           |             |
|                  | Cadmium      | μg/mL | 0.0020        | 0.007     |              |                   |           |             |
|                  | Calcium      | μg/mL | 19            | 53        | _            |                   |           |             |
|                  | Chromium     | μg/mL | 0.0020        | 0.0027    | _            |                   |           |             |
|                  | Cobalt       | μg/mL | < 0.0034      | _         | 85%          |                   |           |             |
|                  | Copper       | μg/mL | 0.03          | 0.13      |              |                   |           |             |
|                  | Iron         | μg/mL | 0.11          | 0.13      |              |                   |           |             |
|                  | Lead         | μg/mL | 0.027         | 0.097     |              |                   |           |             |
|                  | Magnesium    | μg/mL | 3.1           | 4         |              |                   |           |             |
|                  | Manganese    | μg/mL | 0.07          | 0.25      | -            |                   |           |             |
|                  | Mercury      | μg/mL | 0.00005       | 0.00003   | -            |                   |           |             |
|                  | Molybdenum   | μg/mL | 0.00152       | 0.00069   | -            |                   |           |             |
|                  | Nickel       | μg/mL | 0.0021        | 0.0048    | _            |                   |           |             |
|                  | Phosphorus   | μg/mL | < 0.061       |           | 21%          |                   |           |             |
|                  | Potassium    | μg/mL | 2.42          | 0.49      | _            |                   |           |             |
|                  | Selenium     | μg/mL | < 0.0014      | _         | 100%         |                   |           |             |
|                  | Silicon      | μg/mL | 4.6           | 4.3       | _            |                   |           |             |
|                  | Sodium       | μg/mL | 8             | 12        |              |                   |           |             |
|                  | Strontium    | μg/mL | 0.049         | 0.08      | _            |                   |           |             |
|                  | Tin          | μg/mL | < 0.014       | _         | 68%          |                   |           |             |
|                  | Titanium     | μg/mL | 0.0011        | 0.0012    |              |                   |           |             |
|                  | Vanadium     | μg/mL | 0.0027        | 0.0006    | <del>-</del> |                   |           |             |
| Metals, Total    | Aluminum     | μg/mL | 2.9           | 4.4       | _            |                   |           |             |
|                  | Antimony     | μg/mL | 0.022         | 0.034     |              |                   |           |             |
|                  | Arsenic      | μg/mL | 0.007         | 0.031     | 3 %          |                   |           |             |
|                  | Barium       | μg/mL | 0.031         | 0.028     |              |                   |           |             |
|                  | Beryllium    | μg/mL | < 0.0006      | ••        | 55%          |                   |           |             |
|                  | Boron        | μg/mL | 0.32          | 0.35      |              |                   |           |             |

Table 5-12 (Continued)

| Analyte Group Specie  Metals, Total (Cont'd)  Calcium Chromium Cobalt Copper | Units  µg/ml  µg/ml  µg/ml  µg/ml  µg/ml  µg/ml  µg/ml | Average<br>0.001<br>5.9<br>0.0049<br>0.005<br>0.010<br>4.1<br>0.030 | 95%<br>CI<br>0.0024<br>1.6<br>0.0046<br>0.004<br>0.0081<br>5.4 | DL<br>Ratio | Average | 95%<br>CI | DL<br>Ratio |
|------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|-------------|---------|-----------|-------------|
| (Cont'd)  Calcium  Chromium  Cobalt  Copper                                  | μg/ml.<br>μg/ml.<br>μg/ml.<br>μg/ml.<br>μg/ml.         | 5.9<br>0.0049<br>0.005<br>0.010<br>4.1                              | 1.6<br>0.0046<br>0.004<br>0.0081                               |             |         |           |             |
| Chromium<br>Cobalt<br>Copper                                                 | μg/mL<br>μg/ml.<br>μg/ml.<br>μg/ml.<br>μg/ml.          | 0.0049<br>0.005<br>0.010<br>4.1                                     | 0.0046<br>0.004<br>0.0081                                      | -<br>-<br>- |         |           |             |
| Cobalt<br>Copper                                                             | μg/ml.<br>μg/ml.<br>μg/ml.<br>μg/ml.                   | 0.005<br>0.010<br>4.1                                               | 0.004<br>0.0081                                                |             |         |           |             |
| Copper                                                                       | μg/mL<br>μg/mL<br>μg/mL                                | 0.010<br>4.1                                                        | 0.0081                                                         |             |         |           |             |
| ••                                                                           | μg/mL<br>μg/mL                                         | 4.1                                                                 |                                                                |             |         |           |             |
| Îron                                                                         | μg/mL                                                  |                                                                     | 5.4                                                            | **          |         |           |             |
| ****                                                                         | · <del>-</del>                                         | 0.030                                                               |                                                                |             |         |           |             |
| Lead                                                                         |                                                        | 0.000                                                               | 0.058                                                          | -           |         |           |             |
| Magnesium                                                                    | μg/mL                                                  | 1.69                                                                | 0.71                                                           | -           |         |           |             |
| Manganese                                                                    | μg/mL                                                  | 0.18                                                                | 0.17                                                           | -           |         |           |             |
| Mercury                                                                      | μg/mL                                                  | 0.00004                                                             | 0.00003                                                        | -           |         |           |             |
| Molybdenum                                                                   | μg/mL                                                  | 0.0024                                                              | 0.0015                                                         | -           |         |           |             |
| Nickel                                                                       | μg/mL                                                  | < 0.0099                                                            | _                                                              | 34%         |         |           |             |
| Phosphorus                                                                   | μg/mL                                                  | 0.12                                                                | 0.2                                                            | 9%          |         |           |             |
| Potassium                                                                    | μg/mL                                                  | 2.76                                                                | 0.97                                                           | -           |         |           |             |
| Selenium                                                                     | μg/mL                                                  | 0.008                                                               | 0.03                                                           | 6%          |         |           |             |
| Silicon                                                                      | μg/mL                                                  | 6.6                                                                 | 4.8                                                            | -           |         |           |             |
| Sodium                                                                       | μg/mL                                                  | 5.4                                                                 | 1.9                                                            | , -         |         |           |             |
| Strontium                                                                    | $\mu { m g/mL}$                                        | 0.0276                                                              | 0.0076                                                         | -           |         |           |             |
| Tin                                                                          | $\mu \mathrm{g/mL}$                                    | < 0.014                                                             | _                                                              | 100%        |         |           |             |
| Titanium                                                                     | μg/mL                                                  | 0.16                                                                | 0.21                                                           | <b></b>     |         |           |             |
| Vanadium                                                                     | μ <b>g</b> /mL                                         | 0.0083                                                              | 0.0095                                                         | -           |         |           |             |
| Aldehydes Acetaldehyde                                                       | $\mu$ g/mL                                             | 0.06                                                                | 0.12                                                           | سد          | 0.09    | 0.27      | -           |
| Formaldehyde                                                                 | μg/mL                                                  | 0.026                                                               | 0.049                                                          | -           | 0.06    | 0.39      | -           |
| Organics, Butylbenzylphthalat<br>Semivolatile                                | te μg/L                                                | <0.45                                                               | -                                                              | 100%        | 0.54    | -         | -           |
| bis(2-Ethylhexyl)ph                                                          | nthalate μg/L                                          | 3.5                                                                 | 7.2                                                            | 3%          | 3.3     | _         | _           |
| Organics, Volatile Acetone                                                   | μg/L                                                   | < 10                                                                | _                                                              | 45 %        | 40      | 250       | _           |

# 6

## **DATA EVALUATION AND ANALYSIS**

This section presents an evaluation of data presented in Section 5. In evaluating these data, the following question is fundamental:

• Are the measured concentration data representative?

Since there is insufficient information to address this question directly, statistics, along with engineering and scientific judgment, must be used to answer this question. This is done by addressing related topics which can be evaluated quantitatively:

- Were analytical techniques accurate and precise?
- Were sampling techniques accurate and precise?
- Was process operation steady and representative?

If the answer to each of the above questions is "yes," then the measurements are considered representative and no qualifications made to their use. If analysis turns up potential problems with one or more of the above areas for certain data, caution must be exercised in using these data, since there is a good chance that they are not representative.

Assessment of sampling and analytical techniques is the purview of the QA/QC program. Detailed QA/QC results are presented in Appendix D, and these results are summarized below. An evaluation of process operation and a discussion of mass balance closures, which are used as an additional check on data representativeness, are also presented in this section. Finally, a discussion of the organic results concludes this section.

## **Evaluation of Sampling Techniques**

Several factors are evaluated to determine acceptable sample collection. Key components of the sampling equipment including the Pitot tubes, thermocouples, orifice meters, dry gas meters, and sampling nozzles were calibrated in the Radian Source Sampling Laboratory before use in the field. These calibrations were also checked after the equipment was returned to the laboratory after completion of the field activities. Standard EPA methods or other acceptable sampling methods were used to collect the organic, metal, and anion samples. The sampling runs were well documented, and all gas samples were collected at rates of between 90 and 110% of the isokinetic rates. Sufficient data were collected to ensure acceptable data completeness and comparability of the measurements.

Gas samples were collected from the ESP inlet, ESP outlet, and stack as integrated samples for most analyses over a specified time period. Solid samples of coal, limestone, bottom ash, ESP fly ash, and FGD slurry were collected at hourly intervals over each of the test runs. These individual grabs were combined to provide a single composite sample of each stream for each of the three test runs. Liquid streams were also collected as hourly grabs which were combined to provide a single composite for analysis for each test run. All sampling was conducted while the plant was operating at 85 to 100% of full load and should be representative of typical operation for Plant Yates.

Thus, the applicable QA/QC evaluation indicates that sampling techniques were acceptable and effective in providing measurement data reliability within the expected limits of sampling error.

### **Evaluation of Analytical Techniques**

Generally, the type of quality control information obtained pertains to measurement precision, accuracy (which includes precision and bias), and blank effects that are determined using various types of replicate, spiked and blank samples. The specific characteristics evaluated depend on the type of quality control checks performed. For example, blanks may be prepared at different stages in the sampling and analysis process to isolate the source of the blank effect. Similarly, replicate samples may be generated at different stages to isolate and measure sources of variability. The QA/QC measures used as part of this program data evaluation protocol and the characteristic information obtained are provided in Appendix D.

Different QC checks provide different types of information, particularly pertaining to the sources of inaccuracy, imprecision, and blank effects. As part of this program, measurement precision and accuracy are typically being estimated from QC indicators that cover as much of the total sampling and analytical process as feasible. Precision and accuracy measurements are based primarily on the actual sample matrix. The precision and accuracy estimates obtained experimentally during the test program are compared to the data quality objectives (DQOs) established for the program as listed in the project QAPP.

Appendix D includes a presentation of the types of quality control data reported for the program and a summary of precision and accuracy estimates. Almost all of the quality control results met the project objectives.

The following potential problems were identified by the quality control data.

- Chloromethane, methylene chloride, and tetrachloroethene were found in one or more of the field blanks analyzed for volatile organics. In many cases, the same concentrations were also found in the field samples.
- A standard limestone sample (NIST 1C) was submitted blind as a performance audit sample. Aluminum, silicon, and sodium recoveries in this sample were below 50%, and the recovery of potassium was greater than 200 percent. This may indicate a similar bias for these elements in the limestone process streams.

• Selenium showed no spike recovery in the impinger solutions analyzed by GFAAS.

These and other QA/QC findings are summarized, according to major species categories, in the discussions below.

# Semivolatile Organics

**Precision.** The precision of the semivolatile organic analyses was estimated using matrix spiked duplicate pairs. The precision objective was met for all of the gas-phase solid samples, the gas vapor-phase samples, the solid stream samples, and aqueous-phase sample streams.

Accuracy. The accuracy of the semivolatile analyses was estimated using matrix spiked duplicate samples. All of the spiked compounds analyzed in the gas solid-phase samples and the aqueous process streams were within the accuracy objectives. Matrix spikes into the solid process streams were all within the recovery objects for all analytes in the FGD solid stream and all except pyrene in the ESP ash solids. Recovery for pyrene was 51% and 56% (project objective--52-115%) for the ESP ash sample and 48% and 37% for the ESP ash field duplicate.

Blank Effects. Acetophenone and benzoic acid were found in one or more of the field blanks associated with the gas-phase solids analyses. The concentrations of these compounds in the blanks, however, were not significant in comparison to the concentrations found in the samples. Several phthalates were also found in the field blanks. The concentrations found in the samples were about the same level as found in the blanks and are therefore considered an artifact of the sampling and handling process.

# Volatile Organics

**Precision.** Precision for volatile organic analysis of the aqueous process streams was estimated using matrix spiked duplicate samples. The 50% precision objectives were met for each of the volatile analytes used for the matrix spikes.

Accuracy. Accuracy for the volatile organic analyses in the aqueous process streams was estimated using matrix spiked samples, and accuracy for the gas vapor-phase streams was estimated using surrogates spiked into each sample prior to analysis. The method specified accuracy objectives for matrix spike recoveries (0.1-234% were met for all analytes of interest (actual recoveries ranged from 70-136%) for the aqueous streams. Accuracy objectives for surrogate recoveries of 70 to 130% for the gas-phase streams were met for all samples except for toluene-d8 in one stack sample. Accuracy based on the analysis of two laboratory method spikes met the recovery objectives for all analytes of interest except for one acetone, chloromethane, chloroethane, and methylene chloride spike.

Blank Effects. Chloromethane, methylene chloride, and tetrachloroethene were found in one or more of the field gas vapor-phase blank samples. In most cases these compounds were found in the investigative field samples at about the same level as in the field blank or

at lower concentrations. Chloromethane and methylene chloride were also found in one laboratory blank. The presence of these compounds in both blanks and samples merely raises the uncertainty about their presence in the flue gas.

# Aldehydes

**Precision.** Precision for the aldehyde analyses was estimated using duplicate sample analyses. The precision objectives of 50% were met for both formaldehyde and acetaldehyde in the gas vapor-phase samples and the aqueous process stream sample analyses.

Accuracy. Accuracy for the aldehydes was estimated using matrix spiked samples. The project accuracy objectives of recoveries of 50-150% were met for the gas vapor-phase and aqueous stream sample spikes for both formaldehyde and acetaldehyde.

#### Metals

**Precision.** The precision of metals analyses by ICP-AES, GFAAS, and CVAAS was estimated for samples using matrix-spiked duplicate samples. The precision objectives (RPD <20%) were met for all target analytes analyzed by ICP-AES except aluminum and barium in the gas solid-phase spiked samples and boron in the process solid-spiked samples. The precision objectives for the GFAAS analyses were met except for lead in the gas vapor-phase matrix-spiked samples, selenium in the process solid matrix-spiked samples, and mercury and selenium in the aqueous process stream matrix spikes.

Accuracy. The accuracy of metals analyses was estimated for the gas solid-phase samples using standard reference material (NIST 1633a fly ash) submitted blind to the laboratory as a performance audit sample. All of the metals analyzed by ICP-AES were within the 75-125% accuracy objectives except for beryllium (147%) which was recovered above the objectives.

The accuracy of the metals analyses was estimated for coal samples using a standard reference coal sample (NIST 1632b) submitted blind to the laboratory. All of the metals analyzed by INAA in the reference sample were within the 75-125% accuracy objective.

The accuracy of the metals analyses was estimated for the limestone samples using a standard reference limestone (NIST Limestone 1C) submitted blind to the laboratory. The results show that the recoveries for most of the metals were outside the 75-125% accuracy objectives. Aluminum, silicon, and sodium recoveries were 50%, and the recovery for potassium was greater than 200 percent. The recoveries of these analytes may show a similar bias in the limestone process streams.

The accuracy of the metals analyses for the gas vapor-phase samples and the aqueous process streams were estimated using performance audit samples prepared from EPA reference standards. The results show that the recoveries of all the metals analyzed by ICP-AES and GFAAS were within the 75-125% accuracy objectives except Ca (368%) and Sb (127%), Ca (169%, 520%), Fe (139%), and Mg (131%, 246%) by ICP-AES and Se (50%) by GFAAS. The concentrations of these elements in the samples were at or near the detection limit.

Matrix-spiked samples were also used to determine the accuracy of the metals analyses in the gas, process solids, and aqueous process matrices. Recoveries for the target analytes were within the 75-125% accuracy objectives except for selenium (0% recovery) in the gas vaporphase matrix and mercury (35% recovery) in the aqueous process stream matrix.

Blank Effects. Aluminum, iron, manganese, and nickel were found at concentrations above the reporting limits in the field blanks to the gas vapor-phase sampling train. These elements were also found to a lesser extent in the impinger reagent blank solutions.

#### Anions

**Precision.** Precision for the anions analyses was estimated for the gas vapor-phase samples, process solid streams, and aqueous process streams by the analysis of matrix spiked samples. The precision objectives of 20% were met for chloride, fluoride, and sulfate except for chloride and sulfate in one matrix spike pair from the stack with RPDs of 22% and 24%, respectively.

**Accuracy.** Accuracy for the anions analyses was estimated using matrix spiked duplicate samples. The accuracy objectives of 80-120% recovery was met for all analytes and all sample matrices except for the fluoride spikes into the ESP ash solid samples with recoveries of 56% and 60 percent.

# Cyanide, Ammonia, and Phosphate

**Precision.** Precision for the cyanide, ammonia, and phosphate analyses was estimated using matrix spiked duplicate sample analyses. The precision objectives of 20% were met for each of the analytes for both the gas vapor phase and aqueous process streams except for ammonia spikes into the JBR process liquids. The spike concentration was too low in comparison to the level found in the native process sample.

Accuracy. Accuracy for ammonia, cyanide and phosphate was estimated using both matrix spiked duplicate samples and "double blind" performance audit samples. The accuracy objectives (cyanide, 75-125%; ammonia, 80-120%; phosphate, 75-125%) were met for all matrix spiked samples except for the ammonia spikes into the JBR process liquids with recoveries at 60 and 273 percent. Recoveries for the performance audit samples met the accuracy objectives for all analytes with recoveries of 88% for ammonia, 80% for cyanide, and 97% for phosphate. Recoveries for performance audit samples spiked into the gas vapor-phase impinger solutions were not as good as the aqueous spiked audit samples. The recovery for ammonia in the impinger solutions was 63% and the recovery for cyanide was 50 percent. The aqueous spikes and impinger spikes were performed using the same spiking solutions and were spiked at the same concentration levels.

# **Evaluation of Process Operation**

Plant operating data were examined to ensure that process operation was stable and representative of normal operation during the sampling periods. Excessive scatter or significant

trends can indicate periods where operational problems were encountered. The availability of data from the CT-121 data acquisition system allowed for a comprehensive review of process operation. Data points were logged as 15-minute averages. Plots of unit load, furnace gas O<sub>2</sub>, JBR  $\Delta$ P, JBR pH, stack SO<sub>2</sub>, CO, and NO<sub>x</sub> concentrations are located in Section 2. The range of normal operation is indicated on most of these figures. A statistical summary of process data is presented in Table 6-1. Daily average values for process parameters are presented along with the minimum and maximum values. Variability is expressed by the standard deviation. Note that high standard deviations are to be expected for some variables, such as return water flow rates, which are controlled by on/off controllers. Table 6-1 was used to identify areas of concern with process operation. A parameter with values steadily increasing or decreasing over the course of the test period may indicate a period of non-steady operation. The following paragraph summarizes the process analysis and points out areas of concern.

Analysis of the process data revealed that process operation was steady and representative during sampling periods. Problems with data quality are not likely to be the result of process variability. Some comments on process operation are as follows:

- Due to problems with the JBR inlet O<sub>2</sub> monitor, the JBR inlet SO<sub>2</sub> concentration, which is corrected with the O<sub>2</sub> meter reading, is biased low on 6/26 and 6/27. Additionally, the stack O<sub>2</sub> monitor calibration check showed it to be biased on 6/26. However, the average stack CEM O<sub>2</sub> data are not significantly different from the O<sub>2</sub> concentration measured using the Orsat method.
- The average FGD makeup water was approximately twice as high on 6/25 than on other days. This was revealed to be an instrument problem.
- SO<sub>2</sub> removal was slightly lower than expected, even accounting for the bias in the inlet O<sub>2</sub> monitor. The slightly lower SO<sub>2</sub> removal should not raise concerns about the representativeness of the data, however, as SO<sub>2</sub> removal was still within the range of normal operation for this type of scrubber. A possible explanation for the lower removal involves modifications made to the JBR limestone inlet piping. Modifications to the piping are suspected to have created a region of higher limestone concentration in the JBR where the pH indicators are located. As a result, the pH in this region was slightly higher than in the remainder of the reactor. Therefore, the average reactor pH may have been slightly lower than was indicated, resulting in lower SO<sub>2</sub> removal.
- A brief dip in load occurred on 6/24 between 1700 and 1730. The lowest point reached is unknown since the process data are reported on 15 minute average basis, the lowest of which was 86 MW. Since testing was completed by this time on 6/24, there is no effect on data representativeness.

# Data Analysis: Mass Balances, Removal Efficiencies, and Emission Factors

Calculations based on measured data have two general purposes: they can be used to assess the representativeness of the measured data or to evaluate process performance. Mass

Table 6-1 Daily Summary

|                                                    | _      |        |        | Date   |        |        |         |
|----------------------------------------------------|--------|--------|--------|--------|--------|--------|---------|
| · · · · · · · · · · · · · · · · · · ·              | 6/21   | 6/22   | 6/23   | 6/24   | 6/25   | 6/26   | 6/27    |
| Gross Load, MW                                     |        |        |        |        |        |        |         |
| Average, daily                                     | 100    | 100    | 100    | 100    | 100    | 100    | 100     |
| Sample Std. Dev.                                   | 0.5    | 0.24   | 0.32   | 1.5    | 0.44   | 0.34   | 0.22    |
| Maximum Value                                      | 100    | 100    | 100    | 100    | 100    | 100    | 100     |
| Minimum Value                                      | 98     | 100    | 100    | 86     | 98     | 100    | 100     |
| Raw Coal Flow, lb/hr                               |        |        |        |        |        |        | ٠       |
| Average, daily                                     | 89,000 | 88,000 | 89,000 | 88,000 | 90,000 | 91,000 | 92,000  |
| Sample Std. Dev.                                   | 3,000  | 3,400  | 3,300  | 3,000  | 2,400  | 2,900  | 4,000   |
| Maximum Value                                      | 94,000 | 94,000 | 99,000 | 95,000 | 96,000 | 98,000 | 100,000 |
| Minimum Value                                      | 85,000 | 82,000 | 84,000 | 81,000 | 84,000 | 85,000 | 84,000  |
| Furnace Gas O <sub>2</sub> , %                     |        |        |        |        |        |        |         |
| Average, daily                                     | 3.5    | 3.6    | 3.5    | 3.5    | 3.3    | 3.3    | 3.4     |
| Sample Std. Dev.                                   | 0.062  | 0.17   | 0.19   | 0.28   | 0.078  | 0.23   | 0.3     |
| Maximum Value                                      | 3.6    | 4.0    | 3.7    | 3.9    | 3.4    | 3.8    | 3.8     |
| Minimum Value                                      | 3.4    | 3.2    | 3.1    | 3.0    | 3.0    | 2.8    | 2.6     |
| Opacity, %                                         |        |        |        |        |        |        |         |
| Average, daily                                     | 15     | 14     | 16     | 17     | 17     | 18     | 19      |
| Sample Std. Dev.                                   | 3.6    | 0.96   | 1.7    | 2.5    | 1.3    | 1.3    | 1.5     |
| Maximum Value                                      | 31     | 18     | 27     | 33     | 23     | 22     | 23      |
| Minimum Value                                      | 12     | 13     | 14     | 14     | 14     | 15     | 16      |
| Stack O2, % on Dry Basis*                          |        |        |        |        |        |        |         |
| Average, daily                                     | 8.2    | 8      | 7.9    | 8      | 7.7    | 7.7    | 7.6     |
| Sample Std. Dev.                                   | 0.12   | 0.23   | 0.18   | 0.22   | 0.072  | 0.18   | 0.1     |
| Maximum Value                                      | 8.5    | 8.6    | 8.1    | 9      | 7.9    | 9      | 7.7     |
| Minimum Value                                      | 7.8    | 6.6    | 6.3    | 6.7    | 7.6    | 7.5    | 7       |
| Stack SO <sub>2</sub> , ppm at 3% O <sub>2</sub> * |        |        |        |        |        |        |         |
| Average, daily                                     | 160    | 180    | 200    | 200    | 240    | 180    | 190     |
| Sample Std. Dev.                                   | 38     | 47     | 37     | 65     | 31     | 25     | 38      |
| Maximum Value                                      | 230    | 250    | 260    | 340    | 300    | 230    | 270     |
| Minimum Value                                      | 88     | 41     | 120    | 74     | 180    | 130    | 140     |

Table 6-1 (Continued)

|                                   | Date         |                         |       |       |       |       |              |  |  |
|-----------------------------------|--------------|-------------------------|-------|-------|-------|-------|--------------|--|--|
|                                   | 6/21         | 6/22                    | 6/23  | 6/24  | 6/25  | 6/26  | 6/27         |  |  |
| JBR pH                            |              |                         |       |       |       |       |              |  |  |
| Average, daily                    | 4.6          | 4.5                     | 4.5   | 4.5   | 4.5   | 4.5   | 4.5          |  |  |
| Sample Std. Dev.                  | 0.22         | 0.066                   | 0.037 | 0.049 | 0.038 | 0.045 | 0.027        |  |  |
| Maximum Value                     | 4.9          | 4.7                     | 4.6   | 4.6   | 4.7   | 4.6   | 4.6          |  |  |
| Minimum Value                     | 4.3          | 4.3                     | 4.4   | 4.4   | 4.4   | 4.3   | 4.4          |  |  |
| JBR ΔP, inches water              |              |                         |       |       |       |       |              |  |  |
| Average, daily                    | 14           | 14                      | 14    | 14    | 14    | 14    | 14           |  |  |
| Sample Std. Dev.                  | 0.086        | 0.086                   | 0.08  | 0.17  | 0.071 | 0.076 | 0.073        |  |  |
| Maximum Value                     | 14           | 14                      | 14    | 15    | 14    | 14    | 14           |  |  |
| Minimum Value                     | 14           | 14                      | 14    | 14    | 14    | 14    | 14           |  |  |
| SO <sub>2</sub> Removal           |              |                         |       |       |       |       |              |  |  |
| Average, daily                    | 93           | 92                      | 91    | 90    | 89    | b     | ь            |  |  |
| Sample Std. Dev.                  | 1.7          | 1.8                     | 1.7   | 3.5   | 1.4   |       |              |  |  |
| Maximum Value                     | 96           | 97                      | 94    | 96    | 92    |       |              |  |  |
| Minimum Value                     | 90           | 89                      | 88    | 83    | 86    |       |              |  |  |
| Transition Duct PW Flow (Gypsum l | Pond Return, | FT 128), g <sub>i</sub> | om    |       |       |       |              |  |  |
| Average, material balance period  |              |                         |       |       | 78.6  | 78.7  | <b>7</b> 9.3 |  |  |
| Average, daily                    | 80           | 79                      | 79    | 79    | 79    | 79    | 79           |  |  |
| Sample Std. Dev.                  | 0.28         | 0.49                    | 0.4   | 0.94  | 0.58  | 0.5   | 0.45         |  |  |
| Maximum Value                     | 80           | 81                      | 82    | 81    | 83    | 83    | 83           |  |  |
| Minimum Value                     | 78           | 78                      | 79    | 71    | 77    | 78    | 0.12         |  |  |
| Transition Duct MU Water Flow, gp | m            |                         |       |       |       |       |              |  |  |
| Average, daily                    | 0.092        | 0.09                    | 0.12  | 0.096 | 0.14  | 0.11  | 0.094        |  |  |
| Sample Std. Dev.                  | 0.0055       | 0.0069                  | 0.23  | 0.006 | 0.44  | 0.15  | 0.0071       |  |  |
| Maximum Value                     | 0.1          | 0.11                    | 2.4   | 0.11  | 4.3   | 1.6   | 0.11         |  |  |
| Minimum Value                     | 0.08         | 0.073                   | 0.075 | 71    | 80.0  | 0.084 | 0.066        |  |  |
| Reagent Flow, gpm                 |              |                         |       |       |       |       |              |  |  |
| Average, material balance period  |              |                         |       |       | 35.9  | 37.3  | 36.3         |  |  |
| Average, daily                    | 48           | 35                      | 36    | 35    | 36    | 37    | 38           |  |  |
| Sample Std. Dev.                  | 36           | 7.3                     | 2.8   | 3.0   | 1.9   | 2.9   | 1.7          |  |  |
| Maximum Value                     | 88           | 61                      | 43    | 45    | 39    | 46    | 42           |  |  |
| Minimum Value                     | 0.1          | 0.2                     | 26    | 28    | 27    | 30    | 34           |  |  |

Table 6-1 (Continued)

|                                                          | Date         |             |              |       |       |       |       |  |  |
|----------------------------------------------------------|--------------|-------------|--------------|-------|-------|-------|-------|--|--|
| <u> </u>                                                 | 6/21         | 6/22        | 6/23         | 6/24  | 6/25  | 6/26  | 6/27  |  |  |
| JBR Level, ft                                            |              |             |              |       |       |       |       |  |  |
| Instantaneous Values (used in accumulation calculations) |              |             |              |       |       |       |       |  |  |
| Beginning (t-Δt)                                         |              |             |              |       | 14.1  | 14.1  | 14.1  |  |  |
| Ending (t)                                               |              |             |              |       | 14.1  | 14.1  | 14.1  |  |  |
| Average, daily                                           | 14           | 14          | 14           | 14    | 14    | 14    | 14    |  |  |
| Sample Std. Dev.                                         | 0.011        | 0.017       | 0.022        | 0.042 | 0.026 | 0.013 | 0.014 |  |  |
| Maximum Value                                            | 14           | 14          | 14           | 14    | 14    | 14    | 14    |  |  |
| Minimum Value                                            | 14           | 14          | 14           | 14    | 14    | 14    | 14    |  |  |
| JBR Density, wt% solids                                  |              |             |              |       |       |       |       |  |  |
| Average, material balance period                         |              |             |              |       | 22.8  | 23.0  | 23.0  |  |  |
| Instantaneous Values (used in accumulation calculations) |              |             |              |       |       |       |       |  |  |
| Beginning (t-at)                                         |              |             |              |       | 22.2  | 23.7  | 22.7  |  |  |
| Ending (t)                                               |              |             |              |       | 22.3  | 23.3  | 23.5  |  |  |
| Average, daily                                           | 23           | 23          | 23           | 23    | 23    | 23    | 23    |  |  |
| Sample Std. Dev.                                         | 0.51         | 0.55        | 0.55         | 0.52  | 0.51  | 0.56  | 0.51  |  |  |
| Maximum Value                                            | 24           | 24          | 24           | 24    | 24    | 24    | 24    |  |  |
| Minimum Value                                            | 22           | 22          | 22           | 22    | 22    | 22    | 22    |  |  |
| Mist Eliminator/Deck Wash PW Flow                        | (Ash Pond I  | Return FT 1 | 150A), gpu   | ıʻ    |       |       |       |  |  |
| Average, material balance period                         |              |             |              |       | 26.1  | 25.5  | 28.8  |  |  |
| Average, daily                                           | 25           | 25          | 28           | 28    | 25    | 26    | 26    |  |  |
| Sample Std. Dev.                                         | 29           | 28          | 32           | 35    | 30    | 32    | 32    |  |  |
| Maximum Value                                            | 110          | 110         | 120          | 130   | 100   | 120   | 120   |  |  |
| Minimum Value                                            | -0.33        | -0.33       | -0.34        | -0.37 | -0.37 | -0.37 | -0.29 |  |  |
| Mist Eliminator Makeup Water Flow                        | (FT 150B), g | ;pm°        |              |       |       |       |       |  |  |
| Average, material balance period                         |              |             |              |       | 6.7   | 6.6   | 6.0   |  |  |
| Average, daily                                           | -2           | -4          | <b>-4</b> .1 | -4.1  | -4    | -4    | -4.2  |  |  |
| Sample Std. Dev.                                         | 27           | 25          | 25           | 22    | 24    | 28    | 18    |  |  |
| Maximum Value                                            | 180          | 240         | 240          | 210   | 230   | 260   | 140   |  |  |
| Minimum Value                                            | -6.9         | -7.2        | -7.5         | -7.5  | -7.3  | -7.6  | -7.6  |  |  |
| JBR Level Control Line PW Flow (As                       | h Pond Retu  | rn, FT 142  | ), gpm       |       |       |       |       |  |  |
| Average, material balance period                         |              |             |              |       | 36.4  | 29.4  | 53.4  |  |  |
| Average, daily                                           | 44           | 50          | 56           | 54    | 39    | 37    | 48    |  |  |
| Sample Std. Dev.                                         | 56           | 84          | 86           | 79    | 68    | 66    | 72    |  |  |
| Maximum Value                                            | 200          | 270         | 270          | 250   | 220   | 200   | 210   |  |  |
| Minimum Value                                            | 0.27         | 0.27        | 0.24         | 0.24  | 0.25  | 0.26  | 0.3   |  |  |

Table 6-1 (Continued)

|                                        | Date         |       |       |       |       |        |       |  |  |
|----------------------------------------|--------------|-------|-------|-------|-------|--------|-------|--|--|
|                                        | 6/21         | 6/22  | 6/23  | 6/24  | 6/25  | 6/26   | 6/27  |  |  |
| Mist Eliminator Differential Pressure, | inches water | •     |       |       |       |        |       |  |  |
| Average, daily                         | 0.67         | 0.65  | 0.64  | 0.64  | 0.63  | 0.65   | 0.66  |  |  |
| Sample Std. Dev.                       | 0.014        | 0.016 | 0.017 | 0.022 | 0.013 | 0.02   | 0.013 |  |  |
| Maximum Value                          | 0.7          | 0.68  | 0.68  | 0.7   | 0.66  | 0.7    | 0.68  |  |  |
| Minimum Value                          | 0.62         | 0.62  | 0.61  | 0.52  | 0.6   | 0.62   | 0.64  |  |  |
| Reagent Slurry Density, wt% solids     |              |       |       |       |       |        |       |  |  |
| Average, material balance period       |              |       |       |       | 37.2  | 37.2   | 33.9  |  |  |
| Average, daily                         | 33           | 30    | 33    | 37    | 37    | 37     | 34    |  |  |
| Sample Std. Dev.                       | 0.18         | 2.9   | 2.1   | 0.15  | 0.025 | 0.045  | 2.1   |  |  |
| Maximum Value                          | 33           | 34    | 38    | 38    | 37    | 37     | 39    |  |  |
| Minimum Value                          | 32           | 25    | 30    | 37    | 37    | 37     | 32    |  |  |
| Furnace Pressure, inches water         |              |       |       |       |       |        |       |  |  |
| Average, daily                         | -0.21        | -0.22 | -0.22 | -0.22 | -0.22 | -0.22  | -0.22 |  |  |
| Sample Std. Dev.                       | 0.017        | 0.013 | 0.012 | 0.016 | 0.012 | 0.0095 | 0.016 |  |  |
| Maximum Value                          | -0.12        | -0.19 | -0.19 | -0.16 | -0.19 | -0.19  | -0.18 |  |  |
| Minimum Value                          | -0.24        | -0.27 | -0.25 | -0.28 | -0.26 | -0.25  | -0.26 |  |  |
| JBR Agitator Running                   |              |       |       |       |       |        |       |  |  |
| Average, daily                         | 1            | 1     | 1     | 1     | 1     | 1      | 1     |  |  |
| Sample Std. Dev.                       | 0            | 0     | 0     | 0     | 0     | 0      | 0     |  |  |
| Maximum Value                          | 1            | 1     | 1     | 1     | 1     | 1      | 1     |  |  |
| Minimum Value                          | 1            | 1     | 1     | 1     | 1     | 1      | 1     |  |  |
| Oxidation Air "A", scfm                |              |       |       |       |       |        |       |  |  |
| Average, daily                         | 2,100        | 2,100 | 2,100 | 2,100 | 2,100 | 2,100  | 2,100 |  |  |
| Sample Std. Dev.                       | 20           | 40    | 50    | 40    | 30    | 50     | 60    |  |  |
| Maximum Value                          | 2,200        | 2,200 | 2,200 | 2,200 | 2,200 | 2,200  | 2,200 |  |  |
| Minimum Value                          | 2,100        | 2,100 | 2,000 | 2,000 | 2,100 | 2,000  | 2,000 |  |  |
| Oxidation Air "B", scfm                |              |       |       |       |       |        |       |  |  |
| Average, daily                         | 2,100        | 2,000 | 2,000 | 2,100 | 2,100 | 2,000  | 2,000 |  |  |
| Sample Std. Dev.                       | 20           | 30    | 50    | 40    | 30    | 40     | 50    |  |  |
| Maximum Value                          | 2,100        | 2,100 | 2,100 | 2,100 | 2,100 | 2,100  | 2,100 |  |  |
| Minimum Value                          | 2,000        | 2,000 | 2,000 | 2,000 | 2,000 | 2,000  | 2,000 |  |  |

Table 6-1 (Continued)

|                                                            | Date  |       |       |       |                  |                 |                 |  |  |
|------------------------------------------------------------|-------|-------|-------|-------|------------------|-----------------|-----------------|--|--|
|                                                            | 6/21  | 6/22  | 6/23  | 6/24  | 6/25             | 6/26            | 6/27            |  |  |
| JBR Blowdown (FT 162A), gpm <sup>c</sup>                   |       |       |       |       |                  |                 |                 |  |  |
| Average, material balance period                           |       |       |       |       | <b>73</b> .7     | 68.9            | 92.0            |  |  |
| Average, daily                                             | 80    | 74    | 83    | 84    | 74               | 78              | 84              |  |  |
| Sample Std. Dev.                                           | 73    | 75    | 78    | 80    | 73               | 72              | 79              |  |  |
| Maximum Value                                              | 200   | 210   | 210   | 210   | 210              | 210             | 210             |  |  |
| Minimum Value                                              | -0.36 | -0.38 | -0.35 | -0.49 | -0.37            | -0.37           | -0.41           |  |  |
| FGD MU Water Flow, gpm                                     |       |       |       |       |                  |                 |                 |  |  |
| Average, daily                                             | 94    | 90    | 87    | 90    | 200°             | 120°            | 77              |  |  |
| Sample Std. Dev.                                           | 16    | 14    | 13    | 44    | 120              | 140             | 49              |  |  |
| Maximum Value                                              | 180   | 210   | 200   | 450   | 430              | 320             | 190             |  |  |
| Minimum Value                                              | 83    | 83    | 78    | 77    | 78               | 14              | 12              |  |  |
| SO <sub>2</sub> at JBR Inlet Duct, ppm @ 3% O <sub>2</sub> |       |       |       |       |                  |                 |                 |  |  |
| Average, daily                                             | 2,300 | 2,100 | 2,200 | 2,000 | 2,100            | 1,900           | 1,400           |  |  |
| Sample Std. Dev.                                           | 11    | 220   | 45    | 86    | 38               | 280             | 200             |  |  |
| Maximum Value                                              | 2,300 | 2,300 | 2,300 | 2,200 | 2,200            | 2,300           | 1,900           |  |  |
| Minimum Value                                              | 2,300 | 1,300 | 2,100 | 1700  | 2,000            | 1,000           | 990             |  |  |
| O <sub>2</sub> at JBR Inlet Duct, %                        |       |       |       |       |                  |                 |                 |  |  |
| Average, daily                                             | 7.8   | 7.7   | 7.6   | 7.6   | 7.4              | 14 <sup>f</sup> | 15 <sup>f</sup> |  |  |
| Sample Std. Dev.                                           | 0.07  | 0.31  | 0.086 | 0.3   | 0.27             | 4.1             | 0.97            |  |  |
| Maximum Value                                              | 8     | 9.6   | 7.7   | 8.7   | 7.7              | 18              | 17              |  |  |
| Minimum Value                                              | 7.5   | 6     | 7.2   | 7.0   | 6.9              | 7.4             | 14              |  |  |
| JBR Inlet Duct Pressure, inches water                      |       |       |       |       |                  |                 |                 |  |  |
| Average, daily                                             | -11   | -11   | -10   | -10   | -10              | -10             | -10             |  |  |
| Sample Std. Dev.                                           | 0.17  | 0.23  | 0.13  | 0.23  | 0.079            | 0.19            | 0.091           |  |  |
| Maximum Value                                              | -9.8  | -10   | -10   | -8.5  | <del>-9</del> .8 | -10             | -10             |  |  |
| Minimum Value                                              | -11   | -11   | -11   | -10.5 | -10              | -11             | -11             |  |  |
| JBR Inlet Duct Temperature, °F                             |       |       |       |       |                  |                 |                 |  |  |
| Average, daily                                             | 280   | 280   | 280   | 280   | 280              | 280             | 280             |  |  |
| Sample Std. Dev.                                           | 4.9   | 4.3   | 6     | 4.2   | 3.6              | 5.3             | 5.8             |  |  |
| Maximum Value                                              | 280   | 290   | 290   | 290   | 290              | 290             | 290             |  |  |
| Minimum Value                                              | 260   | 270   | 270   | 280   | 280              | 280             | 270             |  |  |

<sup>&</sup>lt;sup>a</sup> A bias in the stack O<sub>2</sub> monitor was found during calibration check on 6/27. However, the average CEM stack O<sub>2</sub> concentrations are not significantly different from the stack gas O<sub>2</sub> concentration determined using the Orsat method.

b These values not reported since they are known to be biased due to faulty inlet O2 monitor readings.

<sup>&</sup>lt;sup>c</sup> Negative values result of instrumentation bias.

<sup>&</sup>lt;sup>d</sup> Value of 1 indicates agitator on, 0 indicates off.

<sup>•</sup> High average due to instrumentation problem.

f Problems with inlet O2 monitor have biased these values.

balance closures were calculated as a check on data representativeness. Since the mass of trace elements must be conserved, an examination of the mass balance can provide clues to sampling and/or analytical deficiencies. Removal efficiencies and emission factors are evaluations of process performance. Removal efficiencies provide an insight into the fate of a substance in power plant processes. Emission factors express plant emissions on a unit-energy basis.

The method used to determine uncertainties in calculated results is based on the ANSI/ASME PTC 19.1-1985, "Measurement Uncertainty" and is consistent with the approach to handling data used in EPRI's Field Chemical Emission Monitoring (FCEM) program. This method, along with an example calculation, is presented in Appendix F. In statistical calculations, a distinction was made between "raw data," such as gas flow rates and concentrations, and calculated data, such as mass balance closures and emission factors. The term "raw" is in quotation marks because some calculations were necessary to obtain these data. The distinction between raw and calculated data was made based on the goal of a particular measurement, i.e., the goal of a Pitot-tube traverse is to determine a gas flow rate, so the flow rate is considered a raw data point and not the individual  $\Delta P$  measurements. Calculated data are determined using mean raw data. Therefore, calculated data are not presented on a daily or run basis but as mean values for the entire material balance period. Fundamental to obtaining calculated data is the assumption that the power plant processes are reasonably close to steady state. In this project, stream flow rates not directly measured, emission factors, removal efficiencies, and mass balance closures are all treated as calculated data.

Data were reviewed and justifiable eliminations and substitutions made prior to the calculation of material balance closures and removal efficiencies. The following modifications were made to the data set:

- The ESP outlet gas particulate-phase data for Runs 1 and 3 were invalidated for Al, Ba, Be, Cd, Ca, Cr, Co, Pb, Mg, P, K, Na, and Sr due to the filter background concentration comprising greater than 20% of the measured concentration.
- The stack gas particulate-phase data for Run 1 were invalidated for all elements except As, Se, and V due to the filter background concentration comprising greater than 20% of the measured particulate concentration.
- The limestone slurry filtrate Run 3d was substituted for Run 3a. 46% of the detected elements in Run 3a are statistical outliers. An analytical error is suspected to have occurred for Run 3a. No further details are available.
- The ESP inlet gas vapor-phase data for Run 2 were invalidated due to particulate breakthrough into the impinger solutions. This event caused a high bias in the vapor-phase concentrations.
- No flue gas particulate-phase analyses were performed for boron, since boric acid is
  included in the chemicals used to digest the particulate filters. The sluiced fly ash
  analyses were substituted so that mass balances could be performed.

• For As, Cr, and Hg, certain analyses are suspected to be biased and cause poor mass balance closures. For these elements, mass balance closures are also calculated with certain data substitutions made (see Table 6-2 for details).

#### Mass Balances

The results of mass balance closures, emission factors, and removal efficiencies are presented in the following sections. Following the results section are summaries of the equations used. Example calculations are presented in Appendix I.

Table 6-2 presents mass balance closures for selected elements. Mass balances were performed about the boiler, ESP, JBR, and the total plant. Figure 6-1 depicts the mass balance boundaries. Steady-state process operation was assumed for all vessels but the JBR. Due to the short test periods, significant accumulation of a substance could occur in the JBR. Small fluctuations in the JBR level and solids concentration are part of normal operation.

A general mass balance equation which applies to any system is:

$$\begin{bmatrix} Accumulation of \\ Mass in System \end{bmatrix} = \begin{bmatrix} Mass into \\ System \end{bmatrix} - \begin{bmatrix} Mass out \\ of System \end{bmatrix} + \begin{bmatrix} Mass Generated \\ in System \end{bmatrix}$$
 (6-1)

Over a long period of steady operation, the accumulation in the JBR also could be considered negligible. The following general equation was used to calculate mass balance closures.

For all vessels but the JBR, the accumulation term should be negligible and was assumed to be zero. Development of specific mass balance equations is presented in Appendix I.

The mass balance closure for each element met the project objective if it was between 70 and 130 percent. Poor closures and high uncertainties have their root cause in sampling, analytical, or process problems. Since an analysis of the process showed that process operation was steady and representative of normal operation, problems with mass balance closures for some substances may reflect problems with analytical or sampling techniques.

Concerns with mass balance closures fall into three categories:

- Out-of-range mass balance closure is outside target range of 70-130 percent;
- High uncertainty--uncertainty in closure exceeds ±50 percent; and
- Clear bias--closure ± uncertainty does not encompass 100% closure.

Table 6-2
Mass Balance Closures

|                         | Boi                    | iler                  | ES                    | SP                   | ЈВІ             | R                | Pla                    | nt                    |
|-------------------------|------------------------|-----------------------|-----------------------|----------------------|-----------------|------------------|------------------------|-----------------------|
| •                       | %                      | 95%                   | %                     | 95%                  | %               | 95%              | %                      | 95%                   |
|                         | Closure                | CI                    | Closure               | CI                   | Closure         | CI               | Closure                | CI                    |
| Anions                  |                        |                       |                       |                      |                 |                  |                        |                       |
| Chloride                | 104                    | 25                    | 115                   | 45                   | 76              | 24               | 77                     | 25                    |
| Fluoride                | 103                    | 16                    | 105                   | 30                   | 97              | 33               | 104                    | 39                    |
| Elements                |                        |                       |                       | ,                    |                 |                  | :                      |                       |
| Aluminum*               | 74                     | 17                    | 101                   | b                    | 65              | b                | 75                     | 6.5                   |
| Antimony <sup>c</sup>   | 67                     | 44                    | 92                    | 52 <sup>d</sup>      | 91              | 124°             | 65                     | 26                    |
| Arsenic                 | 214 (103) <sup>f</sup> | 94 (43) <sup>f</sup>  | 136                   | 67ª                  | 38 <sup>h</sup> | 28               | 270 (135) <sup>f</sup> | 142 (71) <sup>f</sup> |
| Barium                  | 69                     | 30                    | 100                   |                      | 76              |                  | 69                     | 27                    |
| Beryllium <sup>i</sup>  | 105                    | 16                    | 107                   | -                    | 55              |                  | 111                    | 24                    |
| Boron <sup>m</sup>      | 131                    | 110 <sup>j</sup>      | 105                   |                      | 109             |                  | 114                    | 32                    |
| Cadmium <sup>d</sup>    | 100                    | 63                    | 155                   |                      | 109             |                  | 136                    | 51                    |
| Calcium                 | 94                     | 35                    | 76                    |                      | 82              |                  | 81                     | 31                    |
| Chromium                | 144 (91) <sup>k</sup>  | 225 (30) <sup>k</sup> | 58 (92) <sup>k</sup>  |                      | 89              |                  | 83                     | 8.9                   |
| Cobalt                  | 98                     | 36                    | 120                   |                      | 80              |                  | 114                    | 40                    |
| Copper                  | 26                     | 24                    | 122                   | 22                   | 74              | 23               | 33                     | 30                    |
| Iron                    | 89                     | 18                    | 99                    | 21                   | 77              | 26               | 87                     | 17                    |
| Lead                    | 109                    | 37                    | 106                   |                      | 36              |                  | 113                    | 44                    |
| Magnesium               | 92                     | 22                    | 104                   |                      | 107             |                  | 103                    | 21                    |
| Manganese               | 113                    | 19                    | 104                   | 18                   | 101             | 31               | 103                    | 27                    |
| Mercury                 | 205 (110) <sup>1</sup> | 84 (35) <sup>1</sup>  | 55 (102) <sup>1</sup> | 18 (26) <sup>1</sup> | 88              | 13               | 101                    | 30                    |
| Molybdenum              | 18                     | 20                    | 23                    | 27                   | 111             | 39               | 4.5                    | 3.6                   |
| Nickel                  | 84                     | 86⁴                   | 63                    | 39                   | 121             | 357 <sup>d</sup> | 55                     | 9.5                   |
| Phosphorus <sup>c</sup> | 31                     | 19                    | 34                    |                      | 91              | -                | 20                     | 13                    |
| Potassium <sup>e</sup>  | 59                     | 13                    | 104                   |                      | 84              |                  | 62                     | 9.6                   |
| Selenium <sup>d</sup>   | 65                     | 31                    | 141                   | 81                   | 188             | 106              | 145                    | 54                    |
| Sodium                  | 91                     | 12                    | 99                    |                      | 100             |                  | 91                     | 15                    |
| Strontium               | 48                     | 7.9                   | 99                    |                      | 95              |                  | 59                     | 7.8                   |
| Titanium                | 77                     | 18                    | 103                   | 23                   | 31              | 10               | 78                     | 12                    |
| Vanadium                | 87                     | 13                    | 106                   | 17                   | 91              | 32               | 92                     | 13                    |

<sup>\*</sup> Spike recovery in ESP inlet gas-phase particulate for aluminum was 62%, indicating possible analytical bias.

<sup>&</sup>lt;sup>b</sup> Since the ESP outlet gas-phase particulate Runs 1 and 3 were invalidated, confidence intervals for the ESP and JBR mass balance closures could not be calculated for many elements.

### Table 6-2 (Continued)

- <sup>c</sup> These elements are consistently enriched in the coal ash over the process stream solid-phase concentrations, suggesting that the coal analyses are biased high for these elements.
- <sup>d</sup> High uncertainties for mass balance closure are caused by high variability in the gas particulate-phase concentrations.
- <sup>e</sup> High uncertainty in JBR closure for antimony is the result of high detection limits in liquid-phase samples; antimony was not detected in the JBR blowdown filtrate or limestone slurry filtrate.
- f Values in parentheses are those obtained when INAA coal analyses are substituted for the GFAA data.
- <sup>5</sup> High uncertainty in the ESP closure for arsenic is mostly due to high variability in ESP sluiced ash concentration.
- h Arsenic concentration was below detection limit in JBR blowdown solid phase.
- <sup>1</sup> Spike recovery for beryllium in the performance evaluation ash sample was 147%, indicating possible analytical bias.
- <sup>j</sup> High variability in the boiler closure for boron is caused by high variability in the ESP inlet gas vapor-phase analyses.
- ESP inlet gas-phase particulate Run 2 Cr concentration, at 550 ng/g, is a statistical outlier. In comparison with sluiced ash, hopper ash, and size fractionated particulate data for chromium, this value is likely to be biased high. The mass balance data in parentheses are calculated with this value replaced with the Run 2 ESP sluiced ash concentration.
- <sup>1</sup> ESP inlet particulate data for mercury are suspected to be biased high based on comparison with sluiced ash hopper ash analyses. This is also supported by the high boiler and low ESP mass balance closures. The mass balance data in parentheses are calculated with the ESP sluiced ash analyses substituted for the ESP inlet gas-phase particulate analyses.
- <sup>m</sup> Gas particulate-phase data are not available. ESP sluiced ash data were substituted for the boron particulate concentration.

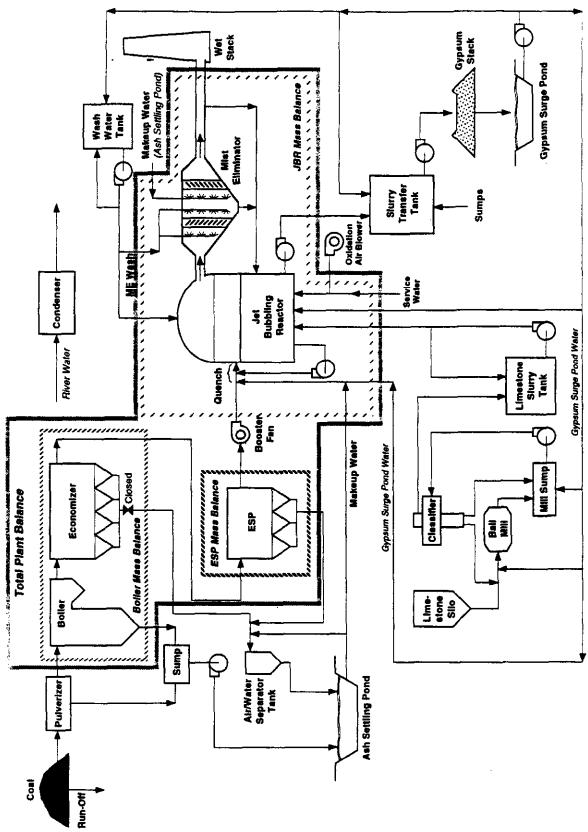



Figure 6-1
Mass Balance Boundaries

Mass Balance Closure (%) = 100 \* 
$$\left[1 - \frac{\text{Total Mass Out}}{\text{(Mass In - Mass Accumulated)}}\right]$$
 (6-2)

For the boiler closure, 70% of the mass balances performed fell within the target range. The percentage within the target range for the ESP, JBR, and Total Plant were 85%, 78%, and 59%, respectively.

Confidence intervals are not presented for many elements for the ESP and JBR mass balance closures. The precision error for the ESP outlet gas, particulate-phase analyses is unknown for many elements due to the rejection of data from Runs 1 and 3. Discussion of concerns with specific substances is presented in the following paragraphs.

**Substitutions.** For some elements, both a review of the analytical data and initial mass balance closures suggested that some data were biased. For these elements, data substitutions were made, and the material balances were recalculated. These results are in parentheses on Table 6-2. Specific cases are discussed in the following paragraphs.

- As. The arsenic coal analyses by GFAA yield mass balance closures about the boiler and plant of 214 and 270%, respectively, suggesting a bias in the coal or ash analyses. When the coal concentration for each run was replaced by the corresponding analysis by INAA, the closures about the boiler and plant were 103 and 134% respectively. This suggests that the GFAA analysis performed for coal may have been biased.
- Cr. The ESP inlet gas, particulate-phase Run 2 analysis for Cr at 550  $\mu$ g/g is a statistical outlier when compared with all available ash analyses. This value is strongly suspected to be the result of analytical bias or non-representative sampling. This is supported by the boiler mass balance closure, at 144%. When this value is replaced with the Run 2 sluiced ash concentration, the closure is 91%.
- Hg. The ESP inlet, particulate-phase data are suspected to be biased high, based on other ash analyses and prior experience with mercury data. This is also supported by the high mass balance closure about the boiler (205%) and correspondingly lower closure about the ESP (55%). When these data are replaced with the sluiced fly ash analyses, the closures are a much more reasonable 110% about the boiler and 102% about the ESP.

Out-of-Range Mass Balance Closures. Many mass balance closures lie outside the target range. For some of these, poor closure can be attributed to high variability in the concentration in one or more process streams. Other elements have closures which are clearly biased. The following paragraphs provide explanations for poor and clearly biased mass balance closures.

Sb, Cu, Mo, K, P, Sr. Antimony, copper, molybdenum, potassium, phosphorus, and strontium have mass balance closures well outside the target range for two or more devices. The confidence intervals for these closures indicate that a clear analytical or

sampling bias exists or that the mass balance closure model is inadequate for these substances. Problems closing material balances for copper, molybdenum, and phosphorus have been encountered in previous work by Radian. For antimony, copper, potassium, and strontium, the boiler and plant closures are out of range, while the ESP and JBR closures are reasonable. Since the boiler and plant closures are driven by the coal analyses, this suggests a high bias in the INAA analyses for coal for these substances. All of these elements show enrichment in the coal ash over bottom ash, collected ash, and the gas particulate phase at all locations (except phosphorus in the ESP outlet). None of these elements are expected to be in the vapor phase. This pattern suggests that the coal analyses for antimony, copper, molybdenum, potassium, phosphorus, and strontium are biased high in varying degrees. See Section 8 for further details on enrichment.

- Al and Be analytical QA/QC procedures reveal a possible analytical bias in gas particulate-phase analyses for Al. The Al spike recovery for this matrix was 62%, indicating a possible low bias. This could explain the slight bias apparent in the mass balance closure  $(74\% \pm 17\%)$ . In addition, the spike recovery of Be in the performance evaluation sample for fly ash was 147%. Only the JBR mass balance was outside the target range for Be, however. In addition, QA/QC procedures revealed possible analytical problems with some elements in the gas vapor-phase and limestone samples. For these elements, the limestone and vapor-phase concentrations have a very small effect on mass balance closures, however.
- As. Arsenic was not detected in the JBR blowdown solids. This may explain the 36% mass balance closure.
- Be, Pb, Se, and Ti. These elements have poor closures about the JBR. No cause for these poor closures was determined, with the exception of the previously mentioned possibility for analytical bias for Be in the solid phase.
- High Uncertainties in Mass Balance Closures. Some mass balance closures, both within and outside the target range, have high uncertainties. For those elements outside the target range, high variability in one or more measurements is the usual cause. The causes for high uncertainties in some elements is discussed below.
  - Cd, Ni, and Se. For these elements, uncertainty in the mass balance closure exceeds 50% for most devices. The cause is high uncertainty in the gas particulate-phase analyses. The Ni closure about the JBR, at  $120 \pm 357\%$ , is especially high because the Run 1 stack gas particulate-phase analyses were invalidated. The cause of the high variability in particulate-phase analyses for these elements in unknown. Insufficient data are available to make a reasonable hypothesis; however, the measurement error associated with the small sample mass collected at the stack is a likely contributor to the data variability.
  - **Sb.** The high uncertainty (95%  $\pm$ 120%) in the antimony closure about the JBR is the result of high detection limits in the liquid-phase samples analyzed. Antimony was not detected in the JBR blowdown filtrate or limestone slurry filtrate. The high uncertainty

in the boiler closure is the result of variability in the ESP inlet gas particulate-phase analyses.

- **B.** The high uncertainty  $(131\% \pm 110\%)$  in the boron closure about the boiler is the result of variability in the ESP inlet gas-phase analyses.
- As. The high uncertainty in the ESP closure is mostly due to high variability in the ESP inlet gas vapor-phase analyses.

#### **Emission Factors**

The emission factor expresses stack emissions on an energy basis. Emission factors for elements are located in Table 6-3. The following general equation was used in calculating emission factors:

Emission Factor = 
$$\frac{\text{Mass of Species in Stack Gas}}{\text{Energy of Coal Burned}}$$
 (6-3)

Detailed emission factor equations and an example calculation are presented in Appendix I.

#### Removal Efficiencies

Removal efficiencies of elements were calculated for the boiler, ESP, and JBR. Results are presented in Table 6-4. Since all elements but B, Hg, and Se should be present primarily in the solid phase, most of the removal of trace species occurs with the removal of fly ash in the ESP. The following equation defines the removal efficiency for a substance:

Removal Efficiency = 100 \* 
$$\left(1 - \frac{\text{Mass of Species in Gas Stream Exiting System}}{\text{Mass of Species in Gas Stream (or Coal) Entering System}}\right)^{(6-4)}$$

An example calculation of a removal efficiency is provided in the Example Calculations in Appendix I.

# **Organic Compound Results**

The organic compounds detected in the samples from all three gas streams can be grouped into three categories: plasticizers, outside source contaminants, and process

Table 6-3
Emission Factors

|                                  | lb/10 <sup>12</sup> Btu | 95% CI |
|----------------------------------|-------------------------|--------|
| Anions                           |                         |        |
| Chloride                         | 742                     | 647    |
| Fluoride                         | 122                     | 67     |
| Selected Elements                |                         |        |
| Antimony                         | 0.06                    | 0.01   |
| Arsenic                          | 1.2                     | 0.2    |
| Barium                           | 2.8                     | 9.9    |
| Beryllium                        | 0.1                     | 0.1    |
| Cadmium                          | 0.6                     | 2.1    |
| Chromium                         | 5.3                     | 49.5   |
| Cobalt                           | 0.7                     | 0.8    |
| Copper                           | 2.0                     | 2.3    |
| Lead                             | 0.6                     | 0.6    |
| Manganese                        | 7.2                     | 48     |
| Mercury                          | 3.0                     | 0.3    |
| Molybdenum                       | 1.5                     | 2.6    |
| Nickel                           | 40.1                    | 435    |
| Selenium                         | 26.5                    | 58     |
| Vanadium                         | 2.1                     | 0.5    |
| Aldehydes                        |                         |        |
| Acetaldehyde                     | 8.6                     | 9.2    |
| Formaldehyde                     | 24                      | 36     |
| Volatile Organics <sup>b,c</sup> |                         |        |
| Benzene                          | 1.3                     | 0.3    |
| Carbon Disulfide                 | 2.2                     | 1.2    |
| Toluene                          | 2.0                     | 1.0    |

Table 6-3 (Continued)

|                                    | lb/10 <sup>12</sup> Btu | 95% CI |
|------------------------------------|-------------------------|--------|
| Semivolatile Organics <sup>d</sup> |                         |        |
| 2-Methylphenol (o-cresol)          | 2.9                     | 3.8    |
| 4-Methylphenol (p-cresol)          | 0.95                    | 1.9    |
| Acetophenone                       | 3.2                     | 0.7    |
| Benzoic Acid                       | 120                     | 7      |
| Benzyl Alcohol                     | 2.8                     | 12     |
| Naphthalene                        | 1.5                     | 1.0    |
| Phenol                             | 9.2                     | 8.8    |

<sup>\*</sup> Run 1 particulate-phase data were invalidated for all elements included here except arsenic, selenium, and vanadium due to the filter background comprising 20% or greater of the measured concentration.

<sup>&</sup>lt;sup>b</sup> Only those compounds with an average concentration above the detection limit are included.

<sup>&</sup>lt;sup>e</sup> Methylene chloride, acetone, and other halogenated hydrocarbons are not included because their presence is strongly suspected to be the result of contamination.

<sup>&</sup>lt;sup>d</sup> Phthalate esters are not included because their presence is suspected to be the results of contamination.

Table 6-4
Removal Efficiencies (Includes Particulate and Vapor Phase)

|                         | Boi                     | ler           | E            | SP           |           | JBR    |  |  |
|-------------------------|-------------------------|---------------|--------------|--------------|-----------|--------|--|--|
|                         | % Removal               | 95% CI        | %Removal     | 95% CI       | % Removal | 95% CI |  |  |
| Anions                  |                         |               |              |              |           |        |  |  |
| Chloride                | -7                      | 126           | -12          | 49           | 99        | 1      |  |  |
| Fluoride                | 1.4                     | 15            | 1.6          | 37           | 98        | 1      |  |  |
| <u>Elements</u>         |                         |               |              |              |           |        |  |  |
| Aluminum*               | 26.0                    | 16.8          | 98.6         | _,           | 98.4      |        |  |  |
| Antimony                | 32.8                    | 45            | 98.8         | 0.6          | 84.1      | 3.1    |  |  |
| Arsenic                 | -113.5 (-2.4)°          | 94.7 (43.6)°  | 95.9         | 1.5          | 92.7      | 2.1    |  |  |
| Barium                  | 31.5                    | 29.7          | 98.3         | -            | 96.1      | -      |  |  |
| Beryllium               | -4.34                   | 18.2          | 98.1         | -            | 92.6      | _      |  |  |
| Boron h                 | -30.6                   | 114.7         | 34.3         | <del>-</del> | 93.5      |        |  |  |
| Cadmium                 | 0.5                     | 62.9          | 95.1         |              | 46.2      |        |  |  |
| Calcium                 | 6.9                     | 44.1          | 98.8         |              | 85.3      |        |  |  |
| Chromium                | -43.2 (10.2)°           | 228.7 (33.3)* | 98.7         | -            | 76.6      | _      |  |  |
| Cobalt                  | 3.1                     | 35.2          | 98.2         | -            | 85.3      |        |  |  |
| Copper <sup>f</sup>     | 73.8                    | 25.4          | 97.8         | 0.3          | 88.1      | 13.5   |  |  |
| Iron                    | 12.5                    | 10.1          | 98.9         | 0.1          | 98.0      | 7.0    |  |  |
| Lead                    | -9.1                    | 36.9          | 97.4         | -            | 96.7      |        |  |  |
| Magnesium               | 8.5                     | 24.1          | 98.4         | -            | 93.3      | _      |  |  |
| Manganese               | -11.4                   | 12.8          | 98.4         |              | 78.4      | 144    |  |  |
| Mercury                 | -105 (-10) <sup>2</sup> | 84.1 (35)#    | 55.2 (16.5)* | 14.4 (20.6)* | 45.9      | 7.4    |  |  |
| Molybdenum <sup>f</sup> | 82.5                    | 19.9          | 97.2         | 2.2          | 82.5      | 27.2   |  |  |
| Nickel                  | 16.4                    | 88.1          | 98.8         | 0.7          | -75.5     | 1890   |  |  |
| Phosphorus <sup>f</sup> | 69.6                    | 21.3          | 94.8         | -            | 91.1      |        |  |  |
| Potassium <sup>f</sup>  | 41.5                    | 13.9          | 98.6         | -            | 96.4      | -      |  |  |
| Selenium                | 34.8                    | 30.9          | 38.1         | 85.1         | 66.9      | 56.1   |  |  |
| Sodium                  | 10.1                    | 11.9          | 97.6         | -            | 94.0      |        |  |  |
| Strontium <sup>f</sup>  | 52.1                    | 7.9           | 98.5         | -            | 96.6      | _      |  |  |
| Titanium                | 24.0                    | 18.5          | 98.6         | 0.4          | 98.3      | 0.4    |  |  |
| Vanadium                | 13.7                    | 12.4          | 98.0         | 0.3          | 96.0      | 0.9    |  |  |

<sup>\*</sup> Spike recovery in ESP inlet gas-phase particulate for A1 was 62%, indicating possible analytical bias.

<sup>&</sup>lt;sup>b</sup> Since the ESP outlet gas-phase particulate Runs 1 and 3 were discarded, confidence intervals for the ESP and JBR removal efficiencies could not be calculated for many elements.

<sup>&</sup>lt;sup>e</sup> Values in parentheses are those obtained when INAA coal analyses are substituted for the GFAA data.

<sup>&</sup>lt;sup>4</sup> Spike recovery for Be in the PE ash sample was 147%, indicating possible analytical bias.

<sup>\*</sup> ESP inlet gas-phase particulate Run 2, at 550 ng/g, is a statistical outlier. In comparison with sluiced ash, hopper ash, and size fractionated particulate data for chromium, this value is likely to be biased high. The removal efficiency data in parentheses are calculated with this value rejected.

<sup>&</sup>lt;sup>f</sup> These elements are consistently enriched in the coal ash over the process stream solid-phase concentrations, suggesting that the coal analyses are biased high for these elements.

<sup>\*</sup> ESP inlet gas-phase particulate data are suspected to be biased high compared with sluiced ash hopper ash analyses. This is also supported by the high boiler and low ESP mass balance closures. The removal efficiency data in parentheses are calculated with the ESP sluiced ash analyses substituted for the ESP inlet gas-phase particulate analyses.

<sup>&</sup>lt;sup>h</sup> Gas particulate-phase data were unavailable. ESP sluiced ash data were substituted.

related compounds. The phthalate esters detected in the MM5 gas samples are typical plasticizers commonly attributed to plastic bottles, bags, etc. used in the field laboratory environment. Sample and field blank concentrations are comparable; since phthalates are ubiquitous in the terrestrial environment, their presence is most likely due to contamination.

Methylene chloride and acetone are common reagents used in the field for sample recovery, and the detection of these compounds in the VOST samples is attributed to their presence in the field laboratory environment. Also detected in the VOST samples were chloromethane, trichloroethane, tetrachloroethene, and trichlorofluoromethane. These compounds were also found in the field blanks, but not in the trip blanks. Their presence is attributed to an unknown source of solvents or refrigerants in the field environment and they are not considered to be process-generated compounds.

Six semivolatile organic compounds and two volatile organic compounds detected consistently in the three gas streams are likely associated with the coal combustion process. These are benzene, toluene, phenol, 2-methylphenol (o-cresol), 4-methylphenol (p-cresol), acetophenone, naphthalene, and benzoic acid. The average measurable concentrations of these compounds across all three gas streams are less than 1 ppbv except phenol (2.5 ppbv), formaldehyde (8.2 ppbv), and benzoic acid (37 ppbv). (Note that benzoic acid is not included on the Title III list of compounds in the Clear Air Act Amendments.)

Benzene, toluene, and the phenols are known products of coal devolatilization, and their presence indicates partial oxidation of the coal or the possible presence of lower-temperature combustion zones within the boiler. The presence of naphthalene, in addition to being a process related compound, is sometimes attributed to inadequate cleanup of the XAD resin material used as the sorbent in the MM5 sampling train. At this site, however, naphthalene concentrations in the blank resin samples were less than three times the detection limit indicating a relatively clean resin matrix. The gas sample concentrations were all less than eight times the detection limit with most of the measurable naphthalene concentrations near the levels found in the blank samples. Consequently, the confidence intervals around the naphthalene concentrations are large, and any definitive conclusion about the presence of naphthalene in the flue gas is not possible from these data.

Conversely, benzoic acid is present in the flue gas samples at an average concentration of 37 ppbv, over ten times greater than any other process related compound. The presence of benzoic acid in the flue gas may be explained by at least two well known mechanisms:

- Oxidation of naphthalene followed by decarboxylation at 300°C. This route was used commercially to produce benzoic acid until recently, when it was phased out in favor of liquid-phase oxidation of toluene. Naphthalene is oxidized to phthalic acid anhydride then decarboxylated, which takes place spontaneously at 300°C, with about 40% conversion. It is not unreasonable to assume that a similar reaction could occur during the combustion process when naphthalene is present.
- Oxidation of toluene to benzoic acid. The catalytic oxidation of toluene to benzoic acid using  $V_2O_5$  was also used to produce benzoic acid commercially in Germany during

#### Data Evaluation and Analysis

World War II. Although it has also been replaced by the liquid-phase oxidation mechanism, the fact that the process existed indicates that benzoic acid can be obtained by the oxidation of toluene. The oxidation yields benzoic acid and benzaldehyde, which can also be oxidized to benzoic acid.

Benzoic acid is not on the Clean Air Act list of 189 toxic substances, but it is noteworthy that all of the detected organic compounds are aromatic and share a common toluene or substituted-benzene structure. Although benzoic acid may be a degradation product of XAD resin, there is no evidence confirming this compound is generated as a sampling artifact. Another likely hypothesis is that the semivolatile compounds detected in the flue gas are attributed to various oxidation and substitution products of naphthalene, xylene (detected in only one sample), and toluene, with benzoic acid being the predominant product.

Similarly, the presence of acetaldehyde and formaldehyde in the flue gas may be attributed to the oxidation of ethane and methane possibly produced from the partial oxidation of coal. Gas samples were not analyzed for acetic or formic acid, which are the oxidation products of acetaldehyde and formaldehyde, respectively. The analysis of these organic acids, if detected, could provide some insight into the behavior of acetaldehyde and formaldehyde and the level of oxidation possible in the system.

# COMPARISON OF VAPOR AND PARTICULATE COMPOSITION

Most of the substances measured at Plant Yates are distributed between the flue gas (vapor) and particulate matter (bottom ash, collected ESP ash, ash removed in the FGD system, or emitted ash which exits with the flue gas through the stack). Of the organic compounds tested, the semivolatile compounds should be associated with the particulate matter, and the volatile compounds should remain in the vapor phase. (Some of the organic compounds are at least slightly soluble in water and thus may be removed from the flue gas in the wet FGD system.) The sampling and analytical techniques used in the project did not quantify the distribution of the organic compounds between the particulate and vapor phases.

EPA Proposed Method 29 was the primary method used for collecting the trace metals samples at Plant Yates. The anions train used to measure acid gas concentrations is similar to Method 29 in many respects since both are modifications to the Method 5 sampling procedure. In these methods, the particulate and vapor concentrations are analyzed and may be reported separately. However, because of the low vapor-phase concentrations and the high potential for contamination during sampling, sample handling, or analysis, the partitions between particulate and vapor phases should be used cautiously.

Most of the inorganic elements present in the flue gas downstream of the air heater should be in the particulate phase. As is discussed in Section 8, some of the metals will be enriched in the finer particulate sizes, but the vapor pressure of most elements and their compounds is too low for measurable concentrations to be expected in the vapor phase at temperatures of 300°F and below. Exceptions to this include mercury, hydrochloric acid, hydrofluoric acid, and selenium which may have significant vapor concentrations. Selenium may be present either as vaporous compounds such as SeO<sub>2</sub> or as a component enriched in the finer particulate matter.

Tables 7-1, 7-2, and 7-3 show the particulate and vapor-phase distribution of the inorganic substances of interest measured at Yates in the ESP inlet, ESP outlet, and stack streams, respectively. Rather than summing the components of the sampling train, the concentrations of the particulate and vapor phases have been computed and averaged separately. For values reported from the laboratory as below the detection limit, one-half the detection limit was included in the averaging procedure. The average determined in this manner was used to calculate the particulate percentage, even if the average was less than the average detection limit of the non-detected samples. In this event, the average detection limit has also been included in the tables as a less than value in parentheses (<DL). The percentage of the particulate- and vapor-phase concentrations that result from averaging values below detection limits are included in the tables.

Table 7-1
Vapor and Particulate-Phase Distribution at ESP Inlet

| Element    | Part. Conc.<br>μg/Nm³ | % Part.<br>DL* | Vapor<br>μg/N | Vapor Conc.<br>μg/Nm³ • |             | % of Element in<br>Particulate Phase |
|------------|-----------------------|----------------|---------------|-------------------------|-------------|--------------------------------------|
| Antimony   | 33                    | 0%             | 0.56          |                         | 0%          | 98.3%                                |
| Arsenic    | 400                   | 0%             | 0.083         | (<0.17)                 | 100%        | 100.0%                               |
| Barium     | 4,400                 | 0%             | 1.5           |                         | 0%          | 100.0%                               |
| Beryllium  | 93                    | 0%             | 0.06          |                         | 0%          | 99.9%                                |
| Boron      | 4,200 <sup>d</sup>    | 0%             | 6,390         |                         | 0%          | 39.7%                                |
| Cadmium    | 24                    | 0%             | 0.11          |                         | 16%         | 99.6%                                |
| Chloride   | 6,100                 | 0%             | 112,000       |                         | 0%          | 5.2%                                 |
| Chromium   | 2,900                 | 0%             | 11            |                         | 0%          | 99.6%                                |
| Cobalt     | 275                   | 0%             | 0.34          | (<0.74)                 | 55 <b>%</b> | 99.9%                                |
| Copper     | 770                   | 0%             | 1.1           |                         | 0%          | 99.9%                                |
| Fluoride   | 1.3                   | 0%             | 8,300         |                         | 0%          | 0.0%                                 |
| Lead       | 710                   | 0%             | 0.103         | (<0.21)                 | 100%        | 100.0%                               |
| Manganese  | 2,120                 | 0%             | 0.051         | (<0.10)                 | 100%        | 100.0%                               |
| Mercury    | 1.3°                  | 0%             | 5,5           |                         | 0%          | 19.2%                                |
| Molybdenum | 320                   | 0%             | 0.66          | (<1.4)                  | 52%         | 99.8%                                |
| Nickel     | 2,000                 | 0%             | 7             |                         | 7%          | 99.6%                                |
| Phosphorus | 2,100                 | 0%             | 7.8           | (<16)                   | 100%        | 99.6%                                |
| Selenium   | 133                   | 0%             | 0.11          | (<0.22)                 | 100%        | 99.9%                                |
| Strontium  | 2,910                 | 0%             | 2             |                         | 0%          | 99.9%                                |
| Vanadium   | 2,760                 | 0%             | 1.20          |                         | 0%          | 100.0%                               |

Note: The Hg concentration in the sluiced ash has been substituted for the ESP inlet ash Hg concentration since the latter is believed to be biased high.

<sup>\*</sup> Percentage of the particulate concentration that results from using measurements below detection limits.

b Note: Run 2 has been excluded from the vapor-phase average because of contamination.

<sup>&</sup>lt;sup>e</sup> Percentage of the vapor concentration that results from using measurements below detection limits.

<sup>&</sup>lt;sup>d</sup> Boron concentrations from the sluiced fly ash have been substituted for the gas stream particulate concentrations. Chemicals containing boron are used in the digestion procedure used for the gas stream particulate samples.

<sup>&</sup>lt;sup>e</sup> The sluiced fly ash mercury concentration was substituted for the mercury concentration measured in the ESP inlet particulate. Material balances around the boiler, ESP, and overall plant support the hypothesis that the ESP inlet particulate mercury concentration is biased high.

Table 7-2 Vapor and Particulate-Phase Distribution at ESP Outlet

| Element    | Part. Conc.<br>μg/Nm³ | % Part.<br>DL^ | Vapor Conc.<br>μg/Nm³ |         | % Vapor<br>ND | % of Element in<br>Particulate Phase |
|------------|-----------------------|----------------|-----------------------|---------|---------------|--------------------------------------|
| Antimony   | 0.39                  | 0%             | 0.021                 |         | 0%            | 94.8%                                |
| Arsenic    | 16                    | 0%             | 0.091                 | (<0.18) | 100%          | 99.4%                                |
| Barium     | 74                    | 0%             | 1.0                   |         | 0%            | 98.7%                                |
| Beryllium  | 1.7                   | 0%             | 0.093                 | (<0.16) | 57 %          | 94.9%                                |
| Cadmium    | 1.1                   | 0%             | 0.10                  |         | 20%           | 91.1%                                |
| Chloride   | 45                    | 0%             | 136,000               |         | 0%            | 0.0%                                 |
| Chromium   | 23                    | 0%             | 0.57                  | (<0.73) | 42%           | 97.6%                                |
| Cobalt     | 4.5                   | 0%             | 0.54                  | (<1.0)  | 31%           | 89.2%                                |
| Copper     | 16                    | 0%             | 1.1                   |         | 16%           | 93.9%                                |
| Fluoride   | 0.12                  | 0%             | 7,900                 |         | 0%            | 0.0%                                 |
| Lead       | 18                    | 0%             | 0.37                  |         | 20%           | 98.0%                                |
| Manganese  | 34                    | 0%             | 0.055                 | (<0.11) | 100%          | 99.8%                                |
| Mercury    | 0.126                 | 0%             | 5.6                   |         | 0%            | 2.2%                                 |
| Molybdenum | 8.1                   | 0%             | 0.61                  | (<1.4)  | 37%           | 93.0%                                |
| Nickel     | 22                    | 0%             | 1.54                  | (<2.9)  | 59 %          | 93.6%                                |
| Phosphorus | 100                   | 0%             | 8.49                  | (<17)   | 100%          | 92.2%                                |
| Selenium   | 82                    | 0%             | 0.12                  | (<0.23) | 100%          | 99.9%                                |
| Strontium  | 43                    | 0%             | 1.4                   |         | 0%            | 96.9%                                |
| Vanadium   | 54                    | 0%             | 1                     |         | 12%           | 98.2%                                |

<sup>\*</sup> Percentage of the particulate concentration that results from using measurements below detection limits.

<sup>&</sup>lt;sup>b</sup> Percentage of the vapor concentration that results from using measurements below detection limits.

Table 7-3 Vapor and Particulate-Phase Distribution at Stack

| Element    | Part. Conc<br>μg/Nm³ | . % Part.<br>DL* |       | or Conc.<br>g/Nm³ | % Vapor<br>DL <sup>b</sup> | % of Element in<br>Particulate Phase |
|------------|----------------------|------------------|-------|-------------------|----------------------------|--------------------------------------|
| Antimony   | 0.052                | 0%               | 0.012 | . <del></del>     | 0%                         | 80.6%                                |
| Arsenic    | 1.1                  | 0%               | 0.089 | (<0.18)           | 100%                       | 92.5%                                |
| Barium     | 2.8                  | 0%               | 0.082 | (<0.14)           | 54%                        | 97.2%                                |
| Beryllium  | 0.041                | 0%               | 0.061 | (<0.17)           | 82%                        | 40.1%                                |
| Cadmium    | 0.59                 | 0%               | 0.032 | (<0.064)          | 100%                       | 94.9%                                |
| Chloride   | 214                  | 0%               | 540   |                   | 0%                         | 28.4%                                |
| Chromium   | 5.1                  | 0%               | 0.34  | (<0.67)           | 100%                       | 93.8%                                |
| Cobalt     | 0.25 (<0.            | 6) 59%           | 0.39  |                   | 0%                         | 39.3%                                |
| Copper     | 0.77                 | 0%               | 1.2   |                   | 14%                        | 38.2%                                |
| Fluoride   | 0.051                | 0%               | 124   |                   | 0%                         | 0.0%                                 |
| Lead       | 0.50                 | 0%               | 0.11  | (<0.22)           | 100%                       | 82.1%                                |
| Manganese  | 7.2                  | 0%               | 0.054 | (<0.11)           | 100%                       | 99.3%                                |
| Mercury    | 0.0071               | 18%              | 3.0   |                   | 0%                         | 0.2%                                 |
| Molybdenum | 1.4                  | 0%               | 0.12  |                   | 0%                         | 92.3%                                |
| Nickel     | 39                   | 0%               | 1.8   | (<2.6)            | 46 %                       | 95.7%                                |
| Phosphorus | 1.3 (<2.             | 6) 100%          | 8.2   | (<16)             | 100%                       | 13.6%                                |
| Selenium   | 26                   | 0%               | 0.8   |                   | 0%                         | 97.1%                                |
| Strontium  | 1.5                  | 0%               | 0.022 | (<0.045)          | 100%                       | 98.5%                                |
| Vanadium   | 1.6                  | 0%               | 0.55  |                   | 0%                         | 74.5%                                |

<sup>\*</sup> Percentage of the particulate concentration that results from using measurements below detection limits.

<sup>&</sup>lt;sup>b</sup> Percentage of the vapor concentration that results from using measurements below detection limits.

At ESP inlet conditions, more than 99% of the mass of the substances of interest were found in the particulate phase. Exceptions to this are chloride, fluoride, and mercury. Most chloride and fluoride exiting the boiler are in the acid gas form (HCl and HF.) In fact, Title III of the Clean Air Act Amendments of 1990, only lists HCl and HF and not chloride and fluoride salts which would be in the particulate form. However, the particulate measurements are included in this section for completeness.

With the exception of mercury, chloride, and fluoride, the particulate phase contains most of the mass of elements at the ESP outlet and stack as well. The percentage found in the particulate phase decreases for some elements in the stack, primarily because the particulate loading (and therefore the particulate concentration of an element on a gas-phase basis) decreases. The gas-phase concentrations of most elements are reasonably consistent at each of the sampling locations. However, these concentrations, while very low, are above those expected. Since the concentrations of the elements in the liquid impinger samples are extremely low (10 ppb level or below for most), contamination of the impinger solutions is the suspected cause.

Field blank concentrations support the hypothesis that contamination may be the cause of the higher-than-expected vapor-phase concentrations of the elements of interest. Table 7-4 compares the stack vapor measurements to the stack field blank concentrations (calculated on an average stack gas volume basis). For most of the elements, the field blank concentration equals or exceeds the measured stack concentration. Since the reagent blanks are generally much lower than the field blanks, sample handling under field conditions is the expected cause of contamination. Possible sources of contamination include incomplete rinsing of the sampling train glassware or inadvertent contact of the rinse solution with external glassware surfaces. Again, because the concentration of these elements is in the ppb range, very little material is required to cause these levels of contamination.

Mercury and fluoride are almost entirely in the vapor phase at the ESP outlet and stack. Chloride shows a substantial particulate percentage at the stack. This high level of particulate chloride is believed to be caused by a minor amount of absorber liquid being reentrained from the mist eliminator surfaces. Again, this chloride is a calcium salt which is not included on the list of elements and compounds in Title III of the Clean Air Act Amendments of 1990.

Finally, the selenium distribution at Plant Yates is worthy of note. Essentially all of the selenium was found in the particulate phase at Yates, while at most other coal-fired electric utility plants a significant fraction of the selenium has been measured in the vapor phase. (Variability in the selenium data is also high in most cases.) Although the particulate phase contains the selenium, particulate-phase selenium removal efficiency was only 40% (see Table 8-2) compared to greater than 98% removal efficiency for the total particulate matter. All other particulate-phase metals are removed at greater than 90% efficiency. These data indicate that selenium may be reacting or condensing on the particulate filter during gas-phase sampling resulting in a lower-than-expected vaporous selenium concentration. Also note that the spike recovery for the selenium vapor was low, indicating a possible low bias in the vapor-phase selenium concentration.

Table 7-4
Stack Field Blank Versus Vapor Concentration

| Element    | Vapor Conc.<br>μg/Nm³ |          | Field Blank<br>μg/Nm³ |  |
|------------|-----------------------|----------|-----------------------|--|
| Antimony   | 0.012                 |          | 1.78                  |  |
| Arsenic    | 0.089                 | (<0.18)* | < 0.177               |  |
| Barium     | 0.082                 | (<0.14)  | 0.734                 |  |
| Beryllium  | 0.061                 | (<0.17)  | < 0.150               |  |
| Cadmium    | 0.032                 | (<0.064) | 0.054                 |  |
| Chromium   | 0.34                  | (<0.67)  | 3.19                  |  |
| Cobalt     | 0.39                  |          | 1.01                  |  |
| Copper     | 1.2                   |          | 1.66                  |  |
| Lead       | 0.11                  | (<0.22)  | 1.08                  |  |
| Manganese  | 0.054                 | (<0.11)  | 10.6                  |  |
| Molybdenum | 0.12                  |          | 0.073                 |  |
| Nickel     | 1.8                   | (<2.6)   | 3.59                  |  |
| Phosphorus | 8.2                   | (<16)    | < 16.5                |  |
| Selenium   | 0.8                   |          | < 0.228               |  |
| Strontium  | 0.022                 | (<0.045) | 0.513                 |  |
| Vanadium   | 0.55                  |          | 0.821                 |  |

<sup>\*</sup> The "<" symbol indicates the average D.L. for these substances.

In Table 7-1, the mercury concentration in the sluiced fly ash has been substituted for the mercury concentration measured in the ESP inlet particulate matter because the ESP value is believed to be biased high. (The ESP inlet ash mercury concentration is significantly higher than that measured at most other coal-fired electric utility plants.) As shown in Table 6-2, material balances for mercury around the boiler (205%) and ESP (55%) indicate that the mercury particulate concentration may be high. The overall balance for mercury (101%) is good. (This balance does not use the ESP inlet data.) Since the ESP sluiced ash includes most of the ash at the ESP inlet, concentrations in this stream should be reasonable estimates for the ESP inlet ash concentrations. When this substitution is made, the mercury balances around the boiler (110%) and ESP (102%) become more reasonable.

# DISTRIBUTION OF HAPS AS A FUNCTION OF PARTICLE SIZE IN THE FLUE GAS AND THE PARTICLE SIZE DISTRIBUTION IN THE ESP

Understanding the distribution of trace metals according to particle size is important in understanding and predicting trace metals emissions rates and removal efficiencies across control devices. For example, if an element was enriched (higher concentration than in the bulk ash) in the fine particulate matter, the removal efficiency for that element across an ESP would be expected to be less than that of the bulk particulate matter. (Theoretically, an ESP does not control the fines as well as the larger particle size fractions.)

Prior to the presentation of results from Plant Yates, expected results based on historical data will be discussed. Trace metals in coal can be grouped into three general categories:

- Elements (and compounds) that are not vaporized during the combustion process and, therefore, are assumed to be uniformly distributed in the bottom ash and fly ash. Included in this category are barium, beryllium, manganese, strontium, vanadium, and, sometimes, chromium and nickel.
- Elements that are partially or completely vaporized in the furnace and then condense as the flue gas temperature drops in cooler regions of the boiler and in downstream equipment. This condensation can occur on the surface of ash particles or by homogenous nucleation, so elements in this category tend to be enriched in the finer fly ash particles. Included here are arsenic, cadmium, copper, lead, molybdenum, and, sometimes, chromium, nickel, and selenium. Antimony and phosphorus may also fall in this category, but not much supporting data on these elements are available as yet.
- Elements that are vaporized and remain primarily in the vapor phase at flue gas temperatures in the stack. Mercury and sometimes selenium fall into this category. Selenium may be present either as vaporous compounds, such as SeO<sub>2</sub>, or as a component enriched in the finer particulate matter.

# **Collection and Analytical Methods**

The mass particle size distributions around the ESP can be used to characterize its performance. The size distributions were determined by Anderson High Capacity Source Sampler (4 cuts) for the ESP inlet, by Microtracs laser diffraction for the ESP Field 1 hopper catch and the ESP Field 2 hopper catch, and by University of Washington Mark V cascade impactor (11 cuts) at the ESP outlet.

To convert the size distributions from aerodynamic diameter to physical diameter, it is necessary to know the density of the particles. Particle density measurements were made on samples from the ESP from Plant Yates ESP Hoppers 1-4 on 6/23/93. A helium pycnometer was used to measure the porosity and volume of the ash samples. The samples were then weighed to determine the particle density. The average of three measurements was 2.41 g/cm³, and it was assumed that this density was representative for all sizes of particles. This value for density was then used in the impactor data reduction to calculate the physical diameters.

# Particle Size Distribution and Fractional Efficiency

Figures 8-1, 8-2, 8-3, and 8-4 show the cumulative and differential particle size distribution measured at the inlet and outlet of the ESP. Specific run data for the ESP inlet and outlet PSD tests are included in Appendix C.

The inertial sampling equipment used for these tests is described in Section 5. Sampling was conducted at a fixed, isokinetic flow rate to yield a constant stage cutpoint. The sampling train utilized is essentially a standard EPA reference Method 17 configuration. Stage cutpoints for the cascade impactors and cyclone samplers are derived from empirical calibrations based on operating flow rates, run conditions, and sampler geometry.

ESP particle size data are presented on a physical basis, rather than aerodynamic, using a measured ash density of  $2.4 \text{ gm/cm}^3$ . The ESP inlet particle size distribution is a direct average of triplicate runs at the same cyclone stage cutpoints. The top and bottom end of the distribution are assumed to be  $50 \mu m$  and  $0.1 \mu m$ , respectively. This range was selected to cover the extent of particles which are typical of coal-fired boilers. Mass median diameter and geometric standard deviation of the distribution were estimated graphically, based on the  $50 \mu m$  upper size limit, assuming a log-normal distribution. The resulting inlet distribution had a mass median diameter of  $13 \mu m$  with a standard deviation of 4.1 This represents a rather wide spread for an inlet size distribution. Since only four data points are available from the cyclones, it is difficult to discern any more details on the inlet distribution. However, the amount of space charge suppression that was observed in the first field of the ESP does indicate large concentrations of fine particles which would also reflect a large standard deviation.

Data reduction for the outlet PSD follows a standard cascade impactor  $D_{50}$  calculation method. Outlet particle size was also extrapolated to a 50  $\mu m$  upper endpoint. Mass fraction and differential distribution were directly averaged from the raw impactor run data, since stage  $D_{50}$  cutpoints were nearly identical between runs. The resulting distribution had a mass median diameter of 4.1  $\mu m$  and a standard deviation of 3.1. This size is representative of the size distribution commonly measured at the outlet of an ESP.

In Figures 8-3 and 8-4, and Table 8-1, the differential mass has been normalized to the level of the Method 5/29 average measured particulate concentration. This corrects for sample fallout and loss in the particle sizing cyclones and cascade impactor. It also accounts for

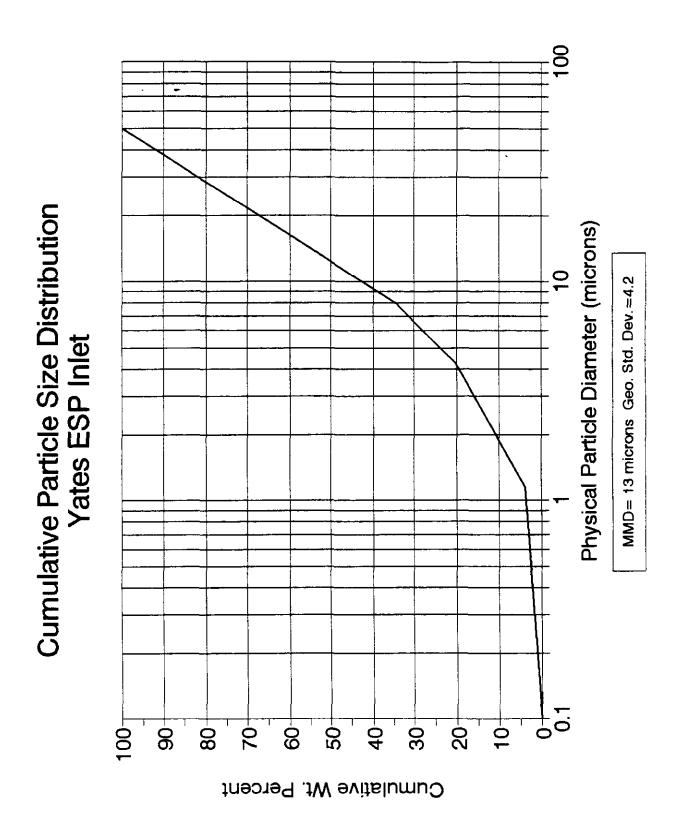



Figure 8-1 Cumulative Particle Size Distribution, Yates ESP Inlet

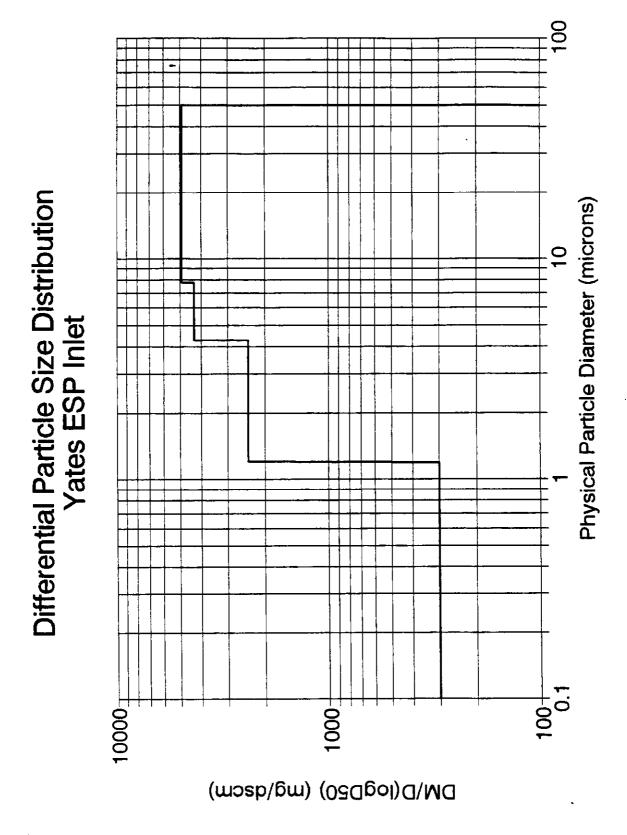



Figure 8-2 Differential Particle Size Distribution, Yates ESP Inlet

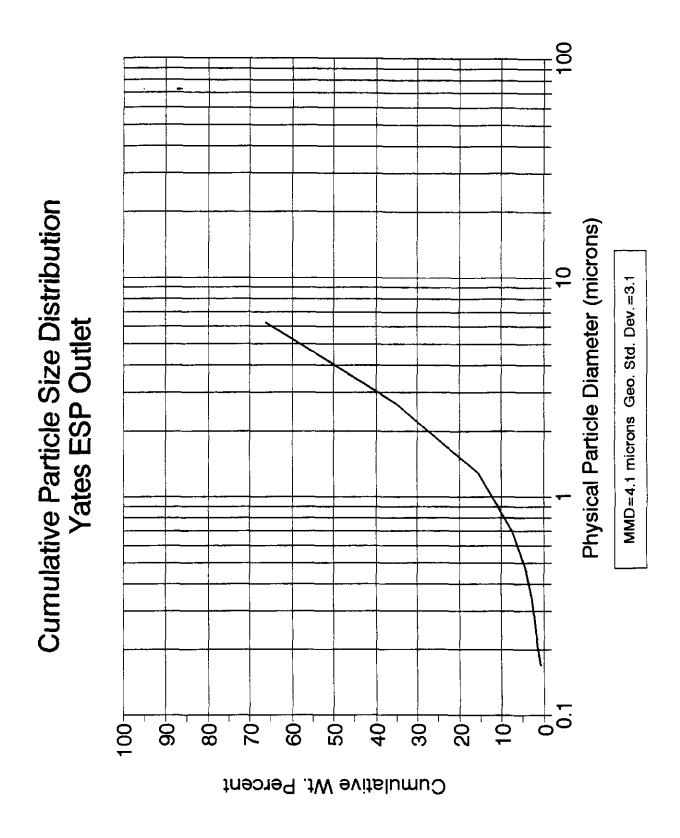



Figure 8-3 Cumulative Particle Size Distribution, Yates ESP Outlet

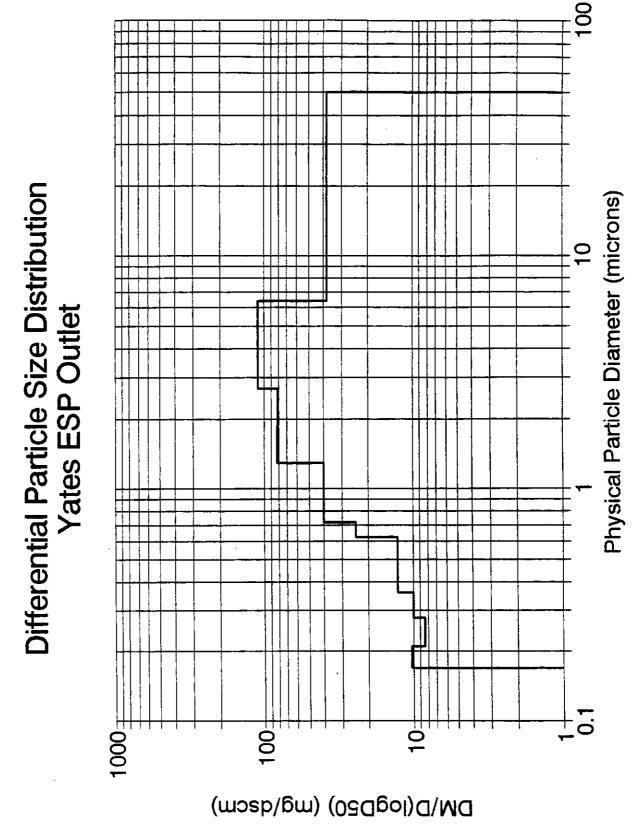



Figure 8-4
Outlet Differential Particle Size Distribution

Table 8-1
Measured Particle Size and Fractional Efficiency

| Physical<br>Diameter<br>(microns) | Inlet<br>Cumulative<br>Mass (%) | Inlet<br>DM/d (logD50)<br>(mg/dscm) | Outlet<br>Cumulative<br>Mass (%) | Outlet<br>DM/d(logD50)<br>(mg/dscm) | Fractional<br>Efficiency<br>(%) | Fractional<br>Penetration<br>(%) |
|-----------------------------------|---------------------------------|-------------------------------------|----------------------------------|-------------------------------------|---------------------------------|----------------------------------|
| 0.1 - 1.2                         | 3.8                             | 300                                 | 16.0                             | 17.3                                | 94.2                            | 5.8                              |
| 1.2 - 4.3                         | 20.3                            | 2,413                               | 55.0                             | 81.5                                | 96.6                            | 3.4                              |
| 4.3 - 7.8                         | 33.8                            | 4,309                               | 78.0                             | 95.5                                | 97.8                            | 2.2                              |
| >7.8                              | 100.0                           | 4,927                               | 100.0                            | 51.0                                | 99.0                            | 1.0                              |

#### Notes:

- 1. Fly ash density =  $2.41 \text{ gm/cm}^3$ .
- 2. Inlet differential distribution normalized to average mass test concentration of 8,338 mg/dscm.
- 3. Outlet differential distribution normalized to average mass test concentration of 131.8 mg/dscm.

differences between the single-point impactor and cyclone sampler tests and the multipoint Method 5/29 measurements.

Table 8-1 shows the collection efficiency as a function of physical particle size. The overall collection efficiency for all particles was 98.4 percent. The measured collection efficiency for particles below 1.2  $\mu$ m was 94%, while the collection efficiency for particles between 1.2 - 4.3 microns was 96 percent. The mass fraction above 1  $\mu$ m represents the majority of particles emitted from the ESP. Although theoretical collection efficiency decreases with the particle diameter, non-ideal effects such as sneakage, gas flow distribution, and reentrainment can have a very significant effect on ESP performance for larger particle sizes. This demonstrates that an ESP can efficiently collect submicron particles and does not emit just fine particles as is commonly believed.

## Predicted ESP Performance

ESP performance can be affected by several variables including particle resistivity and the electrical characteristics of the ESP. Both of these conditions can ultimately affect opacity. Each of these are discussed in the following section.

Particle Resistivity. Particle resistivity was measured at the ESP inlet using an extractive resistivity measuring device. In this device, sample collection and resistivity measurement are performed in a chamber external to the duct. The system uses an in-situ probe to isokinetically extract a sample of dust to a temperature-controlled precipitation chamber where a point-plane precipitator deposits the dust onto a disc. Once a suitable layer has been deposited, layer thickness is measured with a precision micrometer. Resistivity is measured

in the presence of flue gas by applying increasing voltage across the dust layer. The resulting current is measured with a picoammeter until the dust layer breaks down electrically and sparkover occurs. The resistivity is then calculated using the ratio of the electric field to the current density just prior to sparkover, as described in ASME Power Test Code Number 28. Measurements are typically made over a range of temperatures for the same dust layer. This allows resistivity to be measured over a range of possible ESP operating conditions.

In addition to the in-situ measurements, resistivity was also calculated using a computer model developed by Bickelhaupt.<sup>2,3</sup> This model predicts resistivity as a function of temperature, water vapor content, and SO<sub>3</sub> concentration. An as-received ultimate coal analysis is required to run the Bickelhaupt model.

Figure 8-5 shows a plot of the particle resistivity. The solid triangles are in-situ measurements made during the field test program at the ESP inlet. Although the ESP temperature was steady at approximately 280°F, it was possible to make measurements at a range of temperatures from 240°F to 320°F by varying the temperature in the resistivity chamber.

The lines shown in Figure 8-5 are the predicted values based upon the Bickelhaupt empirical model. This model uses coal and ash characteristics to predict particle resistivity. It has been documented that the weakest part of the model is predicting the gas-phase SO<sub>3</sub> concentration. Therefore, the plot contains the predictions for four values of SO<sub>3</sub> from 0-7 ppm.

At 280°F, the measured resistivity was  $8 - 10 \times 10^{10}$  ohm-cm, which represents conditions for very good precipitation. The measured values are higher than the predicted values with greater than 1 ppm of  $SO_3$ . The predicted values with no  $SO_3$  match well with the measured values. This means that the amount of  $SO_3$  present in the flue gas was much lower than predicted. This can be caused by conditions in the boiler or by characteristics of the air preheater. Often  $SO_3$  can be scrubbed by the cold surfaces in the heat exchanger.

Another indication that the  $SO_3$  was low was the low dew point that was measured. The resistivity chamber has been modified to allow measurement of acid dew point. A window on the chamber is cooled to a point that condensation occurs on the window face exposed to the flue gas. The window is then heated externally until the mist disappears. A thermocouple attached to the inside of the window is used to determine the temperature of the glass surface. Experience with this system has shown that the dew point can be consistently measured  $\pm$  2°F. During the measurements at Plant Yates, there was no detectable dew point above 220°F. This corresponds to an  $SO_3$  concentration of approximately 0.3 ppm.

Electrical Characteristics. The electrical characteristics are shown in Figure 8-6. The voltage current (VI) characteristics are expressed in the normalized terms of electric field strength (kV/cm) and current density (nA/cm²). All the fields, except Field C, operate at field strengths greater than 3 kV/cm. Cold-side ESPs that are not experiencing problems related to high resistivity will typically operate in the range of 3.0 to 3.5 kV/cm. Therefore, the VI curves shown in Figure 8-6 reflect the moderate particle resistivity levels described previously.

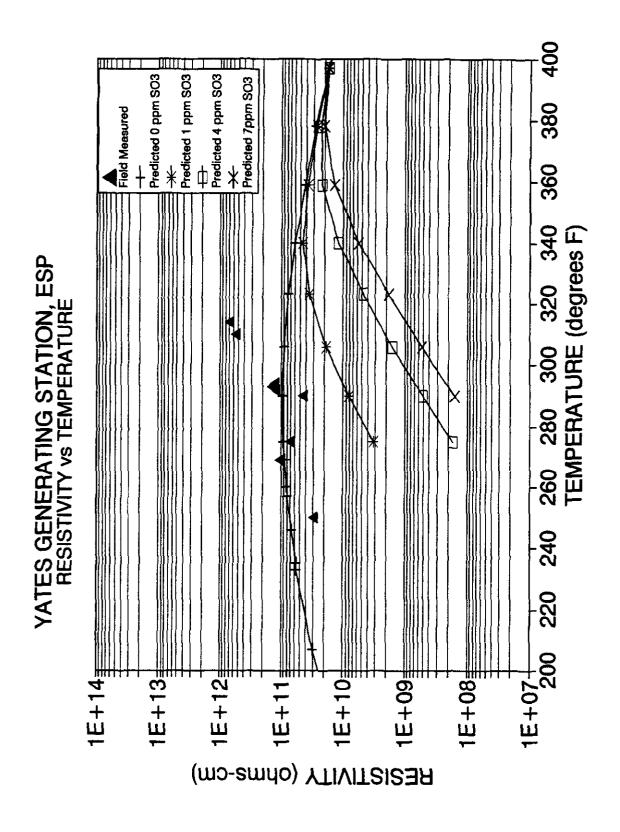



Figure 8-5
Particle Resistivity

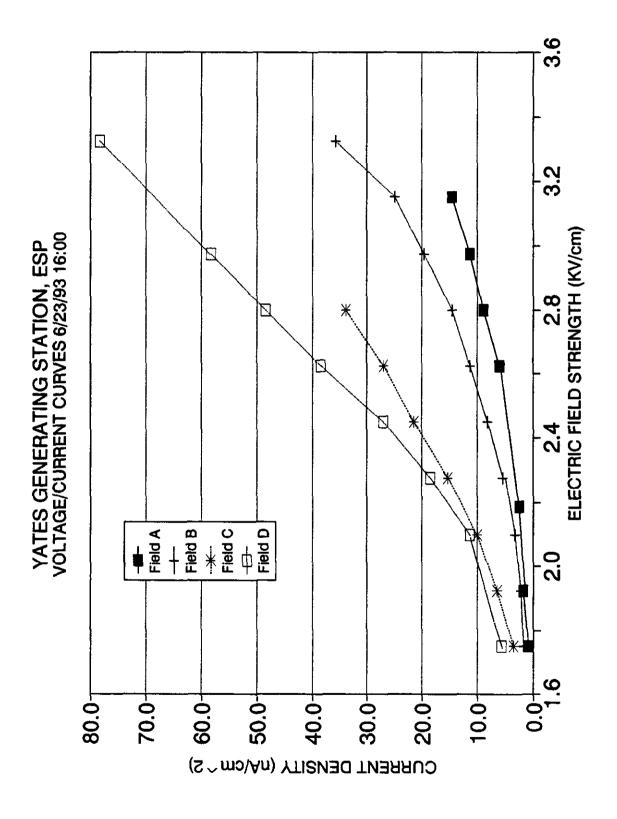



Figure 8-6 Voltage Current Curves

Field C is sparked at 2.8 kV/cm which is lower than the field strengths in Fields B and D which are upstream and downstream of Field C. Since the low voltage sparking is isolated in only one section of the ESP, the problem is probably not related to particle resistivity and is most likely due to some minor misalignment in this field.

Opacity. The opacity over a given period of time is shown in Figure 8-7 which is a plot of 6 minute averages of 15 second readings. During the time period shown in this figure, all sections should have been rapped. The lack of rapping spikes is likely due to the sampling time on the data recorder. However, it could be possible that the rapping spikes are relatively small. The holding force on the collected dust layer is proportional to the square of the particle resistivity. At the resistivity levels measured for this ash, the holding force could be strong enough to inhibit removal of the dust from the plates.

**Predicted ESP Performance.** The performance of the ESP was predicted using a predictive ESP computer model developed by ADA Technologies for DOE.<sup>4</sup> The non-ideal factor for gas flow distribution (25%) that has been recommended by EPRI for older ESPs was used in the modeling. The EPRI value for sneakage was modified for this application to take into account the fact that there were four electrical sections but only three mechanical sections.

The results of the predictions are shown in Table 8-2. As can be seen, the predicted performance of the ESP matches well with the measured performance. The model predicted 98.4% for the overall collection efficiency which agrees with the measured results from the total particulate tests. The outlet size distributions are also similar as both show a mass median diameter of approximately  $4 \mu m$ . The opacity values are a little different, but the exact dimensions of the duct where the opacity is measured is not known. This is important for predicting opacity.

Figure 8-8 is a plot of the measured and predicted penetration as a function of particle size. The measured efficiency is much cruder because only 4 data points are available for the calculation from the inlet measurements. However, the measured and predicted efficiencies as a function of particle size are nearly identical. Both show a maximum penetration for submicron particles of 6 to 7 percent.

From the fact that there is a strong correlation between the measured and modeled performance, it is concluded that the ESP is performing as would be expected for the fly ash and flue gas conditions present. No operational or performance problems are observable.

#### Metals Removal Across ESP

Table 8-3 shows the removal of particulate metals across the ESP as well as the penetration of particulate metals through the ESP. The average penetration is 1.6% for all particles. As can be seen, most of the metals are removed at approximately the same rate as the total particulate. This would be expected because the metals are associated with all sizes of particles and the ESP is showing very high collection efficiency for even submicron particles. Figure 8-9 shows the distribution of metals as a function of particle size measured at the inlet

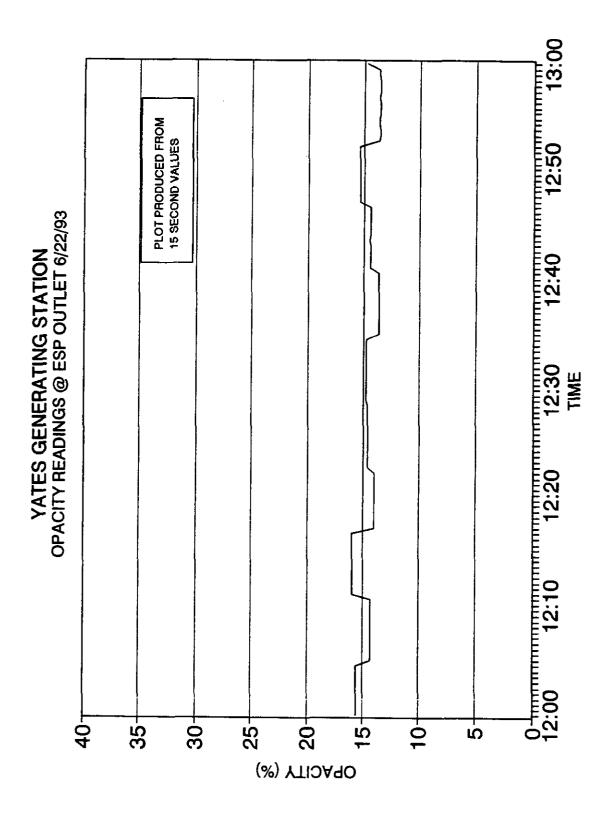



Figure 8-7 Opacity

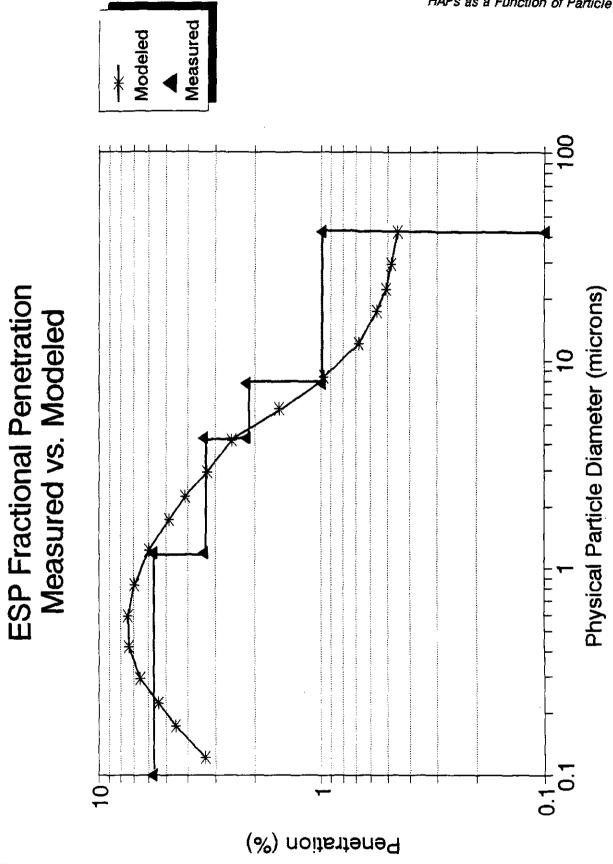



Figure 8-8 ESP Fractional Penetration

## Distribution of Metals According to Particle Size at the ESP Inlet

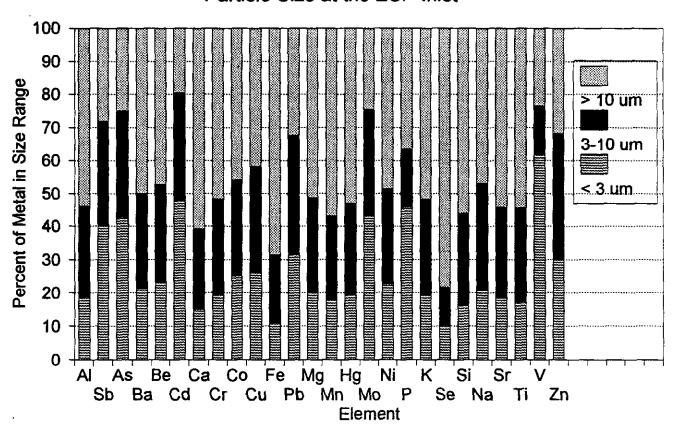



Figure 8-9
Distribution of Metals According to Particle Size at the ESP Inlet

Table 8-2
Comparison of Predicted and Measured ESP Performance

|                                                                          | Predicted  | Measured   |
|--------------------------------------------------------------------------|------------|------------|
| Collection Efficiency                                                    | 98.4       | 98.4       |
| Outlet Size Distribution  Mass Median Diameter,   mm  Standard Deviation | 3.9<br>3.3 | 4.1<br>3.1 |
| Opacity                                                                  | 19%        | 16%        |

to the ESP. As can be seen, as much as 50 to 70% of all particles are associated with very large particles (i.e.,  $> 10 \mu m$ ).

Figure 8-10 is a similar plot of the distribution of the metals measured at the outlet. At the outlet, the highest concentration of mass is in the finest particles (i.e.,  $<3 \mu m$ ). This is due to the fact that the efficiency of the ESP drops off slightly as a function of particle size as shown in Figure 8-8.

## Four Metals with Higher Penetration than the Average

There are four metals that have penetration values at least twice that of the overall average penetration. The increased penetration in arsenic (3.96%), cadmium (4.46%), and phosphorus (4.83%) [and mercury if substitution of sluiced ash concentration for the ESP inlet is used (10.98%)] are relatively small and could be due to either the low concentrations for arsenic and cadmium, or they could be due to the fact that they might be associated with the submicron particles. Both the measured and the predicted penetration of submicron particles was on the order of 6% so any increased enrichment of the fine particles for these particles could account for the higher penetration. The measured distribution at the outlet also points to an enrichment of the fine particles for these metals. Figure 8-10 shows that for arsenic, cadmium, and phosphorus, there is a greater percentage of the metal in the finest particles.

Selenium is the one metal which cannot be explained by the performance of the ESP. If all the selenium were associated with the most difficult to collect particles,  $<1~\mu m$ , it would have a maximum penetration of less than 7 percent. However, the measured penetration is greater than 50 percent. In addition, Figure 8-10 shows that nearly 50% of the selenium being emitted is associated with particles greater than 10  $\mu m$ . This points to an error in sampling and analysis because it would not be physically possible for any particulate-phase material to penetrate the ESP at a rate of 50%, especially very large particles. Previous testing observation indicates that vapor-phase selenium may precipitate on the active sites provided by the filter in the Method 29 train under certain conditions. If this was the case at Plant Yates, the "penetration" could actually be caused by vapor-phase selenium which has been characterized as in the particulate phase.

Table 8-3
ESP Particulate-Phase Metals Collection Efficiency

|                 | ESP          | Inlet  | ESP (  | Outlet | Efficiency | Penetration |
|-----------------|--------------|--------|--------|--------|------------|-------------|
| Metal           | $\mu g/Nm^3$ | lbs/hr | μg/Nm³ | lbs/hr | ·<br>(%)   | (%)         |
| Aluminum        | 870,000      | 926    | 12,100 | 12.9   | 98.60      | 1.40        |
| <b>Antimony</b> | 33           | 0.035  | 0.39   | 0.0004 | 98.81      | 1.19        |
| Arsenic         | 404          | 0.43   | 16     | 0.017  | 96.04      | 3.96        |
| Barium          | 4,440        | 4.72   | 74     | 0.079  | 99.33      | 1.67        |
| Beryllium       | 93           | 0.10   | 1.65   | 0.002  | 98.23      | 1.77        |
| Cadmium         | 24           | 0.03   | 1.07   | 0.001  | 95.54      | 4.46        |
| Calcium         | 161,000      | 172    | 1,777  | 1.9    | 98.90      | 1.10        |
| Chromium        | 2,870        | 3.05   | 23     | 0.024  | 99.20      | 0.80        |
| Cobalt          | 275          | 0.29   | 4.45   | 0.005  | 98.38      | 1.62        |
| Copper          | 768          | 0.82   | 16     | 0.017  | 97.92      | 2.08        |
| Iron            | 808,000      | 860    | 8,537  | 9.1    | 98.94      | 1.06        |
| Lead            | 768          | 0.82   | 18     | 0.019  | 97.66      | 2.34        |
| Magnesium       | 42,100       | 45     | 657    | 0.70   | 98.44      | 1.56        |
| Manganese       | 2,120        | 2.3    | 34     | 0.036  | 98.39      | 1.61        |
| Mercury         | (1.33)*      | 0.01   | 0.13   | 0.0002 | 90.2       | 10.98       |
| Molybdenum      | 315          | 0.34   | 8.09   | 0.009  | 97.43      | 2.57        |
| Nickel          | 2,030        | 2.16   | 22     | 0.023  | 98.92      | 1.08        |
| Phosphorus      | 2,070        | 2.20   | 100    | 0.11   | 95.17      | 4.83        |
| Potassium       | 157,000      | 167    | 2,150  | 2.3    | 98.63      | 1.37        |
| Selenium        | 133          | 0.14   | 82     | 0.087  | 38.35      | 61.65       |
| Sodium          | 45,800       | 49     | 803    | 0.85   | 98.25      | 1.75        |
| Strontium       | 2,906        | 3.09   | 43     | 0.046  | 98.52      | 1.48        |
| Titanium        | 55,100       | 57     | 757    | 0.81   | 98.63      | 1.37        |
| Vanadium        | 2,761        | 2.9    | 54     | 0.057  | 98.04      | 1.96        |

<sup>\*</sup> As discussed in Sections 6 and 7, the mercury concentration ESP inlet particulate sample appears to be high. The mercury concentration from the sluiced ash sample has been substituted here.

#### Notes:

- 1. Average inlet flow rate = 284,000 dscfm.
- 2. Average outlet flow rate = 284,000 dscfm.

# Distribution of Metals According to Particle Size at the ESP Outlet

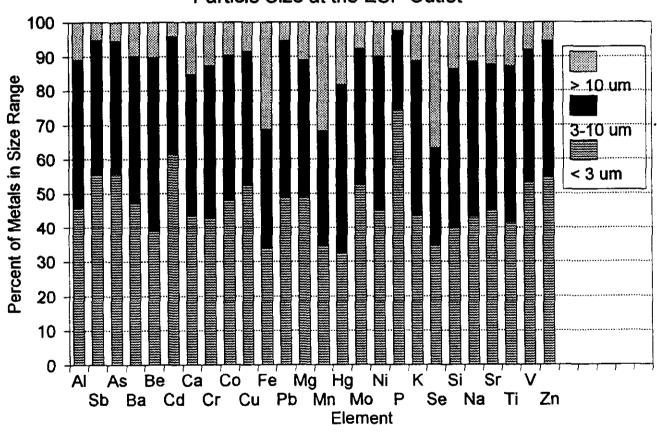



Figure 8-10 Distribution of Metals According to particle Size at the ESP Outlet

Further confusing this issue is the fact that particulate selenium also showed up on particles collected in the cyclones. The flow in the cyclones does not provide the intimate contact between the gas and collected particles that the filter does. However, it does appear that whatever phase shift occurring in Method 29 for selenium is also occurring in the cyclones.

## Hopper Distribution

The concentrations of the metals in the hopper ash were also analyzed to determine if any insight could be obtained from this information relative to the performance of the ESP and HAPs. It has been hypothesized that if the metals were concentrated in the finer particles, which are more difficult to collect, then the downstream hopper might have a higher concentration of metals. The concentrations of metals in the particulate collected in the second hopper were divided by the concentrations from the first hopper to verify this hypothesis.

These data are plotted in Figure 8-11. As shown, the metals are distributed about a ratio of 1 with most metals increasing in the downstream hopper (ratio greater than 1). This supports the hypothesis of metals concentrating in the finer particles.

Another way to visualize the interplay between elemental concentration as a function of particle size and elemental enrichment produced by the ESP is to present concentration and enrichment together. Figure 8-12 does this. The vertical scale is enrichment of elements in the particulate material from the ESP inlet to the ESP outlet. The horizontal scale is the ratio of fine particle concentration to coarse particle concentration at the ESP inlet. Note that selenium has been left off the figure. Selenium's coordinates are (0.7, 12.09) which puts it in the far upper left corner of the plot. This implies that selenium is enriched in the ESP outlet particulate but not in the fine fraction of the ESP inlet ash. This result is probably biased by vapor-phase selenium precipitating or reacting on the Method 29 filter as previously discussed. However, the lower selenium concentration in the finer fractions of the ESP inlet ash was also unexpected given the volatile nature of selenium.

The figure shows, with the exception of selenium, a relatively smooth relationship between the two ratios. The plot demonstrates the concept that the elements, which at the ESP inlet have higher concentrations in fine particles than in coarse particles, becomes enriched at the ESP outlet in comparison with the ESP inlet.

Table 8-4 shows enrichment of inorganic elements in the different ash streams at Plant Yates. The factors were determined by dividing the concentration of an element in an ash stream by the coal ash concentration (concentration of an element in the coal divided by the ash fraction). These data generally show the trends expected with the more volatile elements exhibiting greater enrichment ratios in the ESP outlet than in the ESP inlet. (Chloride and fluoride show very little enrichment in the ash streams since the large majority of these elements are in the vapor phase.)

Of particular note is that most elements have significantly lower enrichment ratios in the stack particulate matter than in the ESP outlet ash. Using the major species' (aluminum,

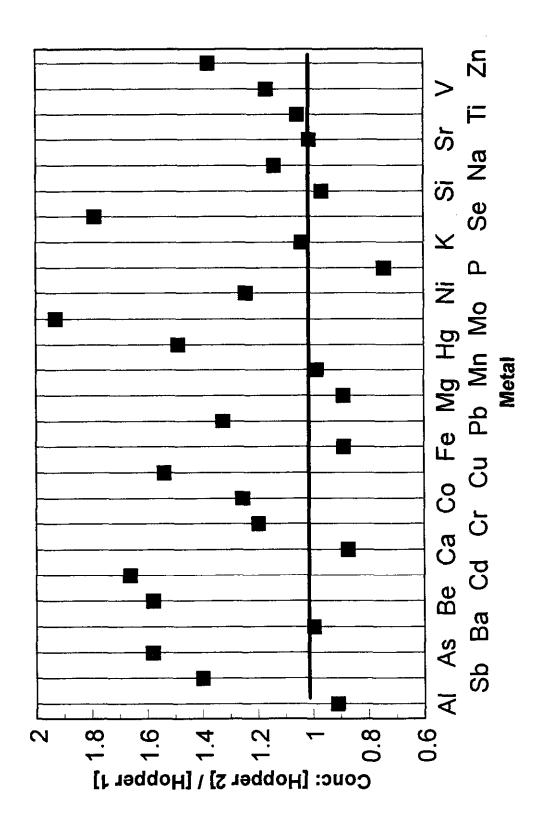



Figure 8-11 Total Metals Collection in Hopper

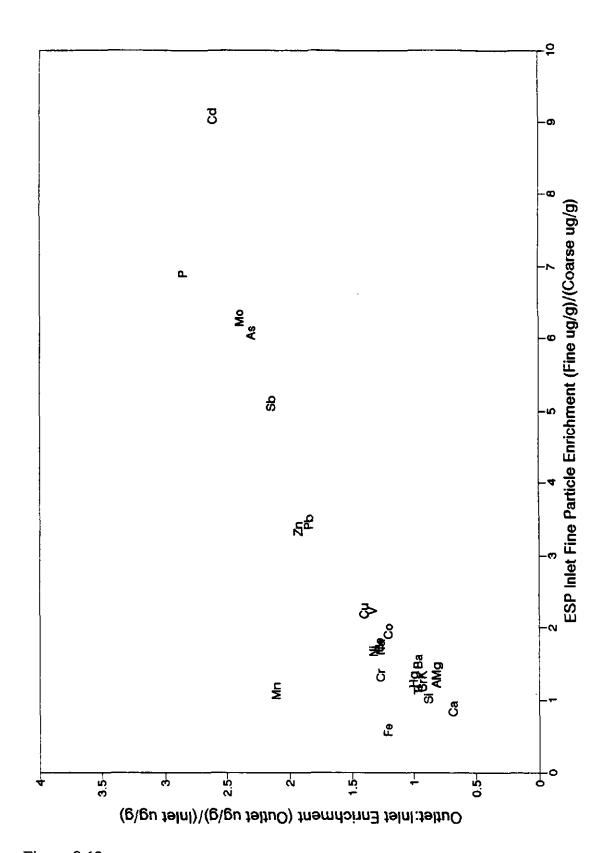



Figure 8-12 Elemental Relationship Between Outlet/Inlet Enrichment and Fine/Coarse Enrichment

**Enrichment of Streams in Inorganic Elements** Table 8-4

|            | Coal Ash | Bott    | Bottom Ash ESP | ESP      | ESP Inlet Ash | Sluk   | Sluiced Ash | ESP 0               | sh ESP Outlet Ash | Stack Parti | Stack Particulate Matter |
|------------|----------|---------|----------------|----------|---------------|--------|-------------|---------------------|-------------------|-------------|--------------------------|
| Element    | (8/8n)   | (3/84)  | Enrichment     | (g/gn)   | Enrichment    | 2/81   | Σ           | (g/g <sub>m</sub> ) | Enrichment        | (8/Sn)      | Enrichment               |
| Aluminum   | 130,000  | 76,000  | 0.58           | 97,000   |               | 98,000 |             | 100,000             | 0.77              | 13,000      | 0.10                     |
| Antimony   | 5.50     | 1.1     | 0.21           | 3.6      |               | 3.4    | _           | 2.7                 | 0.50              | 3.8         | 69.0                     |
| Arsenic    | 21.0     | 7.2     | 0.34           | 45       |               | 19     |             | 120                 | 5.57              | 81          | 3.86                     |
| Barium     | 720      | 460     | 0.63           | 490      |               | 200    |             | 620                 | 98.0              | 210         | 0:30                     |
| Beryllium  | 9.91     | 7.7     | 0.77           | 10       | 1.05          | =      |             | 7                   | 1.41              | m           | 0.30                     |
| Boron      | 906      | 280     | 0.31           | A/N      |               | 470    |             | Y/X                 | A/N               | Y/Z         | ¥/X                      |
| Cadmium    | 2.7      | 0.32    | 0.12           | 2.7      |               | 4.1    |             | 8.9                 | 3.30              | 41          | 15.17                    |
| Calcium    | 19,000   | 20,000  | 1.05           | 18,000   |               | 14,000 |             | 15,000              | 0.77              | 19,000      | 0.97                     |
| Chloride   | 11,200   | 130     | 0.01           | 089      |               | 20     |             | 317                 | 0.03              | 15,000      | 1.34                     |
| Chromium   | 223      | 190     | 0.86           | 320      |               | 8      |             | 190                 | 0.86              | 330         | 1.47                     |
| Cobalt     | 31.6     | 32      | 1.00           | 31       |               | 37     |             | 37                  | 1.17              | 19          | 0.59                     |
| Copper     | 330      | 11      | 0.24           | <b>8</b> |               | 9      |             | 120                 | 0.36              | <b>2</b> 6  | 0.17                     |
| Fluoride   | 901      | 32      | 0.03           | 0.15     |               | 8      |             | 0.85                | 0.00              | 3.5         | 0.00                     |
| Iron       | 100,000  | 130,000 | 1.27           | 91,000   |               | 84,000 |             | 61,000              | 0.59              | 12,000      | 0.11                     |
| Lead       | 72       | 70      | 0.28           | 62       |               | 83     |             | 150                 | 2.12              | 36          | 0.50                     |
| Magnesium  | 5,100    | 3,600   | 0.71           | 4,700    |               | 4,900  |             | 5,500               | 1.07              | 2,800       | 0.55                     |
| Manganese  | 210      | 270     | 1.28           | 240      |               | 250    |             | 240                 | 1.15              | 490         | 2.31                     |
| Mercury    | 0.72     | 0.01    | 0.01           | 0.79     |               | 0.15   |             | 6.0                 | 1.25              | 0.57        | 0.79                     |
| Molybdenum | 200      | 3.04    | 0.01           | 35       |               | 7.24   |             | 58                  | 0.29              | 73          | 0.36                     |
| Nickel     | 270      | 130     | 0.48           | 230      |               | 140    |             | 160                 | 0.58              | 2,500       | 9.28                     |
| Phosphorus | 760      | 400     | 0.52           | 230      |               | 89     |             | 830                 | 1.09              | 110         | 0.14                     |
| Potassium  | 30,000   | 14,000  | 0.48           | 17,000   |               | 18,000 |             | 18,000              | 09:0              | 2,900       | 0.10                     |
| Sclenium   | 21       | 0.57    | 0.03           | 15       |               | 12     |             | 570                 | 27.35             | 3,500       | 166.50                   |
| Sodium     | 5,700    | 3,600   | 9.0            | 5,100    |               | 5,100  |             | 6,700               | 1.18              | 1,900       | 0.34                     |
| Strontium  | 670      | 280     | 0.41           | 320      |               | 320    |             | 360                 | 0.53              | 110         | 0.16                     |
| Titanium   | 8,100    | 2,600   | 69.0           | 6,100    |               | 6,300  |             | 5,400               | 0.67              | 910         | 0.11                     |
| Vanadium   | 350      | 280     | 0.78           | 310      |               | 330    |             | 380                 | 1.07              | 110         | 0.32                     |
| Sulfate    |          | 1,590   |                | 8,900    |               |        | 3,450       | 30,000              |                   | 410,000     |                          |
|            |          |         |                |          |               |        |             |                     |                   |             |                          |

• Coal ash concentrations were calculated by using coal concentrations and dividing by the coal ash fraction.
• Denotes an element that is vaporized in the boiler and then condenses and may become enriched on fine particles. Cr & Ni do not always show enrichment.
• Denotes an element that is vaporized and can remain in the vapor phase. Selenium can either be enriched in the fine particles or be in the gas phase.
• The measured concentrations were below detection limit. Numbers shown are half of the detection limit.

iron, magnesium, potassium, sodium, and titanium) concentrations, it appears that only about 25% of the mass in the stack particulate was fly ash. The bulk of the mass (about 65%) can be attributed to sulfuric acid mist (based on the large increase in sulfate), while gypsum carryover accounts for about 5% and liquid chloride carryover accounts for about 3 percent. Note that these results indicate a flue gas SO<sub>3</sub> concentration of 1-2 ppm, which is in the same low range as that measured in the flue gas in the ESP (0.3 ppm).

Elements that show enrichment in the stack particulate matter (other than calcium [from gypsum] and chloride) are selenium, nickel, manganese, chromium, and cadmium. Problems with selenium have been discussed in this section. The nickel and chromium concentrations in the stack include one high concentration which does not appear to be consistent with other ash numbers. Their enrichment ratios become much more reasonable when these values are excluded. The reason for the apparent high manganese and cadmium enrichments is not known.

#### References

- 1. M. Durham, S. Tegtmeyer, K. Yasmundt, and L. Sparks. "A Microcomputer-Based Cascade-Impactor Data-Reduction System," Third Symposium on the Transfer and Utilization of Particulate Control Technology. EPA-600/9-82-005d, 285 (July 1982).
- 2. R.E. Bickelhaupt and J.E. Sparks. "An Improved Model for Predicting Fly Ash Resistivity." Proceedings: EPA/EPRI Sixth Symposium on the Transfer and Utilization of Particulate Control Technology, EPRI CS-4918, p. 11-1 (November 1986).
- 3. R.E. Bickelhaupt. "Fly Ash Resistivity Precision Improvement with Emphasis on Sulfur Trioxide." EPA-600/7-86-010, NTIS PB 86-178126 (1986).
- 4. D.B. Holstein, D.E. Rugg, and M.D. Durham. "Development of an ESP Model for Dry Scrubbing Applications." EPRI Ninth Particulate Control Symposium, Williamsburg, VA (1991).

# MERCURY METHODS COMPARISON AND SPECIATION DETERMINATIONS

This section compares the results of two different methods used to determine the concentrations of total mercury and its various chemical forms in the flue gas streams. The objectives of the mercury sampling were to determine total mercury concentration and individual mercury species concentrations at each of the three flue gas sampling locations. These results will provide information on the emissions and control of mercury. In addition, the speciation results can be used to more accurately assess the possible health risks associated with mercury emissions.

Two different methods were used to measure mercury concentrations in the flue gas. The Bloom mercury speciation train was used to measure the concentrations of individual vapor-phase mercury species: ionic mercury and elemental mercury. Total mercury, including both particulate and vapor phases, was measured using the proposed EPA Method 29 multi-metals train. Although the Method 29 multi-metals train was designed to measure total concentrations of metals and not to provide speciation information, it may still provide some insight into the vapor-phase mercury species present.

## Sample Collection and Analysis

This subsection describes the sampling and analytical methods used to measure mercury concentrations. The methods are described in detail in Appendix B, but the important features are discussed here. In addition, the sample collection schedule is presented.

#### Methods and Conditions

Bloom Speciation Train. The Bloom mercury speciation train was used to collect samples at the ESP inlet, the ESP outlet, and the stack. A quartz-lined probe was inserted into each duct, and flue gas was extracted non-isokinetically at a single point. The flue gas then passed through a series of four solid adsorbent cartridges which were used to trap the various vapor-phase mercury species. The cartridges were maintained at approximately 110°C in a heated jacket outside the duct. The first two cartridges contained KCl-impregnated soda lime, which is designed to capture ionic mercury species (Hg<sup>+2</sup> and Hg<sup>+</sup>). The third and fourth cartridges contained iodated carbon, which is designed to capture elemental mercury. A glass wool plug ahead of the adsorbent cartridges prevented particulate from entering the adsorbents. This plug was not analyzed, because the single-point, nonisokinetic sampling does not provide representative particulate capture. Only vapor-phase species were determined.

The KCl/soda lime traps were dissolved in acetic acid solutions. Ionic mercury was determined by aqueous-phase ethylation, purging onto a carbotrap, cryogenic GC separation, and detection with cold vapor atomic fluorescence spectrometry (CVAFS). This method was used to quantify methyl mercury (MMHg), as methylethyl mercury, however this technique was discovered to produce artifacts (see letter from Frontier Geosciences at the end of this section) due to a reaction during the dissolution of the KCl/soda lime traps. All data for methyl mercury derived using this method is considered in error and has been disregarded. Inorganic ionic mercury (Hg<sup>+2</sup>) was determined as diethyl mercury. Elemental mercury on iodated carbon traps was determined by digesting with a mixture of HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> and BrCl, reducing with SnCl<sub>2</sub>, purging and preconcentrating on gold, and detecting with CVAFS.

Several QA/QC procedures were used for the Bloom train. Field blanks were collected at each of the three sampling locations to assess the effects of contamination. A trip blank was also analyzed. Laboratory spikes were performed for each type of mercury species to assess analytical efficiency. In addition, the CVAFS instrument was calibrated using certified standards.

Method 29 Multi-Metals Train. The multi-metals trains were used to collect samples at the ESP inlet, the ESP outlet, and the stack. The trains used at the ESP outlet and stack were Method 5 trains, with particulate collected on a quartz filter maintained at constant temperature (approximately 250°F) outside of the duct. Because of the high particulate concentrations at the ESP inlet, a Method 17 train was used, with particulate collected in an in-situ quartz thimble. At all three locations, samples were collected isokinetically while traversing the duct according to Method 1.

The impinger trains, used to collect vapor-phase metals, were identically configured at each location. The first and second impingers contained a 5%  $\rm HNO_3/10\%~H_2O_2$  solution. The third impinger was empty, to prevent any mist carryover. The fourth and fifth impingers contained a 10%  $\rm H_2SO_4/4\%~KMnO_4$  solution.

Particulate samples were microwave-digested in HF/aqua regia solutions and analyzed for all target metals. Mercury concentrations were determined using cold vapor atomic absorption spectrometry (CVAAS). The HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> solutions were also analyzed for all target metals, with the mercury determined by CVAAS. The H<sub>2</sub>SO<sub>4</sub>/KMnO<sub>4</sub> solutions were analyzed only for mercury using CVAAS.

The multi-metals train may provide information on mercury speciation. Ionic forms of mercury are water-soluble and should be readily captured in the  $HNO_3/H_2O_2$  solution. Elemental mercury, on the other hand, should pass through the  $HNO_3/H_2O_2$  impingers, because the solubility of elemental mercury in aqueous solutions is very low and the  $H_2O_2$  cannot efficiently oxidize it. The elemental mercury will be oxidized and captured in the  $H_2SO_4/KMnO_4$  impingers.

Several QA/QC procedures were followed for the multi-metals trains. Field blanks, reagent blanks, and method blanks were analyzed to assess the effects of contamination. Matrix-spiked and matrix-spiked duplicate samples were analyzed to assess recovery and precision.

The CVAAS instruments were calibrated using certified standards, and calibration checks were routinely performed.

## Samples Collected

Figure 3-2 shows the collection schedule for the Bloom train and multi-metals train samples. Three samples were collected for each train type at each of the three sampling locations. Gas sample volumes were approximately 0.1 Nm³ for the Bloom train and 3 Nm³ for the multi-metals train. Field data sheet summaries are included in Appendix C.

## **Data Analysis**

Table 9-1 shows the mercury concentrations measured with the Bloom train and the Method 29 multi-metals train. The total vapor-phase mercury concentrations measured using the two techniques are in good agreement. Using the mean multi-metals train results, it appears that approximately 99% of the particulate-phase mercury is removed by the ESP, and the removal of total mercury by the scrubber is approximately 46%.

The speciation results from the two methods show similar trends. Ionic mercury is the predominant species in the ESP inlet and ESP outlet gas streams, but the ionic mercury is more efficiently removed by the scrubber, as shown by its markedly lower concentrations at the stack. The removal of ionic mercury by the scrubber can be attributed to a higher solubility in water as compared to elemental mercury.

While the overall trends in the two methods are similar, the detailed speciation results do not appear equivalent. In particular, the levels of elemental mercury measured by the two techniques do not agree well at any of the three locations, and the agreement is poor between the two techniques for ionic mercury concentrations at the stack.

Table 9-2 shows the mercury concentrations found in the blank samples and their significance relative to the actual sample concentrations. Blank contamination does not appear to be significant. Table 9-3 summarized the spike recoveries for the two techniques. All of the recoveries were within the acceptable range of 75 to 125 percent.

While the QA/QC results for the two techniques indicate acceptable quality, they only address the issues of contamination and analytical accuracy. The issue of species conversion during sampling has not been addressed. Therefore, while each method can be considered to give reliable results for the total concentration of vapor-phase mercury, less confidence can be placed in the speciation results. The possibility of conversion of one species to another within the sampling equipment or in the sampling media make it less certain that the species were actually present in the flue gas at the measured levels.

Table 9-1
Mercury Concentrations in Flue Gas

Concentrations, µg/Nm<sup>3</sup> % of Component Run 1 Run 2 Mean 95% CI Location Run 3 Vapor Bloom Hg Speciation Train 4.5 3.8 5.0 4.4 1.5 **ESP Inlet** 69 Ionic Hg Elemental Hg 2.4 2.4 1.2 2.0 1.7 31 Total Vapor 6.9 6.2 6.2 6.4 1.0 **ESP** Outlet Ionic Hg 5.8 4.6 4.0 4.8 2.3 66 2.5 2.6 2.4 2.5 Elemental Hg 0.2 34 Total Vapor 8.3 7.2 6.4 7.3 2.4 0.38 0.51 0.63 0.47 0.33 15 Stack Ionic Hg Elemental Hg 3.0 3.1 2.3 2.8 1.1 85 0.9 Total Vapor 3.4 3.6 2.9 3.3 Method 29 Multi-Metals Train **ESP Inlet** Ionic Hgb 4.6 4.9 5.7 5.1 1.5 94 0.51 0.31 0.23 0.35 0.36 Elemental Hg<sup>e</sup> 6 Total Vapor 5.1 5.3 6.0 5.4 1.2 5.2 7.1 5.6 Solid 9.6 6.4 10.3 14.8 Total Vapor + Solid 12.4 12.5 5.6 **ESP Outlet** 4.8 4.1 4.9 4.6 1.1 82 Ionic Hg Elemental Hg 1.2 1.1 0.65 0.98 0.73 18 6.0 5.2 5.5 5.6 Total Vapor 1.1 Solid 0.11 0.14 0.04 0.12 0.13 Total Vapor + Solid 6.1 5.3 5.7 5.7 1.1 Stack Ionic Hg 1.1 1.5 1.9 1.5 0.9 50 Elemental Hg 1.8 1.6 1.2 1.5 0.7 **5**0 Total Vapor 2.9 3.1 3.1 3.0 0.3 < 0.0050 0.0116 < 0.0051 0.0056 0.013 Solid Total Vapor + Solid 0.3 2.9 3.1 3.1 3.0

Although MMHg values were originally reported by Frontier Geosciences, a letter from Frontier Geosciences was issued on January 26, 1994 stating, in part, "... we now know that the MMHg we were measuring and reporting is due to an artifact. [this method] ... overestimates the amount of MMHg. The MMHg fraction should tentatively be considered as part of the Hg(II) fraction of the total Hg in flue gas until our ongoing investigations are completed." These investigations are still in progress and, until they are completed, the presence or absence of MMHg in the flue gas cannot be confirmed.

b Mercury collected in the HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> impingers.

<sup>&</sup>lt;sup>c</sup> Mercury collected in the H<sub>2</sub>SO<sub>4</sub>/KMnO<sub>4</sub> impingers.

Table 9-2 Summary of Blank Results

| Blank Sample Type                                           | No. of<br>Blanks | Range of<br>Blank Levels | Max Contribution<br>to Samples* |
|-------------------------------------------------------------|------------------|--------------------------|---------------------------------|
| Bloom Train                                                 |                  |                          |                                 |
| Ionic Hg                                                    |                  |                          |                                 |
| Field Blanks                                                | 6                | 0.3-0.6 ng               | 4%                              |
| Trip Blanks                                                 | 2                | 0.5-0.8 ng               | 4%                              |
| Elemental Hg                                                |                  |                          |                                 |
| Field Blanks                                                | 6                | 1.3-4.6 ng               | 4%                              |
| Trip Blanks                                                 | 2                | 1.1-3.7 ng               | 3%                              |
| Method 29 Multi-Metals Train                                |                  |                          |                                 |
| HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impingers   |                  |                          |                                 |
| Field Blanks                                                | 3                | <0.24 μg/L               | <5%                             |
| Reagent Blanks                                              | 1                | <0.24 μg/L               | <5%                             |
| H <sub>2</sub> SO <sub>4</sub> /KMnO <sub>4</sub> Impingers |                  |                          |                                 |
| Field Blanks                                                | 3                | <0.24 μg/L               | <28%                            |
| Reagent Blanks                                              | 1                | $< 0.24 \mu g/L$         | <28%                            |

<sup>\*</sup> Maximum blank value as a percentage of the minimum sample result.

Mercury Methods Comparison and Speciation Determinations

Table 9-3 Summary of Spike and Audit Sample Recoveries

| Sample Type                                                 | No. of Samples | Range of Recoveries |
|-------------------------------------------------------------|----------------|---------------------|
| Bloom Train                                                 |                |                     |
| Ionic Hg                                                    | 2              | 102 - 103 %         |
| Elemental Hg                                                | 2              | 100 - 102%          |
| Method 29 Multi-Metals Train                                |                |                     |
| HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impingers   | 2              | 120%                |
| H <sub>2</sub> SO <sub>4</sub> /KMnO <sub>4</sub> Impingers | 2              | 76 - 78%            |

The Bloom train is a technique that is still being developed.<sup>2</sup> Extensive work has been done to improve the capture efficiency of the traps, to increase the analytical efficiency, and to minimize the chance for species conversion. There are no studies that would conclusively demonstrate the validity of the method, such as the spiking of specific mercury compounds into the flue gas ahead of the sampling train. Therefore, the method can be considered unproven.

There is no published information regarding the ability of the multi-metals train to provide mercury speciation information from utility stack gases. The interpretation of the results thus far relies solely on chemical theory. In addition, the extent of species conversion within the train is unknown.

#### References

- 1. Nicolas S. Bloom, Eric M. Prestbo, and Vesna L. Miklavicic, "Fluegas Mercury Emissions and Speciations from Fossil Fuel Combustion." Published in the proceedings of the Second International Conference on Managing Hazardous Air Pollutants (sponsored by the Electric Power Research Institute) Washington, D.C. (July 1993).
- 2. Ibid.



## Discovery of Methyl Mercury Artifact in the Solid Sorbent Speciation (S <sup>3</sup>) method for Coal Combustion Fluegas

We have stated in both reports and presentations (Prestbo and Bloom, 1993, Bloom et al., 1993) that monomethyl mercury (MMHg) can be measured and is found in coal combustion flue gas in the range of 5-15% of the total Hg. Because of very recent experiments we have completed in the laboratory, we now know that the MMHg we were measuring and reporting is due to an artifact. Only through painstaking laboratory work were we able to discover the unusual chemical reactions which produce MMHg in solution. We discovered that Hg(II) and S(IV) collected on the KCl/soda lime sorbent, when digested in 10% acetic acid solution will form MMHg on the high pH surface of the dissolving soda lime. The likely mechanism leading to this can be found (in retrospect) in a paper by Lee and Rochelle (1987). This finding was quite surprising considering that SO<sub>2</sub> is known to be a reducing and not an oxidizing compound. The MMHg forms due to the release of methyl groups during the degradation of acetic acid in conjunction with the oxidation of SO<sub>3</sub>=.

What we can state convincingly is that all previous flue gas data generated by our laboratory overestimates the amount of MMHg. The MMHg fraction should tentatively be considered as part of the Hg(II) fraction of the total Hg in fluegas until our ongoing investigations are completed. It should also be clearly stated that although the MMHg values are no longer valid, this is not true for Hg(II), Hg<sup>O</sup> and especially total Hg. Further, please refrain from stating that MMHg is not present in fluegas until we have a chance to complete some field site studies using a refined methodology.

We are actively pursuing the problem encountered. Initially we will investigate non-methyl containing solutions (i.e. citric acid) for dissolving KCl/soda lime to avoid the artifact. Secondly, we will use several other means of collecting flue gas, including unique impinger solutions to more conclusively determine the presence or absence of MMHg in combustion flue gas.

As you know, speciation of trace metals, and especially mercury is difficult in any matrix. We regret that previous MMHg fluegas data was in error. We will continue to communicate to you any of our new findings as we have with this one.

Please don't hesitate to call us if you have any questions or need further clarification on this issue.

#### References

Bloom N.S., Prestbo E.M. and Miklavcic V.L. (1993) "Fluegas mercury emissions and speciation from fossil fuel combustion", presented at Conference on Managing Air Toxics: State of the Art, Washington D.C. July 13-15 (withdrawn from publication).

Lee Y.J. and Rochelle G.T. (1987) "Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics, and mechanism", Env. Sci. and Technol., 21:266.

Prestbo E.M. and Bloom N.S. (1993) "Recent advances in the measurement of mercury species in combustion flue gas using solid phase adsorption and cold vapor atomic fluorescence spectroscopy (CVAFS)", Presented at the AWMA 86th Annual Meeting, June 13-18, (93-TA-32.05).

## 10

## **HEXAVALENT CHROMIUM DETERMINATIONS**

#### Introduction

The stack gas at Plant Yates was sampled for the presence of hexavalent chromium and total chromium. Hexavalent chromium samples were analyzed on site at Plant Yates in order to provide results as quickly as possible. Radian's experience has shown that hexavalent chromium is unstable and is reduced to trivalent chromium quite rapidly during the first 24 hours after sample collection. Appropriate blanks were analyzed to minimize the possibility that any contamination would go undetected.

## Sample Collection and Analysis

Hexavalent chromium samples were collected on June 25, 26, and 27, 1993. Samples were collected and analyzed using EPA's recirculating caustic solution method.<sup>1</sup> This method uses a recirculating probe system that mixes the total gas sample (vapor and particulate) with the caustic impinger solution immediately after the sample nozzle. This provides a high pH environment to minimize the reduction of Cr<sup>6+</sup>. Analysis was performed on site using an ion chromatograph. However, instrument problems were encountered and no useful data could be obtained.

As a result, the samples were returned to Radian's laboratory in Austin and analyzed for hexavalent chromium as well as total chromium. In addition, QA/QC samples were analyzed as follows:

- One matrix spike;
- One performance audit sample;
- Three field blanks: and
- One trip blank (total chromium only).

Although the hexavalent sample collection method was used as specified in the published method, it should be noted that the collection procedure for obtaining Cr<sup>6+</sup> samples from a flue gas matrix containing SO<sub>2</sub> has not been validated.

## **Data Analysis**

As shown in Table 10-1, hexavalent chromium and total chromium were nondetectable in the samples collected after appropriate blank correction had been applied.

Table 10-1
Results for Hexavalent Chromium and Total Chromium

| Specie         | Units                   | Run 1   | Run 2  | Run 3  | Average |
|----------------|-------------------------|---------|--------|--------|---------|
| Chromium VI    | $\mu$ g/Nm <sup>3</sup> | <0.18C  | <0.19C | <0.20C | < 0.190 |
| Total Chromium | $\mu$ g/Nm <sup>3</sup> | < 0.52C | <0.57C | <0.59C | < 0.560 |

C = Data flag; value was blank-corrected below the detection limit.

Experience has shown that measurement of hexavalent chromium can be very difficult in electric utility flue gas. A brief discussion of the technical implications of determination of chromium (VI) in stack gas and, in particular, in combustion sources and utility sources is included here.

The Cr(VI) method depends on the solubility and stability of chromium (VI) in basic aqueous solution. The method calls for the use of a strong base in a solution contained in the impingers and recycled to the probe tip for early gas contact and flushing to the probe walls. The method is theoretically sound but has some limitations when applied to combustion sources in general and utility flue gases specifically.

As mentioned above, Cr(VI) is stable in a strong alkaline solution (pH > -9). But all combustion gas streams contain large amounts of  $CO_2$  (10-20%), which is an acid gas, and serves to lower the pH of the impinger solution. As a result, the pH may dip lower than desirable during sampling, or the solution must be more alkaline then specified in the method or continually monitored. As a further complication, utility flue gas contains significant levels of  $SO_2$  (100 ppm or more).  $SO_2$  is also an acid gas but is a reductant as well. So the impinger solution designed to absorb Cr(VI) also absorbs  $CO_2$  and  $SO_2$ . The result of this is a lowered pH and a solution which contains an oxidant [Cr(VI)] and a reductant  $(SO_2/HSO_3^-)$ . As the pH falls, the redox couple becomes more favorable, and any Cr(VI) present may be reduced by  $SO_2/HSO_3^-$  and not detected as Cr(VI).

#### References

1. 40 CFR 266, Subpart H, Appendix IX, "Methods Manual for Compliance with the BIF Regulations," Section 3.0, "Sampling and Analytical Methods," Subsection 3.2, "Determination of Hexavalent Chromium Emissions from Stationary Sources (Method Cr<sup>6+</sup>)," 7-1-91 edition.

# DETERMINATIONS OF TOXICS ON PARTICLE SURFACES

The Clean Air Act Amendments of 1990 (CAAA) require that emissions of hazardous air pollutants (HAPs) from coal-fired power plants be evaluated for potential health risks. The 189 hazardous substances listed in the CAAA include numerous inorganic and organic species that remain volatile under the conditions present in flue gas emission control systems at coal-fired power plants. As the flue gas cools downstream of these control devices and is released into the atmosphere, it is hypothesized that many of these substances condense on the surface of the fine particulate matter not removed by the control device.

Fine-particulate emissions in the respirable size range of less than 10 microns are of particular interest in assessing health risks. The environmental and toxicological impacts resulting from these emissions are typically estimated on a "worst case" basis where the total composition of the emitted particles is considered available to biological and ecological systems. The condensed metal species found predominantly on the surface of fly ash particles are more accessible to the environment than those species trapped in the aluminasilica fly ash matrix. More appropriately, the leachability of these toxic substances and their availability relative to the total composition should be considered when assessing the health risks associated with particulate-borne HAPs.

Radian Corporation, under contract with the United States Department of Energy (DOE Contract No. DE-AC22-92PC90367), is conducting a separate test program to collect and analyze size-fractionated stack gas particulate samples for numerous inorganic HAPs. Specific goals of the program include collecting gram quantities of size-fractionated stack gas particulate matter (after a wet scrubber) and determining the relationship between particle size, bulk composition, and extractable (surface-leachable) composition.

At Plant Yates, extractable metal concentrations were determined on bulk, rather than size-fractionated samples of flue gas particulate matter. But in addition to sampling the gas from the JBR-FGD system, samples were also collected from the ESP inlet and outlet. From the data collected, the relationship between extractable metal emissions from both wet and dry particulate control devices is possible.

This section compares the analytical results for bulk composition and surface leachability of metals in flue gas particulate samples collected from the inlet and outlet of the ESP and from the outlet of the JBR-FGD system. Metal concentrations are reported for arsenic, barium, beryllium, cadmium, chromium, copper, cobalt, lead, manganese, molybdenum, nickel, selenium, and vanadium.

## Sample Collection and Analysis

The difficulty in characterizing surface species is that there are currently no standard, certified methods documented for determining the leachability of metals from the surface of micron-sized particles. In a previous study, several leaching agents and analytical techniques were applied to standard reference fly ash samples for evaluation; three were selected for use on the entrained fly ash samples collected during this project. The techniques selected for characterizing surface availability involve acid leaching and digestion of the particulate samples followed by inductively coupled plasma-mass spectrometry (ICP-MS) analysis. For comparison, the total composition was derived from the metals analysis of the size-fractionated particulate matter at the ESP inlet and outlet, and from the analysis of the stack gas multimetals train filter samples.

## Sample Collection

Sample collection at the ESP inlet was performed according to EPA Reference Method 17<sup>1</sup> (in-stack filtration). Quartz-fiber thimble filters were specified to handle the high particulate mass loading encountered upstream of the ESP and to reduce the background levels of trace elements associated with glass-fiber filters. To avoid introducing filter media into the sample and providing blank analyses for background corrections, sample material was recovered directly from the thimble filters and prepared for analysis.

EPA Reference Method 5<sup>2</sup> was used to collect particulate matter from the ESP outlet and stack gas streams. Quartz-fiber filters were also specified; however, due to mis-identification, glass-fiber filters were inadvertently used on all extractable metals test runs at the ESP outlet and on Runs 1 and 3 at the stack location. Enough sample mass was collected on the ESP outlet filters to permit ash sample separation from the filter media; however, the small sample mass collected on the stack gas filters precluded this separation.

#### Sample Preparation and Analysis

Sample material recovered from the filters was split in 0.1 gram portions and prepared by the techniques described in Figure 11-1. Stack gas filters were split into three roughly equal fractions and weighed to determine each segment's percentage of the total filter mass. The particulate sample mass on each fraction was determined by multiplying this percentage by the filter weight gain representing the total sample mass. Uniform distribution of the sample mass and the mass of the filter media is assumed. Glass-fiber filter blanks were not prepared for analysis; however, a blank quartz-fiber filter was prepared and analyzed to assess the background levels of extractable metals specific to the quartz-fiber media.

An overview of the sample preparation and analysis techniques selected for the size-fractionated particulate samples is presented in Figure 11-1. Analysis of nitric acid digestates was used to represent the highest degree of surface availability for metals not bound in the alumina-silica fly ash matrix. A simulated gastric fluid and an acetic acid buffer solution were selected to extract metals representative of ingestion and ground water leaching mechanisms, respectively. ICP-MS was selected as the analytical technique over atomic

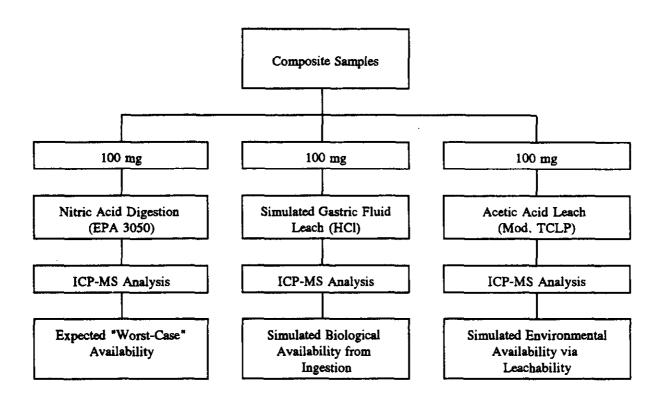



Figure 11-1
Gas Particulate Sample Preparation and Analysis Plan for Extractable Metals

emission and graphite furnace-atomic absorption spectrophotometry since these spectrophotometric techniques failed to provide the sensitivity required to accurately detect the target elements in the low concentration ranges expected.

**Total Composition.** Total composition analyses were performed on both the size-fraction-ated particulate samples, and on the filtered particulate matter collected with the multi-metals sampling train. Reported sample results were generated by ICP-AES and GFAA analyses in most cases; ICP-MS results were selected where elemental concentrations were below ICP-AES and GFAA detection limits. High background corrections, attributed to the inadvertent use of glass-fiber filters in some of the multi-metals trains invalidated many trace element results.

Therefore, the total composition of the fly ash collected from the ESP inlet and outlet ducts is represented by a composite of the size-fractionated particulate results. This substitution provided triplicate values for determining the average bulk composition for all trace elements. The resulting averages were biased universally low in these cases, so composition data from the multi-metals trains was not used. The exception is at the stack where two of the three filters used in the multi-metals train were quartz fiber, and no other metals composition data were available. The mass collected in each size fraction was determined relative to the sum, and then factored into the sum of the trace element concentrations. As a confirmation of the validity of this approach, the relative percent difference between the calculated values and the results obtained for fly ash collected from quartz-fiber filters was less than 30% for all elements except antimony, and selenium.

Nitric Acid Digestion. The strongest, most aggressive sample leaching technique performed on each particulate sample was a nitric acid digestion using EPA Method 3050. This procedure refluxes the sample in concentrated nitric acid and hydrogen peroxide. Metals present on the surface of the particle and those that may be loosely bound in the particle's matrix are digested. This technique does not totally digest the alumina-silica ash matrix and therefore may not account for some metals detected by total composition techniques.

All particulate samples were prepared by this method. Samples were digested, filtered through a 0.45 micron nitrocellulose membrane filter, and brought to a 100 mL final volume. Prior to analysis by ICP-MS, 1:20 dilutions were made to bring the sample into the linear range of the mass detector. To assess potential matrix interferences, one of the samples was selected as the source for a matrix spike. The sample selected was split to provide a sample for spiking, and the remaining sample was identified for duplicate analysis. The spike was prepared using a SPEX® multi-element ICP-MS calibration solution. Spike levels in the analyzed digestate were 50 ppb for all elements except molybdenum, which was not present in the calibration solution. This spiking level was based on previous results obtained from this procedure applied to standard reference fly ash samples.

Simulated Gastric Fluid Leach. Simulated gastric fluid is a solution of 85 mM hydrochloric acid, the enzyme pepsin, and sodium chloride. The pH of this solution is approximately 1.2. The leachability of metals in this matrix has a toxicological implication since some fly ash particles trapped in the mucous lining of the upper respiratory tract may be swallowed.

The dissolution of fly ash in gastric fluid represents a likely ingestion mechanism for toxic metals into the body.

Particulate samples were placed in a covered beaker with 10 mL of the gastric fluid solution and stirred mechanically for a minimum of 18 hours at room temperature. Using the same recovery procedure as the nitric acid digestates, the leachate was filtered and brought to a 100 mL final volume with DI water. Undiluted aliquots were analyzed by ICP-MS. In addition, a matrix spike was prepared, and the sample selected for spiking was identified for duplicate analysis. Gastric fluid matrix spikes were also prepared using the SPEX® ICP-MS calibrating solution and were prepared at 69 ppb for each of the target analytes except molybdenum. This spiking level was based on previous results obtained from this procedure applied to standard reference fly ash samples.

Because chloride ions pose adverse matrix effects for a number of the target elements analyzed by ICP-MS, calibration standards were prepared from the gastric fluid matrix to provide calibration curves with the same potential bias present in the samples. Arsenic is one of the key elements that is susceptible to mass detection interferences. Argon and chlorine, with atomic weights of 39.95 and 35.45, respectively, tend to form the polyatomic ArCl<sup>+</sup> ion with a mass of 75.4 amu. The high chloride levels in the gastric fluid, coupled with argon plasma source, generate a signal from ArCl<sup>+</sup> that can overwhelm the arsenic signal at 74.9 amu.

Acetic Acid Leach. The weakest of the three leaching solutions is an acetic acid solution prepared according to the EPA's Toxicity Characteristic Leaching Procedure<sup>3</sup> (TCLP). The TCLP is the regulatory standard procedure used to determine the hazardous nature of solid wastes. The protocol requires leaching of the solid waste in a buffered acetic acid solution that is maintained at a pH of 4.93 throughout the test. The metal concentrations determined in the acetic acid leachate are compared to regulatory standards to determine whether the material is classified as hazardous or nonhazardous.

The TCLP is designed for leaching sample quantities much larger than 100 mg, and to scale down the volumes specified in the method to accommodate the small quantity of particulate sample available was impracticable. Alternatively, 100 mg particulate samples were placed in a covered beaker with 10 mL of the buffered acetic acid solution (pH 4.93) and stirred for a minimum of 18 hours at room temperature. During this time, no additional pH adjustments were made to the acetic acid solution. Sample recovery and spiking were performed in the same manner as the gastric fluid leaching. The digestate was filtered and diluted to a 100 mL final volume before analysis by ICP-MS, and the same matrix spike and duplicate analysis scheme was used. The 69 ppb spiking level was also based on previous results obtained from this procedure when applied to standard reference fly ash samples.

## **Data Analysis**

### ESP Fly Ash

The extractability of metals from the surface of fly ash and flue gas particulate matter relates to a combination of factors. Metal solubility, particle surface area, surface concentration, or other matrix effects can influence the leachability of metals from particles. Increasing extractability was generally observed along the flue gas path, and the relationship between surface area, particle size, and surface concentration is considered influential.

For example, the analytical results for the various fly ash samples collected around the ESP all indicate differences in metal concentration as a function of particle size. Specifically, that enrichment of many trace elements increases as particle size decreases. This is evident from the evaluation of size-fractionated particulate samples collected from the ESP inlet and outlet flue gas (Section 8.0). An analysis of the fly ash collected from the first and second ESP fields also indicates this relationship between increasing trace element concentration and decreasing particle size. Trace element enrichment was more prominent in particles collected from the second (downstream) ESP field where the mean particle diameter was < 10 microns, compared to 30 microns in the first field.

Since the samples collected for extraction were filtered, and not size-fractionated, the mean particle diameter of the samples is an important consideration. It is reasonable to expect higher extractable concentrations at the ESP outlet compared to the inlet, based solely on the reduction in the mean particle diameter across the ESP. The increased surface area associated with an equivalent sample mass exposes more material to the leaching solutions. Barium and vanadium are two elements whose total fly ash concentrations remained relatively constant across the ESP. But due to the smaller mean particle diameter of the ESP outlet sample, the extractable percentage by nitric acid digestion jumped from 39-59% for barium and from 35-61% for vanadium.

All of the remaining trace elements had higher bulk concentrations in the ESP outlet samples when compared to the ESP inlet. In this case, the increase in concentration and surface area exposure should produce an increase in the extractable percentage. Except for antimony, manganese, molybdenum, and mercury, this was true for all of the trace elements. Arsenic and selenium, when detected, showed little change. Tables 11-1 and 11-2 present the extractable metal concentrations of the ESP inlet and outlet fly ash, respectively. The total trace element concentration derived from size-fractionated particulate results is also presented along with the extractable percentage under each leaching condition.

Surface availability may be estimated from the extractable percentages between elements in samples from the same stream. Elements exhibiting the highest degree of extractability are likely to be surface oriented, unbound in the particle matrix, or in a form readily dissolved by the leaching agent. However, an analytical bias in the results for any given element may also manifest itself as high (or low) extractability.

Table 11-1 Extractable Composition of ESP Inlet Gas Particulate Matter

| Trace      | Total<br>Composition | Nitric Acid Digestion<br>(EPA SW 3050) |               | Simulated Gastric Fluid Leach |               | Acetic Acid Leach (TCLP) |               |
|------------|----------------------|----------------------------------------|---------------|-------------------------------|---------------|--------------------------|---------------|
| Elements   | (μg/g)               | (μ <b>g</b> /g)                        | (% Extracted) | (μ <b>g/g</b> )               | (% Extracted) | (μ <b>g</b> /g)          | (% Extracted) |
| Antimony   | 3.18                 | 2.68                                   | 84.3          | 0.709                         | 22.3          | 0.798                    | 25.1          |
| Arsenic    | 44.8                 | 42.6                                   | 95.1          | < 0.678                       | <1.5          | 1.02                     | 2.3           |
| Barium     | <b>5</b> 60          | 220                                    | 39.2          | 103                           | 18.4          | 48.1                     | 8.6           |
| Beryllium  | 11.2                 | 4.11                                   | 36.7          | 1.14                          | 10.2          | 0.322                    | 2.9           |
| Cadmium    | 3.45                 | 2.22                                   | 64.5          | 1.82                          | 52.9          | 1.65                     | 47.9          |
| Chromium   | 197                  | 29.0                                   | 14.7          | 27.5                          | 14.0          | 7.37                     | 3.7           |
| Cobalt     | 36.5                 | 5.03                                   | 13.8          | 1.80                          | 4.9           | 1.48                     | 4.0           |
| Copper     | 108                  | 32.1                                   | 29.8          | 9.96                          | 9.2           | 10.9                     | 10.2          |
| Lead       | 76.4                 | 39.3                                   | 51.4          | 9.37                          | 12.3          | 0.205                    | 0.3           |
| Manganese  | 236                  | 120                                    | 51.1          | 60.0                          | 25.5          | 51.4                     | 21.8          |
| Molybdenum | 28.5                 | 42.9                                   | 151           | 29.3                          | 103           | 1.45                     | 5.1           |
| Nickel     | 134                  | 45.1                                   | 33.8          | 10.3                          | 7.7           | 8.64                     | 6.5           |
| Selenium   | 8.51                 | <23.3                                  | <274          | < 0.884                       | < 10.4        | 0.221                    | 2.6           |
| Vanadium   | 421                  | 146                                    | 34.6          | < 0.359                       | < 0.1         | 1.46                     | 0.3           |

Table 11-2 Extractable Composition of ESP Outlet Gas Particulate Matter

| Trace      | Total<br>Composition |        | Acid Digestion Simulated A SW 3050) Gastric Fluid Leach |         | Acetic Acid<br>Leach (TCLP) |        |               |
|------------|----------------------|--------|---------------------------------------------------------|---------|-----------------------------|--------|---------------|
| Elements   | (μg/g)               | (μg/g) | (% Extracted)                                           | (μg/g)  | (% Extracted)               | (μg/g) | (% Extracted) |
| Antimony   | 6.79                 | 3.21   | 47.4                                                    | 0.954   | 14.1                        | 0.875  | 12.9          |
| Arsenic    | 103                  | 98.4   | 95.4                                                    | < 0.660 | < 0.6                       | 3.38   | 3.3           |
| Barium     | <b>54</b> 0          | 318    | 58.8                                                    | 125     | 23.2                        | 44.1   | 8.2           |
| Beryllium  | 13.7                 | 5.43   | 39.6                                                    | 2.72    | 19.8                        | 0.981  | 7.1           |
| Cadmium    | 9.23                 | 9.79   | 106                                                     | 5.86    | 63.5                        | 9.57   | 104           |
| Chromium   | 248                  | 64.3   | 25.9                                                    | 54.3    | 21.8                        | 19.5   | 7.8           |
| Cobalt     | 44.3                 | 16.9   | 38.3                                                    | 5.47    | 12.3                        | 6.02   | 13.6          |
| Copper     | 152                  | 98.5   | 64.9                                                    | 33.5    | 22.1                        | 17.9   | 11.8          |
| Lead       | 141                  | 116    | 82.3                                                    | 32.9    | 23.4                        | 1.50   | 1.1           |
| Manganese  | 497                  | 165    | 33.1                                                    | 46.2    | 9.3                         | 39.3   | 7.9           |
| Molybdenum | 69.1                 | 72.2   | 105                                                     | 61.4    | 88.9                        | 4.43   | 6.4           |
| Nickel     | 177                  | 83.8   | 47.5                                                    | 38.4    | 21.7                        | 22.7   | 12.8          |
| Selenium   | 101                  | <23.3  | <23.1                                                   | 18.1    | 18.0                        | 4.07   | 4.0           |
| Vanadium   | 448                  | 272    | 60.7                                                    | 122     | 27.3                        | 4.68   | 1.0           |

Table 11-3 ranks the overall extractability of the target elements from fly ash in order from highest to lowest using the percent extractable results from all three leaching techniques. Elements with matrix spike recovery results outside the data quality objective range of 75-125% are identified, and as stated previously, may bias the relative extractability information.

To assess the accuracy of the extractable concentration data, matrix spikes were performed for each leachate matrix as indicators of analytical bias. A complete table of matrix spike recoveries for each of the leachate matrices is presented in Table D-2 of Appendix D. Based on the poor matrix spike and blank spike recoveries, mercury results were invalidated. QC sample results for arsenic in the gastric fluid leachates illustrate the difficulty of arsenic analysis by ICP-MS in a high chloride matrix. Molybdenum and antimony were not included in the spiking solution. Consequently, no spike recovery information is available for qualifying the accuracy of their results.

In addition to matrix spike recovery results, additional factors influencing the extractability data include bias in the bulk composition results. For example, the extractable concentrations of molybdenum reported for nitric acid and gastric fluid is above 100 percent. This element may indeed be 100% extractable from the particle surfaces or there could be an analytical bias in the total composition.

#### Stack Gas Particulate Matter

Particulate emissions from the FGD system were also characterized using extractability percentages to relate particle size, surface area, and surface concentration of the target elements. However, there are additional mechanisms to consider with the potential for scrubber mist carryover, (i.e., salts) and the leachability of the gas-borne particulate matter through the wet FGD system. With an average FGD slurry pH of 4.5, the JBR provides a mechanism for leaching some elements from the incoming fly ash. A shift in mean particle diameter is also observed as the larger sized particles are trapped in the scrubber.

Table 11-4 presents the extractable metal concentrations, the trace element concentration derived from multi-metals train results for test Runs 2 and 3 (quartz filters used), and the extractable percentage under each leaching condition. Only the results from extractable metals test Run 2 were selected for reporting the stack concentrations since glass-fiber filters were inadvertently used to collect particulate matter from the stack gas during test Runs 1 and 3. Data for the omitted test runs are reported in the Appendix.

Several metals were detected in the leachates at concentrations higher than the equivalent total composition value. Metals extracted by nitric acid digestion at percentages greater than 120% of the bulk composition include: beryllium, vanadium, lead, copper, arsenic, barium, and cadmium. Extractable percentages greater than 120% by gastric fluid leaching are reported for lead and beryllium. Clearly a bias exists in the analysis of either the stack gas particulate matter collected by the multi-metals train, the single Run 2 sample for extractable metals, or both.

Table 11-3
Extractability of Elements in Fly Ash\*

| Extractability<br>(Highest - Lowest) | Average % Extractable | Average Matrix<br>Spike Recovery | Spike Recovery<br>Range    |
|--------------------------------------|-----------------------|----------------------------------|----------------------------|
| Molybdenum                           | 76%                   | Not Available                    | Not Available              |
| Cadmium                              | 73%                   | 96.2%                            | 107% - 88%                 |
| Antimony                             | 34%                   | Not Available                    | Not Available <sup>c</sup> |
| Arsenic <sup>b</sup>                 | 33%                   | 80.5%                            | 123% - 0%b                 |
| Selenium <sup>b</sup>                | 30%                   | 117%                             | 138% - 84%                 |
| Lead                                 | 29%                   | 87.7%                            | 97% - 83%                  |
| Barium                               | 26%                   | 89.7%                            | 94% - 85%                  |
| Manganese <sup>b</sup>               | 25%                   | 88.8%                            | 108% - 71% <sup>b</sup>    |
| Copper                               | 25%                   | 98.8%                            | 105% - 92%                 |
| Nickel                               | 22 %                  | 95.3%                            | 103% - 81%                 |
| Beryllium                            | 19%                   | 93.1%                            | 108% - 79%                 |
| Vanadium <sup>b</sup>                | 19%                   | 71.0% <sup>b</sup>               | 109% - 0%b                 |
| Chromium                             | 15%                   | 97.6%                            | 106% - 88%                 |
| Cobalt                               | 15%                   | 97.7%                            | 100% - 92%                 |

<sup>\*</sup> Results consider average extractability of elements from fly ash samples collected from the flue gas at the inlet and outlet of the ESP.

<sup>&</sup>lt;sup>b</sup> Indicates that the spike recovery result obtained is outside the data quality objective range of 75-125 percent. The ranking of these elements may be biased by analytical results indicating higher or lower extractable percentages.

<sup>&</sup>lt;sup>e</sup> Antimony and molybdenum were not present in the SPEX<sup>®</sup> ICP-MS calibration solution used to prepare matrix spikes. No spike recovery information is available to determine the relative accuracy of these results. Consequently, the extractable percentages for these elements could be affected by analytical bias.

Table 11-4
Extractable Composition of Stack Gas Particulate Matter

| Trace      | Total<br>Composition |                 | Acid Digestion<br>SW 3050) |                 | Simulated<br>ic Fluid Leach |                          | : Acid Leach<br>(TCLP) |
|------------|----------------------|-----------------|----------------------------|-----------------|-----------------------------|--------------------------|------------------------|
| Elements   | (μg/g)               | (μ <b>g</b> /g) | (% Extracted)              | (μ <b>g</b> /g) | (% Extracted)               | (μ <b>g</b> / <b>g</b> ) | (% Extracted)          |
| Antimony   | 31.5                 | 5.78            | 18.4                       | 3.37            | 10.7                        | < 0.034                  | < 0.1                  |
| Arsenic    | 81.1                 | 164             | 202                        | < 2.46          | <3.0                        | < 0.497                  | < 0.6                  |
| Barium     | 214                  | 354             | 165                        | 214             | 100                         | 17.2                     | 8.0                    |
| Beryllium  | 2.94                 | 10.2            | 349                        | 4.20            | 143                         | 2.91                     | 98.9                   |
| Cadmium    | 41.4                 | 67.0            | 162                        | 12.4            | 29.9                        | 5.92                     | 14.3                   |
| Chromium   | 329                  | 43.8            | 13.3                       | 84.7            | 25.7                        | 36.4                     | 11.1                   |
| Cobalt     | 18.1                 | < 0.899         | <5.0                       | 10.9            | 60.4                        | 7.47                     | 41.3                   |
| Copper     | 55.8                 | 124             | 222                        | 51.3            | 91.9                        | 63.8                     | 114                    |
| Lead       | 35.7                 | 90.8            | 254                        | 65.8            | 184                         | 20.0                     | 56.1                   |
| Manganese  | 488                  | 328             | 67.2                       | 349             | 71.5                        | 470                      | 96.3                   |
| Molybdenum | 100                  | 51.4            | 51.4                       | 48.6            | 48.6                        | 3.45                     | 3.5                    |
| Nickel     | 2509                 | 392             | 15.6                       | 169             | 6.7                         | 66.2                     | 2.6                    |
| Selenium   | 899                  | < 86.9          | <9.7                       | 140             | 15.6                        | 61.2                     | 6.8                    |
| Vanadium   | 122                  | 385             | 315                        | <1.30           | <1.1                        | < 0.185                  | < 0.2                  |

Results for matrix spikes performed on the extractable metals sample collected at the ESP inlet and the multi-metals train samples are presented in Table D-2 of Appendix D. Since no QC activities were performed specific to the extractable metals Run 2 sample, data quality can only be estimated from relevant matrix and analytical spike data. In addition, the selection of only one sample result for comparison provides a high degree of uncertainty with these results.

Elements that were found in the stack gas particulate matter at concentrations greater than the ESP outlet (FGD inlet) gas are: antimony, cadmium, chromium, molybdenum, nickel, and selenium. Lower concentrations are noted for arsenic, barium, beryllium, cobalt, copper, lead, and vanadium. The concentration of manganese remained relatively constant across the FGD system.

The reduction in elemental concentrations, in spite of the reduction in mean particle diameter, across the JBR suggests that some elements may be leached from the fly ash by the FGD slurry. Some dilution of the fly ash by FGD solids low in certain trace elements may also be occurring; however, a comparison between calcium concentrations in the gas particulate-phase samples across the JBR system revealed only a slight, and statistically insignificant, increase in calcium concentration.

A comparison of trace metal concentrations between limestone slurry and JBR slurry filtrates suggests that the slurry is leaching trace elements from the fly ash. Enrichment is observed (in order of highest to lowest enrichment) for cadmium, lead, manganese, copper, selenium, cobalt, arsenic, nickel, vanadium, beryllium, and chromium at concentration factors much greater than the 6 cycles of concentration observed for soluble silica. In addition to these elements enriched in the aqueous phase, molybdenum, selenium, vanadium, and arsenic are enriched in the JBR slurry's solid phase.

This concentration mechanism plays an important part in the study of extractable metals in gas particulate matter downstream of wet scrubbing systems. As a result, particle surface characterizations based on extractability data may not be feasible without a more thorough understanding of the enrichment and carryover mechanisms taking place in the scrubber system.

#### References

- 1. 40 CFR 60, Appendix A. Test Methods. "Method 17: Determination of Particulate Emissions from Stationary Sources (In-Stack Filtration Method)."
- 2. 40 CFR 60, Appendix A. Test Methods. "Method 5: Determination of Particulate Emissions from Stationary Sources."
- 3. 55 FR 26986 (Friday, June 29, 1990), "Toxicity Characteristic Leaching Procedure (Method 1311)."

# APPENDIX A: QUALITY ASSURANCE AUDITS

The purpose of a quality assurance audit is to provide an objective, independent assessment of a sampling or measurement effort. It ensures that the sampling procedures, data generating, data gathering, and measurement activities produce reliable and useful results. Sometimes inadequacies are identified in the sampling/measurement system and/or the quality control program. In such cases, audits provide the mechanism for implementing corrective action.

A technical systems audit (TSA) is an on-site, qualitative review of the various aspects of a total sampling and/or analytical system. It is an assessment of overall effectiveness and represents an objective evaluation of a set of interactive systems with respect to strengths, deficiencies, and potential areas of concern. The audit consists of observations and documentation of all aspects of the measurement effort.

A performance audit is an independent check to evaluate the data produced by a measurement system. Audit standards and test equipment which are traceable to acceptable reference standards are used to assess the performance of each analytical method and/or measurement device (performance audit). Performance audits are designed to provide a quantitative, point-in-time evaluation of the data quality of the sampling and analytical systems being tested. This is accomplished by addressing specific parts of the overall system. Each performance audit addresses two general measurement categories of a project:

- Chemical analysis of samples; and
- Physical measurements supporting the sampling effort.

Audit activities consist of challenging the various measurement systems with standards and test equipment traceable to accepted reference standards. Laboratories conducting the analytical work on a program are given performance audit samples prepared by spiking representative sample matrices with target analytes at representative concentration levels. Results for these audit samples are tabulated and considered in evaluating the analytical performance and data reporting protocols for each laboratory.

For this program, technical system audits and performance audits were conducted of each of the DOE contractors by Research Triangle Institute (RTI) under contract to EPA. For the

audits of the Radian activities, reports were prepared and subsequently distributed to Radian through DOE detailing the results of the audits. Copies of the RTI audit reports are presented as attachments to this appendix. The following subsections present the Radian response to RTI's findings.

### **Technical Systems Audit Results**

A technical systems audit was conducted of the sampling and on-site analytical activities for this program on June 23-25, 1993. This audit was conducted by J.B. Flanagan and C.O. Whitaker of RTI. Four findings were discussed in the RTI audit report. Each of these findings and RTI recommendations are discussed in the following paragraphs.

### Finding 1

Basis due to long sampling lines from the calibration tanks to the probes and nonlinearity of the continuous monitor (CEM) system may go undetected due to infrequent multi-point calibrations. The CEM system at Plant Yates was not a designated part of the Radian effort for the DOE program and was not a negotiated activity between DOE and Georgia Power. Therefore, Radian has no control over and may not initiate any corrective actions related to, the operation of the CEM at Plant Yates.

### Finding 2

Aldehyde measurements were performed in accordance with the method; however, acetone (a possible contaminant) was present in the mobile laboratory as a wash bottle under the hood. One or more of the field blanks for the aldehyde sampling trains showed varying concentrations of acetaldehyde and formaldehyde. However, these analytes were not found in the reagent blanks stored in the mobile laboratory. It is not possible with the data available to rule out possible contamination due to the wash bottle of acetone. The concentrations found in the blanks should be considered in the use of the sample data. This precaution was noted in the project QA/QC summary (see Appendix D).

### Finding 3

All plant and sampling times are recorded in Central Daylight Savings Time instead of Eastern Daylight Savings Time. Radian has worked on several other Georgia Power projects and is familiar with their timekeeping procedures. In addition, since the field crew was from one of Radian's offices located in the Central Time Zone, the use of CDT was probably less confusing than working on EDT.

# Finding 4

Sampling data are hand-entered from field sheets into a portable computer each day, making occasional typographical errors virtually unavoidable. The normal Radian practice is to compare the computer output with the original data sheets to ensure that the information has been input correctly. This is generally done once the field crew has returned to the office

and the summary report of field activities is prepared. In addition, the Radian QA coordinator or his/her designee checks a percentage of the data sheets, logbooks, and calculations.

In addition to the technical systems audit, a number of performance evaluation audits were performed during the on-site effort. The greater part of the performance audit was directed toward the off-site analyses and a lesser part to the on-site activities. The results of the off-site performance audit samples are discussed in the next section. The results of the on-site performance audit are discussed in the following paragraphs.

#### **Orsat Determinations**

A duplicate analysis of oxygen was performed using a test gas supplied by RTI. The results of the analysis of test gas BLM002689 was 9.0% oxygen which calculates out to a 97.8% recovery as compared to the theoretical concentration of 9.2 percent.

### Source Sampling Consoles

An audit of the dry gas meters in four source sampling consoles was performed by RTI using a standard orifice. Audit results calculated as relative percent difference between the dry gas volume measurement and the calculated volume based on the RTI orifice were within the  $\pm 10\%$  acceptance criteria for three of the four meters tested. The result for the fourth meter (-11.7%) was just slightly below the criteria. The auditor noted that the audit data set for this meter did not include a meter run stop time. It is not known if a more exact run time would have resulted in this measurement being within the criteria.

#### Continuous Emissions Monitors

Audit of the continuous emissions monitors was not an negotiated activity between Georgia Power and DOE for this program. Therefore, Plant Yates would not permit RTI to audit the CEM. Any change in the frequency of the calibration approach would have to be decided between DOE and Georgia Power (The yearly calibration is actually a yearly certification or performance audit).

In the RTI audit report five recommendations are discussed. Since the majority of these recommendations were not discussed at the audit wrap-up meeting conducted at Plant Yates, limited corrective action was initiated. A summary of the RTI recommendations and the Radian corrective actions are discussed in the following paragraphs:

#### Recommendation 1

Due to the unusually large differences seen between the RTI standard orifice and the sampling consoles used for source testing, it is recommended that the average of the pre- and post- test calibrations be used in the emission estimates. Only one of the consoles audited by RTI was outside the acceptance criteria given. The theoretical value for this audit run is not certain because the meter run stop time was not recorded. Therefore, it is not known if the result for this console was actually outside the acceptance criteria. A QA check of the post-

test calibration for the consoles used on the project showed that the difference between the pre-test and post-test calibrations was less than 5% as required by the method (RPD-1.38%  $\pm 1.08$ , Range 0.1%-3.47% per Radian QA coordinator).

#### Recommendation 2

Mass flow rates for solids such as bottom ash and ESP ash are calculated based on coal feed rates and percentage ash in the coal obtained by proximate/ultimate analysis. One or more independent, direct methods of measuring or estimating the amount of ash produced should be attempted. The ESP collected ash flow rate was determined using the measured particulate loadings at the ESP inlet and outlet and the measured gas flow rate, not the coal feed rate and coal ash concentration. The bottom ash was calculated using the ESP inlet particulate loadings and coal feed rate and ash concentration. Radian considered obtaining representative bottom ash and ESP collected ash flow rates using the method described by RTI. However, the level of effort required, particularly for the ESP collected ash flow rate would have required additional sampling personnel and, given the physical design of the ash sluice system, additional information gained in this manner would also have a very large degree of uncertainty as to its accuracy.

### Recommendation 3

Because RTI auditors were not allowed to take any completed data sheets off-site, a data audit should be conducted in which raw data sheets, computer-logged data, logbooks, validation procedures, and calculations are examined. Data quality audits of the raw data, logbooks, calculations, and computerized data are checked and counter checked by various project personnel (including the Radian QA coordinator) throughout the progress of the project. The overall project is then peer- reviewed by senior engineers and scientists at least twice prior to the final reporting process.

#### Recommendation 4

CEMs at Plant Yates are not scheduled for multi-point calibration until the fall of 1993 which will result in a one-year interval since the last multi-point calibration. The interval between multi-point calibrations of the CEM should be changed from yearly to every six months. This recommendation is outside of the scope of the present project and is out of the control of Radian.

### Recommendation 5

The major elements for mass balance determinations should be discussed and finalized between DOE and Radian. Elements for the mass balance determinations were finalized between DOE and Radian and are presented in Section 6 of this Document.

#### **Performance Audit Results**

At the time of the technical systems audit conducted by RTI in June 1993, a series of performance audit samples were prepared and presented to the Radian sampling team to be submitted to the various analytical laboratories along with the investigative samples. The audit samples were prepared by spiking the impinger solutions or other analytical matrices provided to the auditors by Radian.

#### VOST

Two sets of Tenax cartridges were spiked with 18 compounds. These were analyzed for 16 of the 18 compounds by Radian's subcontractor, Air Toxics, Limited. In the RTI audit report, the results for these analyses were compared to the wrong set of recovery objectives. Tables A-1 and A-2 show the results and the recovery objectives for volatile organics as presented in Table 9-4 (page C9-9) of the project OAPP. The OC objectives were met for 10 of the 16 analytes in sample Y194 and 9 of the 16 analytes in sample Y195. Of the analytes with recoveries outside the QC objectives, toluene, methylene chloride, 1,1,1trichloroethane, trichlorofluoromethane, benzene, chloroform, and carbon tetrachloride were recovered high in one or more of the samples and chlorobenzene was recovered low in one sample. A portion of the methylene chloride recovery may be due to contamination, since this analyte was found in varying concentrations in most of the field and laboratory blanks analyzed with the samples. The high toluene recoveries were also attributed to contamination in the RTI audit report. In this case, the contamination appears to be in the audit cylinder, since this analyte was not found in any of the field or laboratory blanks and the concentration in Y195 is approximately twice the concentration in Y194. This concentration ratio matches the relationship for the RTI theoretical concentrations for other analytes in the two samples.

### Semivolatile Organics

Two XAD-2 modules, a train rinse, and a probe rinse were spiked with 16 analytes. Each module was combined with a rinse and reported as a combined sample. The analytical results for the 16 spiked compounds were within the project objectives for sample Y173-177 and 14 of the 16 spiked compounds were within the QC objectives in sample Y178-182. Anthracene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, and benzo(g,h,i)perylene results were outside the QC objectives. These compounds were spiked at or near the approved detection limits stated in the project QAPP.

### Aldehydes

Two DNPH impinger solutions were spiked with formaldehyde. The recovery for this analyte showed recoveries above the stated project QC objectives. RTI attributed these apparent enhanced recoveries to possible contamination. Formaldehyde was found in several of the field blanks and at the detection limit in one laboratory blank but was not found in the reagent blanks. Laboratory control samples and matrix spiked samples showed good recoveries for both formaldehyde and acetaldehyde.

Table A-1 Analysis of Vost Sample ID Y194 by Air Toxics Limited

| Analyte                | Detection<br>Limit<br>(ng) | Theoretical<br>Concentration<br>(ng) | Analyzed<br>Concentration<br>(ng) | %<br>Recovery | QC<br>Objectives<br>% Rec. | QC<br>Objectives<br>Met? |
|------------------------|----------------------------|--------------------------------------|-----------------------------------|---------------|----------------------------|--------------------------|
| Benzene                | 10                         | 63.73                                | 74                                | 116           | 37-151                     | yes                      |
| Chlorobenzene          | 10                         | 177.43                               | 53                                | 30            | 37-160                     | low                      |
| Ethylbenzene           | 10                         | 153.86                               | 120                               | 78            | 37-162                     | yes                      |
| Toluene                | 10                         | 151.68                               | 2300                              | 1520          | 47-150                     | high                     |
| o-Xylene               | 10                         | 159.30                               | 71                                | 45            | NS                         | NA                       |
| Bromomethane           | 10                         | 125.33                               | 130                               | 104           | D-242                      | yes                      |
| 1,3-Butadiene          | NA                         | 25.94                                | NA                                | -             | -                          | NA                       |
| Chloroform             | 10                         | 87.60                                | 110                               | 126           | 51-138                     | yes                      |
| Carbon tetrachloride   | 10                         | 123.28                               | 140                               | 114           | 70-140                     | yes                      |
| 1,2-Dichloroethane     | 10                         | 74.04                                | 53                                | 72            | 49-155                     | yes                      |
| 1,2-Dibromoethane      | NA                         | 300.37                               | NA                                | -             | -                          | NA                       |
| 1,2-Dichloropropane    | 10                         | 192.00                               | 160                               | 83            | D-210                      | yes                      |
| Methylene chloride     | 10                         | 112.98                               | 5700                              | 5040          | D-221                      | high                     |
| Tetrachloroethylene    | 10                         | 141.40                               | 120                               | 85            | 46-157                     | yes                      |
| Trichloroethylene      | 10                         | 103.69                               | 120                               | 116           | 71-157                     | yes                      |
| 1,1,1-Trichloroethane  | 10                         | 148.77                               | 230                               | 155           | 52-150                     | high                     |
| Trichlorofluoromethane | 10                         | 217.11                               | 470                               | 216           | 17-181                     | high                     |
| Vinyl chloride         | 10                         | 40.10                                | 48                                | 120           | D-251                      | yes                      |

Table A-2 Analysis of Vost Sample ID Y195 by Air Toxics Limited

| Analyte                | Detection<br>Limit<br>(ng) | Theoretical<br>Concentration<br>(ng) | Analyzed<br>Concentration<br>(ng) | %<br>Recovery | QC<br>Objectives<br>% Rec. | QC<br>Objectives<br>Met? |
|------------------------|----------------------------|--------------------------------------|-----------------------------------|---------------|----------------------------|--------------------------|
| Benzene                | 10                         | 125.29                               | 190                               | 152           | 37-151                     | high                     |
| Chlorobenzene          | 10                         | 348.80                               | 170                               | 49            | 37-160                     | yes                      |
| Ethylbenzene           | 10                         | 302.47                               | 420                               | 139           | 37-162                     | yes                      |
| Toluene                | 10                         | 298.18                               | 4000                              | 1340          | 47-150                     | high                     |
| o-Xylene               | 10                         | 313.17                               | 290                               | 93            | NS                         | -                        |
| Bromomethane           | 10                         | 246.38                               | 180                               | 73            | D-242                      | yes                      |
| 1,3-Butadiene          | NA                         | 51.00                                | NA                                | -             | -                          | NA                       |
| Chloroform             | 10                         | 172.22                               | 250                               | 145           | 51-138                     | high                     |
| Carbon tetrachloride   | 10                         | 242.36                               | 360                               | 148           | 70-140                     | high                     |
| 1,2-Dichloroethane     | 10                         | 145.55                               | 150                               | 103           | 49-155                     | yes                      |
| 1,2-Dibromoethane      | NA                         | 590.50                               | NA                                | -             | -                          | NA                       |
| 1,2-Dichloropropane    | 10                         | 377.45                               | 410                               | 109           | D-210                      | yes                      |
| Methylene chloride     | 10                         | 222.11                               | 5800                              | 2610          | D-221                      | high                     |
| Tetrachloroethylene    | 10                         | 277.98                               | 350                               | 126           | 46-157                     | yes                      |
| Trichloroethylene      | 10                         | 203.84                               | 320                               | 157           | 71-157                     | yes                      |
| 1,1,1-Trichloroethane  | 10                         | 292.47                               | 550                               | 188           | 52-150                     | high                     |
| Trichlorofluoromethane | 10                         | 426.22                               | 660                               | 155           | 17-181                     | yes                      |
| Vinyl chloride         | 10                         | 78.83                                | 98                                | 124           | D-251                      | yes                      |

NA = Not analyzed.

NS = Not specified.

### Appendix A: Quality Assurance Audits

RTI analyzed the spike solution (about two months later) and found reduced recoveries based on the nominal concentration. It appears that the true concentration of the spike solution is not known. Formaldehyde standards prepared from the commercially available 37% solutions may vary since these reagents may vary in actual concentration from 36-41 percent. Standards prepared as nominal concentrations can be analyzed by a titration procedure to obtain a known concentration for a standard. It is not known if this procedure was used by RTI to assign a theoretical concentration for the spike solution.

### Metals

Performance audit samples were prepared by RTI for the filter, the nitric acid-peroxide impingers, and the permanganate impingers of the multi-metals sampling train. Arsenic, cadmium, lead, and selenium were recovered within the QC objectives in the nitric acid/peroxide impinger solutions. However, mercury showed a slightly high recovery in this solution. Metal recoveries for the two spikes onto blank filters showed good recoveries except for one arsenic spike with a high recovery and one cadmium, selenium, and mercury spike with slightly low recoveries on the other filter. Mercury spiked into the two permanganate impinger solutions showed low recoveries (21-40%). The performance audit sample prepared by the Radian QA Coordinator also showed low recovery (33%) for the permanganate solution sample.



# **Department of Energy**

Pittsburgh Energy Technology Center P.O. Box 10940 Pittsburgh, Pennsylvania 15236-0940

November 10, 1993

Barbara J. Hayes Radian Corporation 8501 Mo-Pac Blvd. P.O. Box 201088 Austin, TX 78720-1088

Dear Barbara:

Enclosed are clean copies of the Field Sampling Report and the PE Sample Analysis information prepared by Research Triangle Institute. Please include these documents in the External Audit Section of the Draft Final Report to be submitted to the DOE on December 10, 1993. In addition, provide a response to RTI's finding in the Draft Final Report.

If you have any questions, please call me at (412) 892-4691.

Project Manager

Environmental Control Division

Enclosures

CC: Hollis Flora, Radian



Center for Environmental Measurements and Quality Assurance

October 4, 1993

Mr. Tom Brown PETC, U.S. Department of Energy P.O. Box 10940, M.S. 922-206 Pittsburgh, PA 15236

Subject: Radian PE sample analysis during the Yates Plant Audit

Dear Tom:

Enclosed are the analysis results for 10 sets of performance evaluation (PE) samples given to Radian Corporation during the audit of the Yates plant. Of particular concern are the mercury and the formaldehyde analyses.

After encountering a serious problem with the aldehyde analysis, we recalculated the PE sample concentrations and analyzed the samples in our laboratory. In the analytical procedure, there are still some undetermined factors such as the percent conversion of aldehyde into the DNPH-derivatives. Even though the molar ratios of DNPH to aldehyde were sufficiently high to drive the conversion reaction to completion, the aldehyde analysis results are lower than expected. The further laboratory work may resolve this issue.

### **Volatiles**

RTI spiked two sets of Tenax cartridges in a VOST train with 18 compounds. The cartridges were analyzed by Radian's subcontractor, Air Toxics, Limited. The laboratory analyzed for 16 of the 18 compounds spiked into the cartridges. Of the compounds quantitated, 10 of 16 were recovered within the data quality objectives (DQOs) set by Radian for sample Y194, and 9 of 16 were recovered within the DQOs for sample Y195. Of the compounds particularly relevant to this project (benzene, toluene, ethylbenzene, and o-xylene), recoveries were mixed. Benzene was recovered well within range on sample Y194, but slightly out of range on sample Y195. Toluene was recovered completely out of range on both samples due to apparent contamination. Ethylbenzene was recovered within range on both samples. O-xylene was recovered out of range on sample Y194, but within range on sample Y195.

### <u>Semivolatiles</u>

RTI spiked two XAD-2 modules, a train rinse, and a probe rinse with 16 PAHs in solution. Each module was combined with a rinse and reported by Radian as a combined

Post Office Box 12194 Research Triangle Park, North Carolina 27709-2194

Radian PE Samples Yates Plant Audit Page 2 of 9 October 4, 1993

sample. Radian performed satisfactorily on 28 of the 32 analyses. One undetected analyte was spiked at below the reported detection limit. This occurred because the detection limits reported were much higher than the 1 ng/m<sup>3</sup> required by DOE for the project.

### Metals on Filters

Several metals were spiked onto two filters of the M-29 trains to simulate metals in the particulate catch. Radian recovered 6 of the 10 metals concentrations within the limits of their DOOs.

# Metals in Impinger Solutions (HNO<sub>2</sub>/H<sub>2</sub>O<sub>2</sub>)

Several metals were spiked into the first impinger of the metals train. Radian recovered eight of the nine metals within the limits of their DQOs.

### Metals in Impinger Solutions (KMnO<sub>4</sub>)

Mercury was spiked into two acidic KMnO<sub>4</sub> solutions. Neither was recovered in the range of their DQOs (75 to 125%).

### Formaldehyde in Impinger Solutions (DNPH)

RTI spiked two DNPH impinger solutions with a solution containing a nominal concentration of 0.4068  $\mu$ g/ $\mu$ l. Radian's recoveries calculated based on this concentration are higher indicating possible contamination. RTI has analyzed the spiking solution and our recovery based on the nominal value is 67.6% (average concentration of 0.275  $\mu$ g/ $\mu$ l). RTI is continuing verification analyses on the spiking solution.

If I can be of further assistance, please call me at 541-5919.

Sincerely,

Shri Kulkami, Ph.D.

Manager, Quality Assurance and Technology Assessment Department

Shi Kulkami

SVK:dmh

cc:

S.J. Wasson

J. McSorley

File:

5960-193/4805

91A-04

Radian PE Samples Yates Plant Audit Page 3 of 9 September 30, 1993

# METALS IN IMPINGER SOLUTIONS (HNO $_2$ )

SAMPLE ID: Y276

| METAL | RTI<br>AMOUNT<br>(µg) | RADIAN<br>AMOUNT<br>(µg) | PERCENT<br>RECOVERY | RECOVERYI<br>DQO (%) | DQO<br>MET |
|-------|-----------------------|--------------------------|---------------------|----------------------|------------|
| As    | 50                    | 52.10                    | 104.2               | 75-125               | Yes        |
| Cd    | 30                    | 37.00                    | 123.3               | 75-125               | Yes        |
| Pb    | 20                    | 19.79                    | 98.9                | 75-125               | Yes        |
| Se    | 40                    | 41.60                    | 104.0               | 75-125               | Yes        |
| Hg    | 10                    | 12.68                    | 126.8               | 75-125               | No         |

# METALS IN IMPINGER SOLUTIONS (HNO<sub>2</sub>/H<sub>2</sub>O<sub>2</sub>)

SAMPLE ID: Y279

| METAL | RTI<br>AMOUNT<br>(µg) | RADIAN<br>AMOUNT<br>(µg) | PERCENT<br>RECOVERY | RECOVERY¹<br>DQO (%) | DQO<br>MET |
|-------|-----------------------|--------------------------|---------------------|----------------------|------------|
| As    | 15                    | 15.03                    | 100.2               | 75-125               | Yes        |
| Cd    | 60                    | 68.26                    | 113.8               | 75-125               | Yes        |
| Pb    | 40                    | 42.34                    | 105.9               | 75-125               | Yes        |
| Se    | 80                    | 90.72                    | 113.4               | 72-125               | Yes        |

These values are taken from Radian's QA plan (page C9-7).

Radian PE Samples Yates Plant Audit Page 4 of 9 September 30, 1993

### **METALS ON FILTERS**

SAMPLE ID: Y278, filter 966

| METAL | RTI<br>AMOUNT<br>(µg) | RADIAN<br>AMOUNT<br>(µg) | PERCENT<br>RECOVERY | RECOVERY <sup>1</sup><br>DQO (%) | DQO<br>MET |
|-------|-----------------------|--------------------------|---------------------|----------------------------------|------------|
| As    | 40                    | 84.4                     | 211.0               | 75-125                           | No         |
| Cd    | 10                    | 9.59                     | 95.9                | 75-125                           | Yes        |
| Pb    | 15                    | 15.3                     | 102.0               | 75-125                           | Yes        |
| Se    | 25                    | 22.3                     | 89.2                | 75-125                           | Yes        |
| Hg    | 10                    | 10                       | 100.0               | 75-125                           | Yes        |

# **METALS ON FILTERS**

SAMPLE ID: Y281, filter 974

| METAL | RTI<br>AMOUNT<br>(µg) | RADIAN<br>AMOUNT<br>(µg) | PERCENT<br>RECOVERY | RECOVERY¹<br>DQO (%) | DQO<br>MET |
|-------|-----------------------|--------------------------|---------------------|----------------------|------------|
| As    | 25                    | 27.9                     | 111.6               | 75-125               | Yes        |
| Cd    | 15                    | 10.6                     | 70.7                | 75-125               | No         |
| Pb    | 25                    | 25.3                     | 101.2               | 75-125               | Yes        |
| Se    | 35                    | 23.4                     | 66.9                | 75-125               | No         |
| Hg    | 20                    | 14.6                     | 73.0                | 75-125               | No         |

These values are taken from Radian's QA plan (page C9-7).

Radian PE Samples Yates Plant Audit Page 5 of 9 September 30, 1993

# **MERCURY IN IMPINGER SOLUTIONS (KMn04)**

| SAMPLE ID         | RTI<br>AMOUNT<br>(µg) | RADIAN<br>AMOUNT<br>(µg) | PERCENT<br>RECOVERY | RECOVERY <sup>3</sup> DQO (%) | DQO<br>MET |
|-------------------|-----------------------|--------------------------|---------------------|-------------------------------|------------|
| Y277¹             | 20                    | 4.18                     | 20.9                | 75-125                        | No         |
| Y280 <sup>2</sup> | 50                    | 19.75                    | 39.5                | 75-125                        | No         |

# FORMALDEHYDE IN IMPINGER SOLUTIONS (DNPH)

| SAMPLE ID | RTI<br>AMOUNT<br>(µg) | RADIAN<br>AMOUNT<br>(µg) | PERCENT<br>RECOVERY | RECOVERY <sup>4</sup><br>DQO (%) | DQO<br>MET |
|-----------|-----------------------|--------------------------|---------------------|----------------------------------|------------|
| Y187      | 24.4                  | 76                       | 311                 | 50-150                           | No         |
| Y188      | 34.2                  | 90                       | 263                 | 50-150                           | No         |

<sup>&</sup>lt;sup>1</sup> Also spiked with 30 µg Pb.

<sup>&</sup>lt;sup>2</sup> Also spiked with 20 µg As.

These values were taken from Radian's QA plan (page C9-7).

These values were taken from Radian's QA plan (page C9-8).

# **SVOC RECOVERIES FROM XAD-2 MODULES**

SAMPLE ID: Y178-182 (Combined)

| ANALYTE                             | RTI<br>VALUE<br>(µg) | Radian<br>VALUE<br>(µg) | PERCENT<br>RECOVERY | RECOVERY¹<br>DQO (%) | DQO<br>MET |
|-------------------------------------|----------------------|-------------------------|---------------------|----------------------|------------|
| Naphthalene                         | 10                   | 9.98                    | 99.8                | 21-133               | Yes        |
| Acenaphthylene                      | 20                   | 17.3                    | 86.5                | 33-145               | Yes        |
| Acenaphthene                        | 10                   | 8.22                    | 82,2                | 47-145               | Yes        |
| Fluorene                            | 2                    | 1.19                    | 59.5                | 59-121               | Yes        |
| Phenanthrene                        | 1                    | 0.853                   | 85.3                | 54-120               | Yes        |
| Anthracene                          | 1                    | ND²                     | 0.0                 | 27-133               | No         |
| Fluoranthene                        | 2                    | 1.44                    | 72.0                | 26-137               | Yes        |
| Pyrene                              | 1                    | 0.634                   | 63.4                | 52-115               | Yes        |
| Chrysene                            | 1                    | 0.844                   | 84.4                | 17-168               | Yes        |
| Benzo(a)anthracene                  | 1                    | 0.694                   | 69.4                | 33-143               | Yes        |
| Benzo(b)fluoranthene                | 2                    | 1.4                     | 70.0                | 24-159               | Yes        |
| Benzo(k)fluoranthene                | 1                    | 0.713                   | 71.3                | 11-162               | Yes        |
| Benzo(a)pyrene                      | 1                    | 0.484                   | 48.4                | 17-163               | Yes        |
| Indeno(1,2,3-cd)pyrene <sup>3</sup> | 1                    | ND <sup>2</sup>         | 0.0                 | D-171                | No         |
| Dibenz(a,h)anthracene               | 2                    | ND²                     | 0.0                 | D-227                | No         |
| Benzo(g,h,i)perylene                | 2                    | ND²                     | 0.0                 | D-219                | No         |
| Other Compounds Repor               | ted                  |                         |                     |                      |            |
| Acetophenone                        | 0                    | 0.694                   | 7-                  |                      |            |
| Benzoic Acid                        | 0                    | 14,2                    |                     |                      |            |
| Diethylphthalate                    | 0                    | 0.689                   |                     |                      |            |

Recovery DQOs (%) were taken from Radian's QA plan (Page C9-10).

 $<sup>^2</sup>$  ND = not detected.

This compound was spiked at a concentration below the reported detection limit of 1.33 µg.

Radian PE Samples Yates Plant Audit Page 7 of 9 September 30, 1993

# **SVOC RECOVERIES FROM XAD-2 MODULES**

SAMPLE ID: Y173-177 (Combined)

| ANALYTE                   | RTI<br>VALUE<br>(µg) | RADIAN<br>VALUE<br>(µg) | PERCENT<br>RECOVERY | RECOVERY <sup>1</sup><br>DQO (%) | DQO<br>MET |
|---------------------------|----------------------|-------------------------|---------------------|----------------------------------|------------|
| Naphthalene               | 35.0                 | 30.1                    | 86.0                | 21-133                           | Yes        |
| Acenaphthylene            | 70.0                 | 62.8                    | 89.7                | 33-145                           | Yes        |
| Acenaphthene              | 35.0                 | 28.7                    | 82.0                | 47-145                           | Yes        |
| Fluorene                  | 7.0                  | 4.53                    | 64.7                | 59-121                           | Yes        |
| Phenanthrene              | 3.5                  | 2.54                    | 72.6                | 54-120                           | Yes        |
| Anthracene                | 3.5                  | 2.5                     | 71.4                | 27-133                           | Yes        |
| Fluoranthene              | 7.0                  | 4.42                    | 63.1                | 26-137                           | Yes        |
| Pyrene                    | 3.5                  | 2,13                    | 60.8                | 52-115                           | Yes        |
| Chrysene                  | 3.5                  | 1.52                    | 43.4                | 17-168                           | Yes        |
| Benzo(a)anthracene        | 3.5                  | 1.65                    | 47.1                | 33-143                           | Yes        |
| Benzo(b)fluoranthene      | 7.0                  | 2.82                    | 40.3                | 24-159                           | Yes        |
| Benzo(k)fluoranthene      | 3.5                  | 1.62                    | 46.3                | 11-162                           | Yes        |
| Benzo(a)pyrene            | 3.5                  | 1.33                    | 38.0                | 17-163                           | Yes        |
| Indeno(1,2,3-cd)pyrene    | 3.5                  | 1.33                    | 38.0                | D-171                            | Yes        |
| Dibenz(a,h)anthracene     | 7.0                  | 2.14                    | 30.6                | D-227                            | Yes        |
| Benzo(g,h,i)perylene      | 7.0                  | 2.19                    | 31.3                | D-219                            | Yes        |
| Other Materials Recovered | <u> </u>             |                         |                     |                                  |            |
| Benzoic Acid              | 0                    | 60.3                    | •                   |                                  |            |

Recovery DQOs (%) were taken from Radian's QA plan (page C9-10).

# **VOLATILE ORGANICS ON TENAX (VOST)**

SAMPLE ID: Y194

| COMPOUNDS                      | RTI<br>AMOUNT<br>(ng) | RADIAN<br>AMOUNT<br>(ng) | PERCENT<br>RECOVERY | RECOVERY¹<br>DQO (%) | DQO<br>MET |
|--------------------------------|-----------------------|--------------------------|---------------------|----------------------|------------|
| Vinyl Chloride                 | 40.10                 | 48                       | 119.7               | 50-150               | yes        |
| Chloroform                     | 87.60                 | 110                      | 125.6               | 50-150               | yes        |
| Carbon Tetrachloride           | 123.28                | 140                      | 113.6               | 50-150               | yes        |
| Methylene Chloride             | 112.98                | 5700                     | 5045.1              | 50-150               | no         |
| 1,2 Dichloroethane             | 74.04                 | 53                       | 71.5                | 50-150               | yes        |
| Trichlorethylene               | 103.69                | 120                      | 115.7               | 50-150               | yes        |
| Benzene                        | 63.73                 | 74                       | 116.1               | 50-150               | yes        |
| Tetrachloroethylene            | 141.40                | 120                      | 84.9                | 50-150               | yes        |
| 1,3-Butadiene <sup>1</sup>     | 25.94                 |                          |                     | 50-150               |            |
| Bromomethane                   | 125.33                | 130                      | 103.7               | 50-150               | yes        |
| Trichlorofluoromethane         | 217.11                | 470                      | 216.5               | 50-150               | no         |
| 1,1,1-Trichloroethane          | 148.77                | 230                      | 154.6               | 50-150               | no         |
| 1,2-Dichloropropane            | 192.00                | 160                      | 83.3                | 50-150               | yes        |
| 1,2-Dibromoethane <sup>2</sup> | 300.37                |                          |                     | 50-150               |            |
| Toluene                        | 151.68                | 2300                     | 1516.4              | 50-150               | no         |
| Chlorobenzene                  | 177.43                | 53                       | 29.9                | 50-150               | no         |
| Ethylbenzene                   | 153.86                | 120                      | 78.0                | 50-150               | yes        |
| Ortho-Xylene                   | 159.30                | 71                       | 44.6                | 50-150               | no         |
| Other Compounds Reported       |                       |                          |                     |                      |            |
| Acetone                        | 0                     | 120                      |                     |                      |            |

Recovery DQOs (%) were taken from Radian's QA plan (page C9-10).

This compound was not identified or analyzed by Radian's subcontractor, Air Toxics Limited.

# **VOLATILE ORGANICS ON TENAX (VOST)**

SAMPLE ID: Y195

| COMPOUNDS                      | RTI<br>AMOUNT<br>(ng) | RADIAN<br>AMOUNT<br>(ng) | PERCENT<br>RECOVERY | RECOVERY¹ DQO (%) | DQO<br>MET |
|--------------------------------|-----------------------|--------------------------|---------------------|-------------------|------------|
| Vinyl Chloride                 | 78.83                 | 98                       | 124.3               | 50-150            | yes        |
| Chloroform                     | 172.22                | 250                      | 145.2               | 50-150            | yes        |
| Carbon Tetrachloride           | 242.36                | 360                      | 148.5               | 50-150            | yes        |
| Methylene Chloride             | 222.11                | 5800                     | 2611.3              | 50-150            | no         |
| 1.2 Dichloroethane             | 145.55                | 150                      | 103.1               | 50-150            | yes        |
| Trichlorethylene               | 203.84                | 320                      | 157.0               | 50-150            | no         |
| Benzene                        | 125.29                | 190                      | 151.6               | 50-150            | no         |
| Tetrachloroethylene            | 277.98                | 350                      | 125.9               | 50-150            | yes        |
| 1,3-Butadiene <sup>1</sup>     | 51.00                 |                          |                     | 50-150            |            |
| Bromomethane                   | 246.38                | 180                      | 73.1                | 50-150            | yes        |
| Trichlorofluoromethane         | 426.82                | 660                      | 154.6               | 50-150            | по         |
| 1,1,1-Trichloroethane          | 292.47                | 550                      | 188.1               | 50-150            | no         |
| 1,2-Dichloropropane            | 377.45                | 410                      | 108.6               | 50-150            | yes        |
| 1.2-Dibromoethane <sup>2</sup> | 590.50                | ••                       |                     | 50-150            |            |
| Toluene                        | 298.18                | 4000                     | 1341.5              | 50-150            | no         |
| Chlorobenzene                  | 348.80                | 170                      | 48.7                | 50-150            | no         |
| Ethylbenzene                   | 302.47                | 420                      | 138.9               | 50-150            | yes        |
| Ortho-Xylene                   | 313.17                | 290                      | 92.6                | 50-150            | yes        |
| Other Compounds Reported       |                       |                          |                     |                   |            |
| Acetone                        | 0                     | 160                      |                     |                   |            |

Recovery DQOs (%) were taken from Radian's QA plan (page C9-10).

This compound was not identified or analyzed by Radian's subcontractor, Air Toxics Limited.



# RESEARCH TRIANGLE INSTITUTE RTI/5960/193 - 04D

August 6, 1993

# QA/QC AUDITS ON DOE UTILITY BOILER TEST PROGRAM

# FIELD SAMPLING AUDIT REPORT

Site: Yates Station Unit 1, Newnan, GA

DOE Contractor: Radian Corporation

DOE Project Officer: Janice Murphy

#### Performed for

Joseph A. McSorley
EPA Work Assignment Manager
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711

# Prepared by

Research Triangle Institute
P.O. Box 12194
Research Triangle Park, NC 27709

RTI Work Assignment Leader: Shirley J. Wasson

Under EPA Contract No. 68D10009 Work Assignment No. I-193

#### Field Audit of:

Yates Station Unit 1 Georgia Power Company Newnan, Georgia

Contractor: Radian Corporation

Dates: June 23-25, 1993

RTI Personnel: J. B. Flanagan and C. O. Whitaker

# Introduction

The Yates Station Unit 1 is a bituminous coal-fired steam-electricity-generating unit with a net generating capacity of 105 megawatts. The station is located near Newnan, Georgia, and is owned and operated by Georgia Power Company. Unit 1 has a tangentially fired boiler manufactured by Combustion Engineering in 1949. During this test, the unit was fueled with 2.5% sulfur blend of Illinois No. 5 and Illinois No. 6 bituminous coals. The feed coal is a 50:50 blend mined from the "Arch Captain" and "Old Ben Franklin" mines.

The plant uses electrostatic precipitators for particulate control. Unit 1 currently controls sulfur dioxide (SO<sub>2</sub>) using a Jet Bubbling Reactor (JBR) supplied under the CT-121 demonstration project. Sampling for the hazardous air pollutants (HAP) study is being carried out by Radian Corporation, which also operates the CT-121 demonstration project in cooperation with Georgia Power and DOE. The JBR process combines conventional limestone flue gas desulfurization (FGD) chemistry, forced oxidation, and gypsum crystallization in one reaction vessel. It is designed to operate in a medium-acid solution, where limestone is completely soluble and where the sulfite resulting from SO<sub>2</sub> absorption can be oxidized completely to sulfate. Attrition of gypsum crystals and problems of poor sludge quality and chemical scaling are also eliminated due to improvements of the second generation FGD process. The process is not specifically designed to destroy pollutants such as NO<sub>2</sub> or organics.

### **Findings**

1. Finding: Basis due to long sampling lines from the calibration tanks to the probes and nonlinearity of the continuous emission monitor (CEM) system may go undetected due to infrequent multipoint calibrations. Line losses and multipoint calibrations are not normally measured and multipoint calibrations are not performed during the demonstration program; the next scheduled full calibration is scheduled for the changeover to Phase II of the demonstration program some time this fall. Daily zero-span checks are conducted for all CEMs.

1 A-23

Effect on Data: If there is loss of calibration gas in the 300 to 600 feet of tubing running from the cylinders to the probes, the span result will be biased. Sulfur dioxide is particularly sensitive to decomposition reactions on surfaces. The potential for nonlinearity is unknown in the absence of regularly scheduled multipoint calibrations.

2. Finding: Aldehyde measurements were performed in accordance with the method; however, acetone, (a possible contaminant) was present in the mobile laboratory as a wash bottle under the hood.

Effect on Data: Any acetone that might be found in the samples would be suspect.

3. Finding: All plant and sampling times are recorded in Central Daylight Savings
Time instead of Eastern Daylight Savings Time. The central power grid is
controlled by Georgia Power's headquarters in Alabama, which is in the Central time
zone. Yates plant personnel have adopted Central time to coordinate with the central
operations. To avoid confusion, Radian also adopted Central time in conducting the
HAP project.

Effect on Data: Radian and plant personnel were all well-aware of this situation; however, special care should be taken to cross-check data to avoid confusion in sampling times during data validation.

4. Finding: Sampling data are hand-entered from field sheets into a portable computer each day, making occasional typographical errors virtually unavoidable.

Effect on Data: Data validation procedures such as duplicate keying or 100% comparison with original sheets should be used to minimize these errors.

### **Observations**

This section includes general observations for which no adverse effect on the data could necessarily be predicted, but which had the potential to differentiate results at this site from results at other sites.

1. Radian sent an analyst and a high performance liquid chromatography (HPLC) instrument to the site for Cr<sup>IV</sup> measurements. Having the analyses performed on-site provides faster results: a 1/2- to 2-hour turnaround versus 24 hours or more when samples are sent back to an off-site laboratory. This conscientious effort to obtain more timely analyses of this unstable material should be taken into account when comparing Radian's results for Cr<sup>IV</sup> with those from other contractors.

2. The "Nick Bloom" method for sampling vapor phase mercury differed from that of another contractor on this project in that differently sized charcoal tubes were used and different methods of analysis will be used. Radian also used a soda-ash tube in conjunction with the charcoal tube which was intended to allow discrimination between oxidation states of mercury. Results of different contractors may not be comparable if different implementations of this method are employed.

### **Activities**

# 1. Meetings

Audit activities included three meetings between RTI, DOE, Georgia Power, and Radian personnel. An initial meeting was held on 6/22 and an exit meeting on 6/24. Additionally, there was a meeting on the afternoon of 6/22 in which the Georgia Power representatives expressed concerns about data security for the JBR project and misgivings about having "EPA representatives" on-site. Dr. Flanagan called Ms. Wasson, the RTI Project Leader, to inform her of this development immediately after this meeting. Dr. Kulkarni of RTI and Mr. Brown of DOE were contacted later the same day. No further concerns were expressed, however, and the remainder of the audit proceeded normally. Mr. Roy Clarkson, a representative of Georgia Power, reviewed all data to be taken from the site at the exit meeting on 6/24. This information consisted only of the auditor's logbooks and checklists and some blank data forms obtained from Radian. Mr. Al Williams, the Radian Project Manager, made the decision not to release copies of any completed data sheets requested by the auditors based on Georgia Power's concerns.

During one of the meetings with Radian personnel, it was learned that the "major" element(s) for independent mass balance determination had not been selected. This was presumably under negotiation between Radian and DOE as a change in scope.

#### 2. Performance Evaluation Audit

a) Orsat Determination - Mr. Tom Peters of Radian was observed by Mr. Craig Whitaker of RTI while performing the Orsat procedure using test gas supplied by RTI. The audit gas concentration for tank ID number BLM002689 was 9.21% oxygen in dry nitrogen. Correct procedures appeared to be followed. The following data were taken. Acceptable agreement was found for oxygen. Neither carbon dioxide nor carbon monoxide was present in the tank, and none was found.

| Replicate | <u>Orsat</u> | Result (mL oxygen) |
|-----------|--------------|--------------------|
| 1         |              | 9.0                |
| 2         |              | 9.0                |
|           | Average:     | 9.0                |

Initial volume was 100 mL

9.0 mL/100 mL x 100 = 9.0% found by Orsat.

Percent Difference = 
$$\frac{9.0\% - 9.2\%}{9.2\%}$$
 X 100 = -2.17%

b) Performance Audit of Source Sampling Consoles - Mr. Whitaker provided a standardized orifice (ID number 117) to the sampling console operators. They were instructed to set a constant flow using the orifice and to measure the volume indicated by the console's dry gas meter during a 10- or 20-minute sampling period. Operators reported a pressure drop across the RTI orifice, dry gas meter volume, and temperature. Results are tabulated in the following table. "Calculated Volume," the fifth column in the table, was calculated by RTI based on the orifice constant and pressure drop, multiplied by the run time.

# CONSOLE (DRY GAS METER VOLUME) PERFORMANCE AUDIT RESULTS\*

| Radian<br>console<br>serial<br>number | Console<br>location | Run<br>time<br>(min) | Radian<br>console dry<br>gas meter<br>volume (scf) | Calculated volume based on flow using RTI orifice (scf) | Relative<br>Percent<br>difference |
|---------------------------------------|---------------------|----------------------|----------------------------------------------------|---------------------------------------------------------|-----------------------------------|
| A161362                               | Stack               | 20                   | 13.98                                              | 15.450                                                  | - 9.5                             |
| A161394                               | Stack               | 21                   | 16.59                                              | 16.404                                                  | 1.1                               |
| 161364                                | ESP outlet          | 10                   | 7.89                                               | 7.711                                                   | 2.3                               |
| A161395**                             | ESP outlet          | 10**                 | 7.50                                               | 8.495                                                   | - 11.7                            |

<sup>\*</sup> Acceptance criteria ± 10%.

<sup>\*\*</sup> This audit data set did not include a meter run stop time; however, runs were requested for 10 minutes and the data appear consistent with a 10-minute run time.

- c) VOST Sampling The operator demonstrated extensive knowledge in the operation and process. Cartridges were inscribed with flow directions and encapsulated before and after use. Two sets of tenax and tenax/charcoal were exposed to measured flows of test gas supplied by RTI. Exposure periods were 10 and 20 minutes. Because analytical results must be received before these audit samples can be evaluated, the tube numbers, compounds, and concentrations will be reported in a separate memorandum.
- d) Continuous Emissions Monitors (CEMs) The facility would not allow RTI to audit the installed monitors, but the system functions were explained by the operator, Mr. Jeff Nelms. The cylinders used for daily zero and span checks were found to be Protocol No. 1 gases. Serial numbers and concentrations for these zero/span gases are provided in the following table.

### **CEM SPAN GAS SUMMARY**

| Vendor | Cylinder  | Compound                                   | Concentration                  | Expiration date |
|--------|-----------|--------------------------------------------|--------------------------------|-----------------|
| Scott  | AAL-13190 | Nitric oxide<br>Sulfur dioxide<br>Nitrogen | 360 ppm<br>1791 ppm<br>balance | 5-18-95         |
| Scott  | AAL-17497 | Oxygen<br>Nitrogen                         | 20.9%<br>balance               | 5-18-96         |
| Scott  | AAL-4472  | Sulfur dioxide                             | 241 ppm                        | 1-4-95          |

Two locations are being monitored by the CEMs: the ESP outlet (immediately upstream of the JBR) and the stack (downstream of the JBR). The following information is being acquired at each location:

ESP outlet (upstream of JBR):

- Temperature
- Opacity
- Oxygen
- NO.
- SO<sub>2</sub>

Stack (downstream of JBR):

- Temperature
- Oxygen
- SO<sub>2</sub>

Because different gases are being monitored at the two locations, different span gas combinations and concentrations were used for the span checks. For the stack gas analyzers, cylinder AAL-4472 (SO<sub>2</sub> in N<sub>2</sub>) and cylinder AAL-17497 (O<sub>2</sub> in N<sub>2</sub>) were used. On the ESP outlet upstream of the JBR, cylinder AAL-13190 (NO and SO<sub>2</sub> in N<sub>2</sub>) and cylinder AAL-17497 (O<sub>2</sub> in N<sub>2</sub>) were used. Cylinders of zero air were also present for zero determination. According to site personnel, tanks are replaced at intervals of approximately 1 to 2 months. This rather rapid turnover of standard gases is due to the large volume required to fill and purge the hundreds of feet of tubing between the tank, the sampling point, and the analyzers, as described in the next paragraph.

Heated sample lines are used to carry the calibration gas to the probes. The calibration gas then flows back to the CEMs through the same lines that are used acquire gas samples. As part of the audit, the heated sample lines were traced and verified by the operator, who estimated that the fetch (one-way distance from the probe to the CEMs) was 300 to 350 feet. The fetch to the ESP outlet duct probe was estimated to be approximately 600 feet.

### 3. Technical Systems Audit

The following table summarizes the activities observed by the auditors.

### OPERATIONS OBSERVED DURING TSA

| Medium                        | Location                          | Auditor            | Comment                                                                         |
|-------------------------------|-----------------------------------|--------------------|---------------------------------------------------------------------------------|
| Coal, 1/4" feed               | boiler building                   | Flanagan, Whitaker | Periodic grab<br>samples collected<br>into plastic bucket                       |
| Coal, pulverized              | boiler building                   | Flanagan, Whitaker | Cyclone used to capture high-pressure suspension of coal powder prior to burner |
| Pyrite reject                 | boiler building                   | Flanagan, Whitaker | All material caught in plastic buckets                                          |
| Boiler bottom ash<br>(slurry) | sluice pipe outlet at<br>ash pond | Flanagan, Whitaker | Dipper samples alternately filling two glass carboys                            |

# OPERATIONS OBSERVED DURING TSA (continued)

| Medium                                          | Location                              | Auditor           | Comment                                              |
|-------------------------------------------------|---------------------------------------|-------------------|------------------------------------------------------|
| Condenser water inlet                           | boiler building                       | Flanagan          | From spigot tube allowed to run before sampling      |
| Condenser water outlet                          | boiler building                       | not being sampled | Sample point inaccessible                            |
| Flue gas                                        | ESP inlet                             | Whitaker          |                                                      |
| Flue gas                                        | ESP outlet                            | Whitaker          |                                                      |
| Stack gas (JBR out)                             | Stack                                 | Whitaker          |                                                      |
| ESP hopper ash (slurry)                         | sluice pipe outlet at<br>ash pond     | Flanagan          | Dipper samples alternately filling two glass carboys |
| JBR makeup water                                | JBR area                              | Flanagan          |                                                      |
| JBR slurry density                              | JBR area density<br>meter slip stream | Flanagan          | Nuclear density<br>meter out of service              |
| Limestone                                       | limestone silo                        | not observed      |                                                      |
| Coal pile runoff                                | coal pile                             | not observed      | No rain during audit                                 |
| Cr <sup>IV</sup> measurement                    | JBR Project<br>Laboratory             | Flanagan          | Actual samples not seen; calibration only            |
| XAD-2 cartridge<br>spike for semi-<br>volatiles | laboratory trailer                    | Flanagan          |                                                      |
| Metals train spikes                             | laboratory trailer                    | Flanagan          |                                                      |
| VOST challenge                                  | stack sampling area                   | Whitaker          |                                                      |
| Orsat procedure (oxygen)                        | laboratory trailer                    | Whitaker          | Acceptable results.                                  |

### Recommendations

- 1. Unusually large differences were seen when RTI's standard orifice was used to test some of the sampling consoles used for source testing. These consoles are scheduled to be re-tested after their return to the laboratory and the results compared with the calibrations prior to the site test. Because of the discrepancies observed with the RTI orifice, the calibration results should be reported to DOE as soon as they are available. The pre- and post-test calibrations must agree within 5% or the data must be corrected. For regulatory purposes, the factor giving the higher emission estimate would be applied; however, for the research work under this project, an average of the two factors would probably be more appropriate.
- 2. Mass flow rates for solids such as bottom ash and ESP ash are calculated based on coal feed rates and percentage ash in the coal obtained by proximate/ultimate analysis. One or more independent, direct methods of measuring or estimating the amount of ash produced should be attempted. For example, one such method for independently calculating ash production rates would involve multiplying the ash slurry average mass concentration by the length of time the slurry flows and by the flow rate out of the pipe. Ash concentration in the slurry can be obtained by taking representative, time-proportional samples throughout the length of time the slurry flows. Flow rates can be measured at the outfall or obtained from the plant. Intercomparison of different estimates will increase the confidence in the validity of the mass balance calculations. This is a problem common to all contractors at all sites.
- 3. Because auditors were not allowed to take any completed Radian data sheets off-site, a data audit should be conducted in which raw data sheets, computer-logged data, logbooks, validation procedures, and calculations are examined.
- 4. A multi-point calibration has not been conducted on the CEMs used for the demonstration project since November 17-20, 1992. The CEMs are not scheduled for another calibration until the next phase of the JBR project, which begins in the fall. This would result in more than a year between calibrations. It is recommended that Georgia Power and Radian make provision to conduct multipoint calibrations at intervals of no more than six months for SO<sub>2</sub>, NO<sub>x</sub>, and O<sub>2</sub>. If possible, line losses between the span gas cylinders and the probes should also be determined at this time.
- 5. It is recommended that the major elements for mass balance determination be discussed and finalized between DOE and Radian, if this has not already been done.

# Personnel Present During Site Visit

| Name           | Organization  | Telephone     |
|----------------|---------------|---------------|
| Chuck Schmidt  | DOE           | (412)892-4690 |
| Tim McIlvried  | DOE           |               |
| Dave Burford   | Georgia Power | (404)253-2111 |
| Roy Clarkson   | Georgia Power |               |
| Jeff Nelms     | Georgia Power |               |
| Al Williams    | Radian        | (512)454-4797 |
| Ira Pearl      | Radian        | (512)454-4797 |
| Barbara Hayes  | Radian        | (512)454-4797 |
| Renee Cravin   | Radian        | (512)454-4797 |
| Dave Virbick   | Radian        | (512)454-4797 |
| Dave Maxwell   | Radian        | (512)454-4797 |
| Benji Cox      | Radian        | (512)454-4797 |
| Tom Peters     | Radian        | (512)454-4797 |
| Ed Zabasaija   | Radian        | (512)454-4797 |
| Tom Baraga     | Radian        | (512)454-4797 |
| Jim McGee      | Radian        | (512)454-4797 |
| Jim Hand       | Radian        | (512)454-4797 |
| Lori Rodriquez | Radian        | (512)454-4797 |
| Jim Flanagan   | RTI           | (919)541-6417 |
| Craig Whitaker | RTI           | (919)541-5988 |

# APPENDIX B: SAMPLING PROTOCOL

Radian used established sampling methods, where possible, to collect representative samples from the various sampling locations within the Yates plant site. The sampling locations at Plant Yates Boiler No. 1 and the various plant processes included:

- Boiler inlet, outlet, and sluice streams;
- ESP inlet, outlet, and ash streams;
- FGD system inlet, outlet, and slurry streams; and
- Stack gas.

For most of the sources, the sampling methods used were standard methods with known performance characteristics, specific for the collection of a representative sample according to the stream matrix. These methods, summarized in Table B-1, provide data for comparisons with industry standards.

#### **Gas Streams**

The following section presents the methodology to collect samples from gaseous streams.

### Particulate Loading

EPA Reference Method 5<sup>1</sup> or EPA Reference Method 17<sup>2</sup> was performed to determine particulate loading at the selected sampling locations at Plant Yates. Method 5 was used at the stack and ESP outlet locations and Method 17 was used at the ESP inlet sampling location. These methods provided isokinetic extraction of particulate matter on a glass fiber filter. However, since particulate loading determinations were performed in conjunction with the sampling for particulate and vapor-phase metals, quartz fiber filters were used in place of glass. The particulate mass, which included all material that condenses at or above the filtration temperature, was determined gravimetrically, after the removal of uncombined water.

Table B-1 Summary of Sampling Methods

| Stream Type | Parameter                                 | Frequency                                                                                    | Sampling Method                                                          |
|-------------|-------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Solids      | Ali                                       | Grab sample hourly to com-<br>posite per test run (time-<br>averaged composite) <sup>a</sup> | EPA Method S007 <sup>3</sup> (trowel/scoop)                              |
| Liquids     | All                                       | Grab sample hourly to com-<br>posite per test (time-averaged<br>composite) <sup>4</sup>      | EPA Method S007 (trowel/<br>scoop) EPA Method S004 <sup>4</sup><br>(tap) |
| Gases       | Volatile Organics                         | 4 pairs of VOST traps over 2-hour time period                                                | VOST (SW-846 Method 0030) <sup>5</sup>                                   |
|             | Semivolatile Organics                     | Integrated sample over 4- to 6-hour time period                                              | Modified Method 5 (SW-846)<br>Method 0010 <sup>6</sup>                   |
|             | Vapor-Phase Inorganic/<br>Organic Species | Integrated sample over 4- to 6-hour time period                                              | Various impinger solutions sampling trains                               |
|             | Trace Elements (Metals)                   | Integrated sample over 1- to 2-hour time period                                              | Multi-metals sampling train <sup>7</sup>                                 |
|             | Particulate                               | Integrated sample over 1- to 2-hour time period                                              | EPA Methods 5 <sup>s</sup> and 17 <sup>s</sup> sampling trains           |
|             | Particle Size Distribution                | Fixed point sample over appropriate time period                                              | In-stack cascade impactor                                                |

<sup>\*</sup> Solid and liquid samples for volatile organics analyses were sampled only once per day, per test run.

The RM5 sampling system incorporated a calibrated glass nozzle, heated glass lined probe, heated oven (housing the filter holder and substrate), a condenser assembly, and a calibrated extraction system. The Method 17 sampling system was similar except an in-stack filtration system was used as opposed to the hot box and heated filter holder configuration of Method 5. Both systems operated under vacuum for extraction of effluent gas through leak free components. Both systems were leak checked before and after each individual test.

An extraction (sampling) rate was determined based upon preliminary measurements of temperature, flow rate, pressure, and moisture collected prior to the sampling program. The sampling rate was calculated from these variables to assist in providing and maintaining isokinetic sampling throughout the entire test period. At isokinetic conditions, the velocity of the stack gas entering the nozzle of the extraction system is equal to the effluent velocity at the sample point. The extraction system allowed manual adjustment of the sample rate when changes occurred in any of the variables that would affect isokinetic collection.

The individual stream gas velocities and the selection of the proper sample nozzle dictated the required sample time. The sampling was conducted at equal time intervals along the selected traverse points as determined by EPA Reference Method 1.<sup>10</sup>

After each test sequence, the particulate samples were recovered. For Method 5, the collected sample included the particulate deposited inside the extraction nozzle, heated probe, and filter holder (designated as the front half probe and nozzle rinse, PNR), as well as the particulate collected on the filter substrate. The Method 17 collected sample included the particulate deposited inside the nozzle and collected on the in-stack filter.

### Particulate Metals and Vapor-Phase Metals

Sampling for the collection of particulate and vapor-phase metals was performed in conjunction with Method 5 and 17 using the procedures detailed in EPA Conditional Method 29. Method 29 is similar to Method 5 with a few sample train modifications. Modifications to Method 5 included replacing the stainless steel nozzle and probe liner with glass components. Method 17 was modified to operate with a glass nozzle and a teflon coated thimble holder to reduce the possibility of metal contamination due to the sampling system. The particulate material was collected on quartz fiber substrates, replacing the standard glass fiber filters normally used with Methods 5 and 17. Vapor-phase metals were collected in a series of impinger solutions. The first two impingers contained a dilute nitric acid and hydrogen peroxide solution. The third impinger was empty. The next two impingers contained acidic potassium permanganate solution for mercury collection. These impingers were followed by one dry impinger, and an impinger filled with silica gel. A minimum of 100 dry standard cubic feet of gas was collected isokinetically.

Sample recovery was performed in the on-site laboratory. An outline of the sample recovery procedure is detailed below:

### Appendix B: Sampling Protocol

- 1 Petri dish plastic filter
- 1 500 mL glass Acetone PNR. Rinse front half of filter holder with acetone into PNR bottle.
- 1 500 mL glass HNO<sub>3</sub> PNR. Rinse front half of filter holder into PNR bottle.
- 1 1000 mL plastic 1st & 2nd Imp.

  Rinse back half of filter holder and impingers with 0.1N HNO<sub>3</sub> into sample bottle.
- 1 1000 mL glass 3rd, 4th, & 5th impingers. Rinse impingers with 0.1N HNO<sub>3</sub> into sample bottle.
- 1 250 mL glass. Rinse 3rd, 4th & 5th impingers with 8N HCl.

Preservation - None

### Particle Size Distribution

The particle size distribution of material in the sample gas was measured using cascade impactors. These impactors classify particulate matter with respect to aerodynamic particle size.

The impactor separated the particulate matter into seven size fractions (six impacted fractions and one fraction collected on the back-up filter). The isokinetic flow rate through the sampling nozzle was determined based on velocity data obtained during earlier sampling (EPA Method 5). Operation of the impactor required the flow rate through the impactor be kept constant. This requirement eliminated the possibility of adjusting the flow rate if variations in stack gas velocity occurred. After sampling, the impactor was unloaded and the collected particulate material weighed. The weight gains were used to calculate the particle size distribution. The recovery outline is presented below:

- 10 Petri dishes plastic filters
- 1 250 mL glass acetone PNR. Rinse pre-cutter with acetone into PNR bottle.

Preservation - None

#### Anions

A Method 5 train was used to collect vapor-phase and solid-phase (particulate) acid gas species of hydrochloric, hydrofluoric, sulfuric and phosphoric acids along with sulfur dioxide and sulfur trioxide. The two sorbing impinger solutions for the acid gases were 200 mL of a carbonate/bicarbonate solution containing hydrogen peroxide followed by a dry impinger and an impinger filled with silica gel. The sample train was operated according to the procedures detailed in EPA Reference Method 5.

Recovery procedures for the Anions train are presented below:

- 1 Petri dish Plastic filter
- 1 500 mL plastic  $H_2O$  PNR. Rinse front half of filter holder with  $H_2O$  into PNR bottle.
- 1 1,000 mL plastic Impinger contents. Pour the contents of the first three impingers into sample bottle. Rinse back half of filter holder, connecting glassware and impingers with H<sub>2</sub>O into sample bottle.

Preservation - Keep cold (< 4°C)

### Volatile Organics

The volatile component determinations were performed using a volatile organic sampling train (VOST). In VOST, volatile organics were removed from the sample gas by sorbent traps maintained at 20°C. The first resin trap contained Tenax and the second trap contained Tenax followed by petroleum-based charcoal. A dry gas meter was used to measure the volume of gas passed through the pair of traps. Sample volumes of 20 liters were collected on separate pairs of traps with a 0.5 liter per minute sampling rate. The samples were collected at a fixed point in the stack where the velocity matches the average gas velocity.

The VOST consisted of a quartz probe, water-cooled condensers, sorbent traps, and sample gas metering system. During sample collection, the Tenax traps were maintained at 20°C. To further increase the collection efficiency, the sample gas was cooled and dried by passing it through a water-cooled condenser prior to its contact with the sorbent trap.

Before the initial assembly of the sampling train, all sample-contacting components were cleaned with non-ionic detergent, rinsed in HPLC-grade distilled water, and dried at 100°C. The resin traps were stored in clean glass containers with Teflon-lined screw caps, the condensers and other glassware were covered with appropriate end caps prior to use.

Before use, the traps, the Teflon-filled ceramic ferules, and the hardware used in connecting the traps, were conditioned. The virgin Tenax and the charcoal were Soxhlet extracted with methanol. After the resins were dried under infrared lamps, they were placed in a vacuum oven for six hours at 50°C. The tubes were packed individually and thermally conditioned for 12 hours at 200°C with organic free nitrogen at a rate of 40 mL/min. To check for emissions of volatile organic compounds, a tube from each batch was tested as a blank.

Leak checks were performed before and after collection of each pair of resin traps. After the post-collection leak check had been completed, the traps were sealed with end caps and returned to their respective glass containers for storage and transport. During storage and transportation, the traps were kept cool (< 4°C).

#### Aldehydes

Aldehydes were collected using a 2,4-dinitrophenylhydrazine (DNPH) train according to EPA Method 0011.<sup>12</sup> Sample collection was performed isokinetically following the procedures

detailed in EPA Method 5. The impinger solutions were combined into one sample along with the methylene chloride glassware rinse. The solutions were sealed in amber glass containers with Teflon closures and stored at 4°C.

#### Semivolatile Compounds

Semivolatile organics (SVs) determinations were performed using a Modified Method 5 (MM5)<sup>13</sup> sampling train. The probe washes, filter catches, XAD sorbent traps, and aqueous condensates were extracted and analyzed for SVs according to SW-846 Method 8270 protocol. The MM5 sampling system consisted of a heated probe, heated filter, sorbent module, and pumping and metering unit. A gooseneck nozzle of an appropriate diameter to allow isokinetic sample collection was attached to the probe. S-type Pitot tube differential pressure was monitored to determine the isokinetic sampling rate.

From the heated filter, sample gas entered the sorbent module. The sorbent module consisted of a water-cooled condenser followed by the XAD-2 resin trap. After the resin trap was a dry, modified Greenburg-Smith impinger which collected the aqueous condensate. The stem of this impinger was short to reduce carryover of collected aqueous condensate. Following the condensate trap were two water impingers that collected any mist carryover from the condensate trap, and a final impinger containing silica gel to dry the sample gas before metering. A pump and dry gas meter were used to control and monitor the sample gas flow rate.

Sampling of the stack gases was conducted in accordance with the published MM5 protocol. The sampling rate for each train was between 0.5 and 1.0 dscfm. A minimum of 106 dscf was collected by each train over a minimum sampling period of two hours.

Sampling train preparation and sample retrieval were performed in a controlled environment to reduce the possibility of sample contamination. Prior to assembly, each component of the sampling train was thoroughly rinsed with methylene chloride.

After sample collection, the ends of the sampling train were sealed with solvent-rinsed foil and returned to the clean-up area for sample retrieval. The filter was recovered and placed in a methylene chloride-rinsed glass petri dish. Aqueous condensate collected in the first two impingers and in the sorbent trap was transferred to methylene chloride-rinsed amber glass bottles with Teflon-lined screw cap closures. All components of the sampling train, from the nozzle through the sorbent module, including the probe, filter glassware, and impinger glassware were rinsed thoroughly with a solution of methylene chloride. The probe was cleaned using a nylon brush followed by rinsing with a methylene chloride. The probe rinse and glassware rinses were combined with the recovered condensate sample. The XAD-2 resin cartridges were sealed and transferred to the laboratory intact. The recovery procedures are outlined below:

- 1 Petri dish glass filter
- 1 500 mL glass MeCl<sub>2</sub> PNR. Rinse front half of filter holder with MeCl<sub>2</sub> into PNR bottle.

- 1 XAD Resin Cartridge
- 1 500 mL glass Condensate. Pour the contents of the first two impingers into bottle. Discard third impinger H<sub>2</sub>O<sub>2</sub> solution.
- 1 500 mL glass MeCl<sub>2</sub> Train Rinse. Rinse back half of filter holder, condenser, connecting glassware and impingers 1 and 2 with MeCl<sub>2</sub> into sample bottle.

Preservation - Keep cold (< 4°C)

#### Dioxins and Furans

Sampling for the collection of dioxins and furans present in the selected gas stream was performed using EPA Reference Method 23.<sup>14</sup> Sample collection procedures specified in Method 23 were followed with the following exception:

All train component rinses were performed with methylene chloride and acetone. An
additional toluene rinse was then performed and added to the respective front half and
back half acetone/methylene chloride rinse samples.

Sample rate, volume and procedures were identical to the MM5 procedures described above.

#### Ammonia

Sample collection for the determination of ammonia present in the gas streams was performed in conjunction with the anions sampling train. Similarly as with the anions sample train, gas was extracted isokinetically through a glass fiber filter then directed to an impinger train which contains the collection solution. For the collection of ammonia, dilute sulfuric acid was placed in the first two impingers of the condenser assembly. Recovery procedures for the ammonia train are presented below:

1 - 1,000 mL plastic - Impinger contents. Pour the contents of the first three impingers into sample bottle. Rinse connecting glassware and impingers with H<sub>2</sub>O into sample bottle.

#### Hydrogen Cyanide

Sample collection for the determination of hydrogen cyanide present in the gas streams was performed in conjunction with the ammonia sampling train. Gas was extracted isokinetically through a glass fiber filter then directed to an impinger train which contains the collection solution. For the collection of cyanide, dilute zinc acetate solution was placed in the third and fourth impingers of the ammonia train. Recovery procedures for the hydrogen cyanide portion of the train are presented below:

1 - 1,000 mL glass - Impinger contents. Pour the contents of the first three impingers into sample bottle. Rinse connecting glassware and impingers with H<sub>2</sub>O into sample bottle.

#### Radionuclides

Flue gas particulate samples for radionuclide analysis were collected using the approach defined by EPA Reference Methods 5 and 17 with one exception. The samples were collected at a single point in the duct representative of the average flue gas velocity. Filter samples were stored and transported in plastic petri dishes and thimbles were contained in plastic bottles.

#### Extractable Metals

Separate samples for extractable metals content were also collected using the single point isokinetic approach described for radionuclide sample collection. Quartz-fiber filter media was used to reduce the background metals contribution associated with glass fiber filters. Filter samples were stored and transported in glass petri dishes and thimbles were contained in glass bottles.

#### Vapor-Phase Mercury by Charcoal Sorption

Sampling for mercury speciation was performed using a sample train designed by Nicolas Bloom. The sampling train consists of a quartz probe, tandem pair of soda-lime traps, tandem iodated carbon traps, drierite cartridge and mass flow metering system. The sample train was assembled outside of the stack and leak checked to verify the sample integrity. The probe tip was placed at a single point in the stack that was determined to be representative of normal flow, based upon preliminary velocity measurements. The sample was extracted from the source with the sample rate adjusted to provide a 100 Liter sample collected over a minimum of two hours. At the completion of sampling, the train was leak checked and the sorbent tubes and probe liner recovered. Sorbent tubes were segregated based upon run and location and sealed in plastic bags for transport to the laboratory.

#### Chrome VI

Samples were collected via the BIF method for chromium (VI).<sup>16</sup> This method used a nozzle, teflon lines, peristaltic pump for recirculating solution and impinger solutions. The impinger contained a known volume of 10 N potassium hydroxide. Samples were collected isokinetically from the outlet stack using the sampling procedures detailed in EPA Reference Method 5. At the completion of the sample collection period, the sample train was purged with ultrapure nitrogen prior to the recovery of the sample. The impinger solutions were recovered from the sample train, filtered, then transported to the on-site laboratory for analysis. All of the train components were rinsed with 0.1N nitric acid and the rinse was retained for total chromium analysis.

#### Solid Sampling Procedures

Dry solid stream samples (raw coal, boiler feed coal, pulverizer rejects, limestone, and ESP hopper ash) were collected using grab sampling techniques. Individual grab samples of each stream were collected hourly throughout each test run and composited to generate a represen-

tative, time-averaged composite sample. Composite samples of raw coal, boiler feed coal, pulverizer rejects, and raw limestone were riffled and split to produce a 1 kilogram (minimum) sample which was placed in a plastic bag and sealed for transportation to the laboratory.

Two composite samples of dry fly ash, one for each ESP field, were prepared from individual grab samples collected from ESP hoppers 1-4, and 5-8. For purposes of compositing, the mass distribution and removal efficiency were assumed to be uniform across the ESP inlet duct and across each bank of ESP ash hoppers. Consequently, the ash collected from each of the four hoppers in the same field were composited equally. Each composite sample was thoroughly mixed and stored in pre-cleaned glass bottles (for analysis of organic compounds), or in plastic bottles. Samples collected for organic compound analyses were refrigerated at 4°C and kept cool during transportation to the laboratory. No preservation was needed on samples for inorganic analyses.

Sluiced ash stream samples (bottom ash and ESP fly ash) were also collected using grab sampling techniques. Bottom ash, which is normally sluiced once per shift at Plant Yates, was sluiced prior to the beginning of each daily test run to remove accumulated ash material that was non-representative of the test period. Bottom ash sluicing operation was then secured immediately before, and throughout each daily test period. At the conclusion of each test period, sluicing operations were resumed while a sampler collected multiple grab samples with a polyethylene dipper. Samples were collected as long as there was visual evidence of bottom ash in the sluice water at concentrations high enough to warrant continued sampling.

These samples were composited directly into a large bucket where the ash was allowed to settle. After the ash had settled, the sluice water component was siphoned off to avoid disturbing the ash fines, and the wet ash mixed and bottled for storage and transportation to the laboratory. Samples for analysis of organic compounds were split from the composite sample and preserved in pre-cleaned, amber-glass containers by cooling to 4°C.

Sluiced fly ash from the ESP hoppers was collected in a manner similar to bottom ash, except sluicing operations were performed continuously to avoid ash buildup in the ESP. Since the ESP ash sluicing system was combined with the sluiced economizer and air preheater ash, the systems were isolated before the start of the test run to avoid bias in the ESP ash composite. Grab samples were collected hourly from the sluice water discharge pipe to the ash pond. Like bottom ash, the fly ash was allowed to settle, and the sluice water component siphoned off to avoid disturbing the ash fines. The wet ash was mixed and bottled for storage and transportation to the laboratory. Samples for analysis of organic compounds were split from the composite sample and preserved in pre-cleaned, amber-glass containers by cooling to 4°C.

Limestone and FGD slurry samples were collected using grab-tap sampling procedures. Sample taps were opened and allowed to purge immediately prior to collecting the process samples to insure representative sample collection. Hourly grab samples of limestone slurry were composited directly to a large container, and FGD slurry was filtered directly from the

tap through a filter press. The limestone slurry composites were filtered after mixing. The recovered filter cakes were bottled for storage and transportation to the laboratory. Samples for analysis of organic compounds were split from the composite samples and preserved in pre-cleaned, amber-glass containers by cooling to 4°C. Sub-samples of the FGD solids composite were also taken for the on-site analysis of sulfite and sulfate ions.

#### **Liquid Sampling Procedures**

Liquid samples were collected from both filtered and unfiltered sources. Raw, unfiltered water streams consisted of ash pond water, recycled gypsum pond water, coal pile run-off, and cooling water at the inlet of the steam condenser. Filtered streams consisted of bottom ash and fly ash sluice water, and limestone and FGD slurry filtrates.

Raw water samples were sampled by grab-tap sampling techniques. Hourly grab samples were composited into appropriate sample containers and preserved as soon as possible after sample collection. In some cases the sample was added directly to sample bottles containing the preservative in order to reduce the loss of the more volatile species (e.g. NH<sub>3</sub>, CN<sup>-</sup>). Table B-2 presents the liquid sample preservation techniques for specific analytes.

Filtrate samples were collected as described in the corresponding sluice water or slurry stream. Sluice water that was siphoned from the settled ash material was filtered in its entirety, split into the appropriate sample containers, and preserved according to the techniques presented in Table B-2. Slurry filtrates were also split into appropriate containers and preserved in the same manner as sluice water filtrates.

Sluice water and slurry filtrate samples collected for the analysis of volatile organic compounds and aldehydes present the only exception to the sample collection procedures described above. Due to the volatility of these analytes, bottom ash sluice water, ESP fly ash sluice water, limestone slurry, and FGD slurry samples were collected for volatile organics directly into VOA vials without filtration, and chilled to 4°C.

#### References

- 1. 40 CFR 60, Appendix A. Test Methods. "Method 5: Determination of Particulate Emissions from Stationary Sources."
- 2. 40 CFR 60, Appendix A. Test Methods. "Method 17: Determination of Particulate Emissions from Stationary Sources (In-Stack Filtration Method)."
- 3. U.S. Environmental Protection Agency. "Method S007: Solid Grab Sample, Trowel (Scoop)," Sampling and Analysis Methods for Hazardous Waste Combustion. EPA-600/8-84-002 (February 1984).
- 4. U.S. Environmental Protection Agency. "Method S004: Liquid Grab Sample, Tap," Sampling and Analysis Method for Hazardous Waste Combustion. EPA-600/8-84-002 (February 1984).

- 5. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 0030: Volatile Organic Sampling Train," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed., Washington, D.C. (November 1986).
- U.S. Environmental Protection Agency, Office of Solid Waste. "Method 0010: Modified Method 5 Sampling Train," Test Methods for Evaluating Solid Waste. SW-846, 3rd. ed. Washington, D.C. (November 1986).
- 7. 40 CFR 266, Subpart H, "Method 29: Determination of Metals Emissions in Exhaust Gases from Hazardous Waste Incineration and Similar Combustion Processes: Proposed Method."
- 8. 40 CFR 60, Appendix A. Test Methods. "Method 5: Determination of Particulate Emissions from Stationary Sources."
- 9. 40 CFR 60, Appendix A. *Test Methods*. "Method 17: Determination of Particulate Emissions from Stationary Sources (In-Stack Filtration Method)."
- 10. 40 CFR 60, Appendix A. *Test Methods*. "Method 1: Sample and Velocity Traverses from Stationary Sources."
- 11. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 0030: Volatile Organic Sampling Train," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed., Washington, D.C. (November 1986).
- 12. 40 CFR 266, Appendix IX, Section 3.5. Methods Manual for Compliance with the BIF Regulations. "Sampling for Aldehyde and Ketone Emissions from Stationary Sources (Method 0011)."
- 13. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 0010: Modified Method 5 Sampling Train," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed., Washington, D.C. (November 1986).
- 14. 40 CFR 266, Appendix IX: Methods Manual for Compliance with the BIF Regulations. "Determination of Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans from Stationary Sources (Method 23)."
- 15. Bloom, Nicolas S., Eric M. Prestbo, and Vesna L. Miklavicic. "Fluegas Mercury Emissions and Speciations from Fossil Fuel Combustion." Published in the proceedings of the Second International Conference on Managing Hazardous Air Pollutants. Sponsored by the Electric Power Research Institute. Washington, D.C. (July 1993).
- 40 CFR 266, Appendix IX: Methods Manual for Compliance with the BIF Regulations.
   "Determination of Hexavalent Chromium Emissions from Stationary Sources (Method Cr<sup>6+</sup>)."

Table B-2
Preservation, Storage, and Holding Time Requirements for Liquid Samples

| Analytical Parameter  | Preservation and Storage<br>Requirements          | Maximum Holding Time (Days) |
|-----------------------|---------------------------------------------------|-----------------------------|
| Volatile Organics     | Cool 4°C; amber glass VOA vial                    | 7 analyze                   |
| Semivolatile Organics | Cool 4°C; amber glass                             | 14 extract, 40 analyze      |
| Formaldehyde          | Cool 4°C; amber glass                             | 5 derivitize, 3 analyze     |
| Soluble Metals        | Filter on-site; HNO <sub>3</sub> pH < 2           | 6 months analyze            |
| Total Metals          | HNO <sub>3</sub> pH <2; plastic                   | 6 months analyzea           |
| Anions                | Cool 4°C; plastic                                 | 28 analyze                  |
| Phosphate             | Cool 4°C; H <sub>2</sub> SO <sub>4</sub> to pH <2 | 28 analyze                  |
| Sulfite               | None; plastic                                     | Analyze immediately         |
| Ammonia               | Cool 4°C; H <sub>2</sub> SO <sub>4</sub> to pH <2 | 28 analyze                  |
| Cyanide               | Cool 4°C; NaOH to pH > 12                         | 14 analyze                  |
|                       |                                                   |                             |

<sup>•</sup> Maximum holding time for Hg is 28 days.

## Appendix C: SAMPLE CALCULATIONS

C-1

#### **TABLE OF CONTENTS**

| Tow Rate Determination                   | . C-3  |
|------------------------------------------|--------|
| Nomenclature                             | . C-3  |
| Calculations                             | . C-4  |
| Moisture Determination                   | . C-5  |
| Nomenclature                             | . C-5  |
| articulate Emission Determination        |        |
| Calculations                             |        |
|                                          |        |
| 'ables                                   | . C-8  |
| ESP Inlet/Aldehydes                      | . C-8  |
| ESP Inlet/Modified Method 5              |        |
| ESP Inlet/PSD                            | .C-10  |
| ESP Inlet/VOST                           | .C-11  |
| ESP Inlet/Multi-Metals - Particulate     | .C-12  |
| ESP Inlet/Anions                         |        |
| ESP Inlet/Ammonia-Cyanide                |        |
| ESP Inlet/Radionuclides                  |        |
| ESP Inlet/Size-Fractionated Particulate  |        |
| ESP Inlet/Extractable Metals             |        |
| EDI IIIOU EMMOUDIO IVIONIS               | . • 17 |
| ESP Outlet/Modified Method 5             | C-18   |
| ESP Outlet/Aldehydes                     |        |
| ESP Outlet/VOST                          |        |
| ESP Outlet/PSD                           |        |
| ESP Outlet/Multi-Metals - Particulate    |        |
| ESP Outlet/Anions                        |        |
| ESP Outlet/Ammonia-Cyanide               |        |
| ESP Outlet/Size-Fractionated Particulate |        |
| ESP Outlet/Radionuclides                 |        |
| ESP Outlet/Extractable Metals            |        |
| ESP Ouner Extractable Metals             | . (-2) |
| Stack/Modified Method 5                  | C 20   |
|                                          |        |
| Stack/Method 23                          |        |
| Stack/VOST                               |        |
| Stack/Aldehydes                          |        |
| Stack/PSD                                |        |
| Stack/Multi-Metals - Particulate         |        |
| Stack/Anions                             |        |
| Stack/Ammonia-Cyanide                    |        |
| Stack/Radionuclides                      |        |
| Stack/Extractable Metals                 |        |
| Stack/Chromium VI                        | .C-38  |

A brief discussions of the data reduction procedures required to support this program is provided below. All calculations and data reduction procedures are compiled from 40 CFR Part 60, Appendix A for the specific Reference Methods. Included with each calculation is a brief definition of terms and general nomenclature utilized in the data reduction process.

#### **Flow Rate Determination**

The average gas velocity is determined from the gas density and from measurements of the average velocity head with a Pitot tube and inclined manometer.

#### Nomenclature

A = Cross sectional area of the stack or duct,  $(ft^2)$ 

 $C_n$  = Pitot tube coefficient, dimensionless

MW<sub>drv</sub> = Molecular weight of gas, dry basis, lb/lb-mole

MW<sub>wet</sub> = Molecular weight of gas, moisture corrected, lb/lb-mole

P<sub>ber</sub> = Uncorrected barometric pressure at test site, "Hg

P<sub>e</sub> = Static pressure of gas, "Hg

P. = Absolute pressure of gas, "Hg

ACFM = Effluent flow in actual feet per minute

SCFM = Effluent flow in standard cubic feet per minute

DSCFM = Effluent flow in dry standard cubic feet per minute

T<sub>\*</sub> = Average gas temperature, °F

Vel = Average gas velocity in feet per second

 $\Delta P$  = Velocity Head of gas, "H<sub>2</sub>O

ave  $\Delta P$  = Average square root of the velocity head, " $H_2O$ 

% CO<sub>2</sub> = Percent carbon dioxide by volume, dry basis

 $\% O_2 = Percent oxygen by volume, dry basis$ 

% H<sub>2</sub>O = Percent moisture of gas stream

Appendix C: Sample Calculations

#### **Calculations**

Stack Pressure:

$$P_{g} = P_{bar} + \left(\frac{P_{g}}{13.6}\right) \tag{C-1}$$

Molecular Weight - Dry Basis:

$$MW_{dry} = 0.44 (\% CO_2) + 0.32 (\% O_2) + 0.28 (100 - \% CO_2 - \% O_2)$$
 (C-2)

Molecular Weight - Wet Basis:

$$MW_{wet} = MW_{dry} \times \left[ \frac{(1 - \% H_2O)}{100} \right] + 0.18 \times (\% H_2O)$$
 (C-3)

Velocity (fps):

VPS = 85.49 x C<sub>p</sub> x (ave 
$$\sqrt{\Delta P}$$
) x  $\sqrt{\frac{T_s + 460}{P_s \times MW_{wet}}}$  (C-4)

Flow Rate (ACFM):

$$ACFM = (VPS) \times (A) \times 60$$
 (C-5)

Flow Rate (SCFM):

SCFM = 17.64 x 
$$\left[\frac{P_s}{(T_s + 460)}\right]$$
 x ACFM (C-6)

Flow Rate (DSCFM):

DSCFM = 17.64 x 
$$\left[\frac{100 - \% H_2O}{100}\right] x \left[\frac{P_s}{(T_s + 460)}\right] x ACFM$$
 (C-7)

#### **Moisture Determination**

A gas sample is extracted from the source and moisture is removed from the sample stream and determined gravimetrically.

#### Nomenclature

 $B_{wo}$  = Water vapor in gas stream, proportion by volume

P<sub>bar</sub> = Uncorrected barometric pressure at test location, "Hg

 $T_m = Average dry gas meter temperature, °F$ 

 $V_m = Volume of gas sampled as measured by dry gas meter, acf$ 

V<sub>mstd</sub> = Volume of gas sampled, corrected to standard conditions, dscf

 $V_{\rm H2O}$  = Volume of condensate collected in the condenser system, (mL)

 $V_w = Volume of water vapor$ 

 $Y_d$  = Dry gas meter calibration factor

DH = Average pressure differential, "H<sub>2</sub>O

Volume of Water Vapor:

$$V_w = 0.04707 \times (V_{H2O})$$
 (C-8)

Standard Sample Volume:

$$V_{MSTD} = 17.64 (Y_d) (V_m) \times \left[ \frac{P_{ber} + (\Delta H/13.6)}{T_m + 460} \right]$$
 (C-9)

#### Appendix C: Sample Calculations

Water Vapor Fraction:

$$\mathbf{B}_{wo} = \frac{\mathbf{V}_{w}}{\langle \mathbf{V}_{w} \rangle + \langle \mathbf{V}_{mstd} \rangle}$$
 (C-10)

Percent Moisture:

% Moisture = 
$$B_{wo} \times 100$$
 (C-11)

#### **Particulate Emission Determination**

Particulate matter is extracted isokinetically from a source and collected on a heated substrate and condensed in the impinger train. The particulate mass is determined gravimetrically after removal of uncombined water.

 $A_n = Area of nozzle (ft^2)$ 

 $B_{wo}$  = Water vapor in gas stream, proportional by volume

C<sub>part</sub> = Particulate mass collected, mg

DH = Average orifice pressure drop, "H<sub>2</sub>O

DSCFM = Effluent flow, dry standard cubic feet per minute

 $P_{bar} = Uncorrected barometric pressure at test location, "Hg$ 

P<sub>i</sub> = Absolute pressure of gas, "Hg

T = Total sample time, minutes

 $T_m = Average dry gas meter temperature, °F$ 

 $T_s = Average gas temperature, °F$ 

 $V_{H2O}$  = Volume of condensate collected, mL

 $V_m$  = Volume of gas sampled as measured by dry gas meter, acf

 $V_{mstd}$  = Volume of gas sampled, corrected to standard conditions, dscf

Vel = Average duct velocity, feet per second

 $Y_d$  = Dry gas meter calibration factor

% I = Isokinetic sampling rate

#### **Calculations**

Dry Gas Volume:

$$V_{MSTD} = 17.64 (Y_d) (V_m) \times \left[ \frac{P_{ber} + (\Delta H/13.6)}{T_m + 460} \right]$$
 (C-12)

Percent Isokinetic:

% I = 0.09450 x 
$$\frac{[(T_s + 460) \times (V_{mstd})]}{(T) \times (V_s) \times (P_s) \times (A_n) \times (1 - B_{wo})}$$
 (C-13)

Particulate Concentration:

$$gr/dscf = \frac{C(part) \times 0.0154}{V_{mstd}}$$
 (C-14)

Particulate Emission:

$$1b/hr = \frac{(gr/dscf) \times DSCFM \times 60}{7000}$$
 (C-15)

PLANT YATES
ESP INLET/ALDEHYDES

| Run No.                               |          | 2           | 3        | Average     |
|---------------------------------------|----------|-------------|----------|-------------|
| Date                                  | 6/21/93  | 6/22/93     | 6/23/93  | Avelage     |
| n                                     |          |             |          | - 1         |
| Time Start                            | 1310     | 0735        | 0720     | •           |
| Time Finish                           | 1345     | 0805        | 0750     | -           |
| Operator                              | MKO      | MKO         | MKO_     |             |
| Initial Leak Rate                     | 0.008    | 0.008       | 0.009    | -           |
| Final Leak Rate                       | 0.009    | 0.006       | 0.007    | -           |
| Duct Dimensions (ft)                  | 8.5 x 57 | 8.5 x 57    | 8.5 x 57 | -           |
| Pitot Tube Correction Factor (Cp)     | 0.84     | 0.84        | 0.84     | -           |
| Dry Gas Meter Calibration (Yd)        | 1.009    | 1.009       | 1.009    | -           |
| Nozzle Diameter (inches)              | 0.2750   | 0.2750      | 0.2750   | -           |
| Barometric Pressure ("Hg)             | 29.51    | 29.40       | 29.39    | 29.43       |
| Static Pressure ("H2O)                | -6.4     | -6.2        | -6.0     | -6.2        |
| Meter Volume (acf)                    | 12.281   | 10.395      | 10.275   | 10.984      |
| Average square root of delta p        | 0.3230   | 0.3580      | 0.3132   | 0.3314      |
| Average delta H (" H2O)               | 0.39     | 0.48        | 0.37     | 0.41        |
| Average Stack Temperature (F)         | 315      | 311         | 314      | 313         |
| Average DGM Temp (F)                  | 79.9     | 76.9        | 77.7     | 78.2        |
| Test Duration (minutes)               | 35.0     | 30.0        | 30.0     | 31.7        |
| % CO2                                 | 10.5     | 10.2        | 10.8     | 10.5        |
| % O2                                  | 8.5      | 8.6         | 8.3      | 8.5         |
| % N2                                  | 81.0     | 81.2        | 80.9     | 81.0        |
| Meter Volume (dscf)                   | 11.964   | 10.148      | 10.009   | 10.707      |
| Flue Gas Moisture (%)                 | 7.9      | 8.0         | 8.3      | 8.1         |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.07    | 29.02       | 29.06    | 29.05       |
| Absolute Stack Pressure (" Hg)        | 29.04    | 28.94       | 28.95    | 28.98       |
| Absolute Stack Temperature (R)        | 775      | <i>7</i> 71 | 774      | <i>7</i> 73 |
| Average Gas Velocity (f/sec)          | 22.22    | 24.63       | 21.57    | 22.81       |
| Avg Flow Rate (acfm)                  | 645,978  | 716,039     | 627,156  | 663,058     |
| Avg Flow Rate (dscfm)                 | 393,345  | 436,243     | 379,432  | 403,007     |
| Isokinetic Sampling Rate (%)          | 102.10   | 91.10       | 103.31   | 98.83       |

PLANT YATES
ESP INLET/MODIFIED METHOD 5

| Run No.                               | 1        | 2        | 3        | Average |
|---------------------------------------|----------|----------|----------|---------|
| Date                                  | 6/21/93  | 6/22/93  | 6/23/93  | · -     |
| Time Start                            | 1255     | 0729     | 707      | - [     |
| Time Finish                           | 1815     | 1341     | 1250     | -       |
| Operator                              | JWM      | JWM      | JWM      | -       |
| Initial Leak Rate                     | 0.012    | 0.010    | 0.008    | -       |
| Final Leak Rate                       | 0.015    | 0.018    | 0.014    |         |
| Duct Dimensions (ft)                  | 8.5 x 57 | 8.5 x 57 | 8.5 x 57 | - 1     |
| Pitot Tube Correction Factor (Cp)     | 0.84     | 0.84     | 0.84     |         |
| Dry Gas Meter Calibration (Yd)        | 0.999    | 0.999    | 0.999    | -       |
| Nozzle Diameter (inches)              | 0.3580   | 0.3580   | 0.3580   | -       |
| Barometric Pressure ("Hg)             | 29.51    | 29.40    | 29.39    | 29.43   |
| Static Pressure ("H2O)                | -6.4     | -6.2     | -6.0     | -6.2    |
| Meter Volume (acf)                    | 103.779  | 115.043  | 111.153  | 109.992 |
| Average square root of delta p        | 0.2399   | 0.2651   | 0.2470   | 0.2507  |
| Average delta H (" H2O)               | 0.74     | 0.85     | 0.74     | 0.78    |
| Average Stack Temperature (F)         | 295      | 304      | 300      | 300     |
| Average DGM Temp (F)                  | 85.4     | 84.7     | 87.1     | 85.7    |
| Test Duration (minutes)               | 240.0    | 240.0    | 240.0    | 240.0   |
| Condensed Water (g)                   | 180.8    | 202.6    | 203.5    | 195.6   |
| % CO2                                 | 10.5     | 10.2     | 10.8     | 10.5    |
| % O2                                  | 8.5      | 8.6      | 8.3      | 8.5     |
| % N2                                  | 81.0     | 81.2     | 80.9     | 81.0    |
| Meter Volume (dscf)                   | 99.183   | 109.693  | 105.460  | 104.779 |
| Flue Gas Moisture (%)                 | 7.9      | 8.0      | 8.3      | 8.1     |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.07    | 29.02    | 29.05    | 29.05   |
| Absolute Stack Pressure (" Hg)        | 29.04    | 28.94    | 28.95    | 28.98   |
| Absolute Stack Temperature (R)        | 755      | 764      | 760      | 760     |
| Average Gas Velocity (f/sec)          | 16.30    | 18.15    | 16.86    | 17.10   |
| Avg Flow Rate (acfm)                  | 473,726  | 527,730  | 490,232  | 497,230 |
| Avg Flow Rate (dscfm)                 | 295,838  | 324,601  | 301,800  | 307,413 |
| Isokinetic Sampling Rate (%)          | 96.84    | 97.61    | 100.93   | 98.46   |

#### PLANT YATES ESP INLET/PSD

| Run No.                               | 1        | 2        | 3        | Average |
|---------------------------------------|----------|----------|----------|---------|
| Date                                  | 6/21/93  | 6/22/93  | 6/23/93  |         |
| Time Start                            | 1555     | 0925     | 0935     | _ ;     |
| Time Finish                           | 1740     | 1145     | 1130     | -       |
| Operator                              | МКО      | MKO      | MKO      | •       |
| Initial Leak Rate                     | 0.015    | 0.018    | 0.016    | -       |
| Final Leak Rate                       | NA       | NA       | NA       | •       |
| Duct Dimensions (ft)                  | 8.5 x 57 | 8.5 x 57 | 8.5 x 57 | •       |
| Pitot Tube Correction Factor (Cp)     | 0.84     | 0.84     | 0.84     | •       |
| Dry Gas Meter Calibration (Yd)        | 0.988    | 0.988    | 0.988    | -       |
| Nozzle Diameter (inches)              | 0.2750   | 0.2750   | 0.2750   | -       |
| Barometric Pressure ("Hg)             | 29.51    | 29.40    | 29.39    | 29.43   |
| Static Pressure ("H2O)                | -6.4     | -6.2     | -6.0     | -6.2    |
| Meter Volume (acf)                    | 30.730   | 43.462   | 40.653   |         |
| Average square root of delta p        | 0.2650   | 0.2828   | 0.2915   | 0.2798  |
| Average delta H (" H2O)               | 0.27     | 0.31     | 0.31     | 0.30    |
| Average Stack Temperature (F)         | 318      | 320      | 318      | 319     |
| Average DGM Temp (F)                  | 84.8     | 85.0     | 94.0     | 87,9    |
| Test Duration (minutes)               | 105.0    | 140.0    | 115.0    | 120.0   |
| % CO2                                 | 10.5     | 10.2     | 10.8     | 10.5    |
| % O2                                  | 8.5      | 8.6      | 8.3      | 8.5     |
| % N2                                  | 81.0     | 81.2     | 80.9     | 81.0    |
| Meter Volume (dscf)                   | 29.041   | 40.910   | 37.631   | 35.861  |
| Flue Gas Moisture (%)                 | 7.9      | 8.0      | 8.3      | 8.1     |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.07    | 29.02    | 29.06    |         |
| Absolute Stack Pressure (" Hg)        | 29.04    | 28.94    | 28.95    |         |
| Absolute Stack Temperature (R)        | 778      | 780      | 778      | 779     |
| Average Gas Velocity (f/sec)          | 18.27    | 19.57    |          |         |
| Avg Flow Rate (acfm)                  | 531,075  | 568,922  | 585,210  | 561,736 |
| Avg Flow Rate (dscfm)                 | 322,049  | 342,614  | 352,234  | 338,966 |
| Isokinetic Sampling Rate (%)          | 100.90   | 100.20   | 109.14   | 103.42  |

## PLANT YATES ESP INLET/VOST

| Run No.                               | ¥1                   | 18        | 10        | 2A        | 2B        | 30        | 3A       | 38                  | 30        | Average |
|---------------------------------------|----------------------|-----------|-----------|-----------|-----------|-----------|----------|---------------------|-----------|---------|
| Date                                  | 6/21/93              | 6/21/93   | 6/21/93   | 6/22/93   | 6/27/93   | 6/22/93   | 6/23/93  | 6/23/93             | 6/23/93   | •       |
| Time Start                            | 1400                 | 1455      | 1550      | 0742      | 0160      | 1001      | 0742     | 0840                | 0932      |         |
| Time Finish                           | 1440                 | 1535      | 1630      | 0822      | 0950      | 돌         | 0822     | 0920                | 1012      | ı       |
| Operator                              | RVW                  | RVW       | RVW       | RVW       | RVW       | RVW       | RVW      | RVW                 | RVW       |         |
| ak Rate                               | 0.00 @ 17"           | 0 00 @ 15 | 0.00 @ 18 | 0.00 @ 17 | 0.00 @ 16 | 0.00 @ 15 | 0.00@16  | 0.00 @ 16 0.00 @ 15 | 0.00 @ 18 |         |
| Final Leak Rate                       | 0.00 @ 16" 0.00 @ 17 | _         | 0.00 @ 15 | 0.00@15   | 0.00 @ 16 | 0.00@16   | 0.00@15  | 0.00 @ 15           | 0.00 @ 16 | •       |
| Duct Dimensions (ft)                  | 8.5 x 57             | 8.5 x 57  | 8.5 x 57  | 8.5 x 57  | 8.5 x 57  | 8.5 x 57  | 8.5 x 57 | 8.5 x 57            | 8.5 x 57  |         |
| Dry Gas Meter Calibration (Yd)        | 1.0113               | 1.0113    | 1.0113    | 1.0113    | 1.0113    | 1.0113    | 1.0113   |                     | 1.0113    | ſ       |
| Barometric Pressure ("Hg)             | 29.51                | 29.51     | 29.51     | 29.40     | 29.40     | 29.40     | 29.39    | 29.36               | 29.36     | 29.45   |
| Static Pressure ("H20)                | -6.4                 | 4.9       | -6.4      | -6.2      | -6.2      | -6.2      | -6.0     | -6.0                | -6.0      | -6.3    |
| Meter Volume (al.)                    | 20.235               | 20.150    | 20.115    | 20.045    | 20.030    | 20.050    | 20.040   | 20.075              | 20.080    | 20.095  |
| Average delta H (" H2O)               | 1.40                 | 1.40      | 1.50      | 1.40      | 1.40      | 1.40      | 1.50     | 1.40                |           | 1.43    |
| Average Stack Temperature (F)         | 295                  | 295       | 295       | 304       | 304       | 304       | 300      |                     | 300       | 300     |
| Average DGM Temp (C)                  | 26.3                 | 28.5      | 29.7      | 24.0      | 26.7      | 29.3      | 25.6     | 29.4                |           | 27.2    |
| Test Duration (minutes)               | 40.0                 | 40.0      | 40.0      | 40.0      | 40.0      | 40.0      |          |                     |           | 40.0    |
| % C02                                 | 10.5                 | 10.5      | 10.5      | 10.2      | 10.2      | 10.2      | 10.8     | 10.8                | 10.8      | 10.4    |
| % 02                                  | 8.5                  | 8.5       | 8.5       | 8.6       | 8.6       | 8.6       |          |                     |           | 8.5     |
| % N2                                  | 81.0                 | 81.0      | 81.0      | 81.2      | 81.2      | 81,2      |          |                     |           | 81.1    |
| Meter Volume (dsL)                    | 19.845               | 19.615    | 19.503    | 19.731    | 19.542    | 19.391    | 19.621   | 19.400              | .61       | 19.607  |
| Flue Gas Moisture (%)                 | 7.9                  | 7.9       | 7.9       | 8.0       | 8.0       | 8.0       | 8.3      | 6,3                 | 8.3       | 8.0     |
| Gas Molecular Weight (Wet) (g/g-mole) |                      | 29.07     | 29.07     | 29.02     | 29.02     | 29.02     | 29.06    | 29.06               | 29.06     | 29.05   |
| Absolute Stack Pressure (" Hg)        |                      | 29.04     | 29.04     | 28.94     | 28.94     | 28.94     | 28.95    | 28.92               | 28.92     | 28.99   |
| Absolute Stack Temperature (R)        | 755                  | 755       | 755       | 764       | 764       | 764       | 760      | 760                 | 760       | 760     |

PLANT YATES
ESP INLET/MULTI-METALS - PARTICULATE

| Run No.                               | 1        | 2        | 3        | Average      |
|---------------------------------------|----------|----------|----------|--------------|
| Date                                  | 6/25/93  | 6/26/93  | 6/27/93  | -            |
| Time Start                            | 0800     | 0935     | 0848     | -            |
| Time Finish                           | 1405     | 1611     | 1405     | - 1          |
| Operator                              | JWM      | JWM      | JWM      |              |
| Initial Leak Rate                     | 0.014    | 0.006    | 0.017    | _            |
| Final Leak Rate                       | 0.016    | 0.012    | 0.015    | _ [          |
| Duct Dimensions (ft)                  | 8.5 x 57 | 8.5 x 57 | 8.5 x 57 | -            |
| Pitot Tube Correction Factor (Cp)     | 0.84     | 0.84     | 0.84     | · -          |
| Dry Gas Meter Calibration (Yd)        | 0.999    | 0.999    | 0.999    | -            |
| Nozzle Diameter (inches)              | 0.3580   | 0.3580   | 0.3580   | - 1          |
| Barometric Pressure ("Hg)             | 29.55    | 29.56    | 29.40    | 29.50        |
| Static Pressure ("H2O)                | -5.8     | -5.8     | -5.9     | <i>-</i> 5.8 |
| Meter Volume (acf)                    | 111.213  | 110.002  | 111.690  | 110.968      |
| Average square root of delta p        | 0.2403   | 0.2490   | 0.2524   | 0.2472       |
| Average delta H (" H2O)               | 0.77     | 0.74     | 0.76     | 0.76         |
| Average Stack Temperature (F)         | 301      | 299      | 303      | 301          |
| Average DGM Temp (F)                  | 84.0     | 87.0     | 90.0     | 87.0         |
| Test Duration (minutes)               | 240.0    | 240.0    | 240.0    | 240.0        |
| Condensed Water (g)                   | 201.0    | 244.0    | 252.2    | 232.4        |
| Filter Weight Gain (g)                | 21.4931  | 24.9809  | 26.2059  | 24.2266      |
| PNR Weight Gain (g)                   | 1.8780   |          | 0.3098   | 1.0939       |
| % CO2                                 | 10.1     | 10.5     | 11.8     | 10.8         |
| % O2                                  | 9.9      | 8.8      | 7.0      | 8.6          |
| % N2                                  | 80.0     | 80.7     | 81.2     | 80.6         |
| Meter Volume (dscf)                   | 106.704  | 104.991  | 105.454  | 105.716      |
| Flue Gas Moisture (%)                 | 8.2      | 9.9      | 10.1     | 9.4          |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.03    | 28.84    | 28.93    | 28.94        |
| Absolute Stack Pressure (" Hg)        | 29.12    | 29.13    | 28.97    | 29.07        |
| Absolute Stack Temperature (R)        | 761      | 759      | 763      | 761          |
| Average Gas Velocity (f/sec)          | 16.37    | 16.99    | 17.29    | 16.89        |
| Avg Flow Rate (acfm)                  | 475,917  | 494,021  | 502,740  | 490,893      |
| Avg Flow Rate (dscfm)                 | 295,051  | 301,434  | 302,524  | 299,670      |
| Isokinetic Sampling Rate (%)          | 104.46   | 100.61   | 100.69   | 101.92       |
| Particulate Concentration (gr/dscf)   | 3.38E+00 | 3.67E+00 | 3.88E+00 | 3.64E+00     |
| Particulate Concentration (lbs/dscf)  | 4.83E-04 | 5.25E-04 | 5.54E-04 | 5.21E-04     |
| Particulate Emission (grams/sec)      | 1,077    | 1,196    | 1,268    | 1,180        |
| Particulate Emission (lbs/hour)       | 8,550    | 9,489    | 10,064   | 9,367        |

## PLANT YATES ESP INLET/ANIONS

| Run No.                               | 1        | 2        | 3        | Average  |
|---------------------------------------|----------|----------|----------|----------|
| Date                                  | 6/25/93  | 6/26/93  | 6/27/93  | /svolage |
| Time Start                            | 1225     | 1108     | 0715     | _        |
| Time Finish                           | 1405     | 1213     | 0837     | _ '      |
| Operator                              | MKO      | MKO      | MKO      | _        |
| Initial Leak Rate                     | 0.010    | 0.004    | 0.009    |          |
| Final Leak Rate                       | 0.004    | 0.009    | 0.005    | _        |
| Duct Dimensions (ft)                  | 8.5 x 57 | 8.5 x 57 | 8.5 x 57 | -        |
| Pitot Tube Correction Factor (Cp)     | 0.5 7.57 | 0.84     | 0.5 7.57 | _        |
| Dry Gas Meter Calibration (Yd)        | 1.003    | 1.003    | 1.003    | •        |
| Nozzle Diameter (inches)              | 0.3750   | 0.3750   | 0.3750   | _        |
| Barometric Pressure ("Hg)             | 29.55    | 29.56    | 29.40    | 29.50    |
| Static Pressure ("H2O)                | -5.8     | -5.8     | -5.4     | -5.7     |
| Meter Volume (acf)                    | 64.816   | 44.245   | 45.140   | 51.400   |
| Average square root of delta p        | 0.3161   | 0.3201   | 0.2783   | 0.3048   |
| Average delta H (" H2O)               | 1.36     | 1.41     | 0.99     | 1.25     |
| Average Stack Temperature (F)         | 290      | 282      | 310      | 294      |
| Average DGM Temp (F)                  | 85.0     | 88.0     | 76.0     | 83.0     |
| Test Duration (minutes)               | 100.0    | 65.0     | 82.0     | 82.3     |
| % CO2                                 | 10.1     | 10.5     | 11.8     | 10.8     |
| % O2                                  | 9.9      | 8.8      | 7.0      | 8.6      |
| % N2                                  | 80.0     | 80.7     | 81.2     | 80.6     |
| Meter Volume (dscf)                   | 62.414   | 42.391   | 43,933   | 49.579   |
| Flue Gas Moisture (%)                 | 8.2      | 9.9      | 10.1     | 9.4      |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.03    | 28.84    | 28.94    | 28.94    |
| Absolute Stack Pressure (" Hg)        | 29.12    | 29.13    | 29.00    | 29.09    |
| Absolute Stack Temperature (R)        | 750      | 742      | 770      | 754      |
| Average Gas Velocity (f/sec)          | 21.38    | 21.59    | 19.14    | 20.71    |
| Avg Flow Rate (acfm)                  | 621,544  | 627,741  | 556,462  | 601,915  |
| Avg Flow Rate (dscfm)                 | 390,837  | 392,000  | 332,388  | 371,741  |
| Isokinetic Sampling Rate (%)          | 100.90   | 105.11   | 101.84   | 102.62   |

PLANT YATES
ESP INLET/AMMONIA-CYANIDE

| Run No.                               | 1        | 2        | 3        | 4        | Average |
|---------------------------------------|----------|----------|----------|----------|---------|
| Date                                  | 6/25/93  | 6/26/93  | 6/26/93  | 06/27/93 | -       |
| Time Start                            | 1450     | 0930     | 1420     | 0920     | - }     |
| Time Finish                           | 1650     | 1035     | 1520     | 1040     | - [     |
| Operator                              | MKO      | MKO      | MKO      | MKO      |         |
| Initial Leak Rate                     | 0.010    | 0.009    | 0.009    | 0.006    | - 1     |
| Final Leak Rate                       | 0.009    | 0.006    | 0.006    | 0.004    |         |
| Duct Dimensions (ft)                  | 8.5 x 57 | 8.5 x 57 | 8.5 x 57 | 8.5 x 57 | - "     |
| Pitot Tube Correction Factor (Cp)     | 0.84     | 0.84     | 0.84     | 0.84     | - jj    |
| Dry Gas Meter Calibration (Yd)        | 1.003    | 1.003    | 1.003    | 1.003    | -       |
| Nozzle Diameter (inches)              | 0.3750   | 0.3750   | 0.3750   | 0.3750   | -       |
| Barometric Pressure ("Hg)             | 29.55    | 29.56    | 29.56    | 29.40    | 29.56   |
| Static Pressure ("H2O)                | -5.8     | -5.8     | -5.8     | -5.9     | -5.8    |
| Meter Volume (acf)                    | 46,663   | 41.622   | 41.654   | 46.885   | 43.313  |
| Average square root of delta p        | 0.3122   | 0.3122   | 0.3077   | 0.2871   | 0.3107  |
| Average delta H (" H2O)               | 1.33     | 1.31     | 1.34     | 1.09     | 1.33    |
| Average Stack Temperature (F)         | 289      | 283      | 284      | 315      | 285     |
| Average DGM Temp (F)                  | 88.0     | 80.0     | 94.0     | 83.0     | 87.3    |
| Test Duration (minutes)               | 70.0     | 65.0     | 60.0     | 80.0     | 65.0    |
| % CO2                                 | 10.1     | 10.5     | 10.5     | 11.8     | 10.4    |
| % O2                                  | 9.9      | 8.8      | 8.8      | 7.0      | 9.2     |
| % N2                                  | 80.0     | 80.7     | 80.7     | 81.2     | 80.5    |
| Meter Volume (dscf)                   | 44.684   | 40.459   | 39.470   | 45.054   | 41.538  |
| Flue Gas Moisture (%)                 | 8.2      | 9.9      | 9.9      | 10.1     | 9.3     |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.03    | 28.84    | 28.84    | 28.94    | 28.90   |
| Absolute Stack Pressure (" Hg)        | 29.12    | 29.13    | 29.13    | 28.97    | 29.13   |
| Absolute Stack Temperature (R)        | 749      | 743      | 744      | 775      | 745     |
| Average Gas Velocity (f/sec)          | 21.10    | 21.08    | 20.79    | 19.82    | 20.99   |
| Avg Flow Rate (acfm)                  | 613,466  | 612,867  | 604,440  | 576,283  | 610,258 |
| Avg Flow Rate (dscfm)                 | 386,272  | 381,939  | 376,181  | 341,573  | 381,464 |
| Isokinetic Sampling Rate (%)          | 104.41   | 102.97   | 110.49   | 104.17   | 105.95  |

## PLANT YATES ESP INLET/RADIONUCLIDES

| Run No.                               | 1        | 2            | 3            | Average     |
|---------------------------------------|----------|--------------|--------------|-------------|
| Date                                  | 6/25/93  | 6/26/93      | 6/27/93      | -           |
| Time Start                            | 0745     | 1540         | 1120         | -           |
| Time Finish                           | 0907     | 1700         | 1240         | -           |
| Operator                              | MKO      | MKO          | MKO          |             |
| Initial Leak Rate                     | 0.009    | 0.010        | 0.007        | •           |
| Final Leak Rate                       | 0.006    | 0.009        | 0.004        | <u> </u>    |
| Duct Dimensions (ft)                  | 8.5 x 57 | 8.5 x 57     | 8.5 x 57     | -           |
| Pitot Tube Correction Factor (Cp)     | 0.84     | 0.84         | 0.84         | -           |
| Dry Gas Meter Calibration (Yd)        | 1.009    | 1.009        | 1.003        | - 1         |
| Nozzle Diameter (inches)              | 0.3750   | 0.3750       | 0.3750       | •           |
| Barometric Pressure ("Hg)             | 29.55    | 29.56        | 29.40        | 29.50       |
| Static Pressure ("H2O)                | -5.8     | -5.8         | <b>-</b> 5.9 | -5.8        |
| Meter Volume (acf)                    | 53.605   | 45.950       | 45.096       | 48.217      |
| Average square root of delta p        | 0.3300   | 0.2905       | 0.2737       | 0.2981      |
| Average delta H (" H2O)               | 1.48     | 1.10         | 0.96         | 1.18        |
| Average Stack Temperature (F)         | 301      | 317          | 316          | 311         |
| Average DGM Temp (F)                  | 82.0     | 97.0         | 93.0         | 90.7        |
| Test Duration (minutes)               | 82.0     | 80.0         | 80.0         | 80.7        |
| % CO2                                 | 10.1     | 10.5         | 11.8         | 10.8        |
| % O2                                  | 9.9      | 8.8          | 7.0          | 8.6         |
| % N2                                  | 80.0     | <b>8</b> 0.7 | 81.2         | 80.6        |
| Meter Volume (dscf)                   | 52.231   | 43.540       | 42.537       | 46.103      |
| Flue Gas Moisture (%)                 | 8.2      | 9.9          | 10.1         | 9.4         |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.03    | 28.84        | 28.94        | 28.94       |
| Absolute Stack Pressure (" Hg)        | 29.12    | 29.13        | 28.97        | 29.07       |
| Absolute Stack Temperature (R)        | 761      | 777          | 776          | <i>7</i> 71 |
| Average Gas Velocity (f/sec)          | 22.48    | 20.06        | 18.91        |             |
| Avg Flow Rate (acfm)                  | 653,616  | 583,171      | 549,740      | 595,509     |
| Avg Flow Rate (dscfm)                 | 405,064  | 347,529      | 325,421      | 359,338     |
| Isokinetic Sampling Rate (%)          | 99.35    | 98.94        | 103.23       | 100.51      |

PLANT YATES
ESP INLET/S.F. PARTICULATE

| Run No.                               | 1        | 2        | 3        | Average |
|---------------------------------------|----------|----------|----------|---------|
| Date                                  | 6/25/93  | 6/26/93  | 6/27/93  | -       |
| Time Start                            | 0800     | 0915     | 0740     | -       |
| Time Finish                           | 1020     | 1125     | 0955     | -       |
| Operator                              | MKO      | MKO      | RVW      |         |
| Initial Leak Rate                     | 0.009    | 0.017    | 0.014    | -       |
| Final Leak Rate                       | NA       | NA       | NA       | -       |
| Duct Dimensions (ft)                  | 8.5 x 57 | 8.5 x 57 | 8.5 x 57 | -       |
| Pitot Tube Correction Factor (Cp)     | 0.84     | 0.84     | 0.84     | -       |
| Dry Gas Meter Calibration (Yd)        | 0.988    | 1.009    | 1.009    | -       |
| Nozzle Diameter (inches)              | 0.2750   | 0.2750   | 0.2750   | _       |
| Barometric Pressure ("Hg)             | 29.55    | 29.56    | 29.40    | 29.50   |
| Static Pressure ("H2O)                | -5.8     | -5.8     | -5.9     | -5.8    |
| Meter Volume (acf)                    | 41.161   | 43.983   | 42.677   | 42.607  |
| Average square root of delta p        | 0.2826   | 0.3289   | 0.2871   | 0.2995  |
| Average delta H (" H2O)               | 0.31     | 0.41     | 0.32     | 0.35    |
| Average Stack Temperature (F)         | 288      | 311      | 313      | 304     |
| Average DGM Temp (F)                  | 81.0     | 83.8     | 82.0     | 82.3    |
| Test Duration (minutes)               | 130.0    | 120.0    | 135.0    | 128.3   |
| % CO2                                 | 10.1     | 10.5     | 11.8     | 10.8    |
| % O2                                  | 9.9      | 8.8      | 7.0      | 8.6     |
| % N2                                  | 80.0     | 80.7     | 81.2     | 80.6    |
| Meter Volume (dscf)                   | 39.229   | 42.615   | 41.253   | 41.032  |
| Flue Gas Moisture (%)                 | 8.2      | 9.9      | 10.1     | 9.4     |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.03    | 28.84    | 28.94    | 28.94   |
| Absolute Stack Pressure (" Hg)        | 29.12    | 29.13    | 28.97    | 29.07   |
| Absolute Stack Temperature (R)        | 748      | 771      | 773      | 764     |
| Average Gas Velocity (f/sec)          | 19.09    | 22.62    | 19.80    | 20.50   |
| Avg Flow Rate (acfm)                  | 554,932  | 657,618  | 575,539  | 596,030 |
| Avg Flow Rate (dscfm)                 | 349,883  | 395,047  | 342,015  | 362,315 |
| Isokinetic Sampling Rate (%)          | 101.33   | 105.61   | 104.97   | 103.97  |

## PLANT YATES ESP INLET/EXTRACTABLE METALS

|                                       | يستقسيسام |          |          |         |
|---------------------------------------|-----------|----------|----------|---------|
| Run No.                               | 1 1       | 2        | 3        | Average |
| Date                                  | 6/25/93   | 6/26/93  | 6/27/93  | - 1     |
| Time Start                            | 0945      | 1345     | 1300     | -       |
| Time Finish                           | 1045      | 1505     | 1410     | -       |
| Operator                              | MKO       | RVW      | MKO      |         |
| Initial Leak Rate                     | 0.001     | 0.010    | 0.009    | •       |
| Final Leak Rate                       | 0.004     | 0.007    | 0.006    |         |
| Duct Dimensions (ft)                  | 8.5 x 57  | 8.5 x 57 | 8.5 x 57 |         |
| Pitot Tube Correction Factor (Cp)     | 0.84      | 0.84     | 0.84     | - 1     |
| Dry Gas Meter Calibration (Yd)        | 1.009     | 1.009    | 1.003    | - [     |
| Nozzle Diameter (inches)              | 0.3750    | 0.3750   | 0.3750   | -       |
| Barometric Pressure ("Hg)             | 29.55     | 29.56    | 29.40    | 29.50   |
| Static Pressure ("H2O)                | -5.8      | -5.8     | -5.9     | -5,8    |
| Meter Volume (acf)                    | 43.420    | 43.280   | 44.144   | 43.615  |
| Average square root of delta p        | 0.3606    | 0.2676   | 0.3081   | 0.3121  |
| Average delta H (" H2O)               | 1.75      | 0.96     | 1.22     | 1.31    |
| Average Stack Temperature (F)         | 296       | 323      | 316      | 312     |
| Average DGM Temp (F)                  | 85.0      | 92.9     | 94.0     | 90.6    |
| Test Duration (minutes)               | 60.0      | 80.0     | 70.0     | 70.0    |
| % CO2                                 | 10.1      | 10.5     | 11.8     | 10.8    |
| % O2                                  | 9.9       | 8.8      | 7.0      | 8.6     |
| % N2                                  | 80.0      | 80.7     | 81.2     | 80,6    |
| Meter Volume (dscf)                   | 42.102    | 41.299   | 41.591   | 41.664  |
| Flue Gas Moisture (%)                 | 8.2       | 9.9      | 10.1     | 9.4     |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.03     | 28.84    | 28.94    | 28.94   |
| Absolute Stack Pressure (" Hg)        | 29.12     | 29.13    | 28.97    | 29.07   |
| Absolute Stack Temperature (R)        | 756       | 783      | 776      | 772     |
| Average Gas Velocity (f/sec)          | 24.49     | 18.55    | 21.29    | 21.44   |
| Avg Flow Rate (acfm)                  | 711,874   | 539,201  | 618,835  | 623,303 |
| Avg Flow Rate (dscfm)                 | 444,085   | 318,945  | 366,321  | 376,451 |
| Isokinetic Sampling Rate (%)          | 99.83     | 102.26   | 102.48   | 101.52  |

PLANT YATES
ESP OUTLET/MODIFIED METHOD 5

| Run No.                               | 1           | 2           | 3           | Average |
|---------------------------------------|-------------|-------------|-------------|---------|
| Date -                                | 6/21/93     | 6/22/93     | 6/23/93     | -       |
| Time Start                            | 1249        | 0753        | 0712        | - 1     |
| Time Finish                           | 1812        | 1247        | 1129        | -       |
| Operator                              | TJB         | TJB         | TJB         | -       |
| Initial Leak Rate                     | 0.005       | 0.003       | 0.002       | -       |
| Final Leak Rate                       | 0.005       | 0.005       | 0.005       |         |
| Duct Dimensions (ft)                  | 11.3 x 11.3 | 11.3 x 11.3 | 11.3 x 11.3 | -       |
| Pitot Tube Correction Factor (Cp)     | 0.84        | 0.84        | 0.84        |         |
| Dry Gas Meter Calibration (Yd)        | 0.997       | 0.997       | 0.997       | - 1     |
| Nozzle Diameter (inches)              | 0.1970      | 0.1970      | 0.1970      | -       |
| Barometric Pressure ("Hg)             | 29.51       | 29.40       | 29.36       | 29.42   |
| Static Pressure ("H2O)                | -11         | -11         | -11         | -11     |
| Meter Volume (acf)                    | 126.423     | 127.680     | 118.467     | 124.190 |
| Average square root of delta p        | 0.9096      | 0.9306      | 0.8958      | 0.9120  |
| Average delta H (" H2O)               | 0.93        | 0.94        | 0.82        | 0.90    |
| Average Stack Temperature (F)         | 280         | 280         | 275         | 278     |
| Average DGM Temp (F)                  | 86.5        | 84.6        | 83.5        | 84.9    |
| Test Duration (minutes)               | 240.0       | 240.0       | 240.0       | 240.0   |
| Condensed Water (g)                   | 207.6       | 212.4       | 211.2       | 210.4   |
| % CO2                                 | 11.1        | 11.2        | 10.6        | 11.0    |
| % O2                                  | 8.0         | 7.9         | 8.5         | 8.1     |
| % N2                                  | 80.9        | 80.9        | 80.9        | 80.9    |
| Meter Volume (dscf)                   | 120.387     | 121.556     | 112.827     | 118.256 |
| Flue Gas Moisture (%)                 | 7.5         | 7.6         | 8.1         | 7.8     |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.19       | 29.19       | 29.06       | 29.14   |
| Absolute Stack Pressure (" Hg)        | 28.70       | 28.59       | 28.55       | 28.61   |
| Absolute Stack Temperature (R)        | 740         | 740         | 735         | 738     |
| Average Gas Velocity (f/sec)          | 61.39       | 62.93       | 60.55       | 61.62   |
| Avg Flow Rate (acfm)                  | 470,365     | 482,150     | 463,880     | 472,132 |
| Avg Flow Rate (dscfm)                 | 297,590     | 303,573     | 292,059     | 297,741 |
| Isokinetic Sampling Rate (%)          | 101.70      | 100.67      | 97.12       | 99.83   |

## PLANT YATES ESP OUTLET/ALDEHYDES

| Run No.                               | 1           | 2           | 3           | Average         |
|---------------------------------------|-------------|-------------|-------------|-----------------|
| Date                                  | 6/21/93     | 6/22/93     | 6/23/93     | -               |
| Time Start                            | 1232        | 0719        | 0655        | - 1             |
| Time Finish                           | 1447        | 0928        | 0909        | -               |
| Operator                              | APE         | APE         | APE         | ii              |
| Initial Leak Rate                     | 0.010       | 0.002       | 0.007       | •               |
| Final Leak Rate                       | 0.005       | 0.002       | 0.005       |                 |
| Duct Dimensions (ft)                  | 11.3 x 11.3 | 11.3 x 11.3 | 11.3 x 11.3 | -               |
| Pitot Tube Correction Factor (Cp)     | 0.84        | 0.84        | 0.84        | -               |
| Dry Gas Meter Calibration (Yd)        | 0.992       | 0.992       | 0.992       | -               |
| Nozzle Diameter (inches)              | 0.1900      | 0.1910      | 0.1910      | -               |
| Barometric Pressure ("Hg)             | 29.51       | 29.40       | 29.36       | 29.42           |
| Static Pressure ("H2O)                | -11         | -11         | -11         | -11             |
| Meter Volume (acf)                    | 66.723      | 66.100      | 67.250      | 66.691          |
| Average square root of delta p        | 0.8750      | 0.9583      | 0.9487      | 0.9273          |
| Average delta H (" H2O)               | 0.78        | 0.89        | 0.81        | 0.82            |
| Average Stack Temperature (F)         | 280         | 275         | 270         | 275             |
| Average DGM Temp (F)                  | 82.0        | 87.8        | 87.9        | 85.9            |
| Test Duration (minutes)               | 135.0       | 129.0       | 135.0       | 133.0           |
| % CO2                                 | 11.1        | 11.2        | 10.6        | 11.0            |
| % O2                                  | 8.0         | 7.9         | 8.5         | 8.1             |
| % N2                                  | 80.9        | 80.9        | 80.9        | 80.9            |
| Meter Volume (dscf)                   | 63.719      | 62.240      | 63.213      | 63.0 <b>5</b> 7 |
| Flue Gas Moisture (%)                 | 7.5         | 7.6         | 8.1         | 7.7             |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.19       | 29.19       | 29.06       | 29.15           |
| Absolute Stack Pressure (" Hg)        | 28.70       | 28.59       | 28.55       | 28.61           |
| Absolute Stack Temperature (R)        | 740         | <b>7</b> 35 | 730         | 735             |
| Average Gas Velocity (f/sec)          | 59.06       | 64.58       | 63.90       | 62.51           |
| Avg Flow Rate (acfm)                  | 452,448     | 494,802     | 489,582     | 478,944         |
| Avg Flow Rate (dscfm)                 | 286,337     | 313,723     | 310,413     | 303,491         |
| Isokinetic Sampling Rate (%)          | 106.92      | 98.71       | 96.82       | 100.82          |

# PLANT YATES ESP OUTLET/VOST

| Run No.                               | YI I               | 18         | 10         | 2A          | 2B         | 3C         | 3A         | 3B                 | 3C                 | Average  |
|---------------------------------------|--------------------|------------|------------|-------------|------------|------------|------------|--------------------|--------------------|----------|
| Date                                  | 6/21/93            | 6/21/93    | 6/21/93    | 6/22/93     | 6/22/93    | 6/22/93    | 6/23/93    | 6/23/93            | 6/23/93            | •        |
| Time Start                            | 1238               | 1323       | 1408       | 0736        | 0822       | 6060       | 0720       | 6080               | 0856               | •        |
| Time Finish                           | 1318               | 1403       | 1444       | 9180        | 0902       | 0949       | 0800       | 0849               | 0936               | •        |
| Operator                              | OHO                | OHO        | DHD        | DHD         | DHD        | DHD        | DHD        | DHD                | DHD                | •        |
| Initial Leak Rate                     | 0.0 @ 22"          | 0.0 @ 21"  | 0.0 @ 18"  | 0.0 @ 21"   | 0.0 @ 21"  | 0.0 @ 20"  | 0.0 @ 20"  | 0.0 @ 22"          | 0.0 @ 22"          | ;        |
| Final Leak Rate                       | $0.0 \ @ 14$ "     | 0.0 @ 12"  | 0.0 @ 24"  | 0.0 @ 11"   | 0.0 @ 9"   |            | 0.0 @ 11"  | 0.0 @ 17"          | 0.0 @ 11"          | •        |
| ( <b>f</b> )                          | $11.3 \times 11$ . | 11.3 x 11. | 11.3 x 11. | 11.3 x 11.3 | 11,3 x 11. | 11.3 x 11. | 11.3 x 11. | $11.3 \times 11$ . | $11.3 \times 11$ . | r        |
| Dry Gas Meter Calibration (Yd)        | 1.036              | 1.036      | 1.036      | 1.036       | 1.036      | 1.036      | 1.036      | 1.036              | 1.036              | 1.036    |
| Barometric Pressure ("Hg)             | 29.51              | 29.51      | 29.51      | 29.40       | 29.40      | 29.40      | 29.39      | 29.39              | 29.39              | 29.44571 |
| Static Pressure ("H2O)                | -11                | -11        | -1         | =           | -11        | -11        | -11        | -11                |                    | -11      |
| Meter Volume (aL)                     | 20.120             | 20.000     | 23.000     | 20.050      | 20.000     | 20.000     | 20.000     | 20.000             | 20.000             | 20.453   |
| Average delta H (" H2O)               | 1.1                | 1.0        | 1.0        | 1.0         | 1.0        | 1.0        | 1.0        | 1.0                | 1.0                | 1.0      |
| Average Stack Temperature (F)         | 280                | 280        | 280        | 280         | 280        | 280        | 275        | 275                | 275                | 279      |
| Average DGM Temp (C)                  | 23.9               | 25.4       | 26.1       | 25.7        | 26.9       | 28.1       | 25.0       | 27.9               | 29.4               | 25.9     |
| Test Duration (minutes)               | 40.0               | 40.0       | 40.0       | 40.0        | 40.0       | 40.0       | 40.0       |                    |                    | 40.0     |
| % CO2                                 | 11.1               | 11.1       | 11.1       | 11.2        | 11.2       | 11.2       | 10.6       |                    |                    | 11.1     |
| % 02                                  | 8.0                | 0.8        | 0.8        | 7.9         | 7.9        | 7.9        | 8.5        | 8.5                | 8.5                | 8.0      |
| % N2                                  | 80.9               | 80.9       | 80.9       | 80.9        | 80.9       | 80.9       | 80.9       |                    |                    | 80.9     |
| Meter Volume (dsL)                    | 19.874             | 19.647     | 22.544     | 19.609      | 19.480     | 19.400     | 19.596     | 19.409             | 19.309             | 20.021   |
| Flue Gas Moisture (%)                 | 7.5                | 7.5        | 7.5        | 9.7         | 7.6        | 9.7        | 8.1        | 8.1                | 8.1                | 7.6      |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.19              | 29.19      | 29.19      | 29.19       | 29.19      | 29.19      | 29.06      | 29.06              | 29.06              | 29.17    |
| Absolute Stack Pressure (" Hg)        | 28.70              | 28.70      | 28.70      | 28.59       | 28.59      | 28.59      | 28.58      | 28.58              | 29.39              | 28.64    |
| Absolute Stack Temperature (R)        | 740                | 740        | 740        | 740         | 740        | 740        | 735        | 735                | 735                | 739      |

### PLANT YATES ESP OUTLET/PSD

| Run No.                               |             | 2           | 3                  |         |
|---------------------------------------|-------------|-------------|--------------------|---------|
|                                       | 1           |             | ] ~                | Average |
| Date                                  | 6/21/93     | 6/22/93     | 6/23/93            | -       |
| Time Start                            | 1436        | 1003        | 0907               | -       |
| Time Finish                           | 2236        | 1550        | 1407               | -       |
| Operator                              | TJB         | DD          | DD                 | -       |
| Initial Leak Rate                     | 0.01        | 0.009       | 0.010              | -       |
| Final Leak Rate                       | NA          | NA NA       | NA                 | -       |
| Duct Dimensions (ft)                  | 11.3 x 11.3 | 11.3 x 11.3 | $11.3 \times 11.3$ | -       |
| Pitot Tube Correction Factor (Cp)     | 0.84        | 0,84        | 0.84               | -       |
| Dry Gas Meter Calibration (Yd)        | 1.007       | 1.007       | 1.007              | -       |
| Nozzle Diameter (inches)              | 0.1910      | 0.1910      | 0.1910             | -       |
| Barometric Pressure ("Hg)             | 29.51       | 29.40       | 29.36              | 29.42   |
| Static Pressure ("H2O)                | -11         | -11         | -11                | -11     |
| Meter Volume (acf)                    | 254.680     | 180.019     | 154.960            | 196.553 |
| Average square root of delta p        | 0.9920      | 0.9460      | 0.9550             | 0.9643  |
| Average delta H (" H2O)               | 0.95        | 0.90        | 0.86               | 0.90    |
| Average Stack Temperature (F)         | 280         | 285         | 282                | 282     |
| Average DGM Temp (F)                  | 84.4        | 88.4        | 93.9               | 88.9    |
| Test Duration (minutes)               | 480.0       | 350.0       | 300.0              | 376.7   |
| % CO2                                 | 11.1        | 11.2        | 10.6               | 11.0    |
| % O2                                  | 8.0         | 7.9         | 8.5                | 8.1     |
| % N2                                  | 80.9        | 80.9        | 80.9               | 80.9    |
| Meter Volume (dscf)                   | 245.909     | 171.888     | 146.280            | 188.026 |
| Flue Gas Moisture (%)                 | 7.5         | 7.6         | 8.1                | 7.7     |
| Gas Molecular Weight (Wet) (g/g-mole) | 29.19       | 29.19       | 29.06              | 29.15   |
| Absolute Stack Pressure (" Hg)        | 28.70       | 28.59       | 28.55              | 28.61   |
| Absolute Stack Temperature (R)        | 740         | 745         | 742                | 742     |
| Average Gas Velocity (f/sec)          | 66.95       | 64.17       | 64.85              | 65.32   |
| Avg Flow Rate (acfm)                  | 512,947     | 491,597     | 496,867            | 500,470 |
| Avg Flow Rate (dscfm)                 | 324,624     | 307,714     | 309,938            | 314,092 |
| Isokinetic Sampling Rate (%)          | 101.30      | 102.44      | 100.98             | 101.57  |

PLANT YATES
ESP OUTLET/MULTI-METALS - PARTICULATE

| Run No.                               | Ī                  | 2           | 3             | Average  |
|---------------------------------------|--------------------|-------------|---------------|----------|
| Date                                  | 6/25/93            | 6/26/93     | 6/27/93       |          |
| Time Start                            | 0758               | 0925        | 0746          | _        |
| Time Finish                           | 1316               | 1410        | 1210          | _        |
| Operator                              | TJB                | TJB         | ТЛВ           | _        |
| Initial Leak Rate                     | 0.010              | 0.005       | 0.008         | -        |
| Final Leak Rate                       | 0.015              | 0.007       | 0.007         |          |
| Duct Dimensions (ft)                  | $11.3 \times 11.3$ | 11.3 x 11.3 | 11.3 x 11.3   | -        |
| Pitot Tube Correction Factor (Cp)     | 0.84               | 0.84        | 0.84          | -        |
| Dry Gas Meter Calibration (Yd)        | 0.997              | 0.997       | 0.997         | -        |
| Nozzle Diameter (inches)              | 0.1970             | 0.1970      | 0.1970        | -        |
| Barometric Pressure ("Hg)             | 29.55              | 29.42       | 29.30         | 29.42    |
| Static Pressure ("H2O)                | -11.0              | 11.0        | -11 <u>.0</u> | -11.0    |
| Meter Volume (acf)                    | 118.957            | 121.053     | 125.534       | 121.848  |
| Average square root of delta p        | 0.8758             | 0.9165      | 0.9210        | 0.9044   |
| Average delta H (" H2O)               | 0.79               | 0.86        | 0.90          | 0.85     |
| Average Stack Temperature (F)         | 279                | 281         | 281           | 281      |
| Average DGM Temp (F)                  | 85.8               | _88.5       | 89.8          | 88.0     |
| Test Duration (minutes)               | 241.0              | 240.0       | 240.0         | 240.3    |
| Condensed Water (g)                   | 243.4              | 258.9       | 277.2         | 259.8    |
| Filter Weight Gain (g)                | 0.3241             | 0.2829      | 0.3586        | 0.3219   |
| PNR Weight Gain (g)                   | 0.1157             | 1 :         | 0.1338        | 0.1099   |
| % CO2                                 | 11.2               | 11.1        | 11.4          | 11.2     |
| % O2                                  | 7.6                | 7.5         | 7.6           | 7.6      |
| % N2                                  | 81.2               | 81.4        | 81.0          | 81.2     |
| Meter Volume (dscf)                   | 113.537            | 114.483     | 117.971       | 115.330  |
| Flue Gas Moisture (%)                 | 9.2                | 9.6         | 10.0          | 9.6      |
| Gas Molecular Weight (Wet) (g/g-mole) | 28.98              | 28.91       | 28.92         | 28.94    |
| Absolute Stack Pressure (" Hg)        | 28.74              | 28.61       | 28.49         | 28.61    |
| Absolute Stack Temperature (R)        | 739                | 741         | 741           | 741      |
| Average Gas Velocity (f/sec)          | 59.25              | 62.30       | 62.74         | 61.43    |
| Avg Flow Rate (acfm)                  | 456,368            | 479,816     | 483,235       | 473,140  |
| Avg Flow Rate (dscfm)                 | 284,170            | 295,247     | 294,874       | 291,430  |
| Isokinetic Sampling Rate (%)          | 100.56             |             | 101.11        | 99.89    |
| Particulate Concentration (gr/dscf)   | 5.98E-02           | 1 110       | 6.44E-02      | 5.77E-02 |
| Particulate Concentration (lbs/dscf)  | 8.54E-06           |             | 9.20E-06      | 8.25E-06 |
| Particulate Emission (grams/sec)      | 18.35              | 15.61       | 20.52         | 18.16    |
| Particulate Emission (lbs/hour)       | 145.63             | 123.85      | 162.83        | 144.11   |

## PLANT YATES ESP OUTLET/ANIONS

| Run No.                               | 1           | 2           | 3           | Average |
|---------------------------------------|-------------|-------------|-------------|---------|
| Date .                                | 6/25/93     | 6/26/93     | 6/27/93     | - 1     |
| Time Start                            | 1015        | 1113        | 0915        | -       |
| Time Finish                           | 1152        | 1243        | 1038        | - [     |
| Operator                              | APE         | APE         | TJB         |         |
| Initial Leak Rate                     | < 0.001     | 0.005       | 0.010       | -       |
| Final Leak Rate                       | 0.007       | 0.003       | 0.004       | -       |
| Duct Dimensions (ft)                  | 11.3 x 11.3 | 11.3 x 11.3 | 11.3 x 11.3 | •       |
| Pitot Tube Correction Factor (Cp)     | 0.84        | 0.84        | 0.84        | -       |
| Dry Gas Meter Calibration (Yd)        | 0.992       | 0.992       | 0.992       | -       |
| Nozzle Diameter (inches)              | 0.2230      | 0.2230      | 0.2290      | -       |
| Barometric Pressure ("Hg)             | 29.55       | 29.42       | 29.30       | 29.42   |
| Static Pressure ("H2O)                | -11.0       | -11.0       | -11.0       | -11.0   |
| Meter Volume (acf)                    | 65.200      | 62.150      |             | 62.654  |
| Average square root of delta p        | 0.9574      | 0.9558      | 0.9327      | 0.9486  |
| Average delta H (" H2O)               | 1.50        | 1.53        | 1.60        | 1.54    |
| Average Stack Temperature (F)         | 282         | 283         | 280         | 282     |
| Average DGM Temp (F)                  | 96.3        | 96.5        | 99.7        | 97.5    |
| Test Duration (minutes)               | 97.0        | 90.0        | 83.0        | 90.0    |
| % CO2                                 | 11.2        | 11.1        | 11.4        | 11.2    |
| % O2                                  | 7.6         | 7.5         | 7.6         | 7.6     |
| % N2                                  | 81.2        | 81.4        | 81.0        |         |
| Meter Volume (dscf)                   | 60.855      | 57,738      | 55.768      | 58.121  |
| Flue Gas Moisture (%)                 | 9.2         | 9.6         | 10.0        | 9.6     |
| Gas Molecular Weight (Wet) (g/g-mole) | 28.98       | 28.92       | 28.92       | 28.94   |
| Absolute Stack Pressure (" Hg)        | 28.74       | 28.61       | 28.49       | 28.61   |
| Absolute Stack Temperature (R)        | 742         | 743         | 740         | 742     |
| Average Gas Velocity (f/sec)          | 64.89       | 65.04       | L           |         |
| Avg Flow Rate (acfm)                  | 499,777     | 500,985     | 488,928     | 496,563 |
| Avg Flow Rate (dscfm)                 | 310,071     | 307,637     | 298,858     | 305,522 |
| Isokinetic Sampling Rate (%)          | 95.78       | 98.72       | 100.92      | 98.47   |

PLANT YATES
ESP OUTLET/AMMONIA-CYANIDE

|                                       |             |             | <del></del> | A       |
|---------------------------------------|-------------|-------------|-------------|---------|
| Run No.                               | 1           | 2           | 3           | Average |
| Date                                  | 6/25/93     | 6/26/93     | 6/27/93     | •       |
| Time Start                            | 0741        | 0930        | 0725        | •       |
| Time Finish                           | 0930        | 1104        | 0856        | •       |
| Operator                              | TJB         | APE         | TJB         | •       |
| Initial Leak Rate                     | 0.010       | 0.007       | 0.010       | -       |
| Final Leak Rate                       | 0.015       | 0.006       | 0.007       |         |
| Duct Dimensions (ft)                  | 11.3 x 11.3 | 11.3 x 11.3 | 11.3 x 11.3 | -       |
| Pitot Tube Correction Factor (Cp)     | 0.84        | 0.84        | 0.84        | -       |
| Dry Gas Meter Calibration (Yd)        | 0.992       | 0.992       | 0.992       | -       |
| Nozzle Diameter (inches)              | 0.2230      | 0.2230      | 0.2290      | •       |
| Barometric Pressure ("Hg)             | 29.55       | 29.42       | 29.30       | 29.42   |
| Static Pressure ("H2O)                | -11.0       | -11.0       | -11.0       | -11.0   |
| Meter Volume (acf)                    | 73.525      | 64.150      | 63.443      | 67.039  |
| Average square root of delta p        | 0.9680      | 0.9589      | 0.9434      | 0.9568  |
| Average delta H (" H2O)               | 1.55        | 1.52        | 1.60        | 1.56    |
| Average Stack Temperature (F)         | 280         | 279         | 279         | 280     |
| Average DGM Temp (F)                  | _87.3       | 88.2        | 91.5        | 89.0    |
| Test Duration (minutes)               | 109.0       | 95.0        | 91.0        | 98.3    |
| % CO2                                 | 11.2        | 11.1        | 11.4        | 11.2    |
| % O2                                  | 7.6         | 7.5         | 7.6         | 7.6     |
| % N2                                  | 81.2        | 81.4        | 81.0        | 81.2    |
| Meter Volume (dscf)                   | 69.762      | 60.496      | 59.242      | 63.167  |
| Flue Gas Moisture (%)                 | 9.2         | 9.6         | 10.0        | 9.6     |
| Gas Molecular Weight (Wet) (g/g-mole) | 28.98       | 28.92       | 28.92       | 28.94   |
| Absolute Stack Pressure (" Hg)        | 28.74       | 28.61       | 28.49       | 28.61   |
| Absolute Stack Temperature (R)        | 740         | 739         | 739         | 740     |
| Average Gas Velocity (f/sec)          | 65.52       | 65.10       | 64.18       | 64.93   |
| Avg Flow Rate (acfm)                  | 504,628     | 501,391     | 494,303     | 500,108 |
| Avg Flow Rate (dscfm)                 | 313,927     | 309,385     | 302,430     | 308,581 |
| Isokinetic Sampling Rate (%)          | 96.51       | 97.43       | 96.63       | 96.86   |

## PLANT YATES ESP OUTLET/ S.F. PARTICULATE

| Run No.                              | 1            | 2            | 3            | Average |
|--------------------------------------|--------------|--------------|--------------|---------|
| Date .                               | 6/24-6/25/93 | 6/25-6/26/93 | 6/26-6/27/93 | - 1     |
| Time Start                           | 0740         | 1130         | 1218         | -       |
| Time Finish                          | 0700         | 0636         | 0627         | -       |
| Operator                             | DHD          | DHD          | DHD          | -       |
| Initial Leak Rate                    | 0.012        | 0.005        | 0.005        | •       |
| Final Leak Rate                      | NA           | NA NA        | NA NA        | -       |
| Duct Dimensions (ft)                 | 11.3 x 11.3  | 11.3 x 11.3  | 11.3 x 11.3  | ~       |
| Pitot Tube Correction Factor (Cp)    | 0.84         | 0.84         | 0.84         | -       |
| Dry Gas Meter Calibration (Yd)       | 1.007        |              | 1.007        | -       |
| Nozzle Diameter (inches)             | 0.2110       |              | 0.2110       | -       |
| Barometric Pressure ("Hg)            | 29.53        | 29.55        | 29.42        | 29.5    |
| Static Pressure ("H2O)               |              | -11.0        | -11.0        | -11.0   |
| Meter Volume (acf)                   | 852.132      | i            | 711.797      | 750.516 |
| Average square root of delta p       | 0.9581       | 0.9954       | 1.0651       | 1.0062  |
| Average delta H (" H2O)              | 1.35         | 1.42         | 1.54         | 1.43    |
| Average Stack Temperature (F)        | 281          | 279          | 281          | 280     |
| Average DGM Temp (F)                 | 89.8         |              | 92.9         | 91.3    |
| Test Duration (minutes)              | 1375.8       | 1108.7       | 1055.5       | 1180.0  |
| % CO2                                | 11.2         |              | 11.4         | 11.2    |
| % O2                                 | 7.6          | !            | 7.6          | 7.6     |
| % N2                                 | 81.2         | 81.4         | 81.0         | 81.2    |
| Meter Volume (dscf)                  | 816.056      |              | 675.646      | 716.325 |
| Flue Gas Moisture (%)                | 9.2          | 9.6          | 10.0         | 9.6     |
| Gas Molecular Weight (Wet) (g/g-mole |              |              | 28.92        | 28.94   |
| Absolute Stack Pressure (" Hg)       | 28.72        | 28.74        | 28.61        | 28.69   |
| Absolute Stack Temperature (R)       | 741          | 739          | 741          | 740     |
| Average Gas Velocity (f/sec)         | 64.92        |              | 72.36        | 68.22   |
| Avg Flow Rate (acfm)                 | 500,013      | 519,062      | 557,350      | 525,475 |
| Avg Flow Rate (dscfm)                | 310,378      | 322,050      | 341,884      | 324,771 |
| Isokinetic Sampling Rate (%)         | 101.05       | 97.33        | 99,00        | 99.13   |

## PLANT YATES ESP OUTLET/RADIONUCLIDES

| Run No.                               | 1            | 2            | 3            | Average |
|---------------------------------------|--------------|--------------|--------------|---------|
| Date ·                                | 6/24-6/25/93 | 6/25-6/26/93 | 6/26-6/27/93 | Average |
| Time Start                            | 1040         | 1050         | 1055         | -       |
| Time Start Time Finish                |              | 1            |              | •       |
|                                       | 0700         | 0640         | 0619         | -       |
| Operator Table 1                      | APE          | ТЛВ          | DHD          |         |
| Initial Leak Rate                     | < 0.001      | 0.005        | 0.005        | • 1     |
| Final Leak Rate                       | 0.007        | 0.003        | 0.005        |         |
| Duct Dimensions (ft)                  | 11.3 x 11.3  | 11.3 x 11.3  | 11.3 x 11.3  | •       |
| Pitot Tube Correction Factor (Cp)     | 0.84         | 0.84         | 0.84         | - 1     |
| Dry Gas Meter Calibration (Yd)        | 1.005        | 1.005        | 1.005        | - 1     |
| Nozzle Diameter (inches)              | 0.1970       | 0.1970       | 0.1970       | -       |
| Barometric Pressure ("Hg)             | 29.53        | 29.55        | 29.42        | 29.50   |
| Static Pressure ("H2O)                | -11.0        |              | -11.0        | -11.0   |
| Meter Volume (acf)                    | 718.510      |              | 667.090      | 681,226 |
| Average square root of delta p        | 1.1124       | 1.0092       | 1.0217       | 1.0478  |
| Average delta H (" H2O)               | 1.27         | 1.10         | 1.20         | 1.19    |
| Average Stack Temperature (F)         | 283          | 283          | 282          | 283     |
| Average DGM Temp (F)                  | 94.7         | 93.9         | 96.9         | 95.2    |
| Test Duration (minutes)               | 1166.7       | 1182.4       | 1137.7       | 1162.3  |
| % CO2                                 | 11.2         | 11.1         | 11.4         | 11.2    |
| % O2                                  | 7.6          | 7.5          | 7.6          | 7.6     |
| % N2                                  | 81.2         | 81.4         | <b>81</b> .0 | 81.2    |
| Meter Volume (dscf)                   | 680.531      | 624.352      | 626.886      | 643.923 |
| Flue Gas Moisture (%)                 | 9.2          | 9.6          | 10.0         | 9.6     |
| Gas Molecular Weight (Wet) (g/g-mole) | 28.98        | 28.92        | 28.92        | 28.94   |
| Absolute Stack Pressure (" Hg)        | 28.72        | 28.74        | 28.61        | 28.69   |
| Absolute Stack Temperature (R)        | 743          | 743          | 742          | 743     |
| Average Gas Velocity (f/sec)          | 75.46        | 68.51        | 69.48        | 71.15   |
| Avg Flow Rate (acfm)                  | 581,204      | 527,706      | 535,180      | 548,030 |
| Avg Flow Rate (dscfm)                 | 359,951      | 325,606      | 327,622      | 337,726 |
| Isokinetic Sampling Rate (%)          | 98.29        | 98.37        | 102.02       | 99.56   |

## PLANT YATES ESP OUTLET/EXTRACTABLE METALS

| Run No.                               | i            | 2            | 3            | Average |
|---------------------------------------|--------------|--------------|--------------|---------|
| Date                                  | 6/24-6/25/93 | 6/25-6/26/93 | 6/26-6/27/93 | -       |
| Time Start                            | 1300         | 1040         | 1137         | -       |
| Time Finish                           | 0700         | 0636         | 0621         | -       |
| Operator                              | TJB          | TJB          | ТЈВ          | •       |
| Initial Leak Rate                     | 0.015        | 0.009        | 0.010        | _       |
| Final Leak Rate                       | 0.014        | 0,006        | 0.010        | -       |
| Duct Dimensions (ft)                  | 11.3 x 11.3  | 11.3 x 11.3  | 11.3 x 11.3  | •       |
| Pitot Tube Correction Factor (Cp)     | 0.84         | 0.84         | 0.84         | -       |
| Dry Gas Meter Calibration (Yd)        | 0.998        | 0.998        | 0.998        | -       |
| Nozzle Diameter (inches)              | 0.2300       | 0.2290       | 0.2290       | -       |
| Barometric Pressure ("Hg)             | 29.53        | 29.55        | 29.42        | 29.50   |
| Static Pressure ("H2O)                | -11.0        | -11.0        | -11.0        | -11.0   |
| Meter Volume (acf)                    | 906.500      | 948.750      | 812.605      | 889.285 |
| Average square root of delta p        | 1.1008       | 1.0954       | 0.9840       | 1.0601  |
| Average delta H (" H2O)               | 2.49         | 2.30         | 1.90         | 2.23    |
| Average Stack Temperature (F)         | 282          | 283          | 285          | 283     |
| Average DGM Temp (F)                  | 90.9         | 92.6         | 94.5         | 92.7    |
| Test Duration (minutes)               | 1101.0       | 1103.1       | 1125.0       | 1109.7  |
| % CO2                                 | 11.2         | 11.1         | 11.4         | 11.2    |
| % O2                                  | 7.6          | 7.5          | 7.6          | 7.6     |
| % N2                                  | 81.2         | 81.4         | 81.0         | 81.2    |
| Meter Volume (dscf)                   | 861.084      | 898.627      | 762,923      | 840.878 |
| Flue Gas Moisture (%)                 | 9.2          | 9.6          | 10.0         | 9.6     |
| Gas Molecular Weight (Wet) (g/g-mole) | 28.98        | 28.92        | 28.92        | 28.94   |
| Absolute Stack Pressure (" Hg)        | 28.72        | 28.74        | 28.61        | 28.69   |
| Absolute Stack Temperature (R)        | 742          | 743          | 745          | 743     |
| Average Gas Velocity (f/sec)          | 74.63        | 74.35        | 67.06        | 72.01   |
| Avg Flow Rate (acfm)                  | 574,833      | 572,664      | 516,473      | 554,657 |
| Avg Flow Rate (dscfm)                 | 356,389      | 353,488      | 314,897      | 341,592 |
| Isokinetic Sampling Rate (%)          | 97.65        | _103.45      | 96.67        | 99.26   |

PLANT YATES
STACK/MODIFIED METHOD 5

| Run No.                              | 1       | 2       | 3       | Average |
|--------------------------------------|---------|---------|---------|---------|
| Date                                 | 6/21/93 | 6/22/93 | 6/23/93 |         |
| Time Start                           | 1240    | 0655    | 0645    | - [     |
| Time Finish                          | 1755    | 1115    | 1118    | -       |
| Operator                             | EZ      | ΕZ      | EZ      | -       |
| Initial Leak Rate                    | < 0.001 | < 0.001 | 0.002   | _       |
| Final Leak Rate                      | < 0.001 | < 0.001 | < 0.001 | -       |
| Stack Diameter (ft)                  | 13.00   | 13.0    | 13.0    | -       |
| Pitot Tube Correction Factor (Cp)    | 0.84    | 0.84    | 0.84    | -       |
| Dry Gas Meter Calibration (Yd)       | 0.994   | 0.994   | 0.994   | -       |
| Nozzle Diameter (inches)             | 0.1960  | 0.1960  | 0.1950  | - 1     |
| Barometric Pressure ("Hg)            | 29.31   | 29.34   | 29.19   | 29.28   |
| Static Pressure ("H2O)               | -0.5    | -0.5    | -0.5    | -0.5    |
| Meter Volume (acf)                   | 121.788 | 127.049 | 125.624 | 124.820 |
| Average square root of delta p       | 0.8230  | 0.8251  | 0.7944  | 0.8142  |
| Average delta H (" H2O)              | 0.85    | 0.85    | 0.77    | 0.82    |
| Average Stack Temperature (F)        | 127     | 128     | 128     | 128     |
| Average DGM Temp (F)                 | 89.6    | 94.7    | 94.5    | 92.9    |
| Test Duration (minutes)              | 240.0   | 240.0   | 240.0   | 240.0   |
| Condensed Water (g)                  | 390.2   | 409.4   | 398.0   | 399.2   |
| % CO2                                | 10.2    | 10.8    | 10.2    | 10.4    |
| % O2                                 | 8.8     | 8.6     | 8.5     | 8.6     |
| % N2                                 | 81.0    | 80.6    | 81.3    | 81.0    |
| Meter Volume (dscf)                  | 114.171 | 118.129 | 116.237 | 116.179 |
| Flue Gas Moisture (%)                | 13.9    | 14.1    | 13.9    | 14.0    |
| Gas Molecular Weight (Wet) (g/g-mole |         | 28.37   | 28.31   | 28.33   |
| Absolute Stack Pressure (" Hg)       | 29.27   | 29.30   | 29.15   | 29.24   |
| Absolute Stack Temperature (R)       | 587     | 588     | 588     | 588     |
| Average Gas Velocity (f/sec)         | 49.73   | 49.83   |         | 49.24   |
| Avg Flow Rate (acfm)                 | 396,063 | 396,819 | 383,500 | 392,127 |
| Avg Flow Rate (dscfm)                | 300,017 | 299,801 | 288,743 | 296,187 |
| Isokinetic Sampling Rate (%)         | 100.47  | 104.02  | 107.37  | 103.95  |

#### PLANT YATES STACK/METHOD 23

| Run No.                              | 1       | 2               | 3            | Average  |
|--------------------------------------|---------|-----------------|--------------|----------|
| Date                                 | 6/21/93 | 6/22/93         | 6/23/93      | •        |
| Time Start                           | 1400    | 0812            | 0810         | <u>-</u> |
| Time Finish                          | 1933    | 1236            | 1249         | _        |
| Operator                             | DJV     | DΙV             | DJV          | •        |
| Initial Leak Rate                    | 0.008   | 0.001           | 0.002        | •        |
| Final Leak Rate                      | 0.001   | < 0.001         | < 0.001      | -        |
| Stack Diameter (ft)                  | 13.0    | 13.0            | 13.0         | •        |
| Pitot Tube Correction Factor (Cp)    | 0.84    | 0.84            | 0.84         | <b>-</b> |
| Dry Gas Meter Calibration (Yd)       | 1.029   | 1.029           | 1.029        | -        |
| Nozzle Diameter (inches)             | 0.1950  | 0.1950          | 0.1950       | •        |
| Barometric Pressure ("Hg)            | 29.31   | 29.34           | 29.19        | 29.28    |
| Static Pressure ("H2O)               | -0.5    | <b>-</b> 0.5    | <b>-0</b> .5 | -0.5     |
| Meter Volume (acf)                   | 114.442 | 118.294         | 115.263      | 116.000  |
| Average square root of delta p       | 0.7956  | 0.8141          | 0.7932       | 0.8010   |
| Average delta H (" H2O)              | 0.79    | 0.82            | 0.78         | 0.80     |
| Average Stack Temperature (F)        | 123     | 128             | 129          | 127      |
| Average DGM Temp (F)                 | 80.6    | 86.9            | 87.3         | 84.9     |
| Test Duration (minutes)              | 240.0   | 240.0           | 240.0        | 240.0    |
| Condensed Water (g)                  | 392.0   | 390.6           | 387.5        | 390.0    |
| % CO2                                | 10.2    | 10.8            | 10.2         | 10.4     |
| % O2                                 | 8.8     | 8.6             | 8.5          | 8.6      |
| % N2                                 | 81.0    | <b>8</b> 0.6    | 81.3         | 81.0     |
| Meter Volume (dscf)                  | 112.896 | 115.477         | 111.851      | 113.408  |
| Flue Gas Moisture (%)                | 14.1    | 13.8            | 14.1         | 14.0     |
| Gas Molecular Weight (Wet) (g/g-mole | 28.30   | 28.41           | 28.29        | 28.33    |
| Absolute Stack Pressure (" Hg)       | 29.27   | 29.30           | 29.15        | 29.24    |
| Absolute Stack Temperature (R)       | 583     | 588             | 589          | 587      |
| Average Gas Velocity (f/sec)         | 47.93   | 49.13           | 48.14        | 48.40    |
| Avg Flow Rate (acfm)                 | 381,724 | 391,287         | 383,360      | 385,457  |
| Avg Flow Rate (dscfm)                | 290,495 | 296,622         | 287,675      | 291,598  |
| Isokinetic Sampling Rate (%)         | 103.65  | 103. <b>8</b> 3 | 103.70       | 103.73   |

PLANT YATES

| THE NA                                | ٧           | 61          | DI.        | 5           | VZ          | 87          | 20          | 3,4         | 25          | ×         | Auman  |
|---------------------------------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|--------|
| Doto                                  | 6/21/93     | 6/21/93     | 6/21/93    | 6/21/93     | 672793      | 6427/93     | 6/22/93     | 673393      | 673763      | 100.09    |        |
| These Start                           | 5261        | 5141        | 1515       | 1615        | 06.50       | 0745        | 0840        | \$500       | offine.     | 0.00      |        |
| The Fight                             | \$0*1       | 1455        | 1555       | 1655        | 07.70       | Š           |             |             |             |           |        |
| -                                     |             |             |            | }           | <b>\$</b>   | ì           | 2762        | 6/10        | ŝ           | 88        | •      |
|                                       | TEN.        | Har I       | Har        | JEH         | H           | ЭЕН         | ÆН          | лен         | JEH         | Ж         |        |
| Initial Louis Ruto                    | 0.004@20*   | 0.011@ 22   | 0.005@ 20- | 0.012@ 20*  | 0.010 @ 20" | 0.002 @ 20" | 0.005 @ 21" | 0.000 @ 21* | 0.007@21"   | 0.004@10* |        |
| Final Loak Rate                       | 0.010 @ 22* | 0.011 @ 20" | 0.000@15*  | 0.010 @ 17- | 0.007 @ 22* | 0.004@ 23"  | 0.009 @ 22* | 0.004@ 25*  | 0.000 @ 10" | 0 000 0   |        |
| Starth Diseases (ft)                  | 13.0        | 13.0        | 13.0       | 13.0        | 13.0        | 13.0        | 0.52        | 2           | 130         | 021       |        |
| Dry Ges Motor Calibration (Y4)        | 110.1       | 11011       | 110:1      | 101         | 101         | 10:1        | 110:1       | 1.011       | 1101        |           | =      |
| Decomatric Pressure ("Hg)             | 29.35       | 29.35       | 29.35      | 29,35       | 19.34       | 29.34       | 29.34       | 29.23       | <b>3</b>    | 20,21     | 20     |
| Statte Processe ("H2O)                | 6.5         | -0.5        | -0.5       | -0.5        | 0.5         | 20-         | <b>6</b>    | 50.5        | 200         | * 4       | *      |
| Motor Volume (al)                     | 76.485      | 20.210      | 20.250     | 20.200      | 20.260      | 20.240      | 20.640      | 20.200      | 20,200      | 20.00     | 21.061 |
| Average delta H (" H2O)               | 2.40        | 2.10        | 2.30       | 2.20        | 2.20        | 2.20        | 2.20        | 2.20        | 3.38        | 9.0       |        |
| Average Stack Temperature (F)         | 721         | 127         | 127        | 721         | 128         | 138         | **          | 361         |             |           | 9 9    |
| Average DCM Temp (F)                  | 20.7        | 24.5        | 26.3       | 26.5        | 20.8        | 27.0        | 70.3        |             |             |           | 97     |
| Tost Duration (minutes)               | 0.04        | 0.04        | 9          | 9           | g           | 3           |             | 0.47        | 6.07        | 203       | 0.53   |
| £(20)                                 |             | 5           |            |             | ř           | •           | 9.0         | 9.0         | 0.0         | 0.04      | 0.0    |
|                                       | 70          | 701         | 7:01       | 10.7        |             | <b>1</b> 01 | 10.8        | 10.2        | 10.2        | 10.2      | 10.4   |
| 70 X                                  |             | 66          | 90<br>96   | <b>60</b>   | 9.8         | 9:          | 9.8         | 8.5         | 2.8         | 8.5       | 1.1    |
| % N.3                                 | 81.0        | 01.8        | 0.18       | 81.0        | 90.6        | 90.6        | 908         | 81.3        | 8           | en .      | ş      |
| Moder Volume (del.)                   | 26.389      | 19.864      | 19.793     | 19.775      | 20.164      | 19.71       | 19.965      | 19.759      | 19.662      | 19 662    | 2,00   |
| Plus Cas Melatura (%)                 | 13.9        | 13.9        | 13.9       | 13.9        | 191         | <u></u>     | 14.1        | 13.9        | 110         | 9         | -      |
| Can Melecular Weight (West (g/g-mels) | 28.32       | 28.32       | 28.32      | 28.32       | 28.37       | 28.37       | 28.37       | 26.38       | 78.20       | 2         | 74.04  |
| Absolute Stack Pressure (" Hg)        | 18.81       | 29.31       | 29.31      | 29.31       | 20.00       | 29.30       | 25          | 30 10       | 9 90        | F 2       | X 5    |
| Abrelete Stack Temperature (R)        | 287         | 287         | **         | -<br>R      | <u> </u>    |             | \$          | 3           | 3           | A         | Q      |

## PLANT YATES STACK/ALDEHYDES

| Run No.                              | 1       | 2       | 3       | Asiamaa |
|--------------------------------------|---------|---------|---------|---------|
|                                      | (/21/02 | _       | _       | Average |
| Date                                 | 6/21/93 | 6/22/93 | 6/23/93 | -       |
| Time Start                           | 1340    | 0715    | 0700    | -       |
| Time Finish                          | 1408    | 0745    | 0730    | -       |
| Operator                             | DJV     | DJV     | DJV     | •       |
| Initial Leak Rate                    | 0.001   | < 0.001 | 0.007   | -       |
| Final Leak Rate                      | 0.001   | 0.001   | 0.002   | •       |
| Stack Diameter (ft)                  | 13.0    | 13.0    | 13.0    | -       |
| Pitot Tube Correction Factor (Cp)    | 0.84    | 0.84    | 0.84    | -       |
| Dry Gas Meter Calibration (Yd)       | 1.006   | 1.006   | 1.006   | -       |
| Nozzle Diameter (inches)             | 0.1747  | 0.1747  | 0.1747  |         |
| Barometric Pressure ("Hg)            | 29.31   | 29.34   | 29.19   | 29.28   |
| Static Pressure ("H2O)               | -0.5    | -0.5    | -0.5    | -0.5    |
| Meter Volume (acf)                   | 10.707  | 11.086  | 10.929  | 10.907  |
| Average square root of delta p       | 0.7680  | 0.7681  | 0.7461  | 0.7607  |
| Average delta H (" H2O)              | 0.46    | 0.45    | 0.43    | 0.45    |
| Average Stack Temperature (F)        | 127     | 133     | 131     | 130     |
| Average DGM Temp (F)                 | 81.0    | 81.5    | 79.6    | 80.7    |
| Test Duration (minutes)              | 28.0    | 30.0    | 30.0    | 29.3    |
| % CO2                                | 10.2    | 10.8    | 10.2    | 10.4    |
| % O2                                 | 8.8     | 8.6     | 8.5     | 8.6     |
| % N2                                 | 81.0    | 80.6    | 81.3    | 81.0    |
| Meter Volume (dscf)                  | 10.310  | 10.676  | 10.507  | 10.498  |
| Flue Gas Moisture (%)                | 13.9    | 14.1    | 13.9    | 14.0    |
| Gas Molecular Weight (Wet) (g/g-mole | 28.32   | 28.37   | 28.31   | 28.33   |
| Absolute Stack Pressure (" Hg)       | 29.27   | 29.30   | 29.15   | 29.24   |
| Absolute Stack Temperature (R)       | 587     | 593     | 591     | 590     |
| Average Gas Velocity (f/sec)         | 46.41   | 46.57   | 45.32   | 46.10   |
| Avg Flow Rate (acfm)                 | 369,602 | 370,850 | 360,938 | 367,130 |
| Avg Flow Rate (dscfm)                | 279,942 | 277,918 | 270,646 | 276,169 |
| Isokinetic Sampling Rate (%)         | 104.90  | 102.12  | 103.21  | 103.41  |

# PLANT YATES STACK/PSD

| Run No.                               | ı            | 2            | 3            | Average |
|---------------------------------------|--------------|--------------|--------------|---------|
| Date                                  | 6/21-6/22/93 | 6/22-6/23/93 | 6/23-6/24/93 | - "     |
| Time Start                            | 1330         | 1500         | 1553         | -       |
| Time Finish                           | 0945         | 0953         | 1000         | -       |
| Operator                              | DΙV          | DJV          | DJV          |         |
| Initial Leak Rate                     | 0.008        | 0.002        | 0.004        | -       |
| Final Leak Rate                       | NA           | NA           | NA NA        | -       |
| Stack Diameter (ft)                   | 13.00        | 13.0         | 13.0         | -       |
| Pitot Tube Correction Factor (Cp)     | 0.84         | 0.84         | 0.84         | -       |
| Dry Gas Meter Calibration (Yd)        | 0.994        | 0.994        | 0.994        | -       |
| Nozzle Diameter (inches)              | 0.1960       | 0.1960       | 0.1960       | -       |
| Barometric Pressure ("Hg)             | 29.31        | 29.34        | 29.19        | 29.28   |
| Static Pressure ("H2O)                | -0.5         | -0.5         | -0.5         | -0.5    |
| Meter Volume (acf)                    | 519.949      | 609.370      | 557.093      | 562.137 |
| Average square root of delta p        | 0.8000       | 0.8367       | 0.8367       | 0.8245  |
| Average delta H (" H2O)               | 0.80         | 0.87         | 0.87         | 0.85    |
| Average Stack Temperature (F)         | 125          | 128          | 128          | 127     |
| Average DGM Temp (F)                  | 96.0         | 95.7         | 94.9         | 95.5    |
| Test Duration (minutes)               | 987.0        | 1133.0       | 1080.0       | 1066.7  |
| % CO2                                 | 10.2         | 10.8         | 10.2         | 10.4    |
| % O2                                  | 8.8          | 8.6          | 8.5          | 8.6     |
| % N2                                  | 81.0         | 80.6         | 81.3         | 81.0    |
| Meter Volume (dscf)                   | 481.761      | 565.595      | 515.177      | 520.844 |
| Flue Gas Moisture (%)                 | 13.9         | 14.1         | 13.9         | 14.0    |
| Gas Molecular Weight (Wet) (g/g-mole) | **           |              |              | 28.33   |
| Absolute Stack Pressure (" Hg)        | 29.27        |              | 1            |         |
| Absolute Stack Temperature (R)        | 585          | 588          | 588          | 587     |
| Average Gas Velocity (f/sec)          | 48.26        |              |              |         |
| Avg Flow Rate (acfm)                  | 384,346      | 402,434      | 403,909      | 396,896 |
| Avg Flow Rate (dscfm)                 | 292,105      | 303,896      | 304,155      | 300,052 |
| Isokinetic Sampling Rate (%)          | 105.88       | 104.08       | 99.37        | 103.11  |

PLANT YATES
STACK/MULTI-METALS - PARTICULATE

| Run No.                              | 1        | 2        | 3        | Average  |
|--------------------------------------|----------|----------|----------|----------|
| Date                                 | 6/25/93  | 6/26/93  | 6/27/93  | - "      |
| Time Start                           | 0641     | 0921     | 0653     | - 1      |
| Time Finish                          | 1152     | 1356     | 1106     | -        |
| Operator                             | DJV      | DJV      | DJV      |          |
| Initial Leak Rate                    | 0.002    | 0.001    | 0.001    | •        |
| Final Leak Rate                      | 0.001    | 0.002    | 0.001    | -        |
| Stack Diameter (ft)                  | 13.0     | 13.0     | 13.0     | -        |
| Pitot Tube Correction Factor (Cp)    | 0.84     | 0.84     | 0.84     | -        |
| Dry Gas Meter Calibration (Yd)       | 1.029    | 1.029    | 1.029    | -        |
| Nozzle Diameter (inches)             | 0.1950   | 0.1950   | 0.1950   | - 1      |
| Barometric Pressure ("Hg)            | 29.33    | 29.36    | 29.21    | 29.30    |
| Static Pressure ("H2O)               | -0.5     | -0.5     | -0.5     | -0.5     |
| Meter Volume (acf)                   | 114.190  | 113.406  | 115.002  | 114.199  |
| Average square root of delta p       | 0.8017   | 0.7958   | 0.7974   | 0.7983   |
| Average delta H (" H2O)              | 0.77     | 0.75     | 0.76     | 0.76     |
| Average Stack Temperature (F)        | 128      | 130      | 130      | 130      |
| Average DGM Temp (F)                 | 75.1     | 83.0     | 90.4     | 82.8     |
| Test Duration (minutes)              | 240.0    | 240.0    | 240.0    | 240.0    |
| Condensed Water (g)                  | 403.5    | 399.5    | 416.7    | 406.6    |
| Filter Weight Gain (g)               | 0.0461   | 0.0326   | 0.03∋2   | 0.0380   |
| PNR Weight Gain (g)                  | 0.0117   | 0.0023   | 0.0016   | 0.0052   |
| % CO2                                | 10.9     | 11.4     | 11.6     | 11.3     |
| % O2                                 | 7.8      | 7.4      | 7.4      | 7.5      |
| % N2                                 | 81.3     | 81.2     | 81.0     | 81.2     |
| Meter Volume (dscf)                  | 113.874  | 111.558  | 111.039  | 112.157  |
| Flue Gas Moisture (%)                | 14.3     | 14.5     | 15.0     | 14.6     |
| Gas Molecular Weight (Wet) (g/g-mole |          | 28.37    | 28.32    | 28.34    |
| Absolute Stack Pressure (" Hg)       | 29.29    | 29.32    | 29.17    | 29.26    |
| Absolute Stack Temperature (R)       | 588      | 590      | 590      | 590      |
| Average Gas Velocity (f/sec)         | 48.47    | 48.13    | 48.40    | 48,33    |
| Avg Flow Rate (acfm)                 | 386,045  | 383,297  | 385,419  | 384,920  |
| Avg Flow Rate (dscfm)                | 290,497  | 287,454  | 285,491  | 287,814  |
| Isokinetic Sampling Rate (%)         | 104.55   | 103.51   | 103.74   | 103.93   |
| Particulate Concentration (gr/dscf)  | 7.83E-03 | 4.83E-03 | 5.12E-03 | 5.93E-03 |
| Particulate Concentration (lbs/dscf) | 1.12E-06 |          | 7.31E-07 | 8.47E-07 |
| Particulate Emission (grams/sec)     | 2.46     | 1.50     | 1.58     | 1.84     |
| Particulate Emission (lbs/hour)      | 19.51    | 11.90    | 12.52    | 14.64    |

# PLANT YATES STACK/ANIONS

| Run No.                              | 1       | 2       | 3       | Average |
|--------------------------------------|---------|---------|---------|---------|
| Date                                 | 6/25/93 | 6/26/93 | 6/27/93 | •       |
| Time Start                           | 0940    | 1325    | 0845    | -       |
| Time Finish                          | 1155    | 1536    | 1055    | -       |
| Operator                             | EBZ     | EBZ     | EBZ     |         |
| Initial Leak Rate                    | < 0.001 | < 0.001 | < 0.001 | - 1     |
| Final Leak Rate                      | < 0.001 | < 0.001 | < 0.001 |         |
| Stack Diameter (ft)                  | 13.0    | 13.0    | 13.0    | -       |
| Pitot Tube Correction Factor (Cp)    | 0.84    | 0.84    | 0.84    | - 1     |
| Dry Gas Meter Calibration (Yd)       | 1.006   | 1.006   | 1.006   | - 1     |
| Nozzle Diameter (inches)             | 0.1950  | 0.1950  | 0.1950  | - 1     |
| Barometric Pressure ("Hg)            | 29.33   | 29.36   | 29.21   | 29.30   |
| Static Pressure ("H2O)               | -0.5    | -0.5    | -0.5    | -0.5    |
| Meter Volume (acf)                   | 62.495  | 60.363  | 61,975  | 61.611  |
| Average square root of delta p       | 0.7874  | 0.7681  | 0.8183  | 0.7913  |
| Average delta H (" H2O)              | 0.72    | 0.67    | 0.74    | 0.71    |
| Average Stack Temperature (F)        | 132     | 133     | 133     | 133     |
| Average DGM Temp (F)                 | 91.1    | 104.5   | 100.3   | 98.6    |
| Test Duration (minutes)              | 134.0   | 131.0   | 130.0   | 131.7   |
| CO2%                                 | 10.9    | 11.4    | 11.6    | 11.3    |
| 02%                                  | 7.8     | 7.4     | 7.4     | 7.5     |
| % N2                                 | 81.3    | 81.2    | 81.0    | 81.2    |
| Meter Volume (dscf)                  | 59.157  | 55.834  | 57.465  | 57.486  |
| Flue Gas Moisture (%)                | 14.3    | 14.5    | 15.0    | 14.6    |
| Gas Molecular Weight (Wet) (g/g-mole | 28.33   | 28.36   | 28.33   | 28.34   |
| Absolute Stack Pressure (" Hg)       | 29.29   | 29.32   | 29.17   | 29.26   |
| Absolute Stack Temperature (R)       | 592     | 593     | 593     | 593     |
| Average Gas Velocity (f/sec)         | 47.76   | 46.57   | 49.78   | 48.04   |
| Avg Flow Rate (acfm)                 | 380,391 | 370,917 | 396,432 | 382,580 |
| Avg Flow Rate (dscfm)                | 284,451 | 276,630 | 292,426 | 284,503 |
| Isokinetic Sampling Rate (%)         | 99.35   | 98.63   | 96,76   | 98.25   |

# PLANT YATES STACK/AMMONIA-CYANIDE

| Date   6/25/93   6/26/93   6/27/93   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | crage |       | 3      | -      |        |                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--------|--------|-----------------------------------|
| Time Finish 0904 1315 0809 -  Operator EBZ EBZ EBZ -  Initial Leak Rate < 0.001 < 0.001 < 0.001 -  Final Leak Rate < 0.001 0.001 < 0.001 -  Stack Diameter (ft) 13.0 13.0 13.0 -  Pitot Tube Correction Factor (Cp) 0.84 0.84 0.84 -  Dry Gas Meter Calibration (Yd) 1.006 1.006 1.006 -  Nozzle Diameter (inches) 0.1950 0.1950 0.1950 -  Barometric Pressure ("Hg) 29.33 29.36 29.21 29  Static Pressure ("H2O) -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | '     | Avera | _      | 2      | 1      | · ·                               |
| Time Finish         0904         1315         0809         -           Operator         EBZ         EBZ         EBZ         -           Initial Leak Rate         < 0.001         < 0.001         -         0.001         -           Final Leak Rate         < 0.001         0.001         < 0.001         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     | •     | 1      |        |        |                                   |
| Columb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | -     |        |        |        |                                   |
| Initial Leak Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | •     | 1      |        |        |                                   |
| Stack Diameter (ft)   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0 |       |       |        |        |        |                                   |
| Stack Diameter (ft)         13.0         13.0         13.0         -           Pitot Tube Correction Factor (Cp)         0.84         0.84         0.84         -           Dry Gas Meter Calibration (Yd)         1.006         1.006         1.006         -           Nozzle Diameter (inches)         0.1950         0.1950         0.1950         -           Barometric Pressure ("Hg)         29.33         29.36         29.21         29           Static Pressure ("H2O)         -0.5         -0.5         -0.5         -0.5         -0.5           Meter Volume (acf)         61.781         41.312         43.505         48.3           Average square root of delta p         0.7550         0.7681         0.7874         0.7           Average Odelta H (" H2O)         0.68         0.69         0.72         0           Average DGM Temp (F)         86.3         97.4         85.4         8           Test Duration (minutes)         137.0         90.0         94.0         10           % CO2         7.8         7.4         7.4           % N2         81.3         81.2         81.0         8           Meter Volume (dscf)         58.984         38.698         41.440         46.5 </th <th>,</th> <th>-</th> <th></th> <th> 1</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,     | -     |        | 1      |        |                                   |
| Pitot Tube Correction Factor (Cp)       0.84       0.84       0.84       -         Dry Gas Meter Calibration (Yd)       1.006       1.006       1.006       -         Nozzle Diameter (inches)       0.1950       0.1950       0.1950       -         Barometric Pressure ("Hg)       29.33       29.36       29.21       29         Static Pressure ("H2O)       -0.5       -0.5       -0.5       -0.5         Meter Volume (acf)       61.781       41.312       43.505       48.3         Average square root of delta p       0.7550       0.7681       0.7874       0.7         Average delta H (" H2O)       0.68       0.69       0.72       0         Average Stack Temperature (F)       132       133       135         Average DGM Temp (F)       86.3       97.4       85.4       8         Test Duration (minutes)       137.0       90.0       94.0       10         % CO2       7.8       7.4       7.4         % N2       81.3       81.2       81.0       8         Meter Volume (dscf)       58.984       38.698       41.440       46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,     |       |        |        |        |                                   |
| Dry Gas Meter Calibration (Yd)         1.006         1.006         1.006         -           Nozzle Diameter (inches)         0.1950         0.1950         0.1950         -           Barometric Pressure ("Hg)         29.33         29.36         29.21         29           Static Pressure ("H2O)         -0.5         -0.5         -0.5         -           Meter Volume (acf)         61.781         41.312         43.505         48.3           Average square root of delta p         0.7550         0.7681         0.7874         0.77           Average delta H (" H2O)         0.68         0.69         0.72         0           Average Stack Temperature (F)         132         133         135           Average DGM Temp (F)         86.3         97.4         85.4         8           Test Duration (minutes)         137.0         90.0         94.0         10           % CO2         7.8         7.4         7.4           % N2         81.3         81.2         81.0         8           Meter Volume (dscf)         58.984         38.698         41.440         46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | -     | _      |        |        | ` '                               |
| Nozzle Diameter (inches)         0.1950         0.1950         0.1950         -           Barometric Pressure ("Hg)         29.33         29.36         29.21         29           Static Pressure ("H2O)         -0.5         -0.5         -0.5         -0.5           Meter Volume (acf)         61.781         41.312         43.505         48.8           Average square root of delta p         0.7550         0.7681         0.7874         0.7           Average delta H (" H2O)         0.68         0.69         0.72         0           Average Stack Temperature (F)         132         133         135           Average DGM Temp (F)         86.3         97.4         85.4         8           Test Duration (minutes)         137.0         90.0         94.0         10           % CO2         10.9         11.4         11.6         1           % O2         7.8         7.4         7.4           % N2         81.3         81.2         81.0         8           Meter Volume (dscf)         58.984         38.698         41.440         46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1     | -     | 0.84   | 0.84   | 0.84   | Pitot Tube Correction Factor (Cp) |
| Barometric Pressure ("Hg)       29.33       29.36       29.21       29         Static Pressure ("H2O)       -0.5       -0.5       -0.5       -0.5         Meter Volume (acf)       61.781       41.312       43.505       48.3         Average square root of delta p       0.7550       0.7681       0.7874       0.77         Average delta H (" H2O)       0.68       0.69       0.72       0         Average Stack Temperature (F)       132       133       135         Average DGM Temp (F)       86.3       97.4       85.4       8         Test Duration (minutes)       137.0       90.0       94.0       10         % CO2       10.9       11.4       11.6       1         % O2       7.8       7.4       7.4         % N2       81.3       81.2       81.0       8         Meter Volume (dscf)       58.984       38.698       41.440       46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,     | -     |        | 1.006  | 1.006  | Dry Gas Meter Calibration (Yd)    |
| Static Pressure ("H2O)         -0.5         -0.5         -0.5         -0.5           Meter Volume (acf)         61.781         41.312         43.505         48.3           Average square root of delta p         0.7550         0.7681         0.7874         0.77           Average delta H (" H2O)         0.68         0.69         0.72         0           Average Stack Temperature (F)         132         133         135           Average DGM Temp (F)         86.3         97.4         85.4         8           Test Duration (minutes)         137.0         90.0         94.0         10           % CO2         10.9         11.4         11.6         1           % O2         7.8         7.4         7.4           % N2         81.3         81.2         81.0         8           Meter Volume (dscf)         58.984         38.698         41.440         46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | -     | 0.1950 | 0.1950 | 0.1950 | Nozzle Diameter (inches)          |
| Meter Volume (acf)         61.781         41.312         43.505         48.3           Average square root of delta p         0.7550         0.7681         0.7874         0.77           Average delta H (" H2O)         0.68         0.69         0.72         0           Average Stack Temperature (F)         132         133         135           Average DGM Temp (F)         86.3         97.4         85.4         8           Test Duration (minutes)         137.0         90.0         94.0         10           % CO2         10.9         11.4         11.6         1           % O2         7.8         7.4         7.4           % N2         81.3         81.2         81.0         8           Meter Volume (dscf)         58.984         38.698         41.440         46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.30 | 29.   | 29.21  | 29.36  | 29.33  | Barometric Pressure ("Hg)         |
| Average square root of delta p       0.7550       0.7681       0.7874       0.77         Average delta H (" H2O)       0.68       0.69       0.72       0         Average Stack Temperature (F)       132       133       135         Average DGM Temp (F)       86.3       97.4       85.4       8         Test Duration (minutes)       137.0       90.0       94.0       10         % CO2       10.9       11.4       11.6       1         % O2       7.8       7.4       7.4         % N2       81.3       81.2       81.0       8         Meter Volume (dscf)       58.984       38.698       41.440       46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.5  |       | -0.5   | -0.5   | -0.5   | Static Pressure ("H2O)            |
| Average delta H (" H2O)       0.68       0.69       0.72       0         Average Stack Temperature (F)       132       133       135         Average DGM Temp (F)       86.3       97.4       85.4       8         Test Duration (minutes)       137.0       90.0       94.0       10         % CO2       10.9       11.4       11.6       1         % O2       7.8       7.4       7.4         % N2       81.3       81.2       81.0       8         Meter Volume (dscf)       58.984       38.698       41.440       46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.866 | 48.8  | 43.505 | 41.312 | 61.781 | Meter Volume (acf)                |
| Average Stack Temperature (F)       132       133       135         Average DGM Temp (F)       86.3       97.4       85.4       8         Test Duration (minutes)       137.0       90.0       94.0       10         % CO2       10.9       11.4       11.6       1         % O2       7.8       7.4       7.4         % N2       81.3       81.2       81.0       8         Meter Volume (dscf)       58.984       38.698       41.440       46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7702  | 0.77  | 0.7874 | 0.7681 | 0.7550 | Average square root of delta p    |
| Average Stack Temperature (F)       132       133       135         Average DGM Temp (F)       86.3       97.4       85.4       8         Test Duration (minutes)       137.0       90.0       94.0       10         % CO2       10.9       11.4       11.6       1         % O2       7.8       7.4       7.4         % N2       81.3       81.2       81.0       8         Meter Volume (dscf)       58.984       38.698       41.440       46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.70  | 0.    | 0.72   | 0.69   | 0.68   | Average delta H (" H2O)           |
| Average DGM Temp (F)       86.3       97.4       85.4       8         Test Duration (minutes)       137.0       90.0       94.0       10         % CO2       10.9       11.4       11.6       1         % O2       7.8       7.4       7.4         % N2       81.3       81.2       81.0       8         Meter Volume (dscf)       58.984       38.698       41.440       46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 133   | 1     | 135    | 133    | 132    | <del>-</del>                      |
| Test Duration (minutes)       137.0       90.0       94.0       10         % CO2       10.9       11.4       11.6       1         % O2       7.8       7.4       7.4         % N2       81.3       81.2       81.0       8         Meter Volume (dscf)       58.984       38.698       41.440       46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89.7  | 8     | 85.4   | 97.4   | 86.3   | Average DGM Temp (F)              |
| % O2     7.8     7.4     7.4       % N2     81.3     81.2     81.0     8       Meter Volume (dscf)     58.984     38.698     41.440     46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107.0 | 10    | 94.0   |        | 137.0  | Test Duration (minutes)           |
| % N2     81.3     81.2     81.0     8       Meter Volume (dscf)     58.984     38.698     41.440     46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.3  | 1     | 11.6   | 11.4   | 10.9   | % CO2                             |
| % N2     81.3     81.2     81.0     8       Meter Volume (dscf)     58.984     38.698     41.440     46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.5   |       | 7.4    | 7.4    | 7.8    | % O2                              |
| Meter Volume (dscf) 58.984 38.698 41.440 46.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81.2  | 8     | 81.0   | 81.2   | 81.3   |                                   |
| Flue Cos Moisture (%) 14.3 14.5 15.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.374 | 46.3  | 41.440 | 38.698 | 58.984 | Meter Volume (dscf)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.6  | 1     | 15.0   | 14.5   | 14.3   | Flue Gas Moisture (%)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.34 | 28    | 28.33  | 28.36  | 28.33  | 7 7                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.26 | 29    | 29.17  | 29.32  |        | <b>4</b> • • • •                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 593   |       | 1      |        |        | , –                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46.78 | _     |        |        |        | <u>-</u>                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 372,5 |        |        |        | • • • •                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •     | 276,7 | ,      | ,      |        | •                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00.34 |       |        |        | ,      | • • •                             |

# PLANT YATES STACK/RADIONUCLIDES

| Run No.                               | 1            | 2            | 3            | Average |
|---------------------------------------|--------------|--------------|--------------|---------|
| Date                                  | 6/24-6/25/93 | 6/25-6/26/93 | 6/26-6/27/93 |         |
| Time Start                            | 1223         | 0840         | 1357         | •       |
| Time Finish                           | 0153         | 0331         | 0614         | -       |
| Operator                              | <b>Љ</b> Н   | JEH          | JEH          | •       |
| Initial Leak Rate                     | < 0.001      | 0.010        | < 0.001      |         |
| Final Leak Rate                       | < 0.001      | 0.009        | < 0.001      |         |
| Stack Diameter (ft)                   | 13.0         | 13.0         | 13.0         | •       |
| Pitot Tube Correction Factor (Cp)     | 0.84         | 0.84         | 0.84         | •       |
| Dry Gas Meter Calibration (Yd)        | 0.994        | 0.988        | 0.988        | -       |
| Nozzle Diameter (inches)              | 0.2400       | 0.2400       | 0.2400       | -       |
| Barometric Pressure ("Hg)             | 29.33        | 29.33        | 29.36        | 29.34   |
| Static Pressure ("H2O)                | -0.5         | -0.5         | -0.5         | -0.5    |
| Meter Volume (acf)                    | 599.556      | 654.007      | 696.609      | 650.057 |
| Average square root of delta p        | 0.8459       | 0.8370       | 0.8524       | 0.8451  |
| Average delta H (" H2O)               | 1.94         | 1.87         | 1.96         | 1.92    |
| Average Stack Temperature (F)         | 130          | 129          | 131          | 130     |
| Average DGM Temp (F)                  | 97.3         | 93.0         | 97.7         | 96.0    |
| Test Duration (minutes)               | 816.0        | 893.0        | 908.0        | 872.3   |
| % CO2                                 | 10.9         | 11.4         | 11.6         | 11.3    |
| % O2                                  | 7.8          | 7.4          | 7.4          | 7.5     |
| % N2                                  | 81.3         | 81.2         | 81.0         | 81.2    |
| Meter Volume (dscf)                   | 556.184      | 607.560      | 642.493      | 602.079 |
| Flue Gas Moisture (%)                 | 14.3         | 14.5         | 15.0         | 14.6    |
| Gas Molecular Weight (Wet) (g/g-mole) |              | 28.36        | 28.33        | 28.34   |
| Absolute Stack Pressure (" Hg)        | 29.29        | 29.29        | 29.32        | 29.30   |
| Absolute Stack Temperature (R)        | 590          | 589          | 591          | 590     |
| Average Gas Velocity (f/sec)          | 51.21        | 50.61        | T '          | 51.15   |
| Avg Flow Rate (acfm)                  | 407,813      | 403,033      | 411,204      | 407,350 |
| Avg Flow Rate (dscfm)                 | 306,199      | 302,339      | 305,914      | 304,817 |
| Isokinetic Sampling Rate (%)          | 94.07        | 95.09        | 97.74        | 95.63   |

# PLANT YATES STACK/EXTRACTABLE METALS

| Run No.                               | r            | 2              | 3            | Average |
|---------------------------------------|--------------|----------------|--------------|---------|
| Date                                  | 6/24-6/25/93 | 6/25-6/26/93   | 6/26-6/27/93 | Average |
| Time Start                            | 1150         | 1246           | 1442         | -       |
| Time Finish                           | 0725         | 0331           | 0616         | -       |
| Operator                              | EBZ          |                | EBZ          | •       |
| Initial Leak Rate                     | < 0.001      | EBZ<br>< 0.001 | < 0.001      | -       |
| Final Leak Rate                       | < 0.001      | 0.001          | < 0.001      | •       |
| Stack Diameter (ft)                   | 13.0         |                | 13.0         |         |
| Pitot Tube Correction Factor (Cp)     | 0.84         | 13.0<br>0.84   | 0.84         | •       |
| Dry Gas Meter Calibration (Yd)        | 0.84         |                | 1 1          | •       |
| •                                     |              | 1.029          | 1.029        | -       |
| Nozzle Diameter (inches)              | 0.2400       | 0.2400         | 0.2400       | 20.24   |
| Barometric Pressure ("Hg)             | 29.33        | 29.33          | 29.36        | 29.34   |
| Static Pressure ("H2O)                | -0.5         | -0.5           | -0.5         | -0.5    |
| Meter Volume (acf)                    | 818.991      | 600.910        | 618.386      | 679.429 |
| Average square root of delta p        | 0.7874       | 0.8000         | 0.7616       | 0.7830  |
| Average delta H (" H2O)               | 1.78         | 1.75           | 1.58         | 1.70    |
| Average Stack Temperature (F)         | 129          | 125            | 126          | 127     |
| Average DGM Temp (F)                  | 97.6         | 89.1           | 90.6         | 92.4    |
| Test Duration (minutes)               | 1112.0       | <b>857</b> .0  | 880.0        | 949.7   |
| CO2 %                                 | 10.9         | 11.4           | 11.6         | 11.3    |
| 02%                                   | 7.8          | 7.4            | 7.4          | 7.5     |
| % N2                                  | 81.3         | 81.2           | 81.0         | 81.2    |
| Meter Volume (dscf)                   | 759.081      | 585.462        | 601.172      | 648.572 |
| Flue Gas Moisture (%)                 | 14.3         | 14.5           | 15.0         | 14.6    |
| Gas Molecular Weight (Wet) (g/g-mole) | 28.33        | 28.36          | 28.33        | 28.34   |
| Absolute Stack Pressure (" Hg)        | 29.29        | 29.29          | 29.32        | 29.30   |
| Absolute Stack Temperature (R)        | 589          | 585            | 586          | 587     |
| Average Gas Velocity (f/sec)          | 47.63        | 48.22          | 45.93        | 47.26   |
| Avg Flow Rate (acfm)                  | 379,362      | 384,045        | 365,815      | 376,407 |
| Avg Flow Rate (dscfm)                 | 285,223      | 289,842        | 274,469      | 283,178 |
| Isokinetic Sampling Rate (%)          | 101.14       | 1              | 105.18       | 101.97  |

# PLANT YATES STACK/CHROME VI

| Ruo No.                               | 1       | 2       | 3       | Average |
|---------------------------------------|---------|---------|---------|---------|
| Date                                  | 6/25/93 | 6/26/93 | 6/27/93 |         |
| Time Start                            | 1147    | 1041    | 0800    | -       |
| Time Finish                           | 1434    | 1445    | 1150    | -       |
| Operator                              | JEH     | JEH     | ÆН      |         |
| Initial Leak Rate                     | < 0.001 | < 0.001 | 0.007   | -       |
| Final Leak Rate                       | < 0.001 | 0.002   | 0.008   |         |
| Stack Diameter (ft)                   | 13.0    | 13.0    | 13.0    |         |
| Pitot Tube Correction Factor (Cp)     | 0.84    | 0.84    | 0.84    | : -     |
| Dry Gas Meter Calibration (Yd)        | 0.994   | 0.994   | 0.994   | - 1     |
| Nozzle Diameter (inches)              | 0.1950  | 0.1950  | 0.1950  | -       |
| Barometric Pressure ("Hg)             | 29.33   | 29.36   | 29.21   | 29.30   |
| Static Pressure ("H2O)                | -0.5    | -0.5    | -0.5    | -0.5    |
| Meter Volume (acf)                    | 68.563  | 66.971  | 69.589  | 68.374  |
| Average square root of delta p        | 0.7658  | 0.7689  | 0.7868  | 0.7738  |
| Average delta H (" H2O)               | 0.69    | 0.69    | 0.71    | 0.70    |
| Average Stack Temperature (F)         | 127     | 130     | 130     | 129     |
| Average DGM Temp (F)                  | 90.5    | 90.7    | 87.5    | 89.6    |
| Test Duration (minutes)               | 144.0   | 144.0   | 146.0   | 144.7   |
| CO2 %                                 | 10.9    | 11.4    | 11.6    | 11.3    |
| 02%                                   | 7.8     | 7.4     | 7.4     | 7.5     |
| % N2                                  | 81.3    | 81.2    | 81.0    | 81.2    |
| Meter Volume (dscf)                   | 64.184  | 62.738  | 65.242  | 64.054  |
| Flue Gas Moisture (%)                 | 14.3    | 14.5    | 15.0    | 14.6    |
| Gas Molecular Weight (Wet) (g/g-mole) |         | 28.36   | 28.33   | 28.34   |
| Absolute Stack Pressure (" Hg)        | 29.29   | 29.32   | 29.17   | 29.26   |
| Absolute Stack Temperature (R)        | 587     | 590     | 590     | 589     |
| Average Gas Velocity (f/sec)          | 46.24   | 46.50   | 47.74   | l i     |
| Avg Flow Rate (acfm)                  | 368,270 | 370,354 | 380,212 | 372,945 |
| Avg Flow Rate (dscfm)                 | 277,922 | 277,614 | 281,887 | 279,141 |
| Isokinetic Sampling Rate (%)          | 102.66  | 100.46  | 101.47  | 101.53  |



# VOST FIELD DATA SHEET

| ASSUMED MOISTURE %                    | METER BOX NO. $1/3$ | METER FACTOR 1.0355          | PROBE HEATER SETTING 2.50 - 300 | COMMENTS      |                     |                           |                                               |
|---------------------------------------|---------------------|------------------------------|---------------------------------|---------------|---------------------|---------------------------|-----------------------------------------------|
| PLANTPlant Yates Station Boiler No. 1 | DATE (123/93        | SAMPLING LOCATION ESP DUTLET | RUN NO. 3 TEST NO.              | OPERATOR SALL | AMBIENT TEMPERATURE | BAROMETRIC PRESSURE 29.39 | BLANK TUBE NUMBERS T. 1 45 16 A TIC. 14516 P. |

|                                         |              |        |              |           |       |       |            |        |       | _     |               |         |             |      |             |        |   | _   |  |
|-----------------------------------------|--------------|--------|--------------|-----------|-------|-------|------------|--------|-------|-------|---------------|---------|-------------|------|-------------|--------|---|-----|--|
| 1st Condensor 2nd Condensor Pump Vacuum | Temp         | 80     | &            | 8         | 80    | مح    | 1/2        | 15     | h     | 1,    | 5             | 5       | 4           | 5    | 1           | Ŋ      |   |     |  |
| 2nd Candenson                           | Outlet Temp. | 28     | શ્કુ         | Sign      | 23    | 28    | 23         | 8,3    | ટ્રેડ | 8     | 58            | 25      | 58          | 85   | B           | 85     |   |     |  |
| 1st Condensor                           | Outlet Temp. | 28     | 25           | <i>چې</i> | 85    | 28    | 58         | 28     | 28    | \$\$  | 53            | 26      | ام)         | an   | 23          | ŲŠ     |   |     |  |
| Probe                                   | Temp         | 118    | 428          | 762       | 273   | hc7   | 210        | 300    | 293   | 180   | 78٢           | 260     | 273         | 277  | 283         | 189    |   |     |  |
| DGM                                     | Temp         | 73     | 75           | 78        | 66    | ୧୨    | 8(         | 82     | 8.7   | 83    | જ્ઞ           | 84      | \$2         | 85   | 85          | a<br>१ |   |     |  |
| Stack                                   | Temp         |        |              |           |       |       |            |        |       |       |               |         |             |      |             |        |   |     |  |
| Meter                                   | Pressure     | +      | -            |           | 1     |       | 1          | -      | 1     | 1     | -             | 1       | 1_          |      | \           | -      |   |     |  |
| Gas Meter                               | Reading      | 0.00   | 5,05         | 10.0      | 15.05 | CO.OI | 0.00       | 5.0    | 10,02 | 15.05 | 20.00         | 0.00    | 5.06        | 86.6 | 15.01       | 20.00  |   |     |  |
| Clock                                   | Time         | 0110   | 0130         | 0140      | 07.86 | açoc  | 0809       | 0819   | ०४३५  | 0839  | <b>े8</b> पे9 | 0856    | 1060        | 9160 | 0924        | नद्भव  |   |     |  |
| Sampling                                | (min)        | 0      | Q            | 20        | 30    | Oħ    | 0          | 10     | 90    | 30    | Oh            | 0       | 01          | 70   | <i>0</i> γ. | 40     | 0 |     |  |
| Tube N                                  | (Lab)        | 1      | ट्रेस<br>ब्र | 1/0       | 1486  |       | <u> </u> ⊢ | (*S) / | 1/C   | 4517  |               | 11/1/10 | 15.74<br>P. | 176  | 150         |        | _ | 1/0 |  |
|                                         | Post         | 1/ 000 |              |           |       |       | 4 - 1      |        |       |       |               |         |             |      |             |        |   |     |  |
| Leak Check ("Hg)                        | Pre          | 000    |              |           |       |       | 0020 CON   |        |       |       |               | 001700  |             |      |             |        |   |     |  |
| Test                                    | Number       | 3 A    |              |           |       |       | 36         |        |       |       |               | 7       |             |      |             |        |   |     |  |

# VOST FIELD DATA SHEET

| ASSUMED MOISTURE % 7                   | METER BOX NO. | METER FACTOR ( a 3 5 5     | PROBE HEATER SETTING 300 | COMMENTS |                        |                           |                                           |
|----------------------------------------|---------------|----------------------------|--------------------------|----------|------------------------|---------------------------|-------------------------------------------|
| PLANT Plant Yates Station Boiler No. 1 | DATE V/22/93  | SAMPLING LOCATION \$5P Out | RUN NO. 7 TEST NO.       | OPERATOR | AMBIENT TEMPERATURE 70 | BAHOMETRIC PRESSURE 29.40 | BLANK TUBE NUMBERS T: 14533 4 T/C: 145336 |

| Number | •      | 1        |              |                 |        |         |          |      |      |      |             |              | The second secon |
|--------|--------|----------|--------------|-----------------|--------|---------|----------|------|------|------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <      | P.     | Post     | (Lab)        | (min)           | Time   | Reading | Pressure | Temp | Temp | Temp | Oullet Temp | Outlet Temp. | Lomp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11     | 1204   | 0211     | <b>—</b>     | 0               | 0736   | 00.0    |          |      | 78   | 500  | 5           | 99           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |        |          | ĭ.<br>5.∨4.  | 0)              | 2746   | 80.2    | ļ        |      | 86   | 304  | 89          | 19           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |        |          | 5,           | 22              | 2510   | 10.13   |          |      | 84   | 308  | h_8         | x_5          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |        |          | (530<br>(730 | 30              | 080 to | 15.0    | _        |      | XL.  | 300  | LS -        | 575          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |        |          |              | 40              | 0816   | 20.05   | -        |      | 19   | 787  | ઠેડ         | 56           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 26 6   | 002    | <u>0</u> | 1            | 0               | 0822   | 0.00    | 1        |      | 96   | 262  | 28          | 5.5          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |        |          | 1,367        | 0               | 0832   | <.00    | _        |      | 08   | 223  | CS          | SS           | ה                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |        |          | 1/0          | ο <sub>ζ</sub>  | 2480   | 9.94    | 1        |      | 18   | 882  | 25          | برا          | · >-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |        |          | 1527         | 30              | 0852   | 10:51   | _        |      | 18   | 797  | 2           | 22           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |        |          |              | 40              | 2060   | 00'07   | ı,       |      | (&   | 037  | 335         | 23           | ή.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7      | ପକ୍ଷେଷ | 71000    | Ĭ            | 0               | 9080   | 000     | -        |      | 23   | 267  | 07          | 83           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        |        |          | Ž, Q         | 01              | 0914   | 86.4    | _        |      | 22   | 318  | حالا        | 27           | 4+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |        |          | 2/2          | 20              | ०९%    | 96.6    |          |      | £3   | 285  | SJ          | 56           | 1+3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |        |          | ₹2<br>\$2    | 30              | 0434   | 15.02   |          |      | G    | 292  | 28          | ટુડ          | <i>ل</i> ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |        |          |              | <del>بر</del> 0 | 0946   | 00.0t   |          |      | 83   | 7285 | 85          | 95           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |        |          | -            | 0               |        |         |          |      |      |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |          |              |                 |        |         |          |      |      |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |          | 1/2          |                 |        |         |          |      |      |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |          |              |                 |        |         |          |      |      |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |        |          |              |                 |        |         |          |      |      |      |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# VOST FIELD DATA SHEET

| ASSUMED MOISTURE %    METER BOX NO. V 9  METER FACTOR 1, 0355  PROBE HEATER SETTING  COMMENTS                                                                                                         | er Meter Stack DGM Probe 1st Condensor 2nd Condensor Pump Vacuum |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|                                                                                                                                                                                                       | Gas Meter                                                        |
| PLANT Plant Yates Station Boiler No. 1  DATE (c/31/43)  SAMPLING LOCATION EST. O.L.  RUN NO. 1 TEST NO.  OPERATOR RESTURE 80  BAROMETRIC PRESSURE 1.9.5.1  BLANK TUBE NUMBERS T: 1450 74 T/C: 1450 78 | Tare Lead Chank ("Ma) Tribe N Sembling Clock                     |

| 232 55 52 122 232 247 55 55 51 1 2 254 575 55 55 51 1 2 254 575 55 55 51 1 2 254 575 55 55 51 1 2 254 575 55 55 51 1 2 254 575 55 55 51 1 2 254 575 55 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 254 575 51 1 2 255 51 1 2 254 575 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2 255 51 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sampling Clock Gas Meter Meter Stack (min) Time Reading Pressure Temp | Tube N Sampling Clock Gas Meter Stack Stack (Lab) (min) Time Reading Pressure Temp | Clock Gas Meter Meter Stack (min) Time Reading Pressure Temp | Sampling Clock Gas Meter Meter Stack (min) Time Reading Pressure Temp | Gas Meter Meter Stack | r Meter Stack | Stack                                   |            | בֿ בֿ | Temp                                      | Probe | lat Condensor<br>Outlet Temp | 2nd Condensor<br>Outlet Temp. | Outlet Temp. Outlet Temp. Femp. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|---------------|-----------------------------------------|------------|-------|-------------------------------------------|-------|------------------------------|-------------------------------|---------------------------------|
| 25 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 con 1 0 1238 0.00 1.1 190                                           | T 0 1238 0.00 1.1 190                                                              | 0 1238 0.00 1.1 190                                          | 0.00 1.1 190                                                          | 0.00 1.1 (90)         | 1.1           | 190                                     |            | 1     | 77                                        | 201   | \$5                          | ડ્સ                           | ā                               |
| 232 553<br>240 555 53<br>241 565 53<br>254 57 58<br>254 57 53<br>254 57 53<br>254 57 53<br>254 57 53<br>254 57 53<br>254 57 53<br>254 57 53<br>255 553<br>257 553 | 06A 10 1248 49 1.1                                                    | 06A 10 1248 49 1.1                                                                 | 1.1 6.7 846 0.                                               | 1.1 6.4 846                                                           | 1.1                   | 1.1           |                                         |            | 1     | <u>)</u>                                  | 816   | 55                           | 10                            | 11                              |
| 210 555 53<br>221 555 53<br>224 57 53<br>224 57 53<br>225 57 53<br>227 555 53<br>227 55 53<br>228 55 55<br>228 55 55<br>229 55 55<br>220 55 55<br>220 55 55<br>220 55 55<br>220 55<br>2                                                                                                                                                                                                                                                                                        | 7/C 20 1258 109:602 1.1                                               | 7/C 20 1258 109:602 1.1                                                            | 20 1258 109-107-11                                           | 1258 109,402                                                          | 109-62                | 1.1           | 1.1                                     |            |       | 75                                        | 232   | 55                           | 53                            | 11                              |
| 21.) 555 453<br>254 57 58<br>254 57 58<br>2254 57 58<br>236 58<br>248 58 53<br>248 58 58<br>248 58 58<br>248 58 58<br>248 58 58<br>248 58 58<br>248 58 58<br>248 58 58 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 1308                                                               | 066 30 1308                                                                        | 30 1308                                                      | 13.08                                                                 |                       | 1.1 0.51      |                                         |            |       | 75                                        | 210   | 55                           | 3                             | =                               |
| 254 57 53<br>254 57 53<br>254 57 58<br>248 58 53<br>227 55 53<br>237 55 53<br>23 51<br>24 53 53<br>25 53<br>25 53<br>25 53<br>26 53 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40 (318 JO.12 1.1                                                     | 1318 30.12                                                                         | 1318 30.12                                                   | 1318 30.12                                                            | 20.12                 |               |                                         |            | l     | 76                                        | 717   | SS                           | S                             | 11                              |
| 254 57 58<br>256 55 53<br>248 54 53<br>227 55 53<br>227 55 53<br>237 55 53<br>237 55 53<br>236 53 53<br>237 53 53<br>237 53 53<br>237 53 53<br>237 53 53<br>237 53 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | T 0 1323 0.00                                                                      | 1323 0.00                                                    | 1323 0.00                                                             | 0.00                  | -             | 1.0                                     |            | ł     | 77                                        | 120   | ار<br>6                      | 53                            | t                               |
| 256 55 53<br>248 54 53<br>227 53 53<br>23, 55 53<br>24, 53 53<br>24, 53 53<br>24, 53 53<br>26, 53 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 13 13 13 13                                                        | 11A 10 1343 52                                                                     | 11A 10 1343 52                                               | 13 43 5.2                                                             | 5.2                   |               | ۱. ۵                                    |            | 3     | L                                         | 254   | 57                           | 2                             | 3                               |
| 248 SH 53<br>227 S3 S3<br>230 S5 S3<br>230 S3 S1<br>240 S3 S3<br>241 S3 S3<br>25 S1<br>261 S3 S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/6 20 1343 9.9                                                       | 1/6 20 1343 9.9                                                                    | 1/6 20 1343 9.9                                              | 1343 9.9                                                              | 6.                    |               | 0,1                                     |            |       | 78                                        | 255   | 55                           | S.                            | t                               |
| 227 53 53<br>23, 55 53<br>23, 53 51<br>24, 53 53<br>26, 53 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 1353 14.96                                                         | 30 1353 14.96                                                                      | 30 1353 14.96                                                | 1353 14.96                                                            | 14.96                 |               | 061 04                                  | 190        |       | 28                                        | 845   | S                            | 53                            | ٦,                              |
| 23. 55 53<br>23, 53<br>24, 53 51<br>26, 53 53<br>26, 53 53<br>26, 53 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 1403                                                               | 40 1403 20.00                                                                      | 40 1403 20.00                                                | 1403 20.00                                                            | 20.00                 |               | 0.1                                     |            |       | 79                                        | 227   | 5'3                          | 53                            | 7                               |
| 236 53 51<br>273 53<br>273 53<br>281 53 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                     | T 0 1908 0.00                                                                      | 00.0                                                         | 00.0                                                                  | 0.00                  | <del> </del>  | 0:-                                     |            |       | 78                                        | 237   | 55                           | 53                            | ずら                              |
| 2719 S3<br>221 S53<br>281 S3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$131 OI \$150X77                                                     | 6.1 0.2 1191 or A2                                                                 | 6.1 6.2 1.9 01                                               | 0.1 0.5 8191                                                          | 5.0 1.3               | (.0           |                                         | 191        |       | 78                                        | 236   | 53                           | <u>[]</u>                     | 4                               |
| 213 5.3<br>181 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82h1 cv                                                               | 1 166 8241 62                                                                      | 1 166 8241 62                                                | 1 66 8241                                                             | 1 6.9                 | ן ן           | 1.0                                     |            |       | 28                                        | 3719  | S                            | 53                            | و                               |
| 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30 (438                                                               | 30 (438 15                                                                         | 30 (438 15                                                   | 1438 15                                                               | 12                    |               | 1.6                                     |            |       | 79.                                       | 373   | 5.3                          | 15                            | و                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40 140 144 23.00 1.8                                                  | 40 EZ 44 Ch                                                                        | 40 EZ 44 Ch                                                  | CO. 5.2 14 14 1                                                       | 23.00                 |               | 0.1                                     |            |       | 79                                        | 181   | Ŋ                            | D                             | و                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                                                                                    |                                                              |                                                                       |                       |               | 50 Car 050 000 access 0.000 0.000 0.000 | 3000000000 |       | * 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |       |                              |                               |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1                                                                   | 0 1                                                                                | 0 1                                                          | 0                                                                     |                       |               |                                         |            |       |                                           |       |                              |                               |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                                                                                    |                                                              |                                                                       |                       |               | i                                       |            |       |                                           |       |                              |                               |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/0                                                                   | 1/0                                                                                | 1/0                                                          |                                                                       |                       |               |                                         |            |       |                                           |       |                              |                               |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                                                                                    |                                                              |                                                                       |                       |               |                                         |            |       |                                           |       |                              |                               |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                                                                                    |                                                              |                                                                       |                       |               |                                         |            |       |                                           |       |                              |                               |                                 |

93

| PLANT NAME Plant Yates Station Boiler No. 1                                                                                                                                                  | Page of                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| SAMPLING LOCATION BORD OF OUT LET RUN NO.   DATE 6/21/93 TIME START 1249 TIME FINISH 18/2 DUCT DIMENSIONS   1.4 x /1.4 DIAMETER PTCF 84 DGMCF 997 NOZZLE DIA. 197 inches BAR PRESS 21.51 "Hg | TEST DURATION 320 240 min. INITIAL LEAK RATE .005012" cfm FINAL LEAK RATE .005010" cfm |
| STATIC PRESS -11.0 "H2O OPERATOR TJ13                                                                                                                                                        |                                                                                        |

| Traverse | Clock | Dry gas meter | ^ P                | ^ Н         | Stack   | Dry gas me                            | ter temp.        | Hot box                                          | Probe | Last          | Vacuum       | Cond.   |
|----------|-------|---------------|--------------------|-------------|---------|---------------------------------------|------------------|--------------------------------------------------|-------|---------------|--------------|---------|
| Point    | Time  | reading ft3   | in H2O             | in H2O      | Temp. F | Inlet                                 | Outlet           | Temp.                                            | Тетр  | Impinger      | in. Hg       | Exit    |
|          |       | _             |                    |             |         |                                       |                  |                                                  |       |               |              | Temp. F |
|          |       |               |                    |             |         | · · · · · · · · · · · · · · · · · · · | _                |                                                  | 1     |               | <del></del>  |         |
| 1- /     | 1249  | 376.471       | . 439              | 1.1         | 187     | 71                                    | 70               | 254                                              | 254   | 6             | V.0          | 65      |
| 27       | 12.54 | 340.3         | . 83               | .96         | 173     | 71                                    | 70               | 245                                              | 24)   |               | 5.0          | 63      |
| 3        | 1259  | #42, I        | .61                | . 745       | 192     | 73                                    | 70               | 247                                              | 255   | 46            | 5.0          | 53      |
| 4        | 1304  | 384.5         | <u>ო</u>           | .31         | 190     | 74                                    | 70               | 245                                              | 251   | <u>ل</u><br>ل | 4.0          | 52      |
| 5        | 1309  | 386.15        | . 34               | 40          | 171     | 74                                    | 7 l              | 257                                              | 250   | 46            | 4.5          | 54      |
| 6        | 1314  | 387.9         | .58                | 67          | 181     | 75                                    | 71               | 252                                              | 253   | 77            | 5.5          | 54      |
| 7        | 1319  | 389.9         | 71                 | 85          | 161     | 77                                    | 72               | 246                                              | 249   | 45            | 6.0          | 51      |
| ४        | 1324  | 393.0         | .75                | -96         | 137     | 79                                    | 75               | 254                                              | 2:50  | 45            |              | 51      |
| STOP     | 1329  | 395.012       | Port               | chan        | e Lex   | Y V.                                  | 7                | 5 🛋                                              | 10"   |               |              |         |
| 2-1      | 1343  | 395.9         | .9                 | NI          | 187     | 79                                    | 78               | 733                                              | 252   | 47            | 7.0          | 56      |
| Z        | 1348  | 398.74        | . 7                | .83         | 195     | 81                                    | 78               | 252                                              | 255   | मन            | 6.0          | 43      |
| 3        | 1354  | 401.8         | -75                | .49         | 197     | 83                                    | 78               | 245                                              | 245   | 50            | 6.0          | 49      |
| 4        | 13.59 | 404.35        | .4                 | 1./         | 198     | 89                                    | 78               | 255                                              | 249   | 50            | 7.0          | 42      |
| 5        | 1404  | 407.05        | . 7                | .81         | 194     | 85                                    | 79               | 215                                              | 247   | 50            | 7.0          | 41      |
| 6        | 14089 | 409.65        | . 65               | .76         | 182     | 46                                    | 80               | 252                                              | 260   | 50            | 6.0          | 41      |
| 7        | 1414  | 411.95        | .73                | 1885.9      | 160     | 86                                    | 81               | Z45                                              | 244   | 51            | 6.0          | 41      |
| 8        | 1419  | 414.7         | .5                 | .63         | 153     | 87                                    | 82               | 249                                              | 261   | 51            | 5.0          | 41      |
| STOP     | 1424  | 416-85        | Port               | Change      | LCGK    | 1                                     |                  |                                                  |       |               |              |         |
| 3-1      | 1517  | 417.9         | 54                 | .56         | 280     | P 82                                  | 82               | 253                                              | 246   | 53            | 5.0          | SI      |
| Z        | 1522  | 420.5         | 95                 | .98         | 280     | 83                                    | 82               | 254                                              | 255   | 56            | 6.5          | 51      |
| 3        | 1527  | 422.6         | 1.2                | 1.25        | 280     | 84                                    | 82               | 249                                              | 249   | 55            | 6.5          | 48      |
| 4        | 1532  | 125.3         | 1.3                | 1.35        | 281     | 87                                    | 83               | 253                                              | 255   | 56            | 6.5          | 43      |
| 5        | 1537  | 428.20        | 1.0                | 1.05        | 279     | 87                                    | 84               | 254                                              | 246   | 56            | 7.0          | 42      |
| 6        | 1532  | 431.35        | .92                | .96         | 279     | 90                                    | 84               | 245                                              | 245   | 58            | 7.0          | 45      |
| 1        | 1547  | 433.91        | 73                 | .76         | 278     | 90                                    | 84               | 255                                              | 763   | 60            | 7.0          | 43      |
| 8        | 1552  | 136.45        | .52                | .57         | 276     | 90                                    | 85               | Z45                                              | 264   | 63            | 5.0          | 42      |
| 576P     | 1557  | 438.56        |                    | <del></del> |         | , _                                   |                  | <del>                                     </del> |       |               | <del>"</del> | -       |
| <b>1</b> |       | 1-0.20        |                    |             |         |                                       | 1                |                                                  |       | -             |              |         |
|          |       | J J           | 1140               | 1           | ASSUMO  | *                                     |                  |                                                  |       |               |              |         |
| Ave      | Por   | 15 54 C       | 0.835              |             | 180     |                                       | 1.8              | 001                                              |       |               |              | · */    |
| Avg.     |       | 59 711        | 124 D-12           | N.          |         | <b>/</b>                              |                  |                                                  |       |               |              |         |
| Check'd  | -     |               | parasanak bilan bi | Contraction |         | ungsch (2019) der                     | Anna Santa Baran | Property of Allendary                            |       |               |              |         |

| CONSOLE # 161364     | Velocity 6/       |
|----------------------|-------------------|
| FILTER #             | % Moisture 7. 9   |
| AMBIENT TEMP.        | Flowrate (DSCFM)_ |
| PROBE LENGTH 12      | Isokinetic (%)    |
| TIMED MATERIAL GLASE |                   |

REMARKS

Nozzle IDIII

18.10 \$ STACK TEMPIN Error during first 20.95 \$ 1/3 due to ELEC gr. Dioblems WAW C-43

| PLANT       | NAME     | Plant Yates St | ation Boiler    | No. 1        |                           |                                                   |                   |                             |                    | Page 1       | $\angle_{\text{of}} \underline{Z}$ |              |
|-------------|----------|----------------|-----------------|--------------|---------------------------|---------------------------------------------------|-------------------|-----------------------------|--------------------|--------------|------------------------------------|--------------|
| SAMPLI      | NG LOCAT | MON OUT        | Let             |              |                           | RUN NO                                            | . }               |                             |                    |              |                                    |              |
| DATE (      | 21 93    | TIME START     |                 |              | TIME FI                   | VISH                                              | <del></del> -     | TEST DU                     | RATION             |              | n                                  | in.          |
| DUCT D      | MENSION  | DGMCF Hg       | - ×             | N0771 F      | DIAMET                    | ER                                                | inches            | INITIAL                     | LEAK RA<br>EAK RAT | TE           | c                                  | ព្រា<br>cím  |
| BAR PR      | ESS      | Hg "Hg         |                 | HOLLEL       | DIA                       |                                                   |                   | LINAL D                     | LAIC IOTI          |              |                                    | *4114        |
| STATIC      | PRESS    |                | H2O             |              | OPERAT                    | OR                                                |                   |                             |                    |              |                                    |              |
|             |          |                |                 |              |                           |                                                   |                   |                             |                    |              |                                    |              |
| Traverse    | Clock    | Dry gas meter  | ^ P             | ÅΗ           | Stack                     | Dry gas m                                         | eter temp.        | Hot box                     | Probe              | Last         | Vacuum                             | Cond.        |
| Point       | Tim≄     | reading fi3    | in H2O          | in H2O       | Temp. F                   | Inlet                                             | Outlet            | Temp.                       | Temp               | Impinger     | in. Hg                             | Exit         |
| •           |          |                |                 |              |                           | ,                                                 |                   |                             |                    |              |                                    | Temp. F      |
| 4-1         | 1604     | 439.270        | .85             | .88          | 281                       | 91                                                | 87                | 251                         | 261                | 66           | 6,0                                | 44           |
| 7           | 1609     | 441.88         | 1.              | 1.15         | 281                       | 91                                                | 87                | 253                         | 267                | 63           | 7.0                                | 46           |
| 3           |          | 444.76         | 1               |              |                           | 92                                                | 87                |                             | 245                |              |                                    |              |
| <del></del> | 1614     |                | 1.0             | 1.58         | 282                       |                                                   |                   | 264<br>253                  |                    | 62           | 810                                | 45           |
| 4           | 1619     | 448.1          | 1.5             | 1.58         | 28                        | 93                                                | 87                |                             | 246                | 60           | 8.0                                |              |
| 5           | 1624     | 451.46         | 1.3             | 1.4          | 280                       | 25                                                | ४९                | 251                         | 246                | 55           | 7.5                                | 39           |
| 6           | 1629     | 454.75         | 1.1             | 1.2          | 280                       | 95                                                | 88                | 248                         | 245                | 54           | 7.0                                | 40           |
| 7           | 1634     | 457.86         | .9              | .95          | 279                       | 96                                                | 90                | 252                         | 258                | 55           | 6.0                                | 41           |
| 8           | 1639     | 460.68         | .48             | .51          | 274                       | 96                                                | 90                | 253                         | 251                | 55           | 5.0                                | 42           |
| STOP        | 1644     | 462,950        |                 | Leak         | ✓                         | .005                                              | Q 15              | bj                          |                    |              |                                    |              |
| 5-1         | 1648     | 463.40         | 1.1             | 1-16         | 281                       | 96                                                | 92                | 250                         | 251                | <i>5</i> 7   | 7.0                                | 42           |
| 2           | 1653     | 466.39         | .70             | . 75         | 280                       | 96                                                | 9,                | 256                         | 253                | 54           | 6.0                                | 42           |
| 3           | 1658     | 468 87         | 1.2             | 1.3          | 242                       | 96                                                | 92                | 249                         | 252                | 54           | 7.0                                | 41           |
| 4           | 1703     | 471-8          | 14              | 1.5          | 282                       | 47                                                | 92                | 247                         | 252                | 54           | 4.0                                | 4-1          |
| 5           | 1708     | 474.93         | 17              | 1.3          | 281                       | 99                                                | 93                | 250                         | 748                | 54           | 8.6                                | 40           |
| 3           | 1713     | 478.12         | .74             | .78          | 279                       | 99                                                |                   | 259                         | 257                | 55           | 6.0                                | 43           |
|             |          | 480.8          | 83              | .89          | 279                       | 98                                                | 93                | 264                         | 247                |              | 60                                 | 42           |
| -           | 1718     | 483.4          |                 |              |                           |                                                   |                   |                             |                    | 55           |                                    |              |
| 8           | 1723     |                | 168             | .72          | 263                       | 97                                                | 93                | <u>252</u>                  | 263                | 55           | 5.0                                | 42           |
| <b></b> _   | 1728     | 485-97         |                 | LEAK         | 1 OK                      | .005                                              | @ 0               |                             |                    |              |                                    |              |
| 6-(         | 1732     | 486.49         | 1.              | 1-2          | 281                       | 96                                                | 93                | 242                         | 250                | 57           | 8.0                                |              |
| 7           | 1737     | 489.49         | .91             | .97          | 241                       | 97                                                | 93                | 243                         | 257                | 55           | 7.0                                | 43           |
| 3           | 1742     | 492.27         | .64             | 68           | 281                       | 96                                                | 92                | 246                         | 248                |              | 5.0                                | 94           |
| +           | 1747     | 494.69         | .63             | .67          | 185                       | 96                                                | 92                | 250                         | 258                | 58           | 4.7                                | 47           |
| 5           | 1752     | 497.15         | .63             | .67          | 280                       | 96                                                | 12                | 244                         | 262                | 59           | 5.0                                | 46           |
| ط           | 1757     | 499.1          | .72             | .76          | 280                       | 95                                                | 92                | 255                         | 262                | 60           | 6.0                                | 47           |
| 7           | 1802     |                | .86             | -91          | 280                       | 96                                                | 92                | 262                         | 245                | 60           | 6.0                                | 47           |
| ४           |          | 504.1          | .75             | 8            | 278                       | 96                                                | 92                | 255                         | 260                |              | 6.0                                | 99           |
|             |          | 506.952        |                 |              |                           | , <del>, , , , , , , , , , , , , , , , , , </del> | , <del>-</del> -  |                             |                    |              |                                    |              |
| 7100        | 70.      | 67.682         | 0.964           | <del> </del> | <del></del>               | 93.7                                              | 7                 |                             |                    | <del> </del> | <del></del>                        | <del> </del> |
| -           | <u> </u> |                | 7,101           |              | <del> </del>              | 19.4                                              |                   |                             |                    | <b></b>      | <del></del>                        | <del> </del> |
| ļ           |          | 184491         | n Gin           | .93          | 280                       | 21                                                |                   |                             |                    |              |                                    |              |
| Avg.        |          | 126.123        | W 111           | 7/3          | 400                       | 860                                               |                   |                             |                    |              |                                    |              |
| Check'd     |          | 149.145        | l de la company |              |                           |                                                   | lette manage      |                             | 1                  | _            |                                    |              |
| CONSO       | 1 E #    |                |                 |              | 100 Maries - 200          |                                                   |                   | 21443 + 201 <b>4459</b> 000 | <b>:</b>           |              |                                    |              |
|             |          |                |                 |              | C Main                    | Jre                                               |                   |                             |                    |              |                                    |              |
|             |          |                |                 |              | Flores                    | (DSCFM)                                           |                   |                             |                    |              |                                    |              |
|             |          |                |                 |              | 1, 2, 10, 0000, 200, 1000 | (%)                                               |                   |                             |                    |              |                                    |              |
|             |          | ·              |                 |              | - DVALIFOLL               | (A.797)                                           | puntage (lighted) |                             | ŝ                  |              |                                    |              |
|             |          |                |                 |              |                           |                                                   |                   |                             |                    |              |                                    |              |
| PEMAR       | Ke       |                |                 |              |                           |                                                   |                   |                             |                    |              |                                    |              |

| SAMPLING LOCATION OUTLET RUN NO. 2  DATE 4/27/93 TIME START 0753 DIVINE FINISH 1247 TEST DURATION 240 min.                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DUCT DIMENSIONS 11.4 // 3 X 11.4 // 3 DIAMETER INITIAL LEAK RATE .003 DIO" cfm PTCF .94 DOMCF 29.99 NOZZLE DIA19 inches FINAL LEAK RATE .005 DIZ" cfm BAR PRESS 70.4 Hg STATIC PRESS -11.2 "H20 OPERATOR TTB |  |

| Traverse | Clock | Dev cas meter                | ^ P      | ^ H    | Stack       | Dry gas m | ****   | Hot box | Probe       | Last     | Vacuum  | Cond.   |
|----------|-------|------------------------------|----------|--------|-------------|-----------|--------|---------|-------------|----------|---------|---------|
| Point    | Time  | Dry gas meter<br>reading ft3 | in H2O   | in H2O | Temp. F     | Inlet     | Outlet | Temp.   | Temp        | Impinger | in. Hg  | Exit    |
| 1000     | I tuk |                              | LI 1120  |        |             |           | Outer  | 10114   | 10.24       |          | ui. rig | Temp. F |
|          |       |                              |          |        |             |           |        |         |             | 1        |         | 10      |
| 46-1     | 0753  | 523.3                        | 0        | 1.1    | 278         | 79        | 78     | Z70     | 241         | 54       | 5       | 54      |
| 2        | 0758  | 526.5                        | . 83     | .88    | 281         | 437       | 78     | 265     | 260         | 60       | 4.0     | 46      |
| 3        | 0803  | 528.92                       | .58      | .61    | 279         | ٦,        | 77     | 152     | 247         | 56       | 4.0     | 41      |
| 4        | ०४०४  | 531.07                       | .34      | .4     | 275         | 83        | 71     | 250     | 262         | 55       | 9-0     | 42      |
| 5        | 0813  | ≤32.87                       | 36       | .42    | 278         | 83.       | 79     | 261     | <i>25</i> 3 | 54       |         | 41      |
| 6        | 0318  | 534.60                       | 61       | .65    | 279         | 83        | 79     | 247     | 248         | 53       | 4.0     | 41      |
| 7        | 0823  | 536.7                        | ,73      | .77    | 279         | 84        | 80     | 253     | 246         | 51       | 5.0     | 41      |
| 3        | 0828  | 534.04                       | .74      | .78    | 272         | 85        | 80     | 263     | 252         | 49       |         | 47      |
| STOP     | 0433  | 541.45                       |          | LEAK   | 1           | -005      | @) 0"  |         |             | ,        |         |         |
| 2-1      | 0858  | 542.025                      | .94      | .99    | 278         | 79        | 78     | 257     | 253         | 64       | 5.0     | 55      |
| 2        | 0903  | 544.7                        | . 🕏      | .84    | 283         | 75        | 77     | 248     | 250         | 44       | 5, =    | 49      |
| 3        | 0908  | 547.17                       | . 8      | .44    | 280         | 18        | 77     | 755     | 252         | 44       | 5.0     | 49      |
| વ        | 0913  | 550.1                        | 96       | 1.0    | 283         | 83        | 78     | 265     | 244         | 43       | 5.0     | 48      |
| 5        | 0918  | 551.79                       | .82      | . 46   | 240         | 83        | 78     | 254     | 251         | 48       | 5.0     | 43      |
| 6        | 0923  | 554.92                       | . 77     | .76    | 241         | 84        | 79     | 244     | 245         | 45       | 5.0     | 50      |
| 7        | 0928  | 3 <i>5</i> <b>7</b> . 7      | .69      | .72    | 781         | 94        | 79     | 257     | 244         | 47       | 5.0     | 50      |
| 8        | 0933  | 559.77                       | .57      | .57    | 272         | 85        | 80     | 256     | 247         | UB       | 5.0     | 50      |
| 500      | 0938  | 561.91                       | тв       | LEAK   | 1 .00       | 5@10"     |        |         |             |          |         |         |
| 3-1      | 6941  | 562.401                      | 79575    |        | 283         | 83        | 80     | 246     | 250         | 48       | 5.0     | 52      |
| Z        | 0951  | 565.0                        | 1.5      | 1.15   | 285         | 85        | 82     | 253     | 251         | 49       | 6.0     | 50      |
| 3        | 0956  | 567.77                       | 1.2      | 1.25   | 785         | 87        | 82     | 247     | 248         | 49       | 6.2     | 48      |
| 4        | 1001  | 576.77                       | 1.4      | 1.5    | 284         | 87        | 82     | 250     | 251         | 47       | 7.0     | 51      |
| 5        | 1006  | 574.0                        | 1.2      | 1.25   | 283         | 87        | 82     | 250     | 254         | 48       | 6.0     | 50      |
| 6        | 1011  | 577.14                       | 1.1      | 1.15   | 282         | 88        | 82     | 247     | 246         | 48       | 6.0     | 50      |
| 7        | 1016  | 58.13                        | -8       | . 84   | 281         | 99        | 83     | 265     | 255         | 50       | 5.0     | 50      |
| 8        | 1021  | 582.6                        | .57      | .62    | 241         | युव       | 83     | 261     | 250         | 51       | Ì       | 49      |
| 5769     | 1026  | 584-95                       |          |        | <del></del> | <u> </u>  |        |         |             |          |         |         |
|          |       | <del></del>                  | ंठ       |        |             |           |        |         |             |          |         |         |
|          |       |                              |          |        | ¥201        | ~~        |        |         | \           |          |         |         |
| Avg.     |       | +4.7/                        | Gr = .90 |        | 200         | 84        | 80     | ,       | 10-/        |          |         |         |
| Check'd  | _     |                              |          |        | 400.12      |           |        | 1       |             |          |         |         |
|          | ·     | بن در زین د خد کا او دوا     |          |        |             |           |        |         |             |          |         |         |

| CONSOLE # 161364    | Velocity         | n=24  |
|---------------------|------------------|-------|
| FILTER #            | % Moisture       | ,     |
| AMBIENT TEMP.       | Flowrate (DSCFM) | (0.15 |
| PROBE LENGTH 12     | Isokinetic (%)   | . 94  |
| LINER MATERIAL 6655 |                  | 17.00 |

REMARKS

| TEST DURATION min. INITIAL LEAK RATE cfm FINAL LEAK RATE cfm |
|--------------------------------------------------------------|
|                                                              |

| Traverse    | Clock  | Dry gas meter | ^P                                               | Ť Ĥ         | Stack                         | Dry gas m            | elec lemp                                        | Hot box                                          | Probe        | Last                                             | Vacuum    | Cond.                                            |
|-------------|--------|---------------|--------------------------------------------------|-------------|-------------------------------|----------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|-----------|--------------------------------------------------|
| Point       | Time   | reading ft3   | in H2O                                           | in H2O      | Temp. F                       | Inlet                | Outlet                                           | Temp.                                            | Temp         | Impinger                                         | in. Hg    | Exit                                             |
|             |        |               |                                                  |             | •                             |                      |                                                  | ,                                                | •            | . •                                              |           | Temp. F                                          |
|             |        |               |                                                  |             |                               |                      |                                                  | <b>.</b>                                         |              |                                                  |           |                                                  |
| 4-1         | 1029   | 585.751       | .85                                              | . 89        | 283                           | 85                   | 83                                               | 245                                              | 247          | 54                                               | 5.0       | 49                                               |
| 2           | 1034   | 587.9         | 1.)                                              | 1-15        | 285                           | 29                   | 84                                               | 245                                              | 252          | 52                                               | 6.D       | 51                                               |
| 3           | 1039   | 590.79        | 1.4                                              | 1.45        | 284                           | 89                   | 84                                               | 251                                              | 256          | 51                                               | 6.0       | 50                                               |
| 4           | 1044   | 593.9         | 1.5                                              | 1.57        | 284                           | 90                   | 84                                               | 250                                              | 246          | 51                                               | 7.0       | 51                                               |
| 53          | 1049   | 597.15        | 1.45                                             | 1.52        | 283                           | 91                   | 85                                               | 265                                              | 251          | 53                                               | 7.0       | 51                                               |
| 42          | 1054   | 600.5         | 1.2                                              | 1.25        | 782                           | 41                   | 85                                               | 262                                              | 7.5 <u>2</u> | 53                                               | 6.5       | 50                                               |
| 7_          | 25     | 603.59        | .85                                              | .90         | 281                           | 91                   | 86                                               | 256                                              | 25)          | 55                                               | 5.0       | 51                                               |
| 8           | 1204   | 606.35        | .56                                              | -53         | 277                           | 91                   | 86                                               | 244                                              | 246          | 58                                               | 4,0       | 51                                               |
| STOP        | 1209   | 608.53        |                                                  | Lenk        | 1                             | .005                 | @10°                                             |                                                  |              |                                                  |           |                                                  |
| 5-1         | 1113   | 609.643       | . 91                                             | .96         | 285                           | 90                   | 86                                               | 257                                              | 245          | 60                                               | 5.0       | 48                                               |
| 2           | 1118   | 612.3         | .85                                              | . 89        | 284                           | 91                   | 86                                               | 256                                              | 275          | 58                                               | 5.0       | 48                                               |
| 3           | 1123   | 615.0         | 1.0                                              | 1-1         | 285                           | 91                   | 85                                               | 254                                              | 256          | 57                                               | 5.0       | 47                                               |
| 4           | 1128   | 617.74        | 1.5                                              | 1.6         | 284                           | 91                   | 86                                               | 762                                              | 250          | 54                                               | 7.0       | 47                                               |
| 5           | 1133   | 621.08        | 1-3                                              | 1.36        | 783                           | 93                   | 86                                               | 264                                              | 249          | 56                                               | 7-0       | 47                                               |
| 6           | 1138   | 624.4         | .74                                              | .78         | 283                           | 94                   | 87                                               | 259                                              | 254          | 52                                               | 5.0       | 45                                               |
| 7           | 1143   | 627.3         | .81                                              | .85         | 281                           | 94                   | 87                                               | 263                                              | 248          | 50                                               | 5.0       | 47                                               |
| 8           | 1148   | 629.55        | 71                                               | .75         | 279                           | 92                   | 86                                               | 256                                              | 255          | 50                                               |           | 46                                               |
| 5768        | 1153   | 632.18        | Leak                                             | 1           | .010                          | 2000                 |                                                  |                                                  |              |                                                  |           |                                                  |
| 6-1         | 1267   | 632.55        | 1.1                                              | 1.15        | 285                           | 86                   | 84                                               | 254                                              | 256          | 58                                               | 6.0       | 52                                               |
| 7           | 1212   | 635.52        | .95                                              | 1.0         | 288                           | 87                   | 84                                               | 262                                              | 249          | 49                                               | 5.0       | 48                                               |
| 3           | 1217   | 638.4         | .6                                               | .63         | 287                           | 88                   | 84                                               | 247                                              | 257          | 50                                               | 4-0       | 48                                               |
| 4           | 1222   | 640.77        | 60                                               | .63         | 287                           | 89                   | 85                                               | 254                                              | 253          | 51                                               | 4.0       | 49                                               |
| 5           | 1227   | 642.99        | .69                                              | 73          | 287                           | 88                   | 85                                               | 254                                              | 244          | 52                                               | 4.0       | 49                                               |
| 6           | 1232   | 645.38        | 75                                               | .78         | Z86                           | 87                   | 84                                               | 246                                              | 254          | 52                                               | 5.0       | 48                                               |
| 7           | 1237   | 647.9         | ,82                                              | 86          | 285                           | 88                   | 85                                               | 257                                              | 244          | 53                                               | 5.0       | SZ                                               |
| 8           | 1282   | 650.3         | . 83                                             | -87         |                               | 87                   | 84                                               | 262                                              | 257          | 25                                               | 50        | 78                                               |
| STOP        | 1247   | 653.96        | -                                                | •           |                               |                      |                                                  |                                                  |              |                                                  | -         |                                                  |
| <del></del> |        |               | <del>                                     </del> | - :-<br>- : | <del> </del> -                |                      | <del>                                     </del> | <del>                                     </del> |              | <del> </del>                                     |           |                                                  |
|             | 200925 | Ab            | 5                                                |             | <u> </u>                      |                      |                                                  |                                                  |              | <del>                                     </del> |           | <del>                                     </del> |
| Avg.        | F-1    | 15046         | 0.4306                                           | 626         | 280                           | 84.                  | 2 8 2 3                                          |                                                  |              |                                                  |           |                                                  |
| Check d     |        | 127.640       |                                                  |             |                               |                      |                                                  |                                                  |              |                                                  |           |                                                  |
| CHECK O     |        |               | F 35000 C C C C C C C C C C C C C C C C C C      |             | All the state of the state of | * 1490/09/07 (09808) | 4 20 MA COM                                      | * 38 A ( 30 H - 38 A)                            | 10.000.000   |                                                  | 3 (4) (1) | •                                                |

| CONSOLE #      | Velocity         |
|----------------|------------------|
| FILTER #       | % Moisure        |
| AMBIENT TEMP.  | Flowrate (DSCFM) |
| PROBE LENGTH   | Isokinetic (%)   |
| LINER MATERIAL |                  |
|                |                  |
| REMARKS        |                  |

| Plant Yates Station Boiler No. 1                                                                                                                            |                                                                    | Page \ of \_2                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|
| SAMPLING LOCATION OUTLOT  DATE 6/23/93 TIME START 67/2  DUCT DIMENSIONS 11 4 X 11 4  PTCF B4 DGMCF 1997 NOZZLE  BAR PRESS 29.36 "Hg  STATIC PRESS 11.0 "H20 | RUN NO. 5 TIME FINISH 1129 DIAMETER E DIA. 197 inches OPERATOR TSB | TEST DURATION 240 min. INITIAL LEAK RATE -0020/K ff cfm |

| Traverse | Clock | Dry gas meter           | ^ P                | H               | Suck                            | Dry gas m        | eter temp.             | Hot box          | Probe | Last               | Vacuum | Cond.      |
|----------|-------|-------------------------|--------------------|-----------------|---------------------------------|------------------|------------------------|------------------|-------|--------------------|--------|------------|
| Point    | Time  | reading ft3             | in H2O             | in H2O          | Temp. F                         | Inlet            | Outlet                 | Temp.            | Temp  | Impinger           | in. Hg | Exit       |
| !        |       |                         |                    |                 |                                 | •                |                        |                  |       |                    |        | Temp. F    |
| 1-1      | 0712  | 668.7                   | .95                | .94             | 280                             | 15               | 72                     | 247              | 255   | 68                 | В      | <i>5</i> 5 |
| 2        | 0117  | 671.5                   | .80                | -80             | 275                             | 77               | 73                     | 242              | 253   | 59                 | 6      | 41         |
| 3        | 0722  | 673 83                  | .51                | .56             | 274                             | 81               | 75                     | 259              | 245   | 56                 | 5      | 43         |
| 4        | 0727  | 675.97                  | .35                | .35             | 272                             | 84               | 77                     | 246              | 256   | 55                 | 4      | 45         |
| 5        | 0732  | 677.65                  | . 33               | 33              | 274                             | 84               | 77                     | 246              | 244   | 56                 | 4      | 50         |
| 6        | 0737  | 679.15                  | 60                 | .60             | 274                             | 83               | 78                     | 246              | 255   | 58                 | 6.     | 51         |
| 7        | 0742  | 681.17                  | .64                | .64             | 273                             | 85               | 79                     | 253              | 244   | 51                 | 4      | 48         |
| 8        | 0747  | 683.50                  | .75                | .75             | 269                             | 85               | 79                     | 254              | 257   | 50                 | 7      | 47         |
| STOP     | 0752  | 685.15                  | Leak               | 1               | .003                            | @15              | 71                     |                  |       |                    |        |            |
| 2-1      | 0756  | 686.25                  | .86                | .86             | 277                             | 85               | 80                     | 241              | 255   | 54                 | 7      | 4.7        |
| 2        | 0801  | 68B.B                   | 1.09               | .69             | 278                             | 86               | 80                     | 265              | 244   | 48                 | 7      | 47         |
| 3        | 0806  | 691.0                   | 17،                | .71             | 277                             | 86               | 80                     | 260              | 243   | 47                 | 7      | 4          |
| 4        | 0811  | 694.0                   | .95                | .95             | 277                             | 85               | 79                     | 259              | 254   | 47                 | 7      | 44         |
| 5        | 0816  | 695.77                  | .69                | .69             | 274                             | 85               | 79                     | 264              | 247   | 47                 | 7      | 45         |
| 6        | 082)  | 698.15                  | 60                 | .60             | 275                             | 85               | 80                     | 246              | 250   | 47                 | 7      | 45         |
| 7        | 0826  | 700.27                  | .71                | ·71             | 274                             | 85               | 80                     | 252              | 260   | 48                 | 7      | 46         |
| 8        | 0831  | 702.64                  | .57                | · <i>5</i> 7    | 264                             | 85               | BD                     | 256              | 249   | 49                 | 6      | 48         |
| STOP     | 0836  | 704 79                  |                    | Leak            | \$ .00                          | 5 <b>©</b>       | 1511                   |                  |       |                    |        |            |
| 3-1      | 08397 | 705.235                 | .61                | .61             | 278                             | 83               | 80                     | 240              | 251   | 58                 | 7      | 51         |
| 2        | 0844  | 707.62                  | .96                | .96             | 780                             | 85               | 80                     | 245              | 254   | 53                 | 9      | SZ         |
| 3        | 0849  | 709.9                   | 1.2                | 1.2             | 279                             | 85               | 80                     | 248              | 262   | 5Z                 | 100    | 53         |
| 4        | 0854  | 712.88                  | 1.3                | 1.3             | 280                             | 85               | 80                     | 254              | 245   | 52                 | 10.0   | 50         |
| 5        | 0859  | 716.0                   | . 99               | .99             | 277                             | 85               | 80                     | 746              | 254   | 56                 | 4.0    | 53         |
| 6        | 0904  | 718.9                   | .91                | .91             | 276                             | 85               | 81                     | 247              | 259   | 57                 | 8.0    | 54         |
| 7        | 0909  | 721.8                   | .70                | .70             | 276                             | 84               | 80                     | 258              | 246   | 59                 | 7.0    | 55         |
| 8        | 0914  | 723.7                   | .51                | .51             |                                 | 85               | 81                     | 246              | 254   | 59                 | 6.0    | 55         |
| 570P     | A19   | 725.744                 |                    |                 |                                 |                  |                        |                  |       |                    |        |            |
| Avg.     | _     |                         |                    |                 |                                 |                  |                        |                  |       |                    |        |            |
| Check'd  |       |                         |                    |                 |                                 |                  |                        |                  |       |                    |        |            |
| CHECKO   |       | r mednog best it, och i | 100000118000111100 | grada designimi | t directous descriptions (i.e., | 31.000.0004.6340 | es investigate in con- | ir normo vis 198 |       | \$45,898.000 (\$6) |        |            |

| REMARKS             | (07 0279         | 10.09 Buc |
|---------------------|------------------|-----------|
| LINER MATERIAL 6/55 |                  |           |
| PROBE LENGTH 12     | Isokinetic (%)   |           |
| AMBIENT TEMP.       | Flowrate (DSCFM) |           |
| FILTER #            | % Moisure        |           |
| CONSOLE # 16364     | Velocity         |           |

|                |             |                               | MODIA        | IED ML  | пнои                                     | 5 FIEL                                                                                                          | J DAT                       | 'A SHE                                  | ET             |                  |              |               |
|----------------|-------------|-------------------------------|--------------|---------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------|----------------|------------------|--------------|---------------|
| PLANT          | NAME        | Plant Yates St                | ation Boilei | No. 1   |                                          | <del></del>                                                                                                     |                             |                                         |                | Page 2           | _ of _Z      | _             |
| SAMPLI         | ING LOCA    | TION OU                       | tlet         |         |                                          | RUN NO                                                                                                          | 3 M                         | m- 3                                    | 5              |                  |              |               |
| DATE           | 23/93       | TIME START                    |              | ····    | TIME FI                                  | VISH                                                                                                            | ·                           | TEST DU                                 | RATION         |                  | m            | in.           |
| DUCT I         | IMENSIO     | NS<br>DOMCE                   | _ ×          | N0771 E | DIAMET                                   | ER                                                                                                              | inobes                      | INITIAL                                 | LEAK RA        | TE               | cf           | m             |
| BAR PR         | ESS         | "Hg                           | <del></del>  | NOZZLE  | DIA                                      |                                                                                                                 | niches                      | FINALL                                  | EAR RAI        | ·                |              | :Itu          |
| STATIC         | PRESS       | TION OUTIME START NS DGMCF Hg | H2O          |         | OPERAT                                   | OR                                                                                                              | <del></del>                 |                                         |                |                  |              |               |
| Traverse       | Clock       | Dry gas meter                 | Ŷ            | ^ н     | Stack                                    | Dry gas m                                                                                                       | eler lemp.                  | Hot box                                 | Probe          | Last             | Vacuum       | Cond.         |
| Point          | Time        | reading ft3                   | in F         | in H2O  | Temp. F                                  | injet                                                                                                           | Outlet                      | Temp.                                   | Temp           | Impinger         | in. Hg       | Exit          |
| Ì              |             | Ì                             |              |         |                                          |                                                                                                                 | }                           |                                         |                |                  | 1            | Temp. F       |
| 7              | 2622        | 25502                         | 0            | -       | 200                                      | 01                                                                                                              | 12 1                        |                                         | 361            | <u> </u>         | <del>-</del> | <del></del> _ |
| 4-1            | 0922        | 725.92                        | .85          | .85     | 280                                      | 84                                                                                                              | 81                          | 250                                     | 25             | 55               | 8.0          | 51            |
|                | 0927        | 728.67                        | 1.0          | 1.0     | 280                                      | 84                                                                                                              | 80                          | 252                                     | 249            | 53               | 9.0          | 12            |
| 3              | 0932        | 731.41                        | 1.3          | 1.3     | 281                                      | 84                                                                                                              | 80                          | 243                                     | 260            | 51               | 10.0         | 49            |
| 4              | 0937        | 734,37                        | 1.3          | 1.3     | 280                                      | 85                                                                                                              | 80                          | 254                                     | 2 <i>55</i>    | 51               | 10.0         | 51            |
| 5              | 0932        | 737.7                         | 1.3          | 1.3     | 280                                      | 87                                                                                                              | 81                          | 245                                     | 257            | 52               | 10.0         | 51            |
| 6              | 0947        | 740.5                         | 1.1          | 1.1     | 277                                      | 87                                                                                                              | 81                          | 252                                     | 251            | 53               | 10.0         | 51            |
| 7              | 0952        | 743.7                         | .79          | .79     | 277                                      | 86                                                                                                              | 81                          | 248                                     | 261            | 55               | 7.0          | 51            |
| 8              | 0957        | 746.05                        | 48           | .48     | 277                                      | 86                                                                                                              | 81                          | 252                                     | 249            | 56               | 7.0          | 52            |
| STOP           | 9002        | 748.052                       |              | LEAK    | 1                                        | .005                                                                                                            | @15                         |                                         |                |                  |              |               |
| 3-1            | 1005        | 748 368                       | .98          | .98     | 280                                      | 85                                                                                                              | 81                          | 256                                     | 259            | 57               | 9.0          | 51            |
| 2              | 1000        | 750.19                        | .72          | 72      | 282                                      | 86                                                                                                              | 81                          | 249                                     | 244            | 57               | 70           | <u>\$3</u>    |
| 3              | 1015        | 753.3                         | 10           | 10      | 282                                      | 86                                                                                                              | 82                          | 261                                     | 254            | 57               | 90           | 53            |
| 4              |             |                               |              | 1.2     |                                          |                                                                                                                 |                             |                                         |                | <del></del>      | 9.0          |               |
|                | 1020        | 11984 75L4                    |              |         | 282                                      | 87                                                                                                              | 82                          | 757                                     | 253            | 57               | 9.0          | <u>53</u>     |
| 5              | 1025        | 758.30                        | 1.2          | 1.2     | 201                                      | 88                                                                                                              | 82                          | 258                                     | 214            | 56               |              | 52            |
| ی              | 1030        | 762.3                         | .71          | 7/      | 280                                      | 89                                                                                                              | 83                          | 254                                     | 258            | 57               | 8.0          | 51            |
|                | 1035        | 764.55                        | .75          | .75     | 280                                      | 88                                                                                                              | 83                          | 246                                     | 245            | 58               | 7.0          | 52            |
| 8              | 1040        | 767.3                         | .68          | .68     | 174                                      | 89                                                                                                              | 84                          | 245                                     | 262            | 58               |              | 50            |
| 500            | 1045        | 769.243                       | 38           |         | \<br>                                    |                                                                                                                 | <u> </u>                    |                                         |                | <u> </u>         | Ll           |               |
| 6-1            | 1047        | 769.6                         | .88          | . 88    | 283                                      | 90                                                                                                              | 86                          | 255                                     | 255            | 62               | 8.5          | 54            |
| Z              | 1054        | 772.18                        | .91          | 91      | 284                                      | 91                                                                                                              | 87                          | 262                                     | 258            | 55               | 9.0          | 50            |
|                | 1059        | 774.79                        | .62          | .62     |                                          | 72                                                                                                              | 87                          |                                         | 246            | 52               | 7.0          | 46            |
| 4              | 1/04        | 716.65                        | .68          | .68     | 283                                      | 92                                                                                                              | 88                          | 266                                     | 250            | 52               | 7.0          | 47            |
| 5              | 1109        | 779.35                        | .65          | .65     |                                          |                                                                                                                 | 88                          | 250                                     | 263            | 51               | 7.0          | यंड           |
| 6              | 1114        | 781.64                        | .67          | . 67    | 281                                      | 91                                                                                                              | <b>छ</b>                    | 245                                     | 255            | 50               | 7.0          | 47            |
| 7              | 1119        | 784.05                        | -85          |         | 282                                      | 91                                                                                                              | 89                          | 246                                     | 245            | 50               | 8.0          | 44_           |
| ं              | 1124        | 786.5                         | 82           |         | 283)                                     |                                                                                                                 | 89                          | 251                                     | 251            | पंव              | 8.0          | 48            |
| 510P           | 1129        | 746 961                       | - 22         | سع ب    |                                          | <del>├───</del>                                                                                                 | 21                          | 2-1                                     |                | <del> `-</del> - | <u> </u>     | رع -          |
| 3/ <i>0/</i> 2 | 11-1        | 100.76                        |              |         | ?                                        |                                                                                                                 |                             | <del> </del> -                          | <del> </del>   | <del> </del>     | <b> </b>     | <del> </del>  |
|                | <del></del> | <del> </del>                  |              |         | <del></del>                              | -                                                                                                               | /                           | <del></del>                             |                | <del> </del>     | <b> </b>     |               |
| <b></b>        | <u> </u>    |                               |              |         |                                          | <u>,                                    </u>                                                                    | <b>/</b>                    | *************************************** |                | ****             |              |               |
| Avg.           |             |                               | 0.8958       | .82     | 2115                                     | #3                                                                                                              | .54                         |                                         |                |                  |              |               |
| Check'd        |             | 18 467                        |              |         |                                          |                                                                                                                 |                             |                                         |                |                  |              |               |
| _              |             | _                             |              |         | 7.58800000000000000000000000000000000000 | Secretários de la composição de la composiç | p#(0401.780kp0.000kp1000.70 |                                         | - <del>"</del> |                  |              |               |
|                |             |                               | <del></del>  |         | Velocity_                                | 20000000000000000000000000000000000000                                                                          |                             |                                         |                |                  |              |               |
| FILTER         |             |                               | -            |         | % Moista                                 | The second second second                                                                                        |                             |                                         |                |                  |              |               |
| AMBIE          | NT TEMP.    |                               |              |         | Flourate                                 | (DSCFM)                                                                                                         |                             |                                         |                |                  |              |               |

| CONSOLE #      | Velocity         |
|----------------|------------------|
| FILTER #       | % Moisture       |
| AMBIENT TEMP.  | Flowrate (DSCFM) |
| PROBE LENGTH   | Isokinetic (%)   |
| LINER MATERIAL |                  |
| REMARKS        |                  |
| C-48           |                  |

| PLANT                                      | NAME                                              | Plant Yates St                           | ation Boiler | No. 1  | <u> </u>                              |                       | FE                  | )<br>7.                |                               | Page                 | _ of                                    | -                        |
|--------------------------------------------|---------------------------------------------------|------------------------------------------|--------------|--------|---------------------------------------|-----------------------|---------------------|------------------------|-------------------------------|----------------------|-----------------------------------------|--------------------------|
| DATE (DUCT E<br>PTCF -<br>BAR PR<br>STATIC | ()/20/93<br>DIMENSION<br>SESS_Z9.<br>PRESS_=      | Plant Yates St. TION 5 F TIME START NS ( | H2O          | NOZZLE | TIME FII<br>DIAMET<br>DIA E<br>OPERAT | NISH/                 | 030<br>inches<br>JB | TEST DUINITIAL FINAL L | IRATION<br>LEAK RA<br>EAK RAT | 30m<br>TE <u>- 0</u> | 15 °                                    | iin.<br>fm<br>ofm        |
| Traverse<br>Point                          | Clock<br>Time                                     | Dry gas meter<br>reading ft3             | n H2O        | n H2O  | Stack<br>Temp. F                      | Dry gas me<br>Inlet   | Outlet              | Hot box<br>Temp.       | Probe<br>Temp                 | Last<br>Impinger     | Vacuum<br>in. Hg                        | Cond.<br>Exit<br>Temp. F |
|                                            | 10:15<br>10:30                                    | 356.3<br>357.12                          |              |        |                                       |                       |                     |                        |                               |                      |                                         |                          |
|                                            |                                                   |                                          |              |        |                                       |                       |                     |                        |                               |                      |                                         |                          |
|                                            |                                                   |                                          |              |        |                                       |                       |                     |                        |                               | ·                    | -                                       |                          |
|                                            |                                                   |                                          |              |        |                                       |                       |                     |                        |                               |                      |                                         |                          |
|                                            |                                                   |                                          |              |        |                                       |                       |                     |                        |                               |                      |                                         |                          |
|                                            |                                                   |                                          |              |        |                                       |                       |                     |                        |                               |                      |                                         |                          |
|                                            |                                                   |                                          |              |        |                                       |                       |                     |                        |                               |                      |                                         |                          |
|                                            |                                                   |                                          |              |        |                                       |                       |                     |                        |                               |                      |                                         |                          |
|                                            |                                                   |                                          |              |        |                                       |                       |                     |                        |                               |                      |                                         |                          |
|                                            |                                                   |                                          |              |        | -000 300                              |                       |                     |                        |                               |                      | 300080000000000000000000000000000000000 |                          |
| Avg.<br>Check'd                            | <del>-</del>                                      |                                          |              |        |                                       |                       |                     |                        |                               |                      |                                         |                          |
| FILTER<br>AMBIEN<br>PROBE                  | LE# 161<br># NA<br>NT TEMP.<br>LENGTH<br>MATERIAL |                                          |              |        | % Moisu                               | ire<br>(DSCFM)<br>(%) |                     |                        |                               |                      |                                         |                          |

| Page _/_ | _ of |  |
|----------|------|--|
|          |      |  |

| ampline                  | Lesstion                | Plant OUT (   | <u> ۲</u>      |                                                  | Train                                            |                                           | <br>.ldehvde   | ç                                                | Run            | No. /                                              |              |                                       |
|--------------------------|-------------------------|---------------|----------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------|--------------------------------------------------|----------------|----------------------------------------------------|--------------|---------------------------------------|
| ate 6                    | 12/93                   | Time Start    | 1332           |                                                  | Time Fini                                        | sh 1447                                   | )              | Test Dura                                        | tion 13        | 35                                                 | <br>min      |                                       |
| act Din                  | 3/A                     | Time Start X  | 11/4           | 111                                              | Diameter                                         | <u> </u>                                  | A              | initial Les                                      | k Rate         | ol/mi-a                                            | in cim       |                                       |
| TCF 0                    | 64                      | DGMCF 0.9     | 92             | Nozzie D                                         | ia. 0./1                                         | O inch                                    |                | Final Lea                                        | k Rate '       | 00540                                              | ofm          |                                       |
|                          |                         | Hg            | <del></del>    | 11022102                                         | •                                                |                                           |                | . 416                                            |                |                                                    | <u> </u>     |                                       |
| tatic Pre                | ess <u>-//</u>          | # H20         | 0              |                                                  | Operator                                         |                                           | <u></u>        |                                                  |                |                                                    |              |                                       |
| ravers                   | Clock                   | Dry gas meter | ^ P            | ^ Н                                              | Stack 17                                         | Dry gas m                                 | ter temp.      | Hot box                                          |                | Last                                               | Vacuum       |                                       |
| Point                    | Time                    | reading ft3   | in H2O         | in H2O                                           | Temp. F                                          | Inlet                                     | Outlet         | Temp.                                            | Temp           | Impinger                                           | in. Hg       |                                       |
|                          | 1232                    | 417.052       | .79            | 73.7                                             | 185                                              | 75                                        | 72             | 155250                                           | 259            | 58                                                 | 45           |                                       |
|                          |                         |               | 0976           | 0.18                                             | 183                                              | 81                                        | 73             |                                                  | 258            | 35                                                 | 4.5          |                                       |
|                          | 13/6                    | 440.9         | 0.76           | 0.77                                             | 178                                              | 814                                       | 75             |                                                  | 258            | 59                                                 | 4-5          |                                       |
|                          | 1392                    | 448.54        | 0.77           | 0.78                                             | 147                                              | 87                                        | 78             | 25%                                              | 259            | 13                                                 | 4.5          |                                       |
|                          | 1345                    | 45514         | 1.77           | 1.79                                             | 170                                              | DCT                                       | 80             | 255                                              | 257            | 14                                                 | 4-5          |                                       |
|                          | 165                     | 460.00        | 0.76           | 0.79                                             | 186                                              | 30                                        | 8)             | 258                                              | 254            | 19                                                 | 7.5          |                                       |
|                          | 11111                   | 467 50        | 0.75           | 0.18                                             | 181                                              | 91                                        | 87             | 255                                              | 257            | 17                                                 | 4.5          |                                       |
|                          | 1428                    | 476.41        | 0.76           |                                                  |                                                  | 92                                        | 84             | 257                                              | 253            | 10                                                 |              | <del></del>                           |
|                          |                         | 485.776       | U-10           | 0. //                                            | 180                                              | 70                                        | 87             | 100/                                             | 207            | 68                                                 | 7.5          |                                       |
|                          | 1447                    | 482.110       | <del> </del>   |                                                  | <del> </del>                                     |                                           |                | ļ.——                                             |                |                                                    |              |                                       |
|                          |                         |               | ļ              |                                                  |                                                  | ·                                         | <del></del>    | ļ                                                | <del> </del>   |                                                    |              | · · · · · · · · · · · · · · · · · · · |
|                          |                         | <u> </u>      |                | <del> </del>                                     | ļ                                                |                                           | <u> </u>       | <u> </u>                                         |                |                                                    |              |                                       |
|                          |                         |               |                |                                                  |                                                  | <u> </u>                                  | <del></del>    |                                                  |                | <u></u>                                            |              |                                       |
|                          |                         |               |                |                                                  | <u> </u>                                         |                                           |                |                                                  |                |                                                    |              |                                       |
|                          |                         |               | {              |                                                  |                                                  |                                           |                |                                                  | <del>-</del>   |                                                    |              |                                       |
|                          |                         |               |                |                                                  |                                                  |                                           |                |                                                  |                |                                                    |              |                                       |
|                          |                         |               |                |                                                  |                                                  |                                           |                | <u> </u>                                         |                |                                                    |              |                                       |
|                          |                         |               |                | <del> </del>                                     | <u> </u>                                         |                                           |                | <del> </del>                                     |                | <del></del>                                        |              |                                       |
|                          |                         |               | <del> </del>   |                                                  | <b>}</b>                                         |                                           |                | <del> </del>                                     | · · · ·        | <del>                                       </del> | <del></del>  |                                       |
|                          |                         |               | <del> </del> - |                                                  | <del> </del>                                     |                                           |                | <del> </del>                                     | <del> </del> - | <del> </del>                                       | <del></del>  |                                       |
|                          |                         | <del></del>   | <del> </del>   | <del> </del>                                     |                                                  |                                           |                | <del> </del>                                     | <u> </u>       | <del> </del> -                                     |              |                                       |
|                          |                         |               |                |                                                  |                                                  |                                           |                | <u> </u>                                         | ļ              | <u> </u>                                           |              |                                       |
|                          |                         |               |                |                                                  |                                                  |                                           |                | <u> </u>                                         |                | /                                                  |              |                                       |
|                          |                         |               |                |                                                  |                                                  |                                           |                |                                                  | 28             | 0                                                  |              |                                       |
|                          |                         |               |                |                                                  | <u> </u>                                         |                                           |                | . 9                                              | 10             | <u> </u>                                           |              |                                       |
|                          |                         |               |                | [                                                |                                                  |                                           |                | KUPT                                             | 1,0            | W                                                  |              |                                       |
|                          | · <del>-</del>          |               |                |                                                  |                                                  |                                           | 1:00           | 1                                                | W.             |                                                    |              |                                       |
|                          |                         |               | <u> </u>       |                                                  |                                                  | EVIC                                      | 7              | <del>                                     </del> | 1              |                                                    |              |                                       |
|                          | <u></u>                 |               | -              | <del>                                     </del> | <del>                                     </del> | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     | <del> </del>   | <del>                                     </del> | <del> </del>   | <del> </del>                                       |              | <u> </u>                              |
|                          |                         |               | VAP            | -                                                | 1/-                                              |                                           |                | <del> </del>                                     | <del> </del> - | -                                                  | <del> </del> | <del> </del> -                        |
|                          |                         | 46.723        | 0.815          |                                                  | 182                                              | 86                                        | 78             |                                                  |                |                                                    |              |                                       |
| vg.<br>heck'd            |                         | V 78          | CO 13          |                                                  | Parties and the                                  | 110                                       |                | 1                                                |                |                                                    |              |                                       |
| ILTER<br>MBIEN<br>ROBE I | #<br>IT TEMP.<br>LENGTH | 102           | /<br>          |                                                  | 4                                                | Velocity  % Moistus Flowrate ( Isokinetic | DSCFM)_<br>(%) | 28<br>10                                         | 7              |                                                    |              |                                       |
| EMAR                     | KS ⊀                    | Thex ral      | les ure        | buser                                            | ( huch                                           | grow                                      | lg of          | Herma                                            | coole l        | eels. &                                            | chalte       | 4 app<br>29                           |

|                         |               | Plant                                            |              |          |                                                  |                                                  | <u> </u>     |                                                  |                                                  |                                                  | · ·                                              |                                         |
|-------------------------|---------------|--------------------------------------------------|--------------|----------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Sampling                | Location      | OUTLET                                           | <del></del>  |          | Train _                                          |                                                  | Aldehyde     | s                                                | Rur                                              | 1 No. 👱                                          |                                                  |                                         |
| Date LA                 | 5465          | Time Start                                       | 0710         |          | Time Fin                                         | ish 👩 🤉                                          | 25           | Test Dura                                        | ition                                            | 129                                              | min.                                             | 9                                       |
| Duct Dim                | ensions       | X                                                | 117"         |          | Diameter                                         |                                                  | ft           | Initial Lea                                      | ak Rate/24                                       | 155 6000                                         | cfm .                                            | /                                       |
| PTCF                    | 190 84        | DGMCF 7                                          | 92_          | Nozzle D | ia/94                                            | incl                                             | nes          | Final Lea                                        | k Rate                                           | 5, 4002                                          | ∑_cfm                                            | 93                                      |
|                         |               | <i>Ю</i> * Нg                                    |              |          |                                                  |                                                  |              |                                                  | *                                                | ۵                                                | 8"                                               | <u> </u>                                |
| Static Pre              | ss <u>-//</u> | " H20                                            | )            |          | Operator                                         | AP                                               | <u> </u>     | <del></del>                                      |                                                  |                                                  |                                                  | ,                                       |
| Travers                 | Clock         | Dry gas meter                                    | ^ P          | ^H       | Stack                                            | Dry gas m                                        | eter temp    | Hot box                                          | Probe                                            | Last                                             | Vacuum                                           | -                                       |
| Point<br>Point<br>Point | Time          | reading ft3                                      | 1            | i e      | Temp. F                                          |                                                  | Outlet       | Temp.                                            | Temp                                             | Impinger                                         | l 1                                              |                                         |
| TMer                    |               |                                                  |              |          | <u> </u>                                         |                                                  |              | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         |                                                  | <del></del>                             |
|                         | 0719          | 4951                                             | 088          | 0.89     | 273                                              | 77                                               | 13           | 256                                              | 256                                              | 70                                               | 40                                               |                                         |
| 68                      |               |                                                  |              | 0-89     | 273                                              | 82                                               | 74           | 267                                              | 254                                              | 7/                                               | 4                                                |                                         |
| 21.3                    |               | 50614                                            | 0-88         | 0.87     | 27/                                              | 90                                               | 77           | 256                                              | 258                                              | 62                                               | 4                                                |                                         |
| 3/0                     |               | 511-25                                           | 0.89         | 0.89     | 215                                              | 72                                               | 8/           | 257                                              | 258                                              | 64                                               | 4                                                |                                         |
| 44.0                    |               | 518.15                                           | 6,93         | 0.90     | 275                                              | 93                                               | 83           | 257                                              | 255                                              | 57                                               | 4                                                |                                         |
| 53.0                    |               | 522.92                                           | a 85         | 0.89     | 275                                              | 93                                               | 84           | 256                                              | 259                                              | 56                                               | K                                                |                                         |
| 63.5                    |               | 528.16                                           | 0.91         | 6.89     | 275                                              | 85                                               | 85           | 258                                              | 253                                              | 56                                               | 4                                                |                                         |
| 73.0                    |               | 533.50                                           | 0.91         | 0.88     | 276                                              | 28                                               | 87           | 259                                              | 253                                              | 58                                               | 4                                                |                                         |
| 011                     |               |                                                  | <del></del>  |          |                                                  | 97                                               |              |                                                  | 257                                              | 58                                               | <del>                                     </del> |                                         |
| 846                     |               | 5392                                             | 0.74         | ,        | 276                                              |                                                  | 88           | 256                                              |                                                  |                                                  | 4                                                |                                         |
| 75.4                    |               | 545.4/                                           | 0.93         |          | 276                                              | 96                                               | 88           | 256                                              | 254                                              |                                                  | 2/                                               |                                         |
| 062                     |               | 551.15                                           |              | 0.89     | 276                                              | 96                                               | 33           |                                                  | 254                                              | 58                                               | 4                                                |                                         |
| 17.2                    |               | 557.23                                           | 0.95         | 0.87     | 277                                              | 96                                               | 88           | 258                                              | 259                                              | 60                                               | 4                                                |                                         |
| 1753                    |               | T61.2                                            | 0.93         | 0.86     | 227                                              | 15                                               | 88           | 258                                              | 259                                              | 62                                               | 4                                                |                                         |
|                         |               | ]                                                |              |          |                                                  |                                                  |              | Τ                                                |                                                  |                                                  |                                                  |                                         |
|                         |               |                                                  |              |          |                                                  |                                                  |              | T. T                                             |                                                  |                                                  |                                                  |                                         |
|                         |               |                                                  |              |          |                                                  |                                                  |              |                                                  |                                                  |                                                  |                                                  |                                         |
|                         |               |                                                  |              |          |                                                  |                                                  |              | <del>                                     </del> |                                                  |                                                  |                                                  |                                         |
|                         |               |                                                  |              |          |                                                  |                                                  |              |                                                  |                                                  |                                                  |                                                  | -                                       |
|                         | <del></del>   |                                                  |              | -        |                                                  | <del> </del>                                     | <u> </u>     | <del> </del>                                     | <del></del>                                      | <u>-</u>                                         |                                                  |                                         |
|                         |               |                                                  | <del> </del> |          |                                                  | <del> </del>                                     | ļ            | <del> </del>                                     | <u> </u>                                         | <del> </del>                                     |                                                  |                                         |
|                         |               | <u> </u>                                         |              | ļ        | <u> </u>                                         | <u> </u>                                         |              | <del>                                     </del> |                                                  |                                                  |                                                  |                                         |
|                         | _·            |                                                  |              |          | ļ                                                |                                                  |              | , <u></u>                                        | <u> </u>                                         |                                                  | <u> </u>                                         |                                         |
|                         |               |                                                  |              |          |                                                  |                                                  |              |                                                  |                                                  |                                                  |                                                  |                                         |
|                         |               |                                                  |              |          |                                                  |                                                  |              |                                                  |                                                  |                                                  |                                                  |                                         |
|                         |               |                                                  |              |          |                                                  |                                                  |              |                                                  |                                                  |                                                  | 88                                               |                                         |
| <del></del>             |               |                                                  |              |          |                                                  |                                                  |              |                                                  |                                                  |                                                  | 275                                              |                                         |
|                         |               | <del>                                     </del> | <del> </del> |          | <del>                                     </del> |                                                  | <del> </del> | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> | .959                                             |                                         |
| <del></del>             |               |                                                  | <b> </b>     | 1,000    | ļ                                                | <del>                                     </del> | <del> </del> | ┼───                                             | <del> </del>                                     | <del></del>                                      |                                                  |                                         |
|                         |               |                                                  | 0-0-         | WAW      |                                                  | ļ                                                | <del> </del> | +                                                | <del>                                     </del> | <del> </del>                                     | 42.34                                            |                                         |
|                         |               |                                                  | 0.9583       |          |                                                  | <u> </u>                                         | <b>Y</b>     |                                                  |                                                  |                                                  | 28,83                                            | 800000000000000000000000000000000000000 |
| Avg.                    |               | 66.100                                           | 0.15/15      | 0.885    | 2752                                             | 81                                               | 8            |                                                  |                                                  |                                                  |                                                  |                                         |
| heck'd                  |               | 17313                                            |              | Post     | 4 4                                              |                                                  |              | 10888                                            |                                                  |                                                  |                                                  |                                         |
|                         |               |                                                  | 2            |          |                                                  |                                                  |              |                                                  | Shibadaya                                        |                                                  |                                                  |                                         |
| CONSOL                  | .E #          | 16140                                            | <del></del>  |          |                                                  |                                                  |              |                                                  |                                                  |                                                  | <u>.</u>                                         |                                         |
| TILTER                  | #             |                                                  |              | <u>-</u> |                                                  | 1905.000000.044.000.0                            | re           | <b>1000000000000000000000000000000000000</b>     | 0004000000000000000000                           |                                                  | ă<br>Ĉ                                           |                                         |
| AMBIEN                  | T TEMP.       |                                                  |              |          |                                                  |                                                  | DSCFM)_      |                                                  |                                                  |                                                  |                                                  |                                         |
| PROBE I                 | ENGTH         | 10                                               | <u> </u>     |          |                                                  | Isokinetic                                       | (%)          |                                                  |                                                  |                                                  | 9<br>0<br>0<br>0                                 |                                         |
| LINER N                 | 1ATERIAI      | will                                             | 55           |          |                                                  |                                                  |              |                                                  |                                                  |                                                  |                                                  |                                         |
|                         |               |                                                  |              |          |                                                  |                                                  |              |                                                  |                                                  |                                                  |                                                  |                                         |

Page of

| <u>م</u><br>بوج | FSP OU+ Time Start //'4" X DGMCF9 73 "Hg 29                      | 0654<br>92                                                                                                                                | <u>T"</u>                                                                                                                                                     | Time Fini                                                                                                                                                                                                                       | ish og                                                                                                                                                                                                                                                  | \ <u>^</u>                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>م</u><br>بوج | 1/14" X DGMCF Y                                                  | 92                                                                                                                                        | 9"                                                                                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         | 107                                                                                                                                                                                                                                                                                                              | Test Dura                                                                                                                                                                                                                                                                                                                                                  | tion                                                                                                                                                                                                                                                                                           | 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>م</u><br>بوج | DGMCF                                                            | 92                                                                                                                                        |                                                                                                                                                               | Diameter                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         | ft                                                                                                                                                                                                                                                                                                               | Initial Lea                                                                                                                                                                                                                                                                                                                                                | k Rate                                                                                                                                                                                                                                                                                         | 1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29.<br>11       | 93 . Hg 29                                                       |                                                                                                                                           | Nozzie D                                                                                                                                                      | ia. <u>'/</u> 9                                                                                                                                                                                                                 | / inc                                                                                                                                                                                                                                                   | hes                                                                                                                                                                                                                                                                                                              | Final Leal                                                                                                                                                                                                                                                                                                                                                 | k Rate _                                                                                                                                                                                                                                                                                       | 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _ 11            |                                                                  | 1.36 DJ1                                                                                                                                  | /                                                                                                                                                             |                                                                                                                                                                                                                                 | ,                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | " H2C                                                            | )                                                                                                                                         |                                                                                                                                                               | Operator                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| lock            | Dry gas meter                                                    | ^ D                                                                                                                                       | ^ н                                                                                                                                                           | Stack                                                                                                                                                                                                                           | Dry one r                                                                                                                                                                                                                                               | neter temp.                                                                                                                                                                                                                                                                                                      | Hot box                                                                                                                                                                                                                                                                                                                                                    | Probe                                                                                                                                                                                                                                                                                          | Last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | = =                                                              |                                                                                                                                           | I                                                                                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  | 1 .                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               | <del>                                     </del>                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 | 84                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  |                                                                                                                                           | <del></del>                                                                                                                                                   | ·                                                                                                                                                                                                                               | 92                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                  | <b></b>                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _               |                                                                  |                                                                                                                                           |                                                                                                                                                               | +                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            | 260                                                                                                                                                                                                                                                                                            | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4:45            | 607.23                                                           |                                                                                                                                           |                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                        | 97                                                                                                                                                                                                                                                      | 89                                                                                                                                                                                                                                                                                                               | 257                                                                                                                                                                                                                                                                                                                                                        | 259                                                                                                                                                                                                                                                                                            | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1               | 45.80                                                            | 8,90                                                                                                                                      | 0.80                                                                                                                                                          | 270                                                                                                                                                                                                                             | 96                                                                                                                                                                                                                                                      | 89                                                                                                                                                                                                                                                                                                               | 253                                                                                                                                                                                                                                                                                                                                                        | 254                                                                                                                                                                                                                                                                                            | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2-2             | 621.60                                                           |                                                                                                                                           |                                                                                                                                                               | 271                                                                                                                                                                                                                             | 25                                                                                                                                                                                                                                                      | 89                                                                                                                                                                                                                                                                                                               | 258                                                                                                                                                                                                                                                                                                                                                        | 253                                                                                                                                                                                                                                                                                            | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  | 0.90                                                                                                                                      | 0.80                                                                                                                                                          | 272_                                                                                                                                                                                                                            | 96                                                                                                                                                                                                                                                      | 89                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            | 256                                                                                                                                                                                                                                                                                            | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9:45            |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.45            |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            | -110                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7/1/            | - 2000                                                           |                                                                                                                                           | <u> </u>                                                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         | <del>                                     </del>                                                                                                                                                                                                                                                                 | <del>                                     </del>                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  |                                                                                                                                           | <del>                                     </del>                                                                                                              | <del>}                                    </del>                                                                                                                                                                                |                                                                                                                                                                                                                                                         | <del>                                     </del>                                                                                                                                                                                                                                                                 | <del> </del>                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               | <del>                                     </del>                                                                                                                                                                                |                                                                                                                                                                                                                                                         | <del></del>                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| · -             |                                                                  |                                                                                                                                           |                                                                                                                                                               | <del>                                     </del>                                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <del></del> -{  | <del></del>                                                      |                                                                                                                                           |                                                                                                                                                               | <del></del>                                                                                                                                                                                                                     | <del></del>                                                                                                                                                                                                                                             | <del> </del>                                                                                                                                                                                                                                                                                                     | <del> </del>                                                                                                                                                                                                                                                                                                                                               | <del></del>                                                                                                                                                                                                                                                                                    | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  |                                                                                                                                           | <del> </del> -                                                                                                                                                |                                                                                                                                                                                                                                 | <del> </del>                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del> </del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 |                                                                  |                                                                                                                                           | <del> </del>                                                                                                                                                  | <del> </del> -                                                                                                                                                                                                                  | <del>}</del>                                                                                                                                                                                                                                            | <del> </del>                                                                                                                                                                                                                                                                                                     | <del> </del>                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| }               |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 | <del></del>                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b> </b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                        | }                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ├                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | <del></del>                                                      |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                  |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | <u>-</u>                                                         |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | <del></del>                                                      |                                                                                                                                           |                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                         | ,                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                  | WAS                                                                                                                                       | <del>y</del>                                                                                                                                                  | <b>\</b>                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         | W                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | I to the second                                                  |                                                                                                                                           | 0.805                                                                                                                                                         | 27ก                                                                                                                                                                                                                             | a                                                                                                                                                                                                                                                       | 79                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            | 473 B                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _               | 61.63                                                            | 16.                                                                                                                                       |                                                                                                                                                               | 4 (F 1 3 F C C C C C C C C C C C C C C C C C C                                                                                                                                                                                  | Poudorod a river                                                                                                                                                                                                                                        | (# #000000 1111001110111                                                                                                                                                                                                                                                                                         | r grand sector sectors                                                                                                                                                                                                                                                                                                                                     | na na na nagarita                                                                                                                                                                                                                                                                              | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | 55:30<br>03<br>11<br>20:30<br>1:45<br>16<br>4:45<br>1:30<br>9:45 | 55:30 572.6<br>03 576.79<br>11 580.78<br>20:20 585.48<br>2:45 591.60<br>46 598.22<br>4:45 607.23<br>1 45.80<br>2:30 621.60<br>1:30 626.16 | 55:30 572.6 0.89 03 576.79 6.87 11 580.78 0.89 20:30 585.15 0.7/ 2:45 59/.60 0.90 4:45 607.23 0.92 1 45.80 0.90 2:56 621.60 0.90 9:45 635-33 0.97 8:43 639.85 | 55:30 572.6 0.89 0.8/ 03 576.79 0.87 0.8/ 11 580.78 0.89 0.8/ 20:20 585.18 0.7/ 0.80 1:45 59/.60 0.90 0.80 1:45 607.23 0.92 0.8/ 1 45.80 0.90 0.80 1:30 626.16 0.90 0.80 1:30 626.16 0.90 0.80 1:45 635.33 0.97 0.8/ 131 639.85 | 55:x0 \$72.4 0.89 0.8/ 269 03 576.79 0.87 0.8/ 269 11 580.78 0.89 0.8/ 269 20:x0 585.48 0.7/ 0.80 269 21:45 591.60 0.90 0.80 269 21:45 607.23 0.92 0.80 269 21:45 621.60 0.90 0.80 270 21:46 635-33 0.92 0.80 271 21:5 635-33 0.97 0.80 277 21:5 639.85 | 55:30 \$72.4 0.89 0.81 269 77 03 576.19 0.87 0.81 269 84 11 580.78 0.87 0.81 269 88 120:20 585:15 0.71 0.80 269 92 12:49 591.60 0.90 0.80 269 97 12:49 507.13 0.92 0.80 269 97 12:49 607.13 0.92 0.80 270 96 12:30 621.60 0.90 0.80 270 96 1:30 626.16 0.90 0.80 271 95 1:30 626.16 0.90 0.80 272 96 1:31 639.80 | 55:30 572.4 0.89 0.81 269 77 72, 03 576.79 0.87 0.81 269 84 74 11 550.78 0.89 0.81 269 88 77 10:20 585.48 0.71 0.80 269 92 80 1:45 591.60 0.90 0.80 269 97 97 1:45 607.23 0.92 0.80 270 97 1:45 607.23 0.92 0.80 270 96 1:45 621.60 0.90 0.80 270 96 1:30 626.16 0.90 0.80 271 95 87 1:30 626.16 0.90 0.80 272 96 1:45 635.33 0.97 0.91 277 96 1:45 639.85 | 55:30 572.4 0.89 0.8/ 269 77 72, 263 03 576.79 0.87 0.8/ 269 84 74 266 11 580.78 0.87 0.8/ 269 88 77 259 03.6 583.75 0.7/ 0.80 269 92 80 260 0:45 57/.60 0.90 0.80 267 95 63 258 16 578.22 0.90 0.80 267 97 87 257 17.45 607.23 0.92 0.80 270 96 89 253 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | 55:30 572.4 0.89 0.81 269 77 72, 263 255 03 576.75 0.87 0.81 269 84 74 266 260 11 580.78 0.81 0.81 267 88 77 259 261 03:45 591.60 0.90 0.80 269 92 80 260 256 16 576.22 0.90 0.80 269 77 87 251 260 17.45 607.23 0.92 0.80 270 76 89 257 259 18.45 621.60 0.90 0.80 270 76 89 253 254 2-2-2-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-1-6-2-2-1-6-2-2-1-6-2-2-2-1-6-2-2-2-1-6-2-2-2-2 | 55.36 \$77.4 0.89 0.8/ 269 77 72, 263 253 62 03 576.77 0.87 0.88/ 269 84 74 266 260 62 11 5\$0.78 0.87 0.88 269 88 77 259 261 60 12.18 5\$1.78 0.7/ 0.80 267 72 80 260 256 61 13.19 5\$7/.60 0.90 0.80 267 72 80 260 256 61 14.19 5\$7/.60 0.90 0.80 267 77 87 251 260 63 14.19 607.13 0.92 0.80 267 77 87 251 260 63 14.19 607.13 0.92 0.80 270 76 89 253 254 56 12.26 62/.60 0.90 0.80 270 76 89 253 254 56 130 626/.60 0.90 0.80 272 96 89 258 256 53 130 626/.60 0.90 0.80 272 96 89 258 256 53 130 626/.60 0.90 0.80 272 96 89 258 256 53 130 626/.60 0.90 0.80 272 96 89 258 256 53 130 626/.60 0.90 0.80 272 96 89 258 256 53 130 626/.60 0.90 0.80 272 96 89 258 256 53 130 626/.60 0.90 0.80 272 96 89 258 256 53 130 626/.60 0.90 0.80 272 96 89 258 256 53 130 626/.60 0.90 0.80 272 96 89 258 256 53 130 626/.60 0.90 0.80 272 96 89 258 256 53 | 55:30 572.4 0.89 0.81 269 77 72, 263 255 62 3.5 03 576.75 6.87 0.81 269 84 74 267 260 62 3.5 11 550.78 0.81 0.81 269 88 77 259 241 40 3.5 02:555.45 0.71 0.80 269 92 80 260 256 61 3.75 02:555.45 0.71 0.80 269 92 80 260 256 61 3.75 02:45 591.60 0.90 0.80 247 95 63 258 241 40 3.25 03 578.22 0.90 0.80 249 97 87 251 260 63 3.75 045 607.23 0.92 0.80 270 98 89 257 259 45 5.75 045.80 0.90 0.80 270 98 89 253 254 56 3.75 045.80 0.90 0.80 271 95 87 258 273 53 3.75 045.15 0.90 0.80 272 96 89 258 256 53 3.75 045.15 0.90 0.80 272 96 89 258 256 53 047 635.33 0.97 0.91 271 96 89 258 258 53 3.75 045 635.33 0.97 0.91 271 96 89 258 258 53 3.75 045 637.33 0.97 0.91 271 96 89 258 558 53 3.75 |

Page of Plant Yates Station Boiler No. 1 Plant Name \_\_\_\_ Sampling Location <u>FSPOUT/eT</u> Train <u>Aldehydes</u> Run No. <u>FS</u> 
 Date 6-20-93 Time Start
 Time Finish
 Test Duration
 min.

 Duct Dimensions
 X
 Diameter
 ft Initial Leak Rate
 cfm
 PTCF DGMCF Nozzle Dia. inches Final Leak Rate \_\_\_\_\_ cfm Bar Press 29.56 Hg Operator ITB Static Press \_\_\_\_\_ " H2O ^ H Travers | Clock | Dry gas meter Stack Dry gas meter temp. Hot box Probe Last Vacuum Impinger in Hg Point Time reading ft3 in H2O in H2O Temp. F Inlet Outlet Temp Temp. Avg. Check'd Velocav CONSOLE # % Moisture FILTER # Flowrate (DSCPM) AMBIENT TEMP. Isokinetic (%)\_\_\_\_\_ PROBE LENGTH \_\_\_\_\_ LINER MATERIAL REMARKS

|             |                  |                           |                                              |                                                  |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                  | ·                                                |                                              |                                                  |
|-------------|------------------|---------------------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|
|             |                  | Plant                     |                                              |                                                  |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | _                                                | _                                                |                                              |                                                  |
| Sampling    | Location_        | ESP OL                    | <u> 17/e/</u>                                |                                                  | Train_                                           | <u>F</u>            | <u>'SD</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                  | 10. <u> </u>                                     |                                              |                                                  |
| Date 6/     | 21/93            | Time Start                | 1300 L                                       | <del></del>                                      | Time Fini                                        | sh <u>&amp; * 1</u> | ما                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Dura                                           | tion                                             | FHKU                                             | min.                                         |                                                  |
| Duct Dir    | mensions         | DGMCF 1.6                 | <u>₩.</u> E                                  | — –<br>Norsla D                                  | Diameter                                         | 1 isob              | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initial Lea                                         | K Kale _                                         | 01001                                            | S cim                                        |                                                  |
| PICP_       | . 7 <del>T</del> | 5/_" Hg                   |                                              |                                                  | =                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | K Rate W                                         | uch He.                                          | 2106 a                                       |                                                  |
| Static Pr   | ess//.           | <u>д</u> н20              | )                                            |                                                  | Operator                                         | IZ                  | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | ω <sub>β</sub> .                                 | ough the                                         | 7                                            |                                                  |
| Travers     | Clock            | Dry gas meter             | ^ P                                          | ^ H                                              | ļ                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •i :                                                | Probe                                            | Last                                             | Vacuum                                       |                                                  |
| Point       | Time             | reading ft3               | in H2O                                       | in H2O                                           | Temp. F                                          | Iniet               | Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp.                                               | Temp                                             | Impinger                                         | in. Hg                                       |                                                  |
| 0"          | 1436             | 62.07                     | .95                                          | .98                                              |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                  |                                                  |                                              |                                                  |
| 35          |                  | 82.85                     | 98                                           | 35                                               | 278                                              | 85                  | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  |                                              |                                                  |
| 15"         |                  | 88.12                     | 38                                           | .95                                              | 278                                              | 84                  | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  | .520                                             | m@94                                         | 780                                              |
| 867         |                  | 86.01                     | 99                                           | .95                                              | 277                                              | 87                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  |                                              |                                                  |
| 86"         |                  | 106.42                    | 97                                           | .55                                              | 278                                              | 85                  | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  |                                              |                                                  |
| 120         |                  | 137.35                    | 97                                           | .95                                              | 276                                              | 82                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  |                                              |                                                  |
| 140         |                  | 138.0                     | ,97                                          | R                                                | 281                                              | 85                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  | 3                                            |                                                  |
| 180"        |                  | 158.87                    | .99                                          | .92                                              | 281                                              | 88                  | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  | 9                                            |                                                  |
| 210"        |                  | 174.70                    | .98                                          | 91                                               | 282                                              | 88                  | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  | 9                                            |                                                  |
| 240         |                  | 190.38                    | .98                                          | 91                                               | 282                                              | 8,8                 | PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  | Ā                                            |                                                  |
| 249"        |                  | 195.0                     | .98                                          | .91                                              | 282                                              | 88                  | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  | 9                                            |                                                  |
| 210         |                  | 706.08                    | .98                                          | 91                                               | 282                                              | 87                  | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                            |                                                  |                                                  | গ                                            |                                                  |
| 310         | 1946             | 225.73                    |                                              | 0.43                                             | <b>3</b> 3                                       | 86                  | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  | 9                                            |                                                  |
| 257         | 2027             | 247.52                    |                                              | 0.97                                             | 287                                              | 25                  | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>                                     </del>    |                                                  |                                                  | á                                            |                                                  |
| 3           | 2104             | 267.27                    | 100                                          | 0.97                                             |                                                  | 46                  | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                                                  |                                                  | 9.5                                          |                                                  |
| 419         | 2/15             | 283.62                    | 100                                          | 0.97                                             | 283                                              | 82                  | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i —                                                 | <b></b>                                          | <del>                                     </del> | 10                                           |                                                  |
| 453         | 5504             | 302.04                    | 1.00                                         | 1 98                                             | 383                                              | 88                  | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                                   | <b></b>                                          |                                                  | 10                                           | -                                                |
|             | 2236             | 316.850                   |                                              | 0.98                                             |                                                  | ŝů                  | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>  -</del> -                                    |                                                  | +                                                | 10                                           |                                                  |
| 1480        | <u> </u>         | 10000                     | 100                                          | 0.78                                             | <del></del>                                      | 70                  | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                  |                                                  | 3                                            |                                                  |
| <u> </u>    | -                |                           |                                              | -                                                | <del>                                     </del> | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                   | <del>                                     </del> | <del> </del>                                     | <del>  ~~</del>                              |                                                  |
| <del></del> | <del> </del>     | <del> </del>              | <u> </u>                                     |                                                  | <del> </del>                                     | <del> </del>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                        | ₹                                                | <del>!</del>                                     | <del> </del>                                 | <del>                                     </del> |
| <b>—</b>    | <del> </del> -   | <del> </del>              | <u>.                                    </u> | <del> </del> -                                   | <del> </del> -                                   | <del> </del>        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                        | <del></del>                                      | <del> </del>                                     | <del> </del> -                               |                                                  |
|             | <del>}</del> -   |                           | <u> </u>                                     |                                                  | <del></del>                                      |                     | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                        | <del> </del> -                                   |                                                  |                                              | <del>                                     </del> |
| <b></b>     | <del> </del>     |                           |                                              |                                                  | ┼                                                |                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ┼                                                   | <del> </del>                                     |                                                  | <u> </u>                                     |                                                  |
| <del></del> |                  |                           | <del> </del> -                               | <del>                                     </del> | <del></del> -                                    |                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del> </del>                                        |                                                  | <del> </del>                                     | <del> </del>                                 | <del>  </del>                                    |
| }           | <del> </del>     |                           | <del> </del>                                 |                                                  | <del></del>                                      | <del> </del>        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                        |                                                  |                                                  | <u>                                     </u> |                                                  |
| <del></del> | <del> </del>     | <del> </del>              | <del> </del>                                 | <del> </del> -                                   | <del>                                     </del> | <del> </del>        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                        | -                                                | <del>                                     </del> |                                              | <del>                                     </del> |
| <b>-</b>    | <del> </del>     | <del> </del>              | <del> </del>                                 | <u> </u>                                         |                                                  |                     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del> -                                      | <del>  .</del>                                   |                                                  | <del> </del>                                 |                                                  |
|             | <del> </del>     | 254.68                    | 030                                          | nt                                               | 30-                                              | OL I                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                  |                                                  |                                              |                                                  |
| Avg.        | <del>  =</del>   | (A) (A)                   |                                              | 112                                              | 200                                              | DIT                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                  |                                                  |                                              |                                                  |
| Check'd     |                  | V                         |                                              |                                                  |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                   |                                                  | l e                                              |                                              | ı                                                |
| CONSO       | LE#              | 161396                    |                                              |                                                  |                                                  | Velocity            | NG 850 : NG 2000000<br>86236 - 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                  |                                                  |                                              |                                                  |
|             | * set            |                           |                                              |                                                  |                                                  | % Moistu            | A STATE OF THE PARTY OF THE PAR | - A CANADA MARKA A NA |                                                  |                                                  |                                              |                                                  |
|             | NT TEMP.         |                           |                                              | -                                                |                                                  | Flowrate (          | AMO TO THE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                  |                                                  |                                              | -                                                |
| PROBE       | LENGTH           | 7'                        |                                              |                                                  |                                                  | - 현존 유리 하네 아니다 하는데  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                  | 040000000000000000000000000000000000000          | 8:<br>8:<br>2:                               |                                                  |
| LINER       | MATERIA          | L <u>5.6</u> .            |                                              |                                                  |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                  |                                                  | - ,                                          | 4                                                |
| REMAR       | uks              | 16.620                    | c. 14                                        | LAP                                              | .5 W                                             | NOZ                 | zle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                                  |                                                  | _                                            |                                                  |
| r           | C-54             | <u>16.6 sa</u><br>.5 acfm | D) ma                                        | ter                                              |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                  |                                                  | _                                            |                                                  |
| •           |                  | ~ ~~ v                    |                                              |                                                  |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                                  |                                                  |                                              |                                                  |

(In. H2O) Vacuum Pump Diagram of Duct 0 Impinger Page 1 of 5/5° 2 3 6 25. chall 90,75 2200 Outlet (\*F) Temperature 1 Dry Gas Meler **8**17 86 Talet 112 9 4.9 : 34 86 emperature Assumed Moisture (%)
02 (%)
CO2 (%)
O2/CO2 Method Filter £ Height of Location (ft) **Duct Dimmensions** Final Leak Check Filter Number 286 emperatur 288 282 284.5 G. क्रिक्र Orifice Minutes FIELD DATA 4 H (in. H20) 0.009@10 4.1835 L Differential 12/04 150525 Pressure 200 1007 715 **80**5 8 191 Read and Record All Data Every 0,1517 (ln. H2O) 997 A Ps 75 Probe Length and Type 97 8 Probe Heater Settling Heater Box Settling Meter Box Number Iniai Leak Check Nozzte ID (in.) 180.019 Gas Meter 500.605 Meter A H@ 329.05 430.6R +53.05 Reading Vm (R2) 474.5 K Factor 2 12493 120 Out 1003 (24-hr) 1000 Clock Time 1550 1518 29.4 -Sampling 11me (mm) 520 45.5 857 350 Ambient Temperature 17 RADIAN لا Barometric Pressure 0 Sampling Location Static Pressure Sample Type **Run Number** Step Traverse Number Point Operator Plant Date

Comments:

9.946

Page \_\_\_\_ of \_\_\_ Plant Name Plant Yates Station Boiler No. 1 Sampling Location 25 POUTLET Train PSD Run No. 3

Date 4(23/93) Time Start 0907. Time Finish Test Duration 300 min.

Duct Dimensions 11.4 X 11.4 Diameter ft Initial Leak Rate 0.0/ \( \omega /7 \) cfm

PTCF \( \delta \delta \) DGMCF \( \delta .007 \) Nozzle Dia. \( \delta /9 \) inches Final Leak Rate \( \delta /4 \) cfm Final Leak Rate N/A cfm Bar Press 25.39 "Hg Operator Dade Static Press \_\_// H2O ^ P ^ H Travers | Clock | Dry gas meter Stack Dry gas meter temp. Prooc Last Hot box Vacuum in H2O in H2O Temp. F Impinger in Hg Point Time reading ft3 inlet Outlet Temp Temp. 276 78 26.6 81 8 276 778 53.24 9 Z 72.15 283 20.70 88,85 94 285 105 1394 . 93 Z86 100 101 56.6 286 166 168.3 287 107 102 674.55 300 154.960 0955 0.863 282 939 > Avg. Check'd Velocity % Mousture\_\_\_\_ FILTER # Set 5 Flowrate (DSCFM) AMBIENT TEMP. PROBE LENGTH 5 lsokinetic (%)\_\_\_\_ REMARKS

C-56

| Plant N         | lame , TV           | Plant         | Yates St    | ation Bo   | iler No.    | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                      |              |                         |                                         |            |
|-----------------|---------------------|---------------|-------------|------------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|--------------|-------------------------|-----------------------------------------|------------|
| Sampling        | Location            | ESP Out       | le t        |            | Train       | Partic     | —<br>culate / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Tetals</b> | Rui                  | n No.        | /                       |                                         | 4          |
| Date (a)        | 246-23              | Time Start 0  | 758         |            | Time Fini   | sh 13/6    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Dura     | ition                | 241          | min. "                  |                                         |            |
| Duct Din        | nensions            | 11.4" X_      | 11'4"       |            | Diameter    |            | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /Initial Lea  | ik Rate              | 24178        | 51 Cfm 47               | ,                                       |            |
| PTCF_           | .84                 | Time Start    | 97          | NOZZLE     | DIA.        | 97_i       | nches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⊁inal Lea     | k Rate . c           | 21500XS      | " cfm                   |                                         |            |
| Don Desc        | . Z5 S              | S " II a      |             |            |             |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                      |              |                         |                                         |            |
| Static Pro      | ess <u>~ // . C</u> | 2 H2C         | )           |            | Operator    | 130        | Are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                      |              |                         |                                         |            |
| Travers         | Clock               | Dry gas meter | ^ P         | ^ H        | Stack       | Dry gas m  | eter temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hot box       | Probe                | Last         | Vacuum                  |                                         | 1          |
| Point           | Time                | reading ft3   | in H2O      | in H2O     | Temp. F     | Inlet      | Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp.         | Temp                 | Impinger     | in. Hg                  |                                         |            |
|                 |                     | 827.24        | .83         | 8          | 274         | 72         | 7 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 246           | 244                  | 66           | 5.0                     |                                         |            |
| Z               |                     | 830.3         | .70         | .78        | 278         | 72         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 248           | 254                  | 62           | 4.0                     |                                         | Į.         |
| 3               | 0808                | 832.12        | .40         | .38        | 278         | 75         | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 249           | 242                  | 61           | 3.0                     |                                         | İ          |
| 4               | 0813                | 833.9         | , 26        | .25        | 277         | 77         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 253           | 261                  | 62           | 3.0                     |                                         |            |
| 1               | 0818                | 935.35        | 1723        | 126        | 278         | 77         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 266           | 255                  | 63           | 3.0                     |                                         | ł          |
| 9               | 0823                | 836.35        | <i>5</i> 0  | .48        | 278         | 77         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 244           | 258                  | 63           | 4.0                     |                                         | 1          |
|                 | 0828                | 838.7         | .62         | .60        | 278         | 78         | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 254           | 266                  | 62           | 40                      |                                         | ]          |
| 8               | 0823                | 841.0         | . 68        | .66        | 276         | 79         | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 244           | 264                  | 60           | 4.0                     |                                         | ] '        |
| Sich            | 0838                | 893.02        |             | LEGK       | 1           | .010       | 10"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                      |              |                         |                                         | ]          |
|                 |                     | 843.675       | .89         | .97        | 282         | 81         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 756           | 266                  | 59           | 5,0                     |                                         | 1          |
| 2               | 0848                | 846.14        | .68         | .67        | 782         | 87         | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 256           | 254                  | 59           | 5.0                     |                                         | ]          |
| 3               | 0853                | 443.8         | 68          | .67        | 282         | 83         | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 245           | 247                  | 58           | 4.0                     |                                         | 1          |
| 4               |                     | 850 iel       | .92         | .92        | 281         | 84         | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 255           | 260                  | 59           | 5.0                     |                                         | ]          |
| 5               | 0903                | 853 B         | .66         | .66        | 281         | 85         | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 246           | 260                  | 60           | 5.0                     |                                         | ļ          |
| م               | 0908                | 855.53        | .60         | .60        | 280         | 86         | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 253           | 267                  | 60           | 5.0                     |                                         | j          |
| <u></u>         | 0913                | 857.73        | .76         | .76        | <del></del> | 86         | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 249           | 247                  |              | 5.0                     |                                         | 1          |
| 8               | 0918                | 45907         | .62         | .62        | 277         | 86         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250           | 246                  | 60           | 5.0                     |                                         | ]          |
| STOP            | 0923                | 4LZ.38        |             | LPAKI      | .007        | @ 10"      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | ļ                    |              |                         |                                         | 1          |
| 3.8             |                     | 862.99        | .48         |            | 275         | 85         | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 244           | 247                  |              | 4.0                     |                                         | 1          |
| <u> </u>        |                     | 465.5         |             | .67        |             | 86         | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 246           | 257                  | 61           | 3.5                     |                                         | 1          |
| <u> </u>        |                     | 467.65        | .93         | .93        | 286         | 1 -        | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 254           | 264                  | 56           | 5.0                     | <del></del>                             | 1          |
|                 | -                   | 870.90        | 1.0         | 1.0        | 280         |            | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250           | 245                  | 56           | 5.0                     |                                         |            |
| 4               |                     | 873.1         | 1.3         | 1.3        | 282         |            | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 254           | 265                  | 57           | 5.0                     |                                         | 1          |
| 3               | 1009                | 475.7         | 1.2         | 1.2        | 243         |            | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 266           | 246                  | 5.5          | 5.0                     |                                         | 1          |
| 2               | 1014                | 879.0         | .92         |            | 283         | 92         | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 246           | 244                  | 54           | 5.0                     | <del></del>                             | 4          |
|                 | 1019                | 841.53        | 10          | 1.0        | 283         | 43         | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 257           | 243                  | 53           | 5.5                     |                                         | _[         |
| STOP            | 1024                | 481.372       |             |            |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>      |                      | <del> </del> |                         | :                                       | 4          |
| <b></b>         |                     | £92£87        |             |            |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                      |              |                         |                                         |            |
| Avg.<br>Check'd |                     | 125.5340      |             | مفكو       | -92C        |            | 89.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                      |              |                         |                                         | 1          |
| ß               |                     | A             | r (W)       | 20-0-57-58 | 1.00        |            | 1 97 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F             | g ang anggaragaga Ng |              | -                       | p. 000000000000000000000000000000000000 | 3          |
| CONSO           | LE #                | 61364         |             |            |             | Velocity_  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                      |              | ist N<br>CAUGH<br>RINSE | MRIC                                    | RINSE      |
| FILTER          |                     |               |             | -          |             | % Moistu   | Contract (1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                      |              | r 402                   | u w                                     | HESTAN     |
|                 |                     |               | <del></del> |            |             | Flowrate ( | A 686 - 408 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 |               |                      |              | Ausse                   | 104                                     | 1          |
| PROBE           | LENGTH _            |               |             |            |             | Isokinetic | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                      |              | ≅ KIM>S                 |                                         | <b>り</b> 、 |

197 NOZZIE NOZZIETDI K= 973

W Sampled PTG @ Smin. 04 Started Sampleing at point &

**REMARKS** 

LINER MATERIAL

C-57

SELDIND EINSE PERFORMED.

| Plant N        | Name        | Plant                                 | Yates St    | ation Bo        | iler No.                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                                        |         |             |                   |              |
|----------------|-------------|---------------------------------------|-------------|-----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|---------|-------------|-------------------|--------------|
|                |             | ESP Ou                                |             |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | culate / N                                  | <b>I</b> etals                         | Rur     | ı No        |                   |              |
|                |             | Time Start                            |             |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                        |         |             |                   |              |
| Duct Din       | nensions    | X_                                    |             | ·········       | Diameter                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft                                          | Initial Lea                            | ık Rate |             | cfm               |              |
|                |             | DGMCF                                 |             |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                        |         |             |                   |              |
|                |             | " Hg                                  |             |                 | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                           |                                        |         |             |                   |              |
|                |             | " H2C                                 | )           |                 | Operator                              | 17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                    | <del></del>                            |         |             |                   |              |
| Travers        | Clock       | Dry gas meter                         | ^ P         | ^ H             | Stack                                 | Dry gas m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | icter temp.                                 | Hot box                                | Probe   | Last        | Vacuum            |              |
| Point          | Time        | reading ft3                           | in H2O      | in H2O          | Temp. F                               | Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Outlet                                      | Temp.                                  | Temp    | Impinger    |                   |              |
| 4-8            | 1028        | 884.641                               | ,60         | 60              | 276                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87                                          | 248                                    | 247     | 59          | 4.0               |              |
| 7              | 1033        | 887.00                                | .82         | .82             | 278                                   | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88                                          | 253                                    | 261     | 56          | 5.0               |              |
| 6              | 1038        | 869.3                                 | 1-10        | 110             | 279                                   | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                                          | 249                                    | 246     | 52          | 5.0               |              |
| 5              | 1043        | 892.07                                | 1.3         | 1.3             | 280                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89                                          | 253                                    | 267     | 52          | 5.5               |              |
| 4              | 1048        | 895.14                                | 1.4         | 14              | 280                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                                          | 250                                    | 250     | 52          | 6.0               |              |
| 3              | 1053        | 898.27                                | 1.3         | 1.3             | 282                                   | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                          | 252                                    | 256     | 52          | 6.0               |              |
| 2              | 1058        | 9018                                  | 1.1         | 1.1             | 283                                   | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91                                          | 248                                    | 245     | 52          | 5.5               |              |
| 1              | 1103        | 904.3                                 | .81         | 81              | 283                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91                                          | 256                                    | 241     | 53          | 5.0               |              |
| 5100           | 110B        | 907.000                               |             | <u> </u>        | LTAK                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 010                                         | 15 11                                  |         |             |                   |              |
|                | 1151        | 907.516                               | .71         | .75             |                                       | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                          | 244                                    | 246     | 65          | 4.5               | <del> </del> |
| 7              | 1156        | 910.0                                 | .82         | .82             | 278                                   | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                          | 753                                    | 249     | 54          | 50                | <del> </del> |
| 6              | 1201        | 912-6                                 | -68         | .68             |                                       | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                          | 214                                    | 251     | 55          | 5.0               | <u> </u>     |
| 5              | 1206        | 214.75                                | .90         | .90             | 280                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                                          | 253                                    | 266     |             | 5.0               |              |
| 4              | 1211        | 918.0                                 | 1.3         | 1.3             | 282                                   | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                          | 250                                    | 253     |             | 5.0               |              |
|                | 1216        | 720.32                                | 1-1         | 1.1             | 283                                   | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                                          | 254                                    | 257     | 49          | 5.0               |              |
|                | 1221        | 923 25                                | .68         |                 | 283                                   | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .90                                         | 251                                    | 263     | <del></del> | 55                |              |
|                | 1226        | 925.62                                | .69         | .69             | 283                                   | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91                                          | 248                                    | 246     | 52          | <del>&gt; -</del> | <del></del>  |
| STOP           |             | 928.021                               | .0,         | Leak            | 1                                     | .067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | @ 15"                                       |                                        | 210     |             |                   | ├            |
|                | 1235        | 928.27                                | .80         |                 | 279                                   | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                                          | 250                                    | 255     | 52          | 5.0               |              |
| 7              |             | <del></del>                           |             |                 | 279                                   | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                           |                                        |         | · · · · ·   |                   |              |
|                | 1246        | 931.64                                | .85         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92                                          | 257                                    | 244     | 48          | 5.0               |              |
|                |             | 934.22                                | .75         |                 | 280                                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                                          |                                        | Z45     |             | 5.0               |              |
| <del>  }</del> | 1251        | 936.7                                 | .64         |                 | 281                                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                                          | 254                                    | 246     | <del></del> | 4.0               | -            |
| T              | 1256        | 938.95                                | 65          |                 | 282                                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93                                          | 249                                    | 267     |             | 4.0               | ļ            |
|                | 1301        | 441.19                                | .57         | ,               | 282                                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93                                          | 257                                    | 264     |             | 4.0               |              |
|                | 1306        | 943.32                                | .89         |                 | 283                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94                                          | 249                                    | 252     | <u> </u>    | 5.0               | <u> </u>     |
|                | 1311        | 945.8                                 | .96         | .96             | 284                                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94                                          | 265                                    | 249     | 48          | 5                 |              |
| 7108           | 1316        | 948.490                               |             |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                        |         |             |                   |              |
| A=             |             |                                       |             |                 |                                       | . *** . ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                                        |         |             |                   |              |
| Avg.           | <del></del> | 1100                                  |             | 001             | 000                                   | छ। न                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                                        |         |             |                   |              |
| Check'd        | <u> </u>    | //9.957                               | C 38.10     | (), <b>()</b> 1 | 1000                                  | 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 · · · · · · · · · · · · · · · · · · ·     | l                                      | l e     |             | 1                 |              |
| CONSO          | LE#         | C> Do                                 | ES NOT      | INCLE           | c Leek                                | CKS-WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~                                           |                                        |         |             | }                 |              |
| FILTER         |             | · · · · · · · · · · · · · · · · · · · | <del></del> |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | re                                          | ###################################### |         |             |                   |              |
|                |             |                                       |             | -               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (DSCFM)                                     |                                        |         |             | •                 |              |
|                |             |                                       |             |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (%)                                         |                                        |         |             |                   |              |
|                |             | L                                     |             |                 |                                       | STATE OF THE STATE | : 74 T. |                                        |         |             | \$                |              |
|                |             |                                       |             | •               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                        |         |             |                   |              |
| REMAR          | ve          |                                       |             |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                        |         |             |                   |              |

Page of 2

| Plant N        | Name               | Plant                                | Yates St                                     | ation Bo   | iler No.    | 1              | <u></u>           |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _             |                                         |
|----------------|--------------------|--------------------------------------|----------------------------------------------|------------|-------------|----------------|-------------------|--------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|
| Sampling       | Location           | outlet                               |                                              |            | Train _     | Partic         | ulate / N         | letals                   | Rui                                     | 1 No. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>'</u>      |                                         |
| Date 6         | 26/93              | Time Start                           | 925                                          |            |             | sh <u>1131</u> |                   | Test Dura                | ition Z5                                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | min.          |                                         |
| Duct Din       | nensions           | 11:1                                 | 11/1                                         |            | Diameter    |                | ft                | Initial Les              | ık Rate 😶                               | 00 SE)12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rt cfm        |                                         |
| PTCF _         | 84                 | DGMCF <u>.99</u>                     | <u>)                                    </u> | NOZZLE     | DIA         | <i>97</i> i    | nches             | Final Lead               | k Rate <u>.0</u>                        | 0700/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>∉</b> _cfm |                                         |
| Bar Pres       | s <u>794</u>       | 11.9 X _<br>DGMCF <u>.99</u><br>2 Hg |                                              |            |             | D              |                   |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
| Static Pro     | ess <u>"// · C</u> | " н20                                | )                                            |            | Operator    | IJB            |                   | _                        | K =                                     | .915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                         |
| Travers        | Clock              | Dry gas meter                        | ^ P                                          | ^ H        | Stack       | Dry gas me     | eter temp.        | Hot box                  | Probe                                   | Last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vacuum        |                                         |
| Point          | Time               | reading ft3                          | in H2O                                       | in H2O     | Temp. F     |                | Outlet            | Temp.                    | Temp                                    | Impinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in. Hg        |                                         |
| 1-8            | 0925               | 959.3                                | .65                                          | .65        | 270         | 75             | 75                | 254                      | 262                                     | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           |                                         |
| 1 7            | 0930               | 9614                                 | .81                                          | 81         | 277         | 75             | 15                | 255                      | 248                                     | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           |                                         |
| 6              |                    | 963.85                               | .60                                          | .58        | 278         | 15             | 75                | 249                      | 266                                     | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           |                                         |
| 5              | 0940               | 965.87                               | . 35                                         | . 34       | 219         | 78_            | 76                | 251                      | 259                                     | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           | <del></del>                             |
| 4              | 0945               | 967.48                               | , 34                                         | .33        | 276         | 79             | 16                | 249                      | 261                                     | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6           |                                         |
| 2              | 0950               | 969.1                                | .60                                          | -58        | 280         | 80             | 77                | 252                      | 266                                     | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40            |                                         |
| <del>ا خ</del> | 0955               | 971.0                                | .82                                          | .81        | 281         | 80             | 77                | 247                      | 247                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0           |                                         |
|                | 1000               | 473-8                                | .86                                          | .84        | 280         | 81             | 78                | 245                      | 258                                     | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0           |                                         |
| (75.0          | 1005               | 976.065                              | .00                                          |            | 1           | .007           | <u>"</u><br>D 12" |                          | 230                                     | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0           |                                         |
| 570P           | <del></del>        | 976.5                                | <u></u>                                      | LEAK<br>52 | 214         | 84             |                   | 253                      | 767                                     | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-            |                                         |
| 2-0            | 1008               |                                      | . 53                                         |            |             |                | 86                |                          | 752                                     | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           |                                         |
| <b></b> /      | 1013               | 918.53                               | .80                                          | .79        | 278         | 86             | 81                | 256                      | 255                                     | \$7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0           |                                         |
| 6              |                    | 980.91                               | .62                                          | .62        | 279         | 86             | 81                | 244                      | 248                                     | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           |                                         |
| 5              | 1023               | 983.01                               | .73                                          | .73        | 281         | 86             | 81                | 254                      | 264                                     | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           |                                         |
| 4              | 1028               | 985.5                                | .99                                          | .99        | 282         | 86             | 82                | 249                      | 245                                     | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0           |                                         |
| 3              | 1033               | 988.2                                | ,78                                          | .78        | 283         | 89             | 83                | 264                      | 253                                     | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           |                                         |
| 2              | 1038               | 990.36                               | .70                                          | .70        | 283         | 90             | 84                | 250                      | 254                                     | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           |                                         |
| 1              | 1043               | 992.70                               | .98                                          | .98        | 284         | 91             | 84                | 249                      | 249                                     | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0           |                                         |
| STOP           | 1048               | 995.32                               |                                              | Leak       | 1           | .010           | 15"               |                          | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
| 3-8            | 105                | 996.0                                | .63                                          | .63        | 278         | 92             | 86                | 254                      | 259                                     | <i>5</i> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0           |                                         |
| 7              | 1056               | 998.3                                | 1.0                                          | 1.0        | 279         | 93             | 27                | 253                      | 247                                     | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0           |                                         |
| 6              | 1101               | 1001.02                              | 1.2                                          | 1.2        | 281         | 93             | 81                | 247                      | 251                                     | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.0           |                                         |
| 5              | 1106               | 1103.15                              | 1.3                                          | 1.3        | 282         | 95             | 88                | 246                      | 248                                     | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50            |                                         |
| 4              | 1111               | 1606.75                              | 1.3                                          | 1.3        | 283         | 95             | 87                | 248                      | 246                                     | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5           |                                         |
| 3              | 1116               | 1009.7                               | 1.1                                          | 1.1        | 283         | 95             | 88                |                          | 263                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.0           |                                         |
| 2              | 1121               | 1012.7                               | .72                                          | .72        |             | 95             | 88                | 252                      | 235                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0           |                                         |
|                | 1126               | 1015.05                              | .70                                          | .70        |             | 94             | 88                | 253                      | 260                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0           |                                         |
| STOP           | 1131               | 1017.40                              |                                              | ,          |             |                |                   |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
|                |                    |                                      |                                              |            |             |                |                   |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
| Avg.           |                    | /21.053                              | 911.5                                        | 8400       | 281.1       |                | 285               |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
| Check'd        |                    |                                      |                                              |            | talia degli | f. (c) (c)     |                   |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
|                |                    | m 1.5                                | <u> </u>                                     |            |             |                | <b>1</b>          | <b></b>                  | -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •             | *************************************** |
| CONSO          | LE # 16            | 1264                                 |                                              |            |             | Velocity_      |                   |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
| FILTER         | #                  |                                      |                                              |            |             | % Moistur      | <b>1</b> 2        |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
|                |                    |                                      |                                              |            |             |                | DSCFM)_           | 77.549.54644.60000000000 | 000000000000000000000000000000000000000 | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1 |               |                                         |
|                |                    |                                      |                                              |            |             | Isokinetic     | (%)               |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>.</u>      |                                         |
| LINER          | MATERIA            | L                                    |                                              |            |             |                |                   |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
| DE1 ( ) =      |                    |                                      |                                              |            |             |                |                   |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                         |
| REMAR          | KKS                |                                      |                                              |            |             |                |                   |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _             |                                         |

Page Z of Z

| Plant N      | Name    | Plant         | Yates St             | ation Bo | iler No.      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        | _                                      |             |
|--------------|---------|---------------|----------------------|----------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|----------------------------------------|-------------|
|              |         | OUTION        |                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cul <u>ate</u> / N | fetals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Run             | No.                                    | 2.                                     |             |
|              |         | Time Start    |                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
|              |         | x_            |                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
| PTCF         |         | DGMCF         |                      | NOZZLE   | DIA.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inches             | Final Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k Rate          |                                        | cfm                                    |             |
|              |         | " Hg          |                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        | <del></del>                            |             |
|              |         | #20           | )                    |          | Operator      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                        |                                        |             |
| Travers      | Clock   | Dry gas meter | ^ P                  | ^ H      | Stack         | Dry gas m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eter temp          | Hot box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe           | Last                                   | Vacuum                                 | ]           |
| Point        | Time    | reading ft3   | in H2O               |          | Temp. F       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outlet             | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp            | Impinger                               | 1 1                                    | İ           |
|              |         |               |                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
| 4-8          | 1133    | 17.885        | .44                  | .44      | 277           | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88                 | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 261             | 63                                     | 4.0                                    |             |
| 7            | 1138    | 19.66         | .80                  | .80      | 279           | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88                 | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 <sup>4</sup> | 62                                     | 5.0                                    |             |
| 6            | 1143    | 22.15         | 1.20                 | 1.20     | 281           | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                 | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 263             | 61                                     | 6.0                                    |             |
| 5            | 1148    | 25.13         | 1.30                 | 1.30     | 185           | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                 | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25)             | 60                                     | 6.0                                    |             |
| 4            | 1153    | 28.2          | 1.4                  | 14       | Z83           | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                 | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 262             | 61                                     | 6.0                                    |             |
| _3           | 1158    | 31.39         | 1.4                  | 1.4      | 284           | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                 | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 255             | 63                                     | 6.0                                    |             |
| 2            | 1203    | 34.75         | 1.1                  | 1.)      | 284           | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                 | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 258             | 6+                                     | 6.0                                    |             |
| Ţ            | 1208    | 37.77         | . 86                 | .86      | 285           | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                 | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 254             | 64                                     | 5.0                                    |             |
| STOP         | 1213    | 40.41         | Leak                 | 1        | .015          | @15"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
| 5-8          | 1248    | 41.30         | .15                  | 75       | 280           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89                 | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 248             | 60                                     | 4.0                                    |             |
| 7            | 1253    | 43.77         | 81                   | .81      | 281           | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                 | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 263             |                                        | 4.0                                    |             |
| 6            | 1258    | 46.25         | .70                  | .70      | 28            | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                 | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 266             |                                        | 4.0                                    | <del></del> |
| 5            | 1303    | 48.56         | 1.10                 | 1.10     | 283           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                 | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 258             |                                        | 4.0                                    |             |
| 4            |         | 51.35         | 1.2                  | 1.12     |               | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | <u>55</u>                              |                                        | ——]         |
| 7            | 1308    |               |                      |          | 284           | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 253             | 56                                     | 5.5                                    |             |
| <u>  - 3</u> | 1373    | 54.4          | .93                  | .93      | 285           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                 | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2A7             | 58                                     | 5.0                                    |             |
| -            | 1318    | 57.00         | .71                  | .71      | 285           | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91                 | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 248             |                                        | 4.0                                    |             |
|              | 1323    | 59.35         | .98                  | .98      | 785           | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91                 | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 255             | 60                                     | <b> </b>                               |             |
| STOP         | 1328    | WZ-05         | LEAK                 | 1        | .007          | @ 9.0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
| 6-8          |         | 62.367        | .87                  | .87      | 276           | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93                 | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 257             | 63                                     | 5.0                                    |             |
| 7            | 1335    | 65.0          | .86                  | .86      | 281           | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                 | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 255             | 61                                     | 5.0                                    |             |
|              |         | 37.65         | .72                  | .73      | 281           | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                 | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 264             | 60                                     | 5.0                                    |             |
| 5            | 1345    | 70.15         | .66                  | .67      | 283           | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92                 | 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 247             | 60                                     | 4.0                                    |             |
| 4            | 1350    | 72.43         | 74                   | -75      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92                 | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 258             | 62                                     | 5.0                                    |             |
| 3            | 1355    |               | .60                  | .61      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92                 | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 257             | 62                                     | 5.0                                    |             |
| 2            | 1400    | 77.15         | .94                  | .95      | 285           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92                 | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 6Z                                     | 55                                     |             |
|              | 405     | 79.88         | 1.1                  | 1.2      | 185           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93                 | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 253             | 63                                     |                                        |             |
| 570P         |         | 83.16         |                      |          | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
| 1-/:         | 7 7 1 2 |               |                      |          | ļ <u>.</u>    | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>       | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                        |                                        |             |
| Avg.         |         |               |                      |          | 8,000,000,000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
| Check'd      |         |               |                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
| CHECK U      |         |               | s were the second as |          | Pagarasi as   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        | <u></u>     |
| CONSOL       | LE#     |               |                      |          |               | Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
|              |         |               |                      |          |               | - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Company - Comp | re.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 10000000000000000000000000000000000000 | 4.400                                  |             |
|              |         |               |                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DSCFM)_            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
|              |         |               |                      |          |               | \$1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (%)                | Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro |                 |                                        | ************************************** |             |
|              |         |               |                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        | •                                      |             |
|              |         |               | _                    |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        |                                        |             |
| REMAR        | KS      |               |                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                        | _                                      |             |

# Flue-Gas Sampling Log

|             |                                             |                  | <b>*</b>                | 80 X                  |                     |
|-------------|---------------------------------------------|------------------|-------------------------|-----------------------|---------------------|
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  | 1.000<br>3.000<br>3.000 |                       |                     |
|             |                                             |                  |                         |                       |                     |
| -388        |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       |                     |
|             | **                                          |                  | 2 8                     |                       |                     |
| A 2000.1    |                                             |                  | ે 🎎                     |                       |                     |
| 2000        |                                             |                  |                         |                       |                     |
|             |                                             |                  | 1                       |                       |                     |
| 17          | **                                          |                  |                         |                       |                     |
| •           | 5                                           |                  | 80x2                    |                       |                     |
| • •         | rø                                          | E                |                         | ***                   |                     |
| #           |                                             | K                |                         |                       |                     |
| ≂           |                                             | T                |                         |                       |                     |
| =           | 9                                           | , cc             |                         |                       |                     |
| 4           | =                                           | $\mathbf{u}$     | 8.8.                    |                       | $\dot{\sim}$        |
| O.          | - 7                                         | J                | <br>                    | 3.                    |                     |
| 7           |                                             | e.               | 6                       | T T                   |                     |
| 2           |                                             | æ                | ≂                       | .0                    | 0                   |
|             | ×                                           | $\Xi$            | 3                       | 2                     | -                   |
| Sample Run# | လ                                           | Iodated Carbon # | Pump                    | Probe#:               | Filter ID           |
|             | 3000                                        |                  | 988                     | 0.88                  | 88                  |
|             |                                             | 200              |                         |                       | ű.                  |
| .00         |                                             | 20.00            |                         |                       |                     |
|             |                                             |                  | A 10 (0)                | 10.000                |                     |
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       |                     |
|             |                                             |                  |                         |                       | 1-                  |
|             |                                             | 13               |                         |                       | 7.7                 |
|             |                                             | 143              |                         | Ç                     | ער כי בי            |
|             | <b>53</b>                                   | 26/93            | 1                       | 35                    | ואַנוּנּינ          |
| 3           | 76.5                                        | . (26   93       | 740                     | JS3                   | אמנוער              |
| <b>7</b> 00 | #YE5                                        | C (200   43      | CORL                    | JST                   | השלולל              |
| 200         | MATES                                       | 6 (25/43         | 7493                    | 1: £3P                | השלונד              |
| <b>79</b> Q | Mrt.5                                       | 6 (zele3         | 7₩62                    | ol: see               | המערתו              |
| 700         | 1: \Arts                                    | \$ (2) (2) (1)   | ~##C                    | trol: 550             | חלב השתובר          |
| 700         | 001: \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \ | 6 (26/43         | 1483                    | introl: £5¢           | int owier           |
| 700         | tion: Apres                                 | (4 (26) 43       | 7-402                   | Control: 15P          | Point autet         |
| 700         | ation: Agres                                | 6 (26/43         | 3: capt                 | Control: 150          | Point nater         |
| ne Doc      | Scation: Agres                              | 6 (25/43         | De: cont                | in Control: 136       | ng Point autlet     |
| Jed 20      | Location: Agres                             | 6 186143         | ype: coff.              | ion Control: £5P      | ing Point Dutlet    |
| Jed Host    | t Location: Arres                           | 1: 4 [26] 9.3    | Type: coff.             | ıtion Control: 1:30   | pling Point outlet  |
| Jed nosuc   | nt Location: Arres                          | te: 4 lacks      | l Type:                 | lution Control: 1:36  | npling Point Outlet |
| donsor: 000 | Plant Location: Vares                       | ate: Lizeles     | Fuel Type:              | ollution Control: 136 | Sampling Point Butt |

|       |                 |         | _ | - | _ | <br> | _       |
|-------|-----------------|---------|---|---|---|------|---------|
| mean  | flow<br>(1/min) | ,26     |   |   |   |      |         |
| тевп  | zero<br>(I/min) | ۵       |   |   |   |      |         |
| 1     | time<br>(min)   | 1 (     |   |   |   |      |         |
|       | flow<br>(1/min) | .243    |   |   |   |      | TOTALS: |
| stop  | zero<br>(1/min) | 0.00/1" | , |   |   |      |         |
|       | time<br>(hh:mm) | 1323    |   |   |   |      |         |
|       | flow<br>(1/min) | .28-3   |   |   |   |      |         |
| start | zero<br>(1/min) | "S/00.0 |   |   |   |      |         |
|       | time<br>(hh:mm) | 0/80    |   |   |   |      |         |

| Integrator Volume (I):                       | COMMEN      |
|----------------------------------------------|-------------|
| Offset Correction (1):021(2) Box,0/6/20/6/20 | In. 40/ 650 |
| Total Integrator Volume:                     |             |
| CO <sub>2</sub> Mass Flow Correction:        | 1           |
| Actual (dry STP) volume (1):                 | metal Vi    |
| $\% 0_2$ : 7, 8                              | Frank so    |
| % CO <sub>2</sub> : 11.2                     | o WI C      |
| $\% \text{ H}_2\text{O}$ : $10\%$            |             |
| $ppm SO_2$ :                                 |             |

Flue-Gas Sampling Log

| int Location: 1/475 Soda-Lime Tra le: U/2/1/43 Iodated Carbon I Type: CO/L Pump#: Intion Control: 5SP Probe#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion: VATES  Colored: ESP  Points Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  tion: VATES  (126/193  Control: ESP  Point                                                                            | tion: \$475.5<br>(\$126.193<br>  Copt.   Copt.   I<br>  Control: \$56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: VATES  tion: VATES  Control: ESP  Points  Control: ESP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: \$475.5<br>(\$126.193.2004).<br>Control: \$286.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion: VATES  tion: VATES  (126/193  Control: ESP  Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tion: VATES  Control: ESP  Points Ourter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion: VATES  Colored: ESP  Points Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  tion: VATES  (126/193  Control: ESP  Point                                                                            | tion: \$475.5<br>(\$126.193<br>  Copt.   Copt.   I<br>  Control: \$56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: VATES  tion: VATES  Control: ESP  Points  Control: ESP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: \$475.5<br>(\$126.193.2004).<br>Control: \$286.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion: VATES  tion: VATES  (126/193  Control: ESP  Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| tion: VATES  Control: ESP  Points Ourter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion: VATES  Colored: ESP  Points Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  tion: VATES  (126/193  Control: ESP  Point                                                                            | tion: \$475.5<br>(\$126.193<br>  Copt.   Copt.   I<br>  Control: \$56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: VATES  tion: VATES  Control: ESP  Points  Control: ESP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: \$475.5<br>(\$126.193.2004).<br>Control: \$286.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion: VATES  tion: VATES  (126/193  Control: ESP  Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion: VATES  (126,193  Control: ESP  Points  Doubles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| tion: VATES UISUIGA COPL Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion: VATES Ultu/93 Control: ESP Point Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: 4475.5<br>(126/93<br>Control: 5.87<br>Point: 00712.57                                                                        | tion: 4ATES Ulaulas Control: ESP Point: Offers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion: VATES UISUIGA COPL Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion: \$475.5<br>Cloud 93<br>Control: \$289<br>Point: Orres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion: 4475.5<br>(126/93<br>Control: 5.87<br>Point: 00712.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion: VATES UIM/93 Control: ESP Point Outles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| nt Location: 1/175 S  le: 1/26/93  l Type: 20/4  lution Control: 28/9  npling Point: 00/11/27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt Location: 1996  In Location: 1996  In Type: COPL  Intion Control: 58P  In Point: 007187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: 4475.S<br>e: 4120193.<br>I Type: 2044.<br>ution Control: 557.<br>ution Point: 007187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: VATES<br>e: Ultiple: COLL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | insor: DOE int Location: 4475 S e: Ul26/43 I Type: COAL lution Control: 55P ipling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ponsor: DOC. lant Location: 1475.5 Jate: (126/193 uel Type: COAL ollution Control: ESP ampling Point: OUTLET                       | ponsor: DOE  ant Location: 4475.  ate: (126/93)  tel Type: COFC  illution Control: ESP impling Point: OFFST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | onsor: ME ant Location: 1475 S the: U/26/43 el Type: COH Ilution Control: ESP mpling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Location: 44725  nt Location: 44725  e: ul24/43  I Type: cott  ution Control: 287  npling Point: 017457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: Mee t Location: 4475 S s: (4126193 Type: COAL ution Control: 2879 pling Point: 047127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t Location: VATES  Location: VATES  Type: COAL  Ition Control: ESP  pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: DOC<br>t Location: 4472.s:<br>coxt.<br>Type: coxt.<br>ution Control: 28.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOC<br>it Location: 4475.<br>e: (126/93.<br>Type: COH.<br>ution Control: ESP<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>it Location: VATES<br>e: Ultiple: COLL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOC<br>it Location: VATES<br>e: Ul2D/93<br>I Type: COLL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: VATES<br>e: Ul2D/93<br>I Type: COLL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>it Location: 4475.s<br>e: U/26/43.<br>Type: COH.<br>ution Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>it Location: VATES<br>e: Ul26/93<br>Type: COCL<br>ution Control: ESP<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>t Location: 4472.5<br>:: (126/43<br>Type: COAL<br>ution Control: 28.7<br>pling Point: AUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ssor: DOE  Location: Mrs S  : Ul2s/93  Type: COFL  stion Control: SSF  oling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sor: 108<br>Location: 1475<br>Location: 1475<br>10120193<br>Cype: 204<br>Control: 557<br>Ling Point: 007187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location: VATES  Location: VATES  YPE: COAL  ion Control: ESP  ing Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r: DOC<br>Ocation: VATES<br>Ultal93<br>pe: COAL<br>on Control: ESP<br>ng Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ation: VATES  (1/2/193 e: COAL Control: ESP ; Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nt Location: 1/175 S  le: (1/26/93  l Type: COPL  lution Control: ESP  npling Point: Off 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt Location: 1475.s<br>nt Location: 1475.s<br>le: 6/26/93<br>l Type: COFL<br>lution Control: 58P<br>npling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: 4475.S<br>e: Ulbertals  LType: COLL  ution Control: 55.P  upling Point: OUTIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOC<br>it Location: VATES<br>e: (12b/93<br>Type: COLL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | insor: DOC<br>int Location: 4475.s<br>e: Ul26/93.<br>I Type: COLL<br>lution Control: ESP<br>ipling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ponsor: DOC. lant Location: 1475.5 Jate: 0126193 uel Type: COAL ollution Control: ESP ampling Point: OUTLET                        | ponsor: DOC  ant Location: 4475.5  ate: (a126/93)  tel Type: COFC  ollution Control: SSP impling Point: OFFST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onsor: DOC<br>ant Location: 1475.<br>ite: 1726: 1726/43<br>el Type: 2046<br>Ilution Control: 257<br>mpling Point: 007757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location: 4475.  nt Location: 4475.  lation Control: 284.  npling Point: 017457.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: DOC<br>t Location: 4475.5<br>s: (126/93<br>Type: COAL<br>ution Control: 2879<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: Doe t Location: VATES  Location: VATES  Type: COAL ntion Control: ESP pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: DOC<br>t Location: 4475.5<br>s: (126/93<br>Type: COAL<br>ution Control: 28.79<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: 4475.s<br>e: U126/93<br>Type: COH<br>ution Control: ESP<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: VATES<br>e: (12b/93<br>Type: COLL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: 4475.S<br>e: (120/93<br>Type: 2044<br>ution Control: 587<br>upling Point: 007187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: 4475.S<br>e: (120/93<br>Type: 2044<br>ution Control: 587<br>upling Point: 007187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>it Location: VATES<br>e: U12b/93<br>Type: COLL<br>ution Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOC<br>it Location: VATES<br>e: Ul2b193<br>Type: COCL<br>ution Control: ESP<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>t Location: 4475.5<br>:: (126/93<br>Type: COAL<br>ution Control: 28.79<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | isor: DOE<br>Location: Mrs S<br>: Ul21/93<br>Type: COFL<br>ition Control: SSP<br>oling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sor: DOC<br>Location: 4475.S<br>(126/43<br>Type: COL<br>tion Control: 587<br>ling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location: VATES  Location: VATES  YPE: COAL  ion Control: ESP  ing Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r: DOC<br>Ocation: VATES<br>UltalA3<br>pe: COAL<br>on Control: ESP<br>ng Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ation: VATES  (shulds)  Control: ESP  Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nt Location: 1906<br>Int Location: 1975 S<br>Interpolation Control: 586<br>Intion Control: 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt Location: 1/1755  In Type: 1/20/43  Intion Control: 557  Intion Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC<br>it Location: VATES<br>e: (ALD 193<br>I Type: COAL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: VATES<br>e: U/26/43<br>Type: COHL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | insor: OOE<br>it Location: 4472.s<br>e: 0120193.<br>I Type: 2042.<br>lution Control: 2870.<br>ipling Point: 007187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ponsor: DOC<br>lant Location: VATES<br>late: (124/93<br>uel Type: COAL<br>ollution Control: ESP<br>ampling Point: OUTLET           | ponsor: DOC  ant Location: 4472.  ate: Ul26/93  tel Type: COFC  ollution Control: ESF impling Point: OUTSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onsor: Doc<br>ant Location: VATES<br>ite: (124193<br>el Type: COLL<br>Ilution Control: ESP<br>mpling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Location: 4472.se: Ulva/43.lType: COF/. lution Control: 257.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: Doe<br>t Location: 4475 s:<br>s: (124193<br>Type: Cort.<br>ution Control: 5879<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOE t Location: Mrs s  " Ululas Type: COFL ition Control: ESP pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: Doe t Location: VATES : Ulu/93 Type: COAL ntion Control: ESP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: Doe<br>t Location: VATS<br>s: Ulve193<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: Doc<br>it Location: VATES<br>e: VILLIAS<br>Type: COXI<br>ution Control: ESP<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: VATES<br>e: U/26/43<br>Type: COHL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: VATES<br>e: U/26/93<br>Type: COAL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>it Location: VATES<br>e: U/26/93<br>Type: COAL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: VATES<br>e: U120193<br>Type: COHL<br>ution Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: Doc. it Location: VATES e: ULL 193 Type: COAL ution Control: ESP pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: Doe t Location: VATS :: (s 2u 93 :: COAL Ition Control: ESP pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | isor: DOC. Tocation: 1475.5  Supple: COL. Ition Control: 58P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sor: DOC<br>Location: VATES<br>(1/26/93<br>Type: COH<br>tion Control: ESP<br>ling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location: Mrs S  Location: Mrs S  VPe: COPL  ion Control: ESP  ing Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r. dole<br>des control: ESP<br>na Control: ESP<br>ng Points duries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation: VATES  (1/24/93 e: Control: ESP ; Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nt Location: 4475.  In Type: 204.  Intion Control: 587  Intion Point: 007157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt Location: 1475.s  le: 1/26/93  l Type: 2042  lution Control: 286  npling Point: 007227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>it Location: VATES<br>e: UNDE: COAL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: Dole  It Location: VATES  e: Ulbe 193  Type: CoAL  ution Control: ESP  upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | insor: DOC<br>it Location: VATES<br>e: U126193<br>I Type: COAL<br>lution Control: ESP<br>ipling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sponsor: DOC Plant Location: VATES  Date: (124/93  Fuel Type: COAL Pollution Control: ESP Sampling Point: OUTLET                   | ponsor: DOC<br>lant Location: VATES<br>ate: Ulul 193<br>tel Type: COLL<br>illution Control: ESP<br>impling Point: OUT 5.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onsor: DOC  ant Location: VATES  tle: (124/93  el Type: COAL  Ilution Control: ESP  mpling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location: 14725 nt Location: 14725 le: 0/26/43 l Type: COFL lution Control: 25P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: DOE t Location: 4475.5 s: ultil 43 Type: COLL ution Control: 587 pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t Location: VATES  Location: VATES  Type: COAL  Ition Control: ESP  pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC<br>t Location: 4475.5<br>:: Ulva[93<br>Type: COL<br>rtion Control: 587<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC<br>t Location: 4475.5<br>St. Ulve/93<br>Type: COL<br>ution Control: 58P<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: Doe  it Location: 4475 S e: (124/93 Type: Cott ution Control: 587 pling Point: 007157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: Decation: VATES e: Ulw 193 I Type: COAL ution Control: ESP upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: Dot<br>nt Location: VATES<br>e: UND 193<br>Type: COAL<br>ution Control: ESP<br>upling Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: Dot<br>nt Location: VATES<br>e: UND 193<br>Type: COAL<br>ution Control: ESP<br>upling Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: Decation: VATES e: Ulbe 193 Type: COAL ution Control: ESP pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC<br>it Location: 4475.5<br>e: (124/93<br>Type: COAL<br>ution Control: 5.87<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>t Location: 4475.5<br>:: Ulve/93<br>Type: COL<br>ation Control: 58P<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 Location: 1/1/2 S 1 Location: 1/1/2 S 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sor: DOC<br>Location: VATES<br>(126/193<br>Type: COAL<br>tion Control: ESP<br>ling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location: VATES  Location: VATES  VPe: COAL  ion Control: ESP  ing Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n: Doe<br>Deation: VATES<br>VILLIARS<br>Pe: COPL<br>In Control: ESP<br>In Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation: VATES alion: VATES c: copt Control: ESP ; Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nt Location: 1475 s<br>le: 1/20/43<br>l Type: 204/<br>lution Control: 287<br>npling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Location: 1475.s  nt Location: 1475.s  le: 1/2/193  l Type: 2042.  lution Control: 287  npling Point: 007227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOC<br>it Location: VATS<br>e: (124/93<br>I Type: COAL<br>ution Control: SSP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>nt Location: 4475.5<br>e: (126/93<br>Type: COAL<br>ution Control: 5.87<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Location: 1475<br>et: (17493<br>I Type: COAL<br>lution Control: 287<br>pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ponsor: 006 lant Location: 4475 lant Location: 4475 late: (126/93 uel Type: 2044 ollution Control: 587 ampling Point: 007757       | ponsor: DOC<br>ant Location: VAPES<br>ate: (1/26/193<br>tel Type: COAL<br>Mution Control: ESP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onsor:  206  ant Location: 1/1/75  the: 1/1/19  el Type: 204  Ilution Control: 5.87  mpling Point: 0071/67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt Location: 4475<br>nt Location: 4475<br>e: (1246/93<br>1 Type: CO44<br>lution Control: 587<br>apling Point: 017157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOE  t Location: VATES  s: Ul26/43  Type: COFC  ution Control: ESF  pling Point: OUTIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t Location: 1475.s.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Location: 1475 S. Type: 10120193 Ition Control: 587 Pling Point: 007027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOE t Location: VATES :: Ul26/93 Type: COAL ution Control: ESP pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC  It Location: \$\frac{\partial Parts}{\partial Parts}\$  Type: \$\frac{\partial Parts}{\partial Parts}\$  pling Point: \$\frac{\partial Parts}{\partial Parts}\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>nt Location: 4475.5<br>e: (126/93<br>Type: COAL<br>ution Control: 5.87<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>nt Location: 4475.5<br>e: (126/93<br>I Type: COAL<br>ution Control: 5.87<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOC<br>nt Location: 4475.5<br>e: (126/93<br>I Type: COAL<br>ution Control: 5.87<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOC.  It Location: 4475.5 e: (4126/43 Type: COAL.  ution Control: 5.8P pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOE it Location: \$475.5 e: \$126/93 Type: \$204_ ution Control: \$57 pling Point: \$077.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOE t Location: VATES :: Ul26/93 Type: COAL ation Control: ESP pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 Location: 1475 S 1 Location: 1475 S 1 Viber 143 1 Type: 2044 1 tion Control: 287 2 Ving Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sor: DOC<br>Location: Mrs S<br>(120/93<br>Type: COL<br>tion Control: ESP<br>ling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location: 1/4/12.5<br>Location: 1/4/12.5<br>ype: 204/2<br>ion Control: 25/2<br>ing Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n: Doe<br>deation: VATES<br>VILLE 193<br>Pe: COAL<br>In Control: ESP<br>AS Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation: 44725   Ulve193  e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nt Location: 1998  Int Location: 1998  Intype: COAL  Intion Control: ESP  Intion Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt Location: 1475 S  le: U126/93  l Type: CO44  lution Control: 586  apling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOE  it Location: \$475.5 e: \$120.193. [Type: \$204.] ution Control: \$5.6 ution Point: \$2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: OOE  It Location: 4475.5  e: (120193. Type: COAL  ution Control: 55P  upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | insor: DOE int Location: 4475.5 e: Ultural Cott lution Control: 587 ipling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ponsor: DOC<br>lant Location: 4472.5<br>late: 0/26/193<br>uel Type: COAL<br>ollution Control: 2879<br>ampling Point: 007127        | ponsor: DOC<br>lant Location: VATES<br>ate: (\$126/93<br>tel Type: COFC<br>illution Control: ESP<br>impling Point: OFFET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onsor: DOC<br>ant Location: 1/1/25<br>ite: (1/26/93<br>el Type: 2042<br>Ilution Control: 28P<br>mpling Point: 017127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt Location: 4475.  nt Location: 4475.  lation Control: 587  npling Point: 01775.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOC<br>t Location: 4475 S<br>S: (126/93<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: Doe t Location: VATES  Type: COAL ntion Control: ESP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>t Location: VATES<br>:: UNDE: COAL<br>Ition Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>t Location: 4475.5<br>s: (126/193<br>Type: COAL<br>ution Control: 2879<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>it Location: \$475.5<br>e: (12b/93.7)  Type: COLL  ution Control: \$5.6  pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: Ook  It Location: 4475.5  e: Ul2o193  Type: COAL  ution Control: 58P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: Ook  it Location: VATES  e: Ul2o193  I Type: COAL  ution Control: ESP  upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: Ook  it Location: VATES  e: Ul2o193  I Type: COAL  ution Control: ESP  upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: DOC<br>it Location: \$\frac{44\pi}{\oldsymbol{0}}\in \text{COLL} \text{193} \text{Type: \$\frac{20\plus{1}}{\oldsymbol{0}}\text{LOCL} \text{Ution Control: \$\frac{25\plus{1}}{\oldsymbol{0}}\text{Point: \$\text{OUTUST} \text{T} \text{Point: \$\text{OUTUST} \text{ET} \text{Point: \$\text{OUTUST} \text{ET} \text{Point: \$\text{Point: } \text{Point: }\text{Point: } | nsor: OOE it Location: \$\frac{\partial Property for Control}{\text{cort}}\$  Type: \$\frac{\control}{\control} \frac{\control}{\control} \contro    | nsor: DOC<br>t Location: 4475.5<br>:: (126/193<br>Type: COAL<br>ution Control: 2879<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Location: 1475 S 1 Location: 1475 S 1 Vype: COAL 1 Ition Control: 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sor: ODE Location: VATES  Location: VATES  (126/93  Type: COAL  tion Control: ESP  ling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Location: VATES  Location: VATES  VPe: COAL  ion Control: ESP  ing Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n: DOC<br>Ocation: VATES<br>Ultulga<br>pe: COAL<br>on Control: ESP<br>ng Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ### 1000<br>###############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nt Location: VATES  Int Location: VATES  In Type: COAL  Intion Control: ESP  Inpling Point: OUTIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Location: 1475.s  nt Location: 1475.s  le: 1/26/93  l Type: 2042.  lution Control: 28.6  npling Point: 007227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC<br>it Location: VATES<br>e: (17494)<br>I Type: COAL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: Doc<br>nt Location: VATES<br>e: UND 193<br>Type: COAL<br>ution Control: ESP<br>upling Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | insor: DOC<br>int Location: VATES<br>e: U126193<br>I Type: COAL<br>lution Control: ESP<br>ipling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ponsor: DOC<br>lant Location: 4475.5<br>late: (s/2)/43<br>uel Type: COLL<br>ollution Control: 587<br>ampling Point: OUTLET         | ponsor: DOC<br>lant Location: VATES<br>ate: ULLIA 93<br>tel Type: COPL<br>ollution Control: ESP<br>impling Point: OFFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onsor: DOC ant Location: WATS the: Ulbufg3 el Type: COAL Ilution Control: ESP mpling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Location: 1/4/25 nt Location: 1/4/25 le: 0/26/43 l Type: COFL lution Control: 25/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: DOE  t Location: 4475.5  s: 6/26/93  Type: COFC  ution Control: 58P  pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOC<br>t Location: 4475.<br>:: 0126/93<br>Type: COL<br>ition Control: 58P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOC<br>t Location: 4475.5<br>:: Ulve/93<br>Type: COL<br>ntion Control: 58P<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC<br>t Location: 4475.5<br>St. Ulve/93<br>Type: COL<br>ution Control: 587<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: Doe  it Location: VATES  e: (124/93  Type: COAL  ution Control: ESP  pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOC<br>nt Location: VATES<br>e: UND 193<br>Type: COAL<br>ution Control: ESP<br>upling Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: Doc<br>nt Location: VATES<br>e: UND 193<br>I Type: COAL<br>ution Control: ESP<br>upling Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: Doc<br>nt Location: VATES<br>e: UND 193<br>I Type: COAL<br>ution Control: ESP<br>upling Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: Oct.  It Location: VATES  e: (ILLIA)  Type: COAL  ution Control: ESP  pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>it Location: 4475.5<br>e: (124/93<br>Type: COAL<br>ution Control: 5.879<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>t Location: 4475.5<br>:: Ulve/93<br>Type: COL<br>ation Control: 58P<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 Location: VATES 1 Location: VATES 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sor: DOC<br>Location: VATES<br>(126/48<br>Type: COAL<br>tion Control: ESP<br>ling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location: VATES  Location: VATES  VPe: COLL  ion Control: ESP  ing Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Doe<br>Deation: 4475.5<br>Where Correction Control: 556<br>Na Point: 0071.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 206. ation: 4475.5 cl22/43 e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nt Location: 1475 S  le: (126/98  l Type: COAL  lution Control: ESP  npling Point: O17127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt Location: 1475.ste: U126/93 I Type: COAL Intion Control: 587 npling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOE  it Location: \$475.5 e: \$126.193 IType: \$204. ution Control: \$5.6 ution Point: \$2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: 006  It Location: 4475.s e: 4120193  Type: 2044 ution Control: 586 upling Point 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | insor: DOE  it Location: 4475.5  e: Ulture: CO44.  lution Control: 587  upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ponsor: DOC<br>lant Location: 1475.5<br>late: 0126193<br>uel Type: COAL<br>ollution Control: ESP<br>ampling Point: OUTLET          | ponsor: DOC<br>lant Location: VATES<br>ate: (\$126/93<br>tel Type: COFC<br>illution Control: ESP<br>impling Point: OFFIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onsor: ME  ant Location: 1/1/25  the: (1/26/93  el Type: 2044  Ilution Control: £SP  mpling Point: 0/1/1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Location: 4475.  nt Location: 4475.  lation Control: 587  upling Point: 017757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOC<br>t Location: 4475.5<br>s: (126/193<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t Location: VATES  Location: VATES  Sype: COAL  Ition Control: ESP  pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>t Location: VATES<br>:: (126/193<br>Type: COAL<br>ntion Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC<br>t Location: 4472.5<br>s: (126/193<br>Type: COAL<br>ution Control: 2879<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>it Location: \$\frac{147\circ}{4/2\circ}S\$  e: \frac{4/2\circ/143}{2\circ}T\$  Type: \frac{20\circ}{2\circ}C\$  ution Control: \frac{\circ}{2\circ}P\$  pling Point: \frac{20\circ}{2\circ}F\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: 006  It Location: 4475.5  e: 4120193  Type: 2044  ution Control: 587  pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: 006  It Location: 4475.s e: 0126193 I Type: 2044 ution Control: 586 pling Point 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: 006  It Location: 4475.s e: 0126193 I Type: 2044 ution Control: 586 pling Point 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: OOE  It Location: 4475.5  e: (120193. Type: COAL  ution Control: 5.87  pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOC<br>it Location: 4475.s<br>e: (126/93<br>Type: COAL<br>ution Control: 587<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>t Location: 4472.5<br>:: (124193<br>Type: COAL<br>ution Control: 2879<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 Location: 1475 S 1 Location: 1475 S 1 Vype: COAL 1 Ition Control: 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sor: DE Location: VATES  Location: VATES  (126/93  Type: COAL  tion Control: ESP  ling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location: VATES  Location: VATES  YPE: COAL  ion Control: ESP  ing Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n: Doe<br>Deation: VATES<br>De: COAL<br>In Control: ESP<br>18 Point DUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100c<br>ation: 4475.5<br>e: (126/93<br>e: CO42<br>Control: 2876<br>; Point 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nt Location: 1475.s<br>le: 1726.s<br>l Type: 2042.<br>lution Control: 2879.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Location: 1472 s  nt Location: 1472 s  le: 17ype: 2042  lution Control: 28F  npling Point: 04727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: DOC<br>it Location: VATES<br>e: (124/93<br>I Type: COAL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC.  nt Location: 4475.5 e: (126/93 IType: COAL.  ution Control: 5.8.P upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Location: 1475<br>et: (126193<br>I Type: COH<br>lution Control: 287<br>pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ponsor: 006 lant Location: 4475 late: 0126193 uel Type: CO44 ollution Control: 556 ampling Point: 007127                           | ponsor: DOC<br>ant Location: 4472.5<br>ate: (426.193<br>tel Type: COFC<br>illution Control: 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onsor:  Mostion: Mrs.s.  Ite: Classes  el Type: Cott.  Ilution Control: ESP  mpling Point: Outuer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Location: 44725  nt Location: 44725  latype: 6044  lution Control: 287  npling Point: 017157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOE  t Location: 4475.5  s: 0126193  Type: COAL  ution Control: 55P  pling Point: OUTIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t Location: 1/4/12 S  " (1/26/193  Type: 20/12  rtion Control: 55/7  pling Point: 0/1727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: ODE t Location: \$\frac{447\varepsilon}{1\langle \langle | nsor: DOE t Location: VATES :: Ul26/43 Type: COAL ution Control: ESP pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC.  It Location: 4475.5 e: 6/26/93 Type: COAL.  ution Control: 5.8P pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOC.  nt Location: 4475.5 e: (126/93 IType: COAL.  ution Control: 5.8.P upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: DOC<br>nt Location: 4475.5<br>e: (126/93<br>I Type: COAL<br>ution Control: 5.87<br>upling Point: 0071.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOC<br>nt Location: 4475.5<br>e: (126/93<br>I Type: COAL<br>ution Control: 5.87<br>upling Point: 0071.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOC.  It Location: 4475.5 e: (4126/43 Type: COAL.  ution Control: 5.8P pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOC. It Location: \$445.5 e: Cl26/43 Type: COAL. ution Control: \$5P pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOE t Location: VATES :: Ul26/43 Type: COAL ation Control: ESP pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 Location: 1417.5 1 Location: 1417.5 1 Type: 2017 1 Type: 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sor: DOC<br>Location: Wrs S<br>(120/93<br>Type: COAL<br>tion Control: SSP<br>ling Point OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location: 1475 S Location: 1475 S  VPe: CO44 ion Control: 5SF ing Point: 007757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n: DOE Deation: Mres De: COM On Control: ESP AS Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ### 1906<br>  1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906   1906 |
| int Location: 1475 steel to the control of the cotton control: 557 in the cotton control: 557 in the control: 557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Location: 1475.s<br>nt Location: 1475.s<br>le: (p/26/93)<br>l Type: CO44.<br>lution Control: ESP<br>npling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: VATES<br>e: (124/93<br>I.Type: COAL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>nt Location: VATES<br>e: U/26/93<br>Type: COAL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | insor: 006<br>it Location: 4475.5<br>e: 0126193.1<br>I Type: 2046.<br>lution Control: 586.7<br>ipling Point: 007027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ponsor: Decation: VATES lant Location: VATES late: (126/193 uel Type: COAL ollution Control: ESP ampling Point: OUTLET             | ponsor: 006  ant Location: 4472  ate: 0126/43  tel Type: CO44  illution Control: 2576  impling Point: 0174577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onsor: 1000  ant Location: 1475 s  the: 1750 cott  Ilution Control: 587  mpling Point: 007157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt Location: 1/472.s.e: (1/26/43.1Type: COFL. Intion Control: 2.8.f.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Location: 1475.5  *** (126/43)  Type: COAL ution Control: \$\$P\$  pling Point: 0.071.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>t Location: 1475 S<br>:: U12693<br>Type: COAL<br>ition Control: ESP<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: Doe t Location: 4475.  "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: Ook<br>t Location: VATES:<br>S: Ulbe 193<br>Type: COK<br>ution Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC  It Location: VATE  e: (126/193  Type: COAL  ution Control: ESP  pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOC<br>nt Location: VATES<br>e: U/26/93<br>Type: COAL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>it Location: VATES<br>e: U126/93<br>I Type: COAL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: VATES<br>e: U126/93<br>I Type: COAL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>it Location: VATES<br>e: U126/93<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOC<br>it Location: VATES<br>e: UND 193<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: Ook t Location: \$475.5 (\$126.193. Type: COKL ation Control: \$587 pling Point: OUTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ssor: DOE  **Location: \$\frac{44\pi}{\text{cot}}\$: \$\frac{6\pi\lambda 43}{\text{cot}\lambda}\$: \$\frac{10\pi\lambda 43}{\text{cot}\lambda}\$: \$\frac{10\pi\lambda 43}{\text{cot}\lambda}\$: \$\frac{10\pi\lambda 43}{\text{cot}\lambda 43}\$: \$\frac{10\pi\lambda 43}{\text{cot}\lambda 63}\$: \$\frac{10\pi\lambda 43}{\text{cot}\lambda 63}\$: \$\frac{10\pi\lambda 42}{\text{cot}\lambda 63}\$: \$\frac{10\pi\lambda 43}{\text{cot}\lambda 63}\$: \$\frac{10\pi\lambda 43}{\text{cot}\lambda 63}\$: \$\frac{10\pi\lambda 62}{\text{cot}\lambda 63}\$: \$\frac{10\pi\lambda 62}{\text{cot}\la | sor: DOC<br>Location: VATES<br>(126/93)<br>Type: COH<br>tion Control: ESP<br>ling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location: 1475.5  Location: 1475.5  ype: COAL ion Control: ESP ing Point: OUTEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n: Ook<br>Deation: VATES<br>Where COKE<br>In Control: ESP<br>In Points OUTEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ation: VATES (VAUIGE CORL Control: ESP ; Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nt Location: 1475 stee (1726/193  1 Type: COAL Intion Control: 28F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Location: 1475<br>le: 1/20193<br>l Type: CO42<br>lution Control: 287<br>npling Point: 007227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOE  it Location: 4475.5 e: (a 2u/q3 iType: COAL  ution Control: 5.8P upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOE  nt Location: VATES e: Ul26/93 IType: COAL ution Control: ESP upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | insor: DOC<br>int Location: 4475.5<br>e: (124193.1<br>I Type: COAL<br>lution Control: ESP<br>ipling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ponsor: DOC<br>lant Location: 1475.5<br>Jate: (126/93<br>uel Type: COH.<br>ollution Control: 5.86<br>ampling Point: 0.071.27       | ponsor: DOC<br>lant Location: 4472.5<br>ate: (126/193<br>tel Type: CO44.<br>illution Control: 2879<br>impling Point: 0177577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onsor: DE ant Location: VATES tte: Ul2b193 el Type: COPL Ilution Control: ESP mpling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Location: 4475<br>nt Location: 4475<br>e: (126/93<br>1 Type: COAL<br>lution Control: 587<br>apling Point: Orris7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: ODE t Location: 4475.5 s: (120/93 Type: COPL ution Control: 55P pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>t Location: VATES<br>:: U126/93<br>Type: COHL<br>ition Control: ESP<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t Location: 1475.5:<br>"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: OOE t Location: \$\frac{1}{4\frac{1\tilde{1}}{2\tilde{1}}}\$  "Type: \$\frac{1}{2\tilde{1}\frac{1}{2\tilde{1}}}\$  Type: \$\frac{1}{2\tilde{1}\frac{1}{2\tilde{1}}}\$  Type: \$\frac{1}{2\tilde{1}\frac{1}{2\tilde{1}}}\$  Type: \$\frac{1}{2\tilde{1}\frac{1}{2\tilde{1}\frac{1}{2\tilde{1}}}\$  Inling Point: \$\frac{1}{2\tilde{1}\frac{1}{2\tilde{1}}}\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: DOC<br>it Location: 4472.5<br>e: 10/20/93.<br>Type: COPL<br>ution Control: 5.8P<br>pling Point: 00772.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOE  nt Location: 1475.5 e: Ul26/93. Type: CO4. ution Control: 58P upling Point: 00712.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOC<br>it Location: 4475 S<br>e: Ulbu   43<br>I Type: COHL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOC<br>it Location: 4475 S<br>e: Ulbu   43<br>I Type: COHL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOE  It Location: 1/4725 e: Ul26/93 Type: CO44 ution Control: 5SP pling Point: OU7127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: 006 it Location: 4475 e: 0120193 Type: COPL ution Control: 58P pling Point: 007027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: OOE t Location: \$\frac{1}{47\pi}\$  ": (12\sigma   43\pi   Type: \$\frac{1}{20\pi}\$  Ition Control: \$\frac{2}{2\sigma} Point \$\frac{1}{20\pi}\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Location: 1475 S 1 Location: 1475 S 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sor: DOE Location: VATES  Location: VATES  Clype: COAL  tion Control: ESP  ling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location: VATES Location: VATES VPe: COHL ion Control: ESP ing Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n: 006<br>Ocation: VATES<br>Pe: 0120/43<br>Pe: 2046<br>In Control: 28P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200<br>ation: 4472 s<br>e: 6120193<br>e: 2046<br>Control: 586<br>;Point: 007027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nt Location: VATES  Int Location: VATES  Interpolation Control: ESP  Intion Control: ESP  Intion Control: ESP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt Location: 1475.s  le: 1726/93  l Type: 2042  lution Control: 2879  npling Point: 007227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: VATES<br>e: U124193<br>I Type: COAL<br>ution Control: ESP<br>upling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: Doc<br>nt Location: VATES<br>e: UND 193<br>Type: COAL<br>ution Control: ESP<br>upling Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | insor: DOC<br>int Location: 4475.5<br>e: (17476.5<br>I Type: COAL<br>lution Control: ESP<br>ipling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ponsor: DOC<br>lant Location: 4475.5<br>late: (s126/93<br>uel Type: COPL<br>ollution Control: 5.86<br>ampling Point: 0071.5.7      | ponsor: DOC<br>lant Location: VATES<br>ate: ULL 193<br>tel Type: COPL<br>illution Control: ESP<br>impling Point: OUTST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onsor: Document Location: Wres  the: Ulbulga el Type: Cort Ilution Control: ESF mpling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt Location: 1/4/25 nt Location: 1/4/25 le: (1/26/93 l Type: CO4/2 lution Control: 28/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOE  t Location: 1475 S  s: (126/43  Type: COPL  ution Control: ESP  pling Point: OUTIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOC<br>t Location: 4475.5<br>:: Ul26/93<br>Type: COL<br>ntion Control: 58P<br>pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>t Location: VATES<br>:: Ulve/93<br>Type: COL<br>ntion Control: SSP<br>pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: DOC<br>t Location: 4475.5<br>s: ultil 43<br>Type: COL<br>ution Control: 5.86<br>pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: December 1998  14 Location: 1975 S  e: (1949 A  Type: COAL  ution Control: ESP  pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: Doc<br>nt Location: VATES<br>e: UND 193<br>Type: COAL<br>ution Control: ESP<br>upling Point OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: Doc<br>nt Location: VATES<br>e: UND 193<br>I Type: COAL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: Doc<br>nt Location: VATES<br>e: UND 193<br>I Type: COAL<br>ution Control: ESP<br>upling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: Doc<br>it Location: VATES<br>e: UND 193<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: Doe  it Location: 4475.5 e: (124/93 Type: COAL ution Control: 5.87 pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>t Location: 4475.5<br>.: Ulve/43<br>Type: COL<br>ation Control: 5.87<br>pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 Location: VATES 1 Location: VATES 2 Ul26/93 1 Type: COAL 1tion Control: ESP 2 Uling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sor: DOC<br>Location: VATES<br>(126/43<br>Type: COAL<br>tion Control: ESP<br>ling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location: VATES  Location: VATES  VPe: COAL  ion Control: ESP  ing Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Doe<br>Deation: Mrs.s<br>West Corr.<br>In Control: SSP<br>18 Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 206. ation: 4475.5 cl24/43 control: 5.84 7.Point: 0.071.8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nt Location: 1/1755 le: 1/126/93 l Type: 2042 lution Control: 28P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Location: 1475.s  In Type: 1794.s  Intion Control: 587  Intion Point: 0071.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC<br>it Location: VATES<br>e: Ul26/93<br>IType: COAL<br>ution Control: ESP<br>upling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: 006  It Location: 4475 S  e: 0120193  Type: 2044  ution Control: 586  pling Point 007157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nnsor: DOC<br>nt Location: 4475 S<br>e: Ulture: CO44<br>lution Control: 587<br>pling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ponsor: DOC<br>lant Location: VATES<br>Jate: ULL 193<br>uel Type: COAL<br>ollution Control: ESP<br>ampling Point: OUTLET           | ponsor: DOC<br>ant Location: 4475.s<br>ate: (#26/43<br>tel Type: COFC<br>illution Control: 5879<br>impling Point: O171577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onsor: DOC<br>ant Location: 1475 S<br>ite: (120193<br>el Type: 2044<br>Ilution Control: 284<br>mpling Point: 047127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt Location: 1475.  nt Location: 1475.  lation Control: 287  ution Control: 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOC<br>t Location: 4475.5<br>s: 0120193.<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: Doe t Location: VATES  " Ulu 143  Type: COAL ntion Control: ESP pling Point OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t Location: VATES  t Location: VATES  Type: COAL  ution Control: ESP  pling Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>t Location: VATES<br>e: U120193<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: 006  It Location: 1475 S  e: (120193  Type: CO44  ution Control: 587  pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: 006  It Location: 4475.5  e: 0120193  Type: 2044  ution Control: 586  pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: 006  It Location: 4475.  e: 0126/93  I Type: 2044  ution Control: 586  pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: 006  It Location: 4475.  e: 0126/93  I Type: 2044  ution Control: 586  pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: 006  It Location: 4475.5  e: (126/43  Type: 2044  ution Control: 586  pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: DOC<br>it Location: 1475.5<br>e: (126/93<br>Type: COC<br>ution Control: 5.87<br>pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>t Location: VATES<br>:: (120.193<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ssor: DOE  Location: Mrs S  : Ul2s/93  Type: COAL  ution Control: SSP  oling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sor: DE Location: VATES  Location: VATES  (126/93  Type: COAL  tion Control: ESP  ling Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location: VATES  Location: VATES  VPe: COAL  ion Control: ESP  ing Point: OUTET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r: 006<br>ocation: 4475.5<br>pe: 0126/93<br>pe: CO46<br>on Control: 556<br>og Point: 007427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000<br>ation: 4475 S<br>e: (126/93<br>e: Control: 5.876<br>; Point: 0.074.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| nt Location: 1475.5 le: (126/93 l Type: 2042 lution Control: 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Location: 1475.s  nt Location: 1475.s  le: (1749.s. 2042.s. 117.ype: 2042.s. 117.ype: 2042.s. 117.ype: 25.7. 111.ype: 25.7. 117.ype: 25.7. | nsor: Doc-<br>nt Location: 1475.5<br>e: (125/93<br>I Type: COAL<br>ution Control: 5.87<br>ution Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC.  nt Location: 1475.5 e: Ultil 193 ution Control: 5.87 ution Robins: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Location: 4475<br>e: (126193<br>I Type: COH<br>lution Control: 55P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ponsor: 006 lant Location: 4475 late: 0126193 uel Type: COFC ollution Control: 55F ampling Point: 007157                           | ponsor: DOC<br>ant Location: 4475.5<br>ate: (426/43<br>tel Type: COFC<br>illution Control: ESF<br>impling Point: OFFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | onsor:  ant Location: 1475 S  the: 175e: 1626/43  el Type: 2044  Ilution Control: 587  mpling Point: 007157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Location: 44725 nt Location: 44725 le: (426/93 l Type: CO42 lution Control: 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: DOE  t Location: 4472 S  s: 0126193  Type: COFC  ution Control: ESP  pling Point: OUTIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t Location: 1/4/12 S  " (1/26/193  Type: 20/2 ition Control: 2SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: ODE t Location: \$\frac{447\varepsilon}{1\langle \langle | nsor: DOE t Location: VATES :: Ul20193 Type: COFL ution Control: ESF pling Point: OUTEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: Doc. It Location: 4475. e: 6/26/43 Type: Cott. ution Control: 587 pling Point: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC.  nt Location: 1475.5 e: Ultil 193 ution Control: 5.87 ution Robins: 007127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: Document Location: 1/4/75 See: Ulbu 1/4/75 See: Copp.  ution Control: 5.8/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: Document Location: 1/4/75 See: Ulbu 1/4/75 See: Copp.  ution Control: 5.8/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: Doc.  It Location: 1475.5 e: Ultu/93 Type: Cot/L ution Control: 5.87 pling Point: Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC. It Location: 1/1/12 See: Ul26/43 Type: COLL ution Control: 5SP pling Point: OUTIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOE t Location: VATES :: Ul20193 Type: COFL ation Control: ESF pling Point: OUTEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ssor: DOC<br>Tocation: 4475.5<br>: 0126193.<br>Type: CO42.<br>Ition Control: 557-<br>oling Point: 007727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sor: DOE  Location: Wres  Location: Wres  rype: COFL  tion Control: ESP ling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Location: 1475 S Location: 1475 S  VPe: CO44 ion Control: 5SF ing Point: 0071257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n: DOE Deation: Mres De: Ulve193 De: CO42 Un Control: ESP NB Point: OUTLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2006.<br>ation: 4475.5<br>e: 0126/93.<br>e: 0046.<br>Control: 5.876.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nt Location: 4475  Int Location: 4475  Int Type: 2046  Intion Control: 587  Intion Point: 7475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt Location: 1445.  In Type: 120/43  Intion Control: 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: VATES<br>e: U126/93<br>(Type: COAL<br>ution Control: ESP<br>upling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOC<br>nt Location: 1475 S<br>e: U126193<br>Type: COLL<br>ution Control: ESP<br>upling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | insor: DOC<br>int Location: 1475.5<br>e: (124/93.1) Type: COH.<br>lution Control: ESP<br>ipling Point OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ponsor: Decation: 1475.5 Jate: (126/193 uel Type: COAL ollution Control: ESP ampling Point: OUTLE                                  | ponsor: 006  ant Location: 1/475.5  ate: 1/20/43  tel Type: 2044  ollution Control: 5.57  impling Point: 01745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onsor: Document Location: 14475.  Ite: (124193.  el Type: COH.  Ilution Control: ESP  mpling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location: 1/4755 nt Location: 1/4755 le: 1/1/43 l Type: CO44 lution Control: 2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Location: 1475.  t Location: 1475.  fluid 93  Type: COAL  ution Control: 587  pling Point: 0470.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: DOE t Location: 1475 S  Type: CO44 Ition Control: ESP pling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: Doc<br>t Location: 4475.<br>: Ulu 193.<br>Type: COAL<br>ntion Control: ESP<br>pling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: Doc<br>t Location: 4475.<br>s: (126/43<br>Type: CO44<br>ution Control: ESP<br>pling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: Doe  it Location: VATES  e: (126/193  Type: COAL  ution Control: ESP  pling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOC<br>nt Location: 1475 S<br>e: U126193<br>Type: COH<br>ution Control: 58P<br>upling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC<br>it Location: 4475 S<br>e: 0/26/93<br>I Type: COH<br>ution Control: 58P<br>upling Point: 00718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: 4475 S<br>e: 0/26/93<br>I Type: COH<br>ution Control: 58P<br>upling Point: 00718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>it Location: 1475 S<br>e: U126193<br>Type: COLL<br>ution Control: 586<br>pling Point: 00718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: Doc<br>it Location: VATES<br>e: UND 193<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: Doc<br>t Location: 4475.<br>": (126/43<br>Type: CO44<br>Ition Control: ESP<br>pling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | usor: DOE  1 Location: VATES  1: Ul26/43  Type: COFC  ution Control: ESP  oling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sor: DOC<br>Location: VATES<br>(126/193<br>Type: COH<br>tion Control: ESP<br>ling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location: 1475 S  Location: 1475 S  YPE: COAL  ion Control: 5.87  ing Point: 0.0725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n: Doe<br>Deation: VATES<br>Where COAL<br>On Control: ESP<br>18 Points OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 206. ation: 4472. (126/193. e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nt Location: MTS  Int Location: MTS  Int Type: COML  Intion Control: ESP  Intion Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt Location: 1475 stee. 17 ype: 17 ype: 2042 lution Control: 586 npling Points 00715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOE  it Location: 1475 S e: (1746 S I Type: CO44 ution Control: 556 upling Point: 00715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>nt Location: VATES<br>e: UNLIGHE<br>UTYPE: COAL<br>ution Control: ESP<br>upling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nnsor: DOE  nt Location: 1475 S  e: (124/43  I Type: COAL  lution Control: ESP  upling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ponsor: 100c lant Location: 1475 S late: (126/193 uel Type: COAL ollution Control: 587 ampling Point: 00715                        | ponsor: DOC  ant Location: \$475.5  ate: (124/93)  tel Type: COCC  allution Control: \$287  impling Point: O1715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onsor: DOC  ant Location: VATS  ite: 0126/93  el Type: COAL  Ilution Control: SSP  mpling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt Location: 1412 S  nt Location: 1412 S  lation Control: 287  upling Point: 01715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: DOC<br>t Location: 4475 S<br>S: (126/93<br>Type: COAL<br>ution Control: 5879<br>pling Point: 01772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOE t Location: VATES :: (120193 Type: COAL ntion Control: ESP pling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>t Location: VATES:: (126/193<br>Type: COAL<br>ntion Control: ESP<br>pling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: Meet Location: 4475 S.  t Location: 4475 S.  :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor:  14 Location: 1475 s e: 0126/93 Type: 2044 ution Control: 586 pling Point: 00715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>nt Location: VATES<br>e: UNLIGHT<br>Type: COAL<br>ution Control: ESP<br>upling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: VATES<br>e: UNLIGHT<br>UType: COAL<br>ution Control: ESP<br>upling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>it Location: VATES<br>e: UNLIGHT<br>UType: COAL<br>ution Control: ESP<br>upling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor:  nt Location: 1475 s e: (126/93 Type: CO44 ution Control: 586 pling Point: 00715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: 006  It Location: 4475  e: 0126/93  Type: CO44  ution Control: 586  pling Point: 00715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: DOC<br>t Location: 4475.5<br>:: (126/193<br>Type: COAL<br>ution Control: ESP<br>pling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 Location: 1475.5: (126/193) Type: COAL COAL COAL SILING Point: COAL COALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sor: DOE Location: Mrs.s  Location: Mrs.s  (122/48)  Type: COPL  tion Control: SSP  ling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Location: 1475 S Location: 1475 S  YPE: COAL ion Control: ESP ing Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n: DOC<br>Deatton: VATES<br>Ultiblight<br>Pet: COAL<br>In Control: ESP<br>18 Point OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 106<br>ation: 1475.5<br>e: 0120193<br>e: 2047.<br>Control: 5.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nt Location: 1/1755 le: (1/26/93 l Type: 2042 lution Control: 557 npling Point: 0/175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Location: 1475.s<br>le: (126/93.<br>l Type: COAL<br>lution Control: 5.87<br>npling Point: 0077.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: DOC.  It Location: 1/475.5 e: (1/26/94) I Type: COPL.  ution Control: 5.87 pling Point: 0071.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC.  It Location: 1475.5 e: (125/93 Type: COPL.  ution Control: 5.87 pling Point: 0071.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt Location: 1415 Set I Type: Cott Lution Control: 257 poling Point Out 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ponsor: 006 lant Location: 4475 late: 0126193 uel Type: COFC ollution Control: 557 ampling Point: 00715                            | ponsor: 1006  ant Location: 1475  ate: 1026/93  tel Type: 2044  ollution Control: 257  impling Point: 01775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | onsor:  ant Location: 1475 S  the: 1750 Cott.  Ilution Control: 587  mpling Point: 00718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location: 4475 ster.  11 Type: COFL  1 Type: COFF  1 Ty | nsor: DOE  t Location: 4475 S  s: 0126193  Type: COPL  ution Control: 55P  pling Point: 01715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: 006 t Location: 4475 :: 0126193 :: 0264 Type: 2044 ition Control: 587 pling Point: 00712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: 006 t Location: 4475 : 0126193 Type: CO44 ntion Control: 5SF pling Point: 00712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: DOE t Location: VATES :: Ul26/43 Type: COAL ution Control: ESP pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC. It Location: 1/4/75 e: Ul26/43 Type: COPL ution Control: 5.8/P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC.  nt Location: 1475.5 e: Ul26/93 Type: COPL ution Control: 5.87 pling Point: 0071.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOC.  It Location: 1475.5 e: (125/93 I Type: COPL.  ution Control: 5.8P pling Point: 0071.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOC.  It Location: 1475.5 e: (125/93 I Type: COPL.  ution Control: 5.8P pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOC.  It Location: 1475.5 e: Ultil 193 Ution Control: 5.87 pling Point: 00712.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOC. It Location: \$447.5 e: Ulve/93 Type: COAL ution Control: \$57 pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: DOE t Location: VATES :: Ul26/43 Type: COAL ation Control: ESP pling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | usor: DOC<br>Tocation: VATES<br>: (120/93<br>Type: COPL<br>Ition Control: ESP<br>oling Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sor: DOE Location: Mrs.S  Location: Mrs.S  Cype: COPL  tion Control: ESP  ling Point: OUTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location: 1/1/2 S  Location: 1/1/2 S  ype: Cott. ion Control: 5SF ing Point: 00712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r: 006<br>ocation: 4475<br>  0126193<br>  Pe: CO42<br>  In Control: 587<br>  18 Point: 00712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000. 1475.5<br>10126/93.2<br>e: 2047.<br>Control: 5.87<br>7.Point: 0077.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nt Location: 1475 S  Int Location: 1475 S  I Type: COAL  Intion Control: ESF  Inpling Point: OUT!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Location: 1475 ster.  In Type: 120/93  Intion Control: 287  Intion Point: 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC<br>it Location: 4475 S<br>e: 0/26/93<br>(Type: CO44<br>ution Control: 5.87<br>upling Point: 0.0709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>nt Location: VATES<br>e: U120193<br>Type: COLL<br>ution Control: ESF<br>upling Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | insor: DOC<br>int Location: VATES<br>e: (126/93<br>I Type: COH<br>lution Control: ESF<br>ipling Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ponsor: Decation: 4475 Start Location: 4475 Start Start Cort.  ollution Control: 587 ampling Point: 00772                          | ponsor: 006  ant Location: 1/475 sale: 1/26/43  tel Type: 2044  ollution Control: 286 impling Point: 01715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onsor: Document Location: VATES  Ite: (126193  el Type: COAL  Ilution Control: ESF  mpling Point Outte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt Location: 1475 see: 1726/193 I Type: 2044 Intion Control: 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t Location: 1475 Series: 1126/93 Type: COAL ution Control: 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOE t Location: 1475 S  Type: CO+C ntion Control: ESF pling Point: OUTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: Doe t Location: 4475 S :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: Doc<br>t Location: 4475 S<br>St. (124193<br>Type: CO44<br>ution Control: ESF<br>pling Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: Ool<br>it Location: VATES e: (126/193  Type: COAL ution Control: ESF pling Point: OUTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: DOC<br>nt Location: VATES<br>e: U120193<br>Type: COLL<br>ution Control: ESF<br>upling Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: 1475 S<br>e: U126193<br>I Type: CO44<br>ution Control: ESF<br>upling Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>it Location: 1475 S<br>e: U126193<br>I Type: CO44<br>ution Control: ESF<br>upling Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: DOC  It Location: VATES  e: (124193  Type: COAL  ution Control: ESF  pling Point: OUTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: Ool<br>it Location: VATES<br>e: (126/193<br>Type: COAL<br>ution Control: ESF<br>pling Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: Doc<br>t Location: 4475 S<br>": (124193<br>Type: CO44<br>Ition Control: ESF<br>pling Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 Location: 1475 S. 1 Location: 1475 S. 1 Coppe: Coppering Control: 587 S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sor: DOC<br>Location: VATES<br>(126/193<br>Type: COKL<br>tion Control: ESF<br>ling Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location: 1475.5  Location: 1475.5  YPE: COFC. ion Control: ESF ing Point: OUTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n: Doe<br>Deation: VATES<br>(126/193)<br>Pe: COAL<br>In Control: ESF<br>18 Point: OUTUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206. ation: \$475.5 e: \$126.193 Control: \$287 ; Point: \$270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nt Location: 1475 Steel 17 Type: 17 Location Copt 19 EST 1 | nt Location: 1475 S  nt Location: 1475 S  le: 1126/93  l Type: 2044  lution Control: 281  npling Point: 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: DOC<br>it Location: 1/175<br>e: the the correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct correct corr | nsor: DOC<br>it Location: VATES<br>e: Ultil GA<br>UType: COAL<br>ution Control: EST<br>upling Point: OUTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nnsor: DOE  nt Location: 1475 S  e: (al2)/43  I Type: COF  lution Control: 5St  apling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ponsor: 006 lant Location: 4475 late: 0126/43 uel Type: CO44 ollution Control: ESt ampling Point: 0071                             | ponsor: DOC  ant Location: \$475.5  ale: (\$126.193  tel Type: COt/ ollution Control: \$87  impling Point: Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onsor: 106<br>ant Location: 1475 S<br>ite: 0126/93<br>el Type: 2044<br>Ilution Control: 587<br>mpling Point: 0074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Location: 4472.5  nt Location: 4472.5  le: (#26/43  I Type: Coft  lution Control: 287  apling Point: 0177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: DOC. t Location: 1475.5 s: 0126193 Type: COAL ution Control: EST pling Point: OUTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t Location: 1475 s t Location: 1475 s Type: CO41 tion Control: 587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t Location: 1475 S: 10 Location: 1475 S: 17 Location: 17 Location Control: 287 Pling Point: 17 Location Control: 287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOC<br>t Location: VATES<br>e: U120193<br>Type: COAL<br>ution Control: EST<br>pling Point: OUTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor:  1t Location: 1475 set:  Cl26/93  Type:  ution Control: 587  pling Point: 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor:  nt Location: 1475 set:  e: (126/93  Type: CO44  ution Control: 587  pling Point: 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: DOC<br>it Location: 1475 S<br>e: Ultiple: COL<br>ution Control: 5St<br>pling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOC<br>it Location: 1475 S<br>e: Ultiple: COL<br>ution Control: 5St<br>pling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor:  nt Location: 1475 s e: 0126/93 Type: 0044 ution Control: 587 pling Point: 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: 006  It Location: 4475 set: (126/93  Type: CO44  ution Control: 587  pling Point: 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: DOC<br>t Location: VATES<br>:: U120193<br>Type: COAL<br>ution Control: EST<br>pling Point: OUTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 Location: 1475 S 1 Location: 1475 S 1 Type: CO44 1tion Control: 587 oling Point: 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sor: DOC<br>Location: VATES<br>(126/93<br>Type: COAL<br>tion Control: EST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Location: VATES  Location: VATES  VPE: COAL  ion Control: EST  ing Point: OUTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r: 006<br>ocation: 4475.5<br>pe: 0120193<br>pn Control: 5.87<br>ng Point: 0077.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nt Location: 1/1/2 steel 1/1/2 steel 1/2 steel | nt Location: 1475.s  nt Location: 1475.s  le: 0/26/93  l Type: 2042  lution Control: 5.5  npling Point: 0/77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: Doe it Location: 1/4/75 S e: (1/26/93 I Type: COPL ution Control: 5/8/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC.  nt Location: 1475.5 e: (125/93 Type: COAL ution Control: \$\in\text{S}\rightarrow\$ upling Point: OUT!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Location: 14175 S et: (126/93 I Type: 2044 lution Control: 55 reling Point: 0077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ponsor: DOE lant Location: 4475.5 Jate: Ulve/93 uel Type: COFE ollution Control: 55 ampling Point: 0077                            | ponsor: 1006  ant Location: 1475  ate: (126/43)  tel Type: 204/20  illution Control: 5.5  impling Point: 0.777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onsor:  ant Location: 1475 S  the: 0126/43  el Type: CO44  Ilution Control: 58  mpling Point: 0074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Location: 1475 S. et. (126/93) I Type: CO+1 lution Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOC<br>t Location: VATES<br>s: U26/43<br>Type: COAL<br>ution Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: 006 t Location: 4475 S  Type: 0126193 Ition Control: 55 pling Point 0077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOE t Location: VATES :: (126/43 Type: COAL ntion Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: DOE t Location: VATES :: Ulv6/43 Type: COAL ution Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor:  1t Location: 1475 S e: (s/2b/93) Type: CO44 ution Control: 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOC.  nt Location: 1475.5 e: (125/93 Type: COAL ution Control: \$\in\text{S}\rightarrow\$ upling Point: OUT!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: Document Location: 1/4/75 See: Ul26/43 I Type: Cott Ution Control: 58/10/11/11/11/11/11/11/11/11/11/11/11/11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: Document Location: 1/4/75 See: Ul26/43 I Type: Cott Ution Control: 58/10/11/11/11/11/11/11/11/11/11/11/11/11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOC.  It Location: 1475.5 e: Ulul 143 Type: COLL  ution Control: \$\in\text{S}\rightarrow{\text{1}}{\text{1}}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC. It Location: \$447.5 e: Cl2L/93 Type: COAL ution Control: \$50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOE t Location: VATES :: Ulv6/43 Type: COAL ation Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Location: 1/1/2 S  1 Location: 1/1/2 S  1 Type: 2044  1 Ition Control: 5S  2 Sing Point: 6077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sor: DOE Location: Wres Location: Wres Clype: COFC tion Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Location: VATES  Location: VATES  VPE: COAL  ion Control: ES  ing Point: OUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r: 006. cation: 4475. cation: 4475. pe: 6046. on Control: 55. ng Point: 6077.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1006.<br>ation: 1475.5<br>e: 126/43.<br>Control: 5.5/77.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nt Location: 1417 stee.  11 Type: 2044  Intion Control: 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt Location: 4475.  In Type: 0/20/93  Intion Control: 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC<br>it Location: VATES<br>e: (124/93)<br>(Type: COA<br>ution Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOC<br>nt Location: VATES<br>e: U126/43<br>Type: COH<br>ution Control: ES<br>upling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt Location: 1475 See: 1720/43 I Type: 2040 Intion Control: 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ponsor: 100c lant Location: 1475 S late: (126/93 uel Type: COR ollution Control: 58                                                | ponsor: 006  ant Location: 1/475.5  ate: (1/26/43.1el Type: 204.1el Type: 204.1el type: 204.1el type: 25.1el  | onsor: 1000 ant Location: 1415 S.  the: 1126 COM.  Ilution Control: 58  mpling Point: 007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt Location: 1/4/25 nt Location: 1/4/25 le: (1/26/43 l Type: CO4/2 lution Control: 2/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t Location: 1475 series (126/93) Type: COMution Control: £8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: Doc<br>t Location: VATES<br>": ULUI 193<br>Type: CORU<br>ntion Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: Doe t Location: 1475 S :: (126/93 Type: COH ntion Control: £8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: Doe t Location: VATES :: (126/93 Type: COA ution Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: DOC<br>it Location: 1475 S<br>e: 0126193<br>Type: COH<br>ution Control: ES<br>pling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: DOC<br>nt Location: VATES<br>e: U126/43<br>Type: COA<br>ution Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOC<br>it Location: VATES<br>e: U126/43<br>I Type: COA<br>ution Control: ES<br>upling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>it Location: VATES<br>e: U126/43<br>I Type: COA<br>ution Control: ES<br>upling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC<br>nt Location: VATES<br>e: U126/43<br>Type: COA<br>ution Control: ES<br>pling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC<br>it Location: 1475 S<br>e: (126/93<br>Type: COA<br>ution Control: ES<br>pling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: Doe t Location: VATES .: (126/93 Type: COA ntion Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | usor: DOE  1 Location: VATES  1: Ul26/43  Type: COF  ution Control: ES  oling Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sor: DOC<br>Location: VATES<br>(126/43)<br>Type: COPP<br>tion Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Location: VATES Location: VATES VPE: COM ion Control: ES ing Point: OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Dole<br>Deation: VATES<br>(126/193)<br>Pe: COA<br>In Control: ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100e ation: 1475 S e: (126193 Control: 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nt Location: 1475 Steel Type: 1120193 Intion Control: 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location: 1475 ster Location: 1475 ster 1720 cot lution Control: 23 npling Point Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC<br>it Location: 4475 S<br>e: (12414)<br>I Type: COA<br>ution Control: El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOC<br>nt Location: 1475 S<br>e: Ul24143<br>Type: COA<br>ution Control: El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Location: 1475 set Location: 1475 set Location: 17475 set Location Control: 25 set pling Points Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ponsor: 1000 JOC Jant Location: 1475 State: 1612 July 1921 COT Ollution Control: 21 ampling Point Ollution                         | ponsor: 006  ant Location: 4475 sale: (126/4)  tel Type: CO4  illution Control: 51  impling Point: 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onsor: DOC  ant Location: 1/175  ite: 0/20/49  el Type: COC  Ilution Control: 5/  mpling Point: 0/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt Location: 1472 steel to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr | nsor: DOC<br>t Location: VATES: (126/92)<br>Type: COC<br>ution Control: El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: 1006<br>t Location: 1475 S<br>:: 10126193<br>Type: 204<br>ntion Control: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOC<br>t Location: 4475 S<br>:: (126/9-<br>Type: COA<br>ntion Control: El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: Me<br>t Location: 1475 s<br>s: (126/9-<br>Type: COt<br>ution Control: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor:  It Location: 1475 set:  Cl24/4- Type:  ution Control: 5.  pling Point: 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: DOC<br>nt Location: 1475 S<br>e: Ul24143<br>Type: COA<br>ution Control: El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC<br>it Location: 1475 S<br>e: (124/4)<br>I Type: COA<br>ution Control: El<br>upling Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>it Location: 1475 S<br>e: (124/4)<br>I Type: COA<br>ution Control: El<br>upling Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOC  It Location: 1475 S e: (124/4) Type: COC  ution Control: £!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: 006 it Location: 1475 s e: (126/9) Type: CO4 ution Control: 21 pling Point: 007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: Me<br>t Location: 4475 S<br>": (126/9-<br>Type: COt<br>ation Control: 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Location: 1475 S 1 Location: 1475 S 1 Type: CO4 1110n Control: £5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sor: DOC<br>Location: 1475.5<br>(124.19)<br>Type: COA<br>tion Control: E1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Location: 1475 S Location: 1475 S VPe: COt ion Control: £1 ing Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n: DOC<br>Deatton: VATES<br>U126/193<br>Pet: COA<br>On Control: El                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 006. ation: \$475.5 cloud: (126/93) e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nt Location: 4475 Steel Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color  | nt Location: 1/17 stee.  In Type: 1/20/9: 1/20/9: 2/20/10/10/10/10/10/10/10/10/10/10/10/10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: Decation: VATS se: UDD/4: COV ution Control: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC  It Location: 4475 S  e: (124/4: Type: CO  ution Control: E  upling Point OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt Location: 1475 S et: (126/9: 1 Type: CO lution Control: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ponsor: DOC. lant Location: 4475 S. late: (s/2/4). uel Type: CO. ollution Control: £ ampling Point: OU.                            | ponsor: 006.  ant Location: 4475.  ate: (126/9: tel Type: CO.  illution Control: 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onsor: DOE  ant Location: 4475 S  the: (126/9: el Type: CO  Ilution Control: E  mpling Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Location: 1472 stee: 0126/9: 1Type: CO. 1016/9: CO. | nsor: DOE  t Location: 4475 S  s: 6126   4.  Type: CO  ution Control: E  pling Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC. t Location: 4475.5 :: the table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of table of ta | nsor: DOC. t Location: 4475.5: :: (s/25/4: Type: CO. ntion Control: £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: DOC. t Location: 4475 S. S.: (s/26/4). Type: CO. ution Control: £ pling Point: OU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOC.  It Location: 1475 S e: (126/4: Type: CO. ution Control: E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>nt Location: 1475 S<br>e: (124/9:<br>Type: CO<br>ution Control: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: Decation: 1475.5 e: (126/4:17) I Type: CO ution Control: E pling Point Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: Decation: 1475.5 e: (126/4:17) I Type: CO ution Control: E pling Point Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: DOC  It Location: 4475 S  e: (124/4: Type: CO  ution Control: E  pling Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: DOC.  It Location: 1475 S e: (126/4: Type: CO.  ution Control: E pling Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC. t Location: 4475 S (s/26/4: Type: CO. ntion Control: £ pling Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 Location: VATES 1 Location: VATES 1 Cl26/9: Type: COA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sor: DOE  Location: VATES  (124/4: Type: COA tion Control: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location: VATES Location: VATES VPe: COX ion Control: E ing Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Doe<br>Deation: 1475.5<br>(a126/4:<br>Pe: CO<br>In Control: E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 206. ation: 4475.5 e: 6126/4: Control: £ ;Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nt Location: 1475 les. 1756   1756   1756   1756   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556   1556    | nt Location: 1/175<br>le: (1/26/9<br>l Type: 20<br>lution Control: 5<br>npling Point: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: 006  It Location: 4475 set  e: 012619  I Type: 20  ution Control: 5  upling Point Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: 006  It Location: 4475 s e: (126/9   Type: 20 ution Control: 5 upling Point Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt Location: 1475.s.e.: (126/9) 11 Type: 20 1ution Control: 20 1pling Point: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ponsor: DOC<br>lant Location: 1415 State: (126/9<br>uel Type: 20<br>ollution Control: 5                                            | ponsor: 1086  ant Location: 1475 sale: 1026/4  tel Type: 20  illution Control: 5  impling Point: 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onsor: ME  ant Location: 1/4/75  te: (1/26/9  el Type: 20  Ilution Control: 5  mpling Point: 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Location: 4472 set: (1726/4) 1 Type: 20   20   1   20   20   20   20   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t Location: 1/4/75 st. (1/26/9) Type: 20 ution Control: 5 pling Point: 0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1808: 1908  1 Location: 1418  11 Type: 20  11 Ition Control: 2  11 Pling Point: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOE t Location: 1417 S :: (126/9 Type: 20 ntion Control: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t Location: 1415 Series: 1612619 Type: 20 ution Control: 20 pling Point: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: 006  It Location: 1475 S e: (126/9 Type: 20 ution Control: 5 pling Point: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: 006  It Location: 4475 s e: (126/9   Type: 20 ution Control: 5 upling Point Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: 006  It Location: 4475 s e: 012619 I Type: 20 ution Control: 5 upling Point Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: 006  It Location: 4475 s e: 012619 I Type: 20 ution Control: 5 upling Point Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: 006  It Location: 1475 S e: (126/9 Type: 20 ution Control: 5 pling Point Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOE  It Location: 1475 S e: (125/9  Type: 20 ution Control: 5 pling Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t Location: 1415 S. Type: (126/9) Type: 20 ation Control: 20 pling Point: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor:  Location: 1475  Location: 1475  Sype: 60  Type: 60  Ition Control: 60  Sling Point: 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sor: 006 Location: 4475 S  Location: 4475 S  (126/9  Type: 20  tion Control: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or: 006<br>Location: 4475 S<br>(9126/9<br>ype: 20<br>ion Control: 5<br>ing Point: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r: 006<br>ocation: 1415 S<br>pe: 012619<br>on Control: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 206<br>ation: 1475.5<br>e: (126/9<br>e: Control: 20<br>7 Point: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nt Location: 1475 ste: 1/26/15 A Type: 20 Iution Control: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Location: 1475 le: 1756 la la la la la la la la la la la la la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: DOC<br>it Location: 1475 e: (126/15<br>[Type: CC<br>ution Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>it Location: 1475 se: (126/15<br>Type: CC<br>ution Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt Location: 4475 et 17 Location: 4475 et 17 Location: 6126 ft 17 Location Control: 517 lution Control: 517 lution Points 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ponsor: DOC<br>lant Location: 1475<br>Jate: (126/15<br>uel Type: CC<br>ollution Control: 9                                         | ponsor: DOC  ant Location: 4475 sate: (426/15)  tel Type: CC  allution Control: simpling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onsor: 006 ant Location: 4475 alte: 0120/6 el Type: CC Ilution Control: 9 mpling Point: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt Location: 4475 set. (1926/14 1 Type: CC     ution Control: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOC<br>t Location: VATE<br>s: U126/2<br>Type: CC<br>ution Control: Spling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOC<br>t Location: 4475 s:<br>: (126/2<br>Type: CC<br>rtion Control: Seling Points Oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>t Location: \$4475<br>:: (12616<br>Type: CC<br>ntion Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: 006 t Location: 1475 s: (126/6 Type: CC ution Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: 006 it Location: 4475 e: 0126/f Type: CC ution Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOC<br>it Location: 1475 e: (126/15<br>Type: CC<br>ution Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOC<br>it Location: 1475 e: (12616<br>I Type: CC<br>ution Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOC<br>it Location: 1475 e: (12616<br>I Type: CC<br>ution Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOC<br>it Location: 1475 se: (12616<br>Type: CC<br>ution Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: 006 it Location: 4475 e: (126/6 Type: CC ution Control: 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: 006 t Location: \$\frac{1}{447\varepsilon}\$ \text{:} \frac{1012617}{12061}\$ Type: \frac{CC}{10000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: Metalion: 1415 st. [1926]: Type: Ct. [1926]: st.                                                                                      | sor: DOE Location: VATE:  Location: VATE:  (126: CC tion Control: SIING Point: OU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Location: 1/175 s  Location: 1/175 s  Location: 1/126/1  YPE: CC  ion Control: 5  ing Point: 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n: 00e Deatton: 1475 De: 012016 On Control: 38 Point Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206<br>ation: 4475<br>e: (126/6<br>e: CC<br>Control: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nt Location: 1475 le: 1261 l Type: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nt Location: 1475, le: 17ype: 641, 11ype:  | nsor: 006  It Location: 1475 e: (1261 Type: Caution Control: Diling Point O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: 006 nt Location: 447 e: (1261 Type: Cution Control: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Location: 1/4/2<br>et: (1/26/1<br>I Type: Calution Control: Diling Points (1/26/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ponsor: Docation: 1475 lant Location: 1475 late: (126) uel Type: Calution Control: ampling Points                                  | ponsor: DOC<br>ant Location: VATE<br>ate: U1261<br>tel Type: Callution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onsor: DOE ant Location: VATE the: (126) el Type: Cal Ilution Control: mpling Point O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Location: 1/4/2<br>nt Location: 1/4/2<br>e: (1/26/1<br>I Type: Callution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Location: 1475  t Location: 1475  s: (126)  Type: Caution Control: pling Point O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: Doe t Location: 1475 :: (424) Type: Caling Point: O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: Doe t Location: 447 :: (1261 Type: Califor Control: pling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: Det<br>t Location: 1475<br>e: (1261<br>Type: Caludion Control: Deling Points Deling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: 006 it Location: 447 e: (426) Type: Calution Control: Diing Point O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: 006 nt Location: 447 e: (1261 Type: Cution Control: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: 006 nt Location: 1475 e: (1261 Type: Cution Control: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: 006 nt Location: 1475 e: (1261 Type: Cution Control: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: 006 if Location: 447 e: (4261 Type: Caution Control: pling Point O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: 006 it Location: 447 e: (1261 Type: Calution Control: Diing Point O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: Det<br>t Location: 1475<br>": (1261<br>Type: Cal<br>ation Control:<br>pling Points D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 Location: 1475: 1 Location: 1475: 1 Location: 1526   Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Columbia Co                                                                                      | sor: 006 Location: 447 Location: 447 Cype: 64 tion Control: 64 ling Point: 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location: 1475<br>Location: 1475<br>ype: 1261<br>jon Control: 108 Point: 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r: Doe<br>ocation: VATE<br>(126)<br>pe: Cal<br>on Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 206<br>attion: 1475<br>e: (124)<br>Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nt Location: 1/475 le: (1/26) l Type: C lution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt Location: 1475 le: 1/26 l Type: 2 lution Control: 7 npling Point: 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DE  it Location: 1475 e: (124) [Type: c  ution Control: pling Point: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOE  It Location: 4475 e: (s/2) Type: c  ution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nnsor: DOE nt Location: 1475 e: (124) I Type: C lution Control: npling Point: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ponsor: 100 July July July July July July July July                                                                                | ponsor: DC<br>ant Location: VATS<br>ate: (124)<br>tel Type: Collution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onsor:  ant Location: 1475 ite: 1/26 el Type: 6 Ilution Control: 7 mpling Point: 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Location: 1/4/2<br>nt Location: 1/4/2<br>e: (4/2/e)<br>I Type: C<br>lution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t Location: 1/475 s: (1/26) Type: C ution Control: pling Point: (1/26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: DOE t Location: VATS :: (012) Type: C ition Control: pling Point (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: De t Location: VATS:  ". (124) Type: C tion Control: C tion Point C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: DOE t Location: VATS s: Olub Type: C ution Control: pling Point: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor:  It Location: 1475 e: (126) Type: c ution Control: pling Point: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: DOE  It Location: 1475 e: (s/2) Type: c  ution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOE  It Location: 1475 e: (124) I Type: C  ution Control: pling Point: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: DOE  It Location: 1475 e: (124) I Type: C  ution Control: pling Point: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: DOE  It Location: 1475 e: (122) Type: C ution Control: pling Point: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: DOE it Location: 1475 e: (126) Type: C ution Control: pling Point: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOE t Location: VATS :: (126) Type: C ation Control: pling Point: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: Me<br>t Location: Mrs<br>: Ulbu<br>Type: C<br>ntion Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sor: DOE Location: VATS Location: VATS (122) Type: COURTOL: Lion Control: COURTOL: COURTOCI: COU | Location: 1/4/5 Location: 1/4/5 ype: 0/26 ion Control: 1/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r: DOE<br>ocation: VATS<br>pe: U126<br>on Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation: VATS es: (126) Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nsor: Doller Location: VAT le: 0/26 1 Type: classed lution Control: classed lu | nt Location: VAT<br>le: 0/26<br>1 Type: //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: DOI<br>it Location: 447<br>e: (426<br>I Type: (426)<br>ution Control: (4166)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor:  nt Location: 147 e: (422 Type: (422) ution Control: pling Point: (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt Location: 147<br>e: (126<br>I Type: (126<br>lution Control: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ponsor: Dollant Location: VAT<br>lant Location: VAT<br>late: (1/2)<br>uel Type: (1/2)<br>ollution Control:<br>ampling Point: (1/2) | ponsor: DOI ant Location: 447 ate: Ul26 tel Type: control; impling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onsor:  ant Location: 447 the: 6/26 el Type: 4 Ilution Control: mpling Point: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt Location: 147<br>nt Location: 147<br>e: 0126<br>I Type: 1<br>lution Control: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: Doll t Location: VAT Set (a/2) Type: Calbo Type: Aution Control: Dling Point: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: Doll t Location: VAT:  Type: Ul2b. ntion Control: oling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: Doll t Location: VAT Silver (1/2) Type: Control: Ding Point: A silver (1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor:  t Location: 147  :: (s/2) Type: (s/2) ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor:  It Location: 147 e: (s/2) Type: (s/2) ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor:  nt Location: 147 e: (422 Type: (422) ution Control: pling Point: (422)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: DOI nt Location: 147 e: (422 l Type: (422) ution Control: pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: DOI nt Location: 147 e: (422 l Type: (422) ution Control: pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor:  It Location: 147 e: (422 Type: (422) ution Control: pling Point: (422)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor:  It Location: 147 e: (s/2) Type: (s/2) ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor:  t Location: 147  " (122  Type:  ttion Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor:  **Location: **/#T  : (a/2/2  Type: (a/2/2  ition Control: (a/2/2  oling Point: (a/2/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sor: Dol<br>Location: VAT<br>(126<br>Type: (126<br>tion Control: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | location: 1901  Location: 1924  ype: (1224 ion Control: ing Point: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cation: 140<br>pe: (126<br>na Control: 18 Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ation: 140<br>e: (s/2)<br>Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nt Location: 1/4 le: 1/2/2 lation Control: npling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location: 1/4 le: (4/2/2 lution Control: npling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor:  or Location: 44 e: (122 I Type: ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor:  nt Location: 44 e: (122 Type: ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Location: 1/4<br>e: u/2/<br>I Type:<br>lution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ponsor: 02 lant Location: 44 late: (12) uel Type: ollution Control: ampling Point                                                  | ponsor: Walter Mark Location: Walter Columbia Columbia Control: Impling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onsor: Marit Location: 144  ite: 0124  el Type: Ilution Control: mpling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt Location: 44<br>nt Location: 44<br>le: 012<br>I Type:<br>lution Control;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: Martine 1921  Type: (122  Type: ntion Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: Docation: VA: I. Location: VA: Type: Ition Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: Do<br>t Location: VA<br>S: (122<br>Type:<br>Ition Control:<br>pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: 00 t Location: 44 s: (12) Type: ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: 00 it Location: 44 e: (122 Type: ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor:  nt Location: 44 e: (122 Type: ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor:  or Location: 44 e: 0/2/ IType: ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor:  or Location: 44 e: 0/2/ IType: ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor:  It Location: \(\frac{\psi}{\psi}\)  Type:  ution Control:  pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: 00 it Location: 44 e: (122 Type: ution Control: pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: 00 t Location: 44 :: (12) Type: ttion Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor:  Location: 141:  Type: Ition Control: oling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sor: M<br>Location: 44<br>Location: 44<br>(a/2)<br>Type:<br>tion Control:<br>Ting Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | location: 1/4 Location: 1/4 YPe: Ion Control: ing Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r: 00<br>ocation: 44<br>pe: (12)<br>on Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation: 1/4 (1/2) e: Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| nt Location: W<br>le: (12)<br>A Type:<br>Iution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location: Water test to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr | nsor: 0<br>nt Location: 44<br>e: 0/2<br>[Type:<br>ution Control:<br>ution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: Description: | nt Location: Where the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th | ponsor: 0x lant Location: 44 lant Location: 44 lant land land land land land land land land                                        | ponsor: 0x ant Location: 1/4 ate: 0/2 let Type: 011 ution Control: 1mpling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onsor:  ant Location: 44 the: 6/2 el Type: Ilution Control: mpling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt Location: 1/2 (1/2)  I Type: (1/2)  Iution Control: (1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: 0x t Location: 1/4 s: 0/2 Type: 0/2 ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: 0x t Location: 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: 0x t Location: 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: 0x<br>t Location: 44<br>s: 0/2<br>Type: 0/2<br>ution Control:<br>pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor:  or Location:                                                                                                   | nsor: Description: Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance   Maintenance | nsor: 0<br>nt Location: 44<br>e: 0/2<br>Type:<br>ution Control:<br>ution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: 0<br>nt Location: 44<br>e: 0/2<br>Type:<br>ution Control:<br>ution Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: Described to Trype:  Ution Control:  pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor:  It Location:   E:   Type:   ution Control:  pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: 0x t Location: 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ssor: 0x Location: 14 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10 ling Point: 10                                                                                      | sor: D. Location: W. Col. Col. Col. Col. Col. Col. Col. Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | location: W<br>Location: W<br>ype:<br>ype:<br>ion Control:<br>ing Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cation: W<br>cation: W<br>pe:<br>pe:<br>nn Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ation: W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nt Location: Vie: (Vie: Vie: (Vie: Vie: Vie: Vie: Vie: Vie: Vie: Vie:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Location: 1/2 le: 0/1/2 lation Control: npling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor:  It Location: \$\frac{\psi}{\psi}\$ e: \$\left(\psi)\$ I Type:  ution Control:  pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor:  It Location: \$\frac{\psi}{\psi}\$  e: \$\left(\psi)\$  Type: \text{ution Control:} \text{ution Points}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt Location: \$\frac{\epsilon}{\epsilon}\$ in Type:  ution Control: 1pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ponsor:  lant Location: 4 late: (1/2)  uel Type: ollution Control: ampling Point:                                                  | ponsor:  ant Location: V ate: tel Type: ollution Control: impling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onsor:  ant Location: #  te: #  el Type: Ilution Control: mpling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt Location: 4  re: 6/1  I Type:  ution Control: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t Location: 1/2   Type:   Type:   ution Control:   pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rsor:  t Location: \(\frac{\psi}{\psi}\):  Type: Type: rtion Control: pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: t Location: \$\frac{\psi}{\psi}\$: \$\left(\psi)\frac{\psi}{\psi}\$: \left(\psi)\frac{\psi}{\psi}\$: \left(\psi}\psi)\frac{\psi}{\psi}\$: \left(\psi)\frac{\psi}{\psi}\$: \left(\psi)\frac{\psi}{\psi}\$: \left(\psi)\frac{\psi}{\psi}\$: \left(\psi)\frac{\psi}{\psi}\$: \left(\psi)\frac{\psi}{\psi}\$: \left(\psi}\psi)\frac{\psi}{\psi}\$: \left(\psi)\psi}\$: \left(\psi)\psi\psi\psi\psi\psi\psi\psi\psi\psi\psi                                   | nsor: t Location: \$\frac{\psi}{\psi}\$  Type: Type: ution Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor:  It Location: \$\frac{\psi}{\psi}\$  e: \$\left(\psi)\right\)  Type: \$\text{ution Control:} \text{pling Point:} \$\text{pling Point:} | nsor:  It Location: \$\frac{\psi}{\psi}\$  e: \$\left(\psi)\$  Type: \$\text{ution Control}\$;  pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor:  It Location: \$\frac{\psi}{\psi}\$ e: \$\left(\psi)\$ I Type:  ution Control: upling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor:  It Location: \$\frac{\psi}{\psi}\$ e: \$\left(\psi)\$ I Type:  ution Control: upling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor:  It Location: \$\frac{\psi}{\psi}\$  e: \$\left(\psi)\$  Type: \$\text{ution Control:} \\ pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor:  It Location: \$\frac{\psi}{\psi}\$  For Type:  ution Control:  pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: t Location: \$\frac{\psi}{\psi}\$ \text{Type:} Type: ation Control: pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Location: 1/2   Lype:   Lype                                                                                      | Sor:  Location: 1/2  Cype: tion Control: ling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Location: 1/2 Location: 1/4 YPe: Ion Control: ing Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r. cation: V pe: [V]  Pe: [V]  In Control: ng Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ation: ½ e: Control:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nt Location: 1/1 Type: Intion Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Location: 1<br>le: ()<br>l Type:<br>lution Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor:  nt Location: \( \frac{1}{2} \) e: \( \frac{1}{2} \) [Type: \( \frac{1}{2} \) ution Control upling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: nt Location: \frac{1}{2} e: \frac{1}{2} Type: ution Control upling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt Location: 4 e: (1) I Type:  ution Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ponsor: lant Location: 4 late: (a) uel Type: ollution Control ampling Points                                                       | ponsor:   ant Location:       ale:         tel Type:     ollution Control   impling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ant Location: 4 ite: (p) el Type: Ilution Control mpling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt Location: 1/2 (1/2)   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   | nsor: t Location: \frac{1}{2} s: \frac{1}{2} Type: ution Control pling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: t Location: \frac{1}{2}  Type: tion Control pling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: t Location: \frac{1}{2}: \text{Type:} Ition Control pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: t Location: \frac{1}{2}  s: \frac{1}{2}  Type: \frac{1}{2}  ution Control  pling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: it Location: \frac{1}{2} e: \frac{1}{2}  Type: ution Control pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: nt Location: \frac{1}{2} e: \frac{1}{2} Type: ution Control upling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: nt Location: \frac{1}{2} e: \frac{1}{2} IType: ution Control upling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: nt Location: \frac{1}{2} e: \frac{1}{2} IType: ution Control upling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: nt Location: \frac{1}{2} e: \frac{1}{2} Type: ution Control pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: it Location: \frac{1}{2} e: \frac{1}{2} Type: ution Control pling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: t Location: \frac{1}{2}; \text{Type:} \text{Ition Control} \text{pling Point}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Location: 1 Location: 1 Location: 1 Location: 1 Location: 1 Location Control Colling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sor: Location: 1 [Vype: tion Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location: 1<br>VPe:<br>ion Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cation: 4 Det: [6] In Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ation: 1<br>e:<br>Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| nt Location: le: [ lambda] l Type: lution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Location: le: [ I Type: lution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: nt Location: e: [Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: nt Location: e: Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location: e: [1] I Type: lution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ponsor: lant Location: late: uel Type: ollution Contro                                                                             | ponsor:   ant Location: ate: [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onsor: ant Location: te: cl Type: Ilution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Location:  e: [] I Type:  ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t Location:  t Location:  Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rsor: t Location: Type: Type: rtion Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: t Location: :: [1] Type: ntion Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: t Location: :: Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: it Location: e: Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: nt Location: e: Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: nt Location: e: [Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: nt Location: e: [Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: nt Location: e: Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: it Location: e: Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: t Location: Type: Ition Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: t Location: Type: Ition Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sor:<br>Location:<br>Lype:<br>tion Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Location: Location: VPe: Ion Contro ing Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r.<br>ocation:<br>pe:<br>on Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation:<br>e:<br>Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nt Location:<br>le:<br>A Type:<br>lution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt Location: le: l Type: lution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor:  nt Location: e: [Type: ution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: nt Location: e: Type: ution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location: e: I Type: lution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ponsor: lant Location: late: uel Type: ollution Contra                                                                             | ponsor:   ant Location:   ale:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onsor: ant Location: ite: el Type: Ilution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Location:  e: I Type: lution Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: t Location: s: Type: ution Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: t Location: :: Type: ntion Controlling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: t Location: :: Type: ntion Controlling Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: t Location: e: Type: ution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: it Location: e: Type: ution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: nt Location: e: Type: ution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: nt Location: e: [Type: ution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: nt Location: e: [Type: ution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: nt Location: e: Type: ution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: it Location: e: Type: ution Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: t Location: :: Type: ntion Contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r Location: : : Type: : : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sor: Location: Type: tion Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location: Vye: ion Contri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r<br>ocation:<br>pe:<br>In Contra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ation: e: Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nt Location:<br>le:<br>A Type:<br>lution Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt Location: le: l Type: lution Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: nt Location: e: IType: ution Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: nt Location: e: Type: ution Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt Location: e: I Type: lution Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ponsor: lant Location: late: uel Type: ollution Conti                                                                              | ponsor: ant Location: ate: tel Type: ollution Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onsor: ant Location: ite: el Type: Ilution Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Location: ie: I Type: lution Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t Location: s: Type: ution Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: t Location: '' Type: Ition Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: t Location: :: Type: ntion Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: t Location: :: Type: ution Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: it Location: e: Type: ution Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: nt Location: e: Type: ution Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: nt Location: e: IType: ution Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: nt Location: e: IType: ution Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: it Location: e: Type: ution Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: it Location: e: Type: ution Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: t Location: ". Type: ntion Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: t Location: t Type: Ition Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sor:<br>Location:<br>Type:<br>tion Controlling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location: YPe: ion Conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r.<br>ocation:<br>pe:<br>on Contr<br>og Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e:<br>Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nt Location<br>le:<br>A Type:<br>Iution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt Location<br>le:<br>I Type:<br>lution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: nt Location e: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: nt Location e: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Location e: I Type: lution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ponsor: lant Location late: uel Type: ollution Cont                                                                                | ponsor:   ant Location   ate:   last Type:   old Type:   old the continuation   old the con | onsor: ant Location ite: el Type: Ilution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt Location  et: I Type: lution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Location  t Location  s: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: t Location :: Type: ntion Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: t Location :: Type: ntion Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: t Location s: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: It Location e: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: nt Location e: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: nt Location e: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: nt Location e: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: nt Location e: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: It Location e: Type: ution Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: t Location Type: ation Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sor: t Location t Type: Ition Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sor: Location Type: tion Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location YPE: ion Conting Poin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n<br>Deation<br>Pe:<br>In Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cation<br>e:<br>Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nt Location<br>le:<br>A Type:<br>Iution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Location le: I Type: lution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: nt Location e: Type: ntion Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: nt Location e: .Type: ution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Location e: I Type: lution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ponsor: lant Location late: uel Type: ollution Con                                                                                 | ponsor: ant Location ate: tel Type: ollution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onsor: ant Location te: el Type: Ilution Con mpling Poin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Location  et Type: lution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: t Location s: Type: ution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: t Location Type: Ition Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: t Location :: Type: ntion Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: t Location s: Type: ution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: it Location e: Type: ution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: nt Location e: .Type: ution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: nt Location e: Type: ution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: nt Location e: Type: ution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: it Location e: Type: ution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: it Location e: Type: ution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: t Location Type: ntion Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | seor: Location Type: Ition Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sor: Location Type: tion Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location Ype: ion Con ing Poin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r<br>ocation<br>Pe:<br>on Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ation<br>es<br>Con<br>; Poin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| nt Locatio le: A Type: Iution Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Location Location Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: nt Locatio e: Type: ution Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: nt Locatio e: Type: ution Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt Locatione:  e: I Type: Intion Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ponsor: lant Locatio late: uel Type: ollution Col                                                                                  | ponsor:   ant Locatio     ate:   tel Type:     ollution Columbling Pol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onsor: ant Locationte: al Type: Ilution Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Location<br>le:<br>1 Type:<br>lution Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t Locatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rsor: t Locatio :: Type: rtion Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: t Locatio :: Type: ntion Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: t Locatio s: Type: ution Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: it Locatio e: Type: ution Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: nt Locatio e: Type: ution Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: nt Locatio e: Type: ution Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: nt Locatio e: Type: ution Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: nt Locatio e: Type: ution Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: it Locatio e: Type: ution Coi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: t Locatio Type: ation Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r Locatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sor: Locatio  Type: tion Colling Pol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location Ype:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r:<br>ocatio<br>Pe:<br>on Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| nt Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location Location  | nt Location Location Les Intion Country Popularion Country Popularion Country Popularion Country Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Popularion Po | nsor: nt Location e: Type: ntion Counting Pour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: nt Location e; Type: ution Coupling Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt Location of Type:   Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ponsor: lant Locatii late: uel Type: ollution Co                                                                                   | ponsor: ant Locati ate: tel Type: ollution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onsor:  Ite: el Type: Ilution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt Location Location Location Location Collection Colle | nsor: t Locatii s: Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: t Location Type: ntion Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: t Locatii :: Type: ntion Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: t Locatii s: Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: It Location e: Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor: nt Location e: Type: ution Coupling Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: nt Location e: Type: ution Coupling Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: nt Location e: Type: ution Coupling Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: nt Location e: Type: ution Coupling Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: it Locatii e: Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: t Locatii :: Type: ation Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sor: Location Type: Ition Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sor:<br>Location<br>Type:<br>tion Couling Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Locatii ype: ion Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Coatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . Po Co ::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nt Locati<br>le:<br>1 Type:<br>lution Conpling Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Locati<br>le:<br>1 Type:<br>lution Conpling Popularing Popularian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor: nt Locati e: [Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: nt Locati e: Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Locati<br>e:<br>I Type:<br>lution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ponsor: lant Locati late: uel Type: ollution Ci                                                                                    | ponsor: ant Locati ate: lel Type: ollution Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onsor:  ant Locati te: el Type: Ilution Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt Locati<br>e:<br>I Type:<br>lution Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r Locati<br>r Locati<br>Type:<br>ution Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r Locati<br>r Locati<br>ri<br>Type:<br>rtion Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: t Locati :: Type: ntion Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: t Locati s: Type: ution Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: it Locati e: Type: ution Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: nt Locati e: Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: nt Locati e: Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: nt Locati e: Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsor: nt Locati e: Type: ution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: it Locati e: Type: ution Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: t Locati Type: ation Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: Type: Ition Coling Poling                                                                                     | sor:<br>Locati<br>Type:<br>tion Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Locati<br>Locati<br>YPE:<br>ion C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n Coati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nt Locat<br>le:<br>A Type:<br>Iution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt Locat<br>le:<br>l Type:<br>lution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: nt Locat e: Type: ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: nt Locat e: Type: ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt Locat<br>e:<br>I Type:<br>lution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ponsor:<br>lant Locat<br>late:<br>uel Type:<br>ollution C                                                                          | ponsor:   ant Locat ate:   let Type:   let | ant Locat<br>ite:<br>el Type:<br>Ilution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt Locat<br>nt Locat<br>e:<br>I Type:<br>lution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t Locat<br>Type:<br>Ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r Locat<br>Locat<br>Type:<br>Ition C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Locat<br>t Locat<br>Type:<br>Ition C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: t Locat s: Type: ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: It Locat e: Type: ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: nt Locat e: Type: ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: nt Locat e: Type: ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: nt Locat e: Type: ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: nt Locat e: Type: ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor: it Locat e: Type: ution C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: t Locat Type: ation C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sor: Locat Type: Ition C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Locat<br>Locat<br>Type:<br>tion C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Or:<br>Locat<br>YPE:<br>ion C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n<br>De:<br>In C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nt Loca<br>le:<br>1 Type:<br>lution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt Loca<br>le:<br>1 Type:<br>lution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: nt Loca e; Type: ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: nt Loca e: Type: ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt Loca<br>e:<br>I Type:<br>lution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ponsor: lant Loca late: uel Type: ollution (                                                                                       | ponsor: ant Loca ate: tel Type: ollution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onsor: ant Loca te: el Type: Ilution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt Loca<br>e:<br>e:<br>I Type:<br>lution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t Loca<br>t Loca<br>Type:<br>Type:<br>ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rsor: t Loca Type: Ition (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: t Loca :: Type: ntion (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: t Loca s: Type: ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: it Loca e: Type: ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: nt Loca e: Type: ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: nt Loca e: Type: ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: nt Loca e: Type: ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor: it Loca e: Type: ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: it Loca e: Type: ution (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: t Loca :: Type: ation (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sor:<br>t Loca<br>Type:<br>titon (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Loca<br>Loca<br>Type:<br>tion (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coca<br>Ype:<br>Ype:<br>ing (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | De:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nt Lock<br>te:<br>1 Type<br>lution<br>npling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt Locales:  lacales: lacales: lacales: lution npling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nsor: nt Locale: [Type] ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nsor: nt Locae: e: Type ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt Localett  | ponsor:<br>lant Localate:<br>uel Type<br>ollution                                                                                  | ponsor:  ant Locate:   ale:   lel Type   lel | ant Localte: Ite: el Type Ilution mpling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localetter Localett | nsor: t Loca Type ution pling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t Loca<br>Type<br>Ition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t Loca<br>Type<br>Ition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: it Loca E: Type ution pling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: nt Locae: e: Type ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: nt Locale: [Type ution]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: nt Locale: [Type ution]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nsor: nt Locae: Type ution pling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nsor: it Loca E: Type ution pling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t Loca<br>Type<br>Ition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sor:<br>Local<br>Type<br>tion<br>ling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Local<br>Free ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12   SC   SC   SC   SC   SC   SC   SC   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nt Loc<br>le:<br>A Type<br>Iution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Loc<br>le:<br>1 Type<br>lution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nsor: nt Loc e; (Typ) ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: it Loc e: LType ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Loc<br>e:<br>I Type<br>ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ponsor:<br>lant Loc<br>late:<br>uel Type<br>ollution<br>ampling                                                                    | ponsor:<br>art Loc<br>ate:<br>iel Typo<br>illution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ant Loc<br>ite:<br>el Type<br>Ilution<br>mpling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt Loc<br>e:<br>I Type<br>lution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: t Loc Type ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsor: t Loc Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor:<br>t Loc<br>Type<br>Ition<br>pling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor: t Loc Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor: it Loc e; Type ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: it Loc e: LType ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: nt Loc e; Type ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: nt Loc e; Type ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor: it Loc e; Type ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nsor: it Loc e; Type ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsor: t Loc Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Loc<br>Loc<br>Type<br>ition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sor:<br>Loc<br>Type<br>tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nt Lo<br>nt Lo<br>te:<br>lutior<br>nplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt Lo<br>rt Lo<br>le:<br>lutior<br>nplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nsor<br>rt Lo<br>e:<br>Typ<br>utior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsor<br>nt Lo<br>e:<br>Typ<br>ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt Lo<br>e:<br>l Typ<br>lutior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ponsor<br>lant Lo<br>Jate:<br>uel Typ<br>ollutior                                                                                  | ponsor<br>art Lo<br>ate:<br>iel Typ<br>illutior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ant Loute:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nt Lore: e: I Typ lutior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t Lo<br>Typ<br>utfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160r<br>f Lo<br>Typ<br>ition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nsor<br>t Lo<br>Typ<br>ition<br>plin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor<br>t Lo<br>Typ<br>ution<br>plin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor<br>if Lo<br>e;<br>Typ<br>utior<br>plin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor<br>nt Lo<br>e:<br>Typ<br>ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor<br>nt Lo<br>e:<br>Typ<br>utior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsor<br>nt Lo<br>e:<br>Typ<br>utior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsor<br>it Lo<br>e:<br>Typ<br>ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsor<br>it Lo<br>e:<br>Typ<br>utior<br>plin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nsor<br>t Lo<br>Typ<br>titor<br>plin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Logical Light Logical Light Logical Light Logical Light Logical Light Logical Light Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Logical Lo                                                                                      | Sor<br>Lo<br>Lor<br>Hior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nrt Lo<br>fe:<br>Lutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nnt Lo<br>le: Le:<br>Lutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | inso<br>it Lo<br>e:<br>[Ty]<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nso<br>rt Lo<br>e:<br>Tyj<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nnso<br>nt Lo<br>e:<br>I Tyj<br>lutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ponso<br>lant Lo<br>Jate:<br>uel Ty<br>ollutio                                                                                     | ponso<br>art Lo<br>ate:<br>iel Ty<br>illutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onso<br>ant Lo<br>ite:<br>el Ty<br>Ilutio<br>mplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nso<br>t Lo<br>Ty<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nso<br>if Lo<br>Ty<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nso<br>rt Lo<br>e:<br>Tyj<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nso<br>rt Lo<br>e:<br>Tyj<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nso<br>rt Lo<br>e:<br>Tyj<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nso<br>it Lo<br>e:<br>Tyj<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nso<br>it Lo<br>Ty<br>utio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | itio III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 리의 되의                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 「CONTROLS TO CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (本語 ) A CAROLOGIA (A CA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nt L<br>le:<br>lutic<br>nplii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt L<br>le: le: lutic<br>aplii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nso<br>rt L<br>Ty<br>utic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nso<br>it L<br>utic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nso<br>nt L<br>e:<br>lutic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ponso<br>lant L<br>Jate:<br>uel Ty<br>ollutic                                                                                      | ponso<br>are:<br>ale:<br>nel Ty<br>ollutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onso<br>ant L<br>ite:<br>el Ty<br>Ilutic<br>mplii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inso<br>nt L<br>e:<br>lutic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ned Type Pline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | asi<br>Plinto<br>Plinto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nso<br>Ty<br>Utic<br>Pliu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nso<br>it L<br>utic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nso<br>nt L<br>Ty<br>utic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nso<br>nt L<br>Ty<br>utic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nso<br>It L<br>It L<br>Intic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nso<br>Ty<br>Plintic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Program / E P   100   20000000   200   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100         |
| np [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oplitti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nns<br>e:<br>luti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ponsi<br>lart I<br>late:<br>uel Ti<br>olluti                                                                                       | ponsi<br>ate:<br>iel Ti<br>illuti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ons<br>ite:<br>el Ty<br>Iluti<br>mpli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nns<br>Intil<br>Intil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pitt Half                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nei Tiel III de la la la la la la la la la la la la la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Piti His tile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 画性の世間                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pone<br>lant<br>Jate:<br>uel T<br>ollut                                                                                            | ant<br>ate:<br>iel T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | one life   Int   I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1211111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 可可以可可可                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 되는                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pon<br>Jant<br>Jate:<br>uel 1                                                                                                      | ant<br>ate:<br>ollu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m line le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 医皮肤神经肠炎性后线 医甲基氏征                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Capa Para Capa E E D A E D A E D A E D A E D A E D A E D A E D A E D A E D A E D A E D A E D A E D A E D A E D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ・ (A a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 医骶线性 医动物 医动物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an officer                                                                                                                         | m He at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMMENTER OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A COMMENT OF THE PERSON AND A  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company of the property of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1995年1990年1991年1991年1991年1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 化医液量数型 计心场通信量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 医神经检查 医髓性 医水流性毒素 医胃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Campana (Carana) and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana and a carana a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a a la la production de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · 大利亞 (1251年5月1日   1251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 医多角性 医多种氏性 医多种毒素 经基本 经基本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an oll                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 医黑色红色溶胶式性 医多种蛋白 化二                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n revision de la società de la companya de la companya de la companya de la companya de la companya de la comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 医医肠扁桃菌 计心场通讯量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 医骨髓管 医髓管 化多数增长量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Promote Spine   Program   Progra     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A SAME OF THE PROPERTY AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 医海绵基氏征 经基础 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of | 2 2 2 3 5 E                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to a final fraction of a company of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 医黑胡屈膝 经表现金担益 五色                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 医黑胡属酚酚汞柱异酚酯 五卷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.美丽春秋天中天明春 1.卷:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15 表示 根据 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. 美术基础运过 <del>"</del> 克特丽士里!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 医黑胡属 经表现完成 医管理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E Z PREO (E Z ALL ) 第27 <b>12</b> 1 まっさらまけ <b>HHE</b> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nso It IK IK IK IK IK IK IK IK IK IK IK IK IK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ELECTRIC SCHOOL STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE ST |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 0 E 2 2 2 6                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s | ELECTRON CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PRO | ELECTRIC STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF | and the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 的复数医多种皮肤 医多种毒素 化二甲基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E E O L E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt Le<br>nt Le<br>ie:<br>lutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · *(1800-1805)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | المستراف المسجود الملكاة برياكا المسادي المراكز                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                    </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 (200 (16) Early 18 (Early 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | السلامة المستحقة الملك الانتسادة المستحرة المستحرة المستحرة المستحرة المستحرة المستحرة المستحرة المستحرة المستحرة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | المسترف المسجود الملكاة برياع المسادي والمحجودة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ons<br>ite:<br>el T<br>iluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onso<br>int La<br>te:<br>el Ty<br>Ilutio<br>mplir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 《····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H 되는 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m He at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | arte afe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ant ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ant Le<br>ate:<br>iel Ty<br>illutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CONSTRUCTOR AND A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 0 E 2 E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 0 E 2 2 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a lo la la la la la la la la la la la la la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [ [ [ [ ] [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 2 2 3 5 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PE 2 2 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 0 E 2 E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 E 2 E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an loll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pol<br>late<br>offin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pon<br>Jant<br>Jate<br>uel<br>ollu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pons<br>lant :<br>ate:<br>uel T<br>olluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ponso<br>lant Le<br>Jate:<br>uel Ty<br>ollutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ( <u>)                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 212121AIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PICIE 2 PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E S E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SIGIE SIGIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    | ( Larrey Later & Little & Extra \$ 1 Later \$ 2 f \$ 7 \cdot \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (アンテンス アライン・サイン・シュラー・ディア・ディディング                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PER PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an Sal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an Sal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a lo la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E S E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E S E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E S E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a a a lo la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A P P P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an Sal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ypor<br>Jan<br>Jate<br>Volli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spon<br>Plant<br>Date:<br>fuel<br>Pollu<br>Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | spons<br>lant  <br>Date:<br>'uel T<br>'olluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sponso<br>Plant Le<br>Date:<br>"uel Ty<br>'ollutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( 1995 of 6 ) ( 1975 of 1974 of 6 ) ( 1975 of 1974 of 6 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HHH KI TIOI 4                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTRACTOR AND A CONTRACTOR OF THE CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTR | CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRA | Company of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | to the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the propert | CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mb   He   He   He   He   He   He   He   H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt Lette:   Ty   Intio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · *(1800-1805)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | المستراف المسجود الملكاة ليراك المستران المستران                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                    </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 (200 (16) Early 18 (Early 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | السلامة المستحقة الملك الانتسادة المستحرة المستحرة المستحرة المستحرة المستحرة المستحرة المستحرة المستحرة المستحرة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | المسترف المسجود الملكاة برياع المسادي والمحجودة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ons<br>ite:<br>el T<br>iluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onso<br>int La<br>te:<br>el Ty<br>Ilutio<br>mplir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | いん 金 いち 金のの 見 表示句には、 アン・(製 金 ご しき しょだ)に                                                                                            | (C) Provide (Provide) 🚗 (1 - 🛥 CE) 👐 (1 - 🖦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X R R OF F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X R R I O E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arte arte mp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ons<br>art<br>ate:<br>el T<br>Iluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oonso<br>ant La<br>ate:<br>lel Ty<br>Ilutio<br>mplir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7616 III 155 IN IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | とかわけ 内でいます。そはテレッキを入りまた。                                                                                                            | PARA TO LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEPARTMENT OF THE PROJECT OF THE PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B 등 을 등 명                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 등 을 등 명                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 등 을 등 표                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 물 하는 회교 조                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 6 2 6 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 물 하는 회교 조                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | am after a man of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | pon<br>ant<br>ate<br>offu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pons<br>lart late:<br>uel T<br>olluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ponso<br>lant Le<br>late:<br>uel Ty<br>ollutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONTRACTOR OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 0 E 2 E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al ole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 회교교 의교교                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 E 2 E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 회의 본 및 교육                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 4 2 2 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 2 2 3 5 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al olle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al le la la la la la la la la la la la la la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pol<br>lan<br>uel<br>olli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pon<br>lant<br>ate<br>uel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pons<br>lant  <br>late:<br>uel T<br>olluti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ponso<br>lant Le<br>Jate:<br>uel Ty<br>ollutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| lean     | flow            |          |      |  |  |         |
|----------|-----------------|----------|------|--|--|---------|
| lu<br> - | ·               |          |      |  |  |         |
| mean     | zero<br>(1/min) | ( )      |      |  |  |         |
| elapsed  | time            | 309      |      |  |  |         |
|          | flow<br>(1/min) | 11 ,     |      |  |  | TOTALS: |
| stop     | zero            | - 54     |      |  |  |         |
|          | time (hh·mm)    | 1434     |      |  |  |         |
|          | flow<br>(1/min) | 3500     | 352  |  |  |         |
| start    | zero            | 100 - 48 | -    |  |  |         |
|          | time            | 092C     | 1434 |  |  |         |

| Total Integrator Volume:  CO <sub>2</sub> Mass Flow Correction:  Actual (dry STP) volume (1):  % 0 <sub>2</sub> : 4 |
|---------------------------------------------------------------------------------------------------------------------|
| ٥ (C): '\                                                                                                           |

Flue-Gas Sampling Log

| Spansor: 1888          | Sample Run #: 3      |
|------------------------|----------------------|
| Plant Location: YAT-CS | Soda-Lime Trap#: 409 |
| Date: 6(10)93          |                      |
| Fuel Type:             | Pump#:               |
| Pollution Control:     | Probe#:              |
| Sampling Point Outle   | Filter ID:           |

| 1 | _       | _    |         | _             |        | <br> |  |         |
|---|---------|------|---------|---------------|--------|------|--|---------|
|   | mean    | flow | (1/min) | 1885          |        |      |  |         |
|   | mean    | zero | (1/min) | 0             |        |      |  |         |
|   | elapsed | time | (mim)   | 7404          | ,.0બેર |      |  |         |
|   |         |      | - 1     | 386           |        |      |  | TOTALS: |
|   | stop    | zero | (1/min) | $\mathcal{O}$ |        |      |  | ,       |
|   |         | time | (hh:mm) | 1126          |        |      |  |         |
|   |         | flow | (1/min) | 704.          |        |      |  |         |
|   | start   | zero | (1/min) | 91/0          |        |      |  |         |
|   |         | time | (hh:mm) | 7000          |        |      |  |         |

| COMMENTS:                  | 20'0" 10' 10' 11'                | 0.00.0 | 0                                     | 142 0Ket = 050               | Q                  |                     |        |                       |
|----------------------------|----------------------------------|--------|---------------------------------------|------------------------------|--------------------|---------------------|--------|-----------------------|
| Integrator Volume (1): ©.O | Offset Correction (1): 919 - 049 | ıme:   | CO <sub>2</sub> Mass Flow Correction: | Actual (dry STP) volume (1): | % 0 <sub>2</sub> : | % CO <sub>2</sub> : | % ӊ20ы | ppm SO <sub>2</sub> : |

Flue-Gas Sampling Log

| onsor: <i>10e-44765</i>   | Sample Run #: 1/600 BLACK |  |
|---------------------------|---------------------------|--|
| ant Location: 650 OLT CET | Soda-Lime Trap#: 420      |  |
| 16: <b>6</b> /62/47       | Iodated Carbon #: U2@     |  |
| el Type:                  | Pump#:                    |  |
| llution Control: 🚓        | Probe#:                   |  |
| mpling Point Fer outlet   | Filter ID:                |  |

|                 | start           |                 |                 | stop            |                 | elapsed       | mean            | mean            |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|-----------------|-----------------|
| time<br>(hh:mm) | zero<br>(l/min) | flow<br>(1/min) | time<br>(hh:mm) | zero<br>(1/min) | flow<br>(1/min) | time<br>(min) | zero<br>(1/min) | flow<br>(1/min) |
| 1300            | 0               | 0               |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 | ·               |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 | TOTALS          |               |                 |                 |

| COMMENTS:              | 40 INSTEA FLOW OF           | 362 UPA THEN LEAK        |                                       |                              |                    |                     |                     |                       |
|------------------------|-----------------------------|--------------------------|---------------------------------------|------------------------------|--------------------|---------------------|---------------------|-----------------------|
| Integrator Volume (I): | Offset Correction (1): -070 | Total Integrator Volume: | CO <sub>2</sub> Mass Flow Correction: | Actual (dry STP) volume (I): | % 0 <sub>2</sub> : | % CO <sub>2</sub> : | % H <sub>2</sub> O: | ppm SO <sub>2</sub> : |

| 40 JUSTED FLOW FOR |
|--------------------|
|--------------------|

|              |                                                  |                                                  | SOURC                                            | E SAM                                            | PLING           | FIELD                                          | DATA:          | SHEET                                            |                                                  | j                                                |                          |         |
|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------|------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------|---------|
|              |                                                  |                                                  |                                                  |                                                  |                 |                                                |                |                                                  |                                                  | Page                                             | of                       |         |
| Plant N      | iame                                             | Plant Out let Time Start Illy X DGMCFD. Hg       | Yates St                                         | ation Bo                                         | iler No.        | 1                                              |                |                                                  |                                                  |                                                  |                          |         |
| Sampling     | Z Location                                       | outlet                                           | · · · · · · · · · · · · · · · · · · ·            |                                                  | Train           |                                                | Anions         |                                                  | Run Ne                                           | o. )                                             |                          |         |
| Date 6       | 25/13                                            | Time Start                                       | )                                                | Time Fini                                        | sh (152         |                                                | Test Dura      | tion                                             | 97                                               | min.                                             |                          |         |
| Duct Dir     | nensions                                         | 1/4" x                                           |                                                  | 140                                              | Diameter        |                                                | ft             | Initial Lea                                      | ık Rate _                                        | 40,01                                            | ) cfm                    |         |
| PTCF _       | 0.84                                             | DGMCFO.                                          | 792                                              | Nozzie D                                         | ia. <u>. ZZ</u> | うinch                                          | ies            | Final Lea                                        | k Rate •                                         | 007@1                                            | <u>O<sup>U</sup></u> cfm |         |
| Bar Pres     | s 729                                            | 7.55 " Hg                                        |                                                  |                                                  |                 |                                                | <i>az</i>      | - 1                                              |                                                  |                                                  |                          |         |
| Static Pr    | css                                              | -1/_* H20                                        | ,<br>                                            |                                                  | Operator        |                                                | 2 //           | 5/S<br>                                          |                                                  |                                                  |                          |         |
| Travers      | Clock                                            | Dry gas meter                                    | ^ P                                              | ^ H                                              | Stack           | Dry gas m                                      | eter temp.     | Hot box                                          | Probe                                            | Last                                             | Vacuum                   |         |
| Point        | Time                                             | reading ft3                                      | in H2O                                           | in H2O                                           | Temp. F         | Inlet                                          | Outlet         | Temp.                                            | Temp                                             | Impinger                                         | in. Hg                   |         |
|              | 1015                                             | 750.37                                           | 0.91                                             | 1.50                                             | 283             | 93                                             | 89             | 2412                                             | 24/                                              | 5%                                               | 511                      |         |
|              | 2311                                             | , , , , , , , , , , , , , , , , , , , ,          | 1                                                |                                                  |                 |                                                |                | - 111                                            | /                                                |                                                  |                          |         |
|              | 1041                                             | 767,51                                           | .91                                              | 1.5                                              | 278             | 101                                            | 91             | 274                                              | 262                                              | 56                                               | 511                      |         |
|              | 1052                                             | 774 14                                           | 0.93                                             | 1,5                                              | 280             | 102                                            | 92             | 255                                              | 253                                              |                                                  | <del></del>              | Ī       |
|              | 1110                                             | 786 72                                           | 0.91                                             | 1.45                                             | 283             | 107 -                                          | 73             | 256                                              | 248                                              | 39                                               | 3                        |         |
|              | 1121                                             | 794.31                                           |                                                  | 1.50                                             | 273             | 153                                            | 93             | 257                                              | 250                                              |                                                  | 5                        |         |
|              | 1139                                             | 806.74                                           | OAZ                                              | _                                                | 284             | 197                                            | 93             |                                                  | 252                                              | 60                                               | 5                        |         |
|              | 1152                                             | 8/5,57                                           | 07/7_                                            | 1-42                                             |                 | /-/-                                           | 70             |                                                  | <u> </u>                                         | 0                                                |                          |         |
| <del> </del> | 1126                                             | 0/3/3/                                           |                                                  | <br>                                             |                 | <u> </u>                                       |                |                                                  |                                                  |                                                  |                          |         |
|              | <u> </u>                                         |                                                  |                                                  |                                                  | <del></del>     |                                                | <del> </del>   |                                                  |                                                  | <del> </del>                                     |                          |         |
|              |                                                  |                                                  |                                                  |                                                  |                 |                                                | <u> </u>       |                                                  |                                                  | <del> </del>                                     |                          | ———     |
|              |                                                  |                                                  |                                                  |                                                  |                 | <u> </u>                                       |                | <u> </u>                                         |                                                  | <del> </del>                                     |                          |         |
|              |                                                  |                                                  | ļ <u>.</u>                                       |                                                  | <u> </u>        |                                                | <u> </u>       |                                                  | ļ                                                |                                                  |                          |         |
|              |                                                  |                                                  | <b> </b>                                         |                                                  |                 |                                                | <u> </u>       | <u> </u>                                         |                                                  |                                                  |                          |         |
|              | <u> </u>                                         |                                                  |                                                  |                                                  |                 | ļ <u></u>                                      |                |                                                  |                                                  | <u> </u>                                         |                          |         |
|              | ļ                                                |                                                  |                                                  |                                                  |                 |                                                |                | ļ                                                |                                                  | <u> </u>                                         |                          |         |
|              |                                                  |                                                  |                                                  |                                                  | <u> </u>        |                                                | <u> </u>       |                                                  | ļ <u>.</u>                                       | <u> </u>                                         |                          |         |
|              |                                                  |                                                  |                                                  |                                                  |                 |                                                |                |                                                  |                                                  |                                                  |                          |         |
|              |                                                  |                                                  | <u> </u>                                         |                                                  |                 |                                                |                |                                                  |                                                  | <u> </u>                                         |                          |         |
|              |                                                  |                                                  |                                                  |                                                  |                 |                                                |                |                                                  |                                                  | <u> </u>                                         |                          |         |
|              |                                                  | l<br>                                            |                                                  |                                                  |                 |                                                |                |                                                  | <u> </u>                                         |                                                  |                          |         |
|              |                                                  |                                                  |                                                  |                                                  |                 |                                                |                |                                                  |                                                  |                                                  |                          |         |
|              |                                                  |                                                  |                                                  |                                                  |                 |                                                |                |                                                  |                                                  |                                                  |                          |         |
|              |                                                  |                                                  |                                                  |                                                  |                 |                                                |                |                                                  |                                                  |                                                  |                          |         |
|              |                                                  |                                                  |                                                  | <del></del>                                      |                 |                                                |                | 1                                                |                                                  |                                                  |                          |         |
|              |                                                  |                                                  |                                                  |                                                  |                 |                                                |                |                                                  |                                                  |                                                  |                          |         |
|              | <del>                                     </del> |                                                  | <del>                                     </del> |                                                  |                 |                                                | <u> </u>       |                                                  |                                                  | <del>                                     </del> |                          |         |
|              |                                                  | †                                                |                                                  | <del>                                     </del> | <del> </del>    |                                                |                | <del> </del>                                     | <del></del>                                      | <del> </del>                                     | -                        | <b></b> |
|              | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     | <del> </del>    |                                                |                | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> |                          |         |
| Ava          |                                                  | 65.200                                           | 0.9574                                           | 15                                               | 282             | 96.3                                           |                |                                                  |                                                  |                                                  |                          |         |
| Avg.         | <del>                                     </del> |                                                  | 0.121                                            | 17.0                                             | <del>{</del>    | 10.0                                           | erwara e fer   | 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2          |                                                  |                                                  |                          |         |
| Check'd      |                                                  | jamasa na sanajab -                              | 1 A-4 1 1778<br>1                                | I I o do codo                                    | 18:50 J. T.     |                                                | I make in 1997 | Beach state of                                   | I rokumposii                                     | I                                                | 1                        |         |
| CONSO        | LE#                                              | 12140                                            | 23                                               |                                                  |                 | Velocity                                       |                |                                                  |                                                  |                                                  |                          |         |
|              | * 722                                            |                                                  |                                                  |                                                  |                 | <ul> <li>A transition of the factor</li> </ul> |                |                                                  |                                                  |                                                  |                          |         |
|              |                                                  |                                                  |                                                  | •                                                |                 | <ul> <li>Undirect 1000 1000 123</li> </ul>     | DSCFM)         |                                                  | CONCONDENSIONAL                                  |                                                  |                          |         |
|              | LENGTH                                           |                                                  |                                                  |                                                  |                 |                                                | (%)            |                                                  |                                                  |                                                  | į<br>L                   |         |
| LINER        | MATERIA                                          | L                                                |                                                  |                                                  |                 |                                                |                |                                                  |                                                  |                                                  | •                        |         |
|              |                                                  |                                                  |                                                  |                                                  |                 |                                                |                |                                                  |                                                  |                                                  |                          |         |
| REMAR        | KS                                               |                                                  |                                                  |                                                  |                 |                                                |                |                                                  |                                                  |                                                  |                          |         |

\* Thermosph not const upon ingition of probe

Page \_\_\_\_ of \_\_\_

| Plant Name Plant Yates Station Boiler No. 1  Sampling Location O LALT Train Anions Run No. 2  Date \$\frac{126}{95}\$ Time Start       3 Time Finish \frac{1243}{1243} Test Duration 90 m  Duct Dimensions   \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{1 | nin.<br>Im |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| Date         # 243         Time Start         Time Finish         # 243         Test Duration         90 m           Duct Dimensions         # X         # Diameter         ft         Initial Leak Rate         0.0050/0 c           PTCF         94         DGMCF         0.797         Nozzle Dia.         0.223 inches         Final Leak Rate         0.003@9 c           Bar Press         29.42         Hg         Nozzle Dia.         0.003@9 c         0.003@9 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in.<br>Im  |  |
| Duct Dimensions // X // Diameter ft Initial Leak Rate 0.0050/0 c PTCF 0-84 DGMCF 0.992 Nozzle Dia. 0-223 inches Final Leak Rate 0.00309 c Bar Press 29.42 "Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fm         |  |
| PTCF 0-84 DGMCF 0.997 Nozzle Dia. 0-223 inches Final Leak Rate 0.003@9 o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |  |
| Bar Press* Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | îm         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
| Static Press H2O Operator ASIT SB K = 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |  |
| Travers Clock Dry gas meter ^ P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | num        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hg ]       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .O         |  |
| 1142 96,07 .92 1.55 283 101 91 241 253 62 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0          |  |
| 1207 933.3 199 155 483 101 92 246 242 63 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |  |
| 1231 949.9 ,88 1.55 283 102 93 245 245 63 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6          |  |
| 1240 956,1 0.90 1.55 283 104 93 251 254 63 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0         |  |
| 7243 956-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
| Avg 62.150 1758 15313 2830 9 96.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |  |
| Check'd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |  |
| CONSOLE # 16/403 Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |  |
| FILTER # 93 4 S Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |  |
| AMBIENT TEMP Flowrate (DSCFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |  |
| PROBE LENGTH lsokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |  |
| LINER MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |  |
| C-70 + take 1 some constant at single point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |  |

Page \_\_\_\_\_ of \_\_\_\_

| Plant N                                          | Name               | Plant                                | Yates St    | ation Bo    | oiler No.                                        | 1                                       |                          |                                                  |             | 0             |               |                |
|--------------------------------------------------|--------------------|--------------------------------------|-------------|-------------|--------------------------------------------------|-----------------------------------------|--------------------------|--------------------------------------------------|-------------|---------------|---------------|----------------|
| Sampling                                         | Location_          | OLT 104  Time Start <u>D9</u> 11.4 X |             |             | Train _                                          | A                                       | Anions                   |                                                  | Run No      | ر. ک          |               |                |
| Date C                                           | 127/53             | Time Start D9                        | 15          |             | Time Fini                                        | sh 1038                                 |                          | Test Dura                                        | tion        | 8.3           | min.          |                |
| Duct Din                                         | nensions_          | 11.4 X                               | 11.4        |             | Diameter                                         |                                         |                          | Initial Lea                                      | k Rate      | 61013         | cfm           |                |
| PTCF _                                           | 84                 | DGMCF1                               | 92          | Nozzle D    | ia. <u>. 2</u> 7                                 | 19 inch                                 | es                       | Final Leal                                       | k Rate 👱    | 00421         | <b>O"</b> cfm |                |
|                                                  |                    | Hg                                   |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
| Static Pro                                       | <u>ت. ۱۱ - ess</u> | • H20                                | )           |             | Operator                                         | TJB                                     | <u> </u>                 | <del>_</del>                                     |             |               |               |                |
| Travers                                          | Clock              | Dry gas meter                        | ^ P         | ^ H         | Stack                                            | Dry gas m                               | eter temp.               | Hot box                                          | Probe       | Last          | Vacuum        |                |
| Point                                            | Time               | reading ft3                          | in H2O      | [           | Temp. F                                          |                                         | Outlet                   | Temp.                                            | Temp        | Impinger      |               | ı              |
|                                                  | 0915               | 47.70                                | .87         |             |                                                  |                                         | 94                       | · · ·                                            |             |               |               |                |
| <b> </b>                                         | 0920               |                                      | .87         | 1.6         | 280                                              |                                         | 94                       | 247                                              | 250         | 65            | 5.0           |                |
|                                                  | 0930               |                                      |             | <del></del> |                                                  | 103                                     |                          |                                                  | 256         |               | 50            |                |
|                                                  |                    | 50.30                                | .87         |             | 280                                              |                                         | 95                       | 258                                              | 252         | _             | 5.0           |                |
|                                                  |                    | 69.04                                | .87         |             | 230                                              |                                         | 95                       | 253                                              | 260         | 58            | 5.0           |                |
| -4                                               | 1015               | 91.28                                | .87         | 1.6         | 2                                                | 108                                     | 97                       | 253                                              |             |               | 50            | <del>-</del> i |
| 10                                               | 1020               |                                      | 62-         | <u> </u>    | 2015                                             | 98                                      | 9.82                     | 751                                              | 752         |               | 11B           | `              |
|                                                  | 1027               |                                      | .81         | 1.6         | 280                                              | 108                                     | 97                       | 255                                              | 251         | 65            | 5.0           |                |
|                                                  | 1038               | 108.301                              |             |             |                                                  |                                         |                          |                                                  | <u>-</u>    |               | <u> </u>      |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             | ļ                                                |                                         |                          |                                                  |             |               |               | ·              |
|                                                  |                    |                                      |             |             | <u> </u>                                         | -                                       |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             | •             |               |                |
| _                                                |                    |                                      |             |             | l                                                |                                         |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  | 1           |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             | · · · · · · · |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             | <u> </u>                                         |                                         |                          | <u> </u>                                         |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
|                                                  | <u> </u>           |                                      |             |             | <del>                                     </del> |                                         |                          |                                                  | <del></del> |               |               |                |
|                                                  |                    |                                      |             | <u> </u>    | <del> </del>                                     |                                         | <u> </u>                 |                                                  |             |               | <u> </u>      |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
| <del>                                     </del> | <del> </del>       |                                      |             | -           | -                                                | <del> </del>                            |                          | <del>                                     </del> | <b> </b> -  |               | <del> </del>  |                |
|                                                  |                    |                                      |             | -           |                                                  |                                         | <del> </del>             | -                                                |             |               | <del> </del>  |                |
| <u> </u>                                         |                    |                                      |             | C.000 Fix   |                                                  |                                         | ا ا                      |                                                  | antina e    |               |               | :              |
| Avg.                                             |                    | 1,0,611                              | 14327       | 1,000       | 280.0                                            | 1 1913.41<br>2                          | 99.7                     |                                                  |             |               |               |                |
| Check'd                                          |                    |                                      |             | 2 Mil 14    | 100000000                                        |                                         |                          |                                                  |             |               |               |                |
| CONSO                                            | LE# 16             | 1403                                 |             |             |                                                  | A STATE OF                              |                          | `}***************                                |             |               | i             |                |
| FILTER                                           |                    | 901                                  |             |             |                                                  | - 100 6 6 886 NOTE                      | •                        | 12. 12.000.000.0000.0000.0000                    |             |               | ]<br>[        |                |
|                                                  |                    |                                      | <del></del> |             |                                                  | - 100 \$44 - 454 \$450 \$400 \$400 \$40 | DSCFM)_                  |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         | (%)                      |                                                  |             |               | <u>.</u>      |                |
|                                                  | -                  | •                                    |             |             |                                                  | TORK TORK                               | # <del>10.4</del> _1_1_1 |                                                  | 5564.66     |               | i             |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
| REMAR                                            | KS                 |                                      |             |             |                                                  |                                         |                          |                                                  |             |               |               |                |
|                                                  |                    |                                      |             |             |                                                  |                                         |                          |                                                  |             | <del></del>   | •             |                |

Page \_\_\_\_ of \_\_\_\_

| Plant N                                          | lame _                 | Plant<br>55P                            | Yates St       | ation Bo                                         | iler No.     | 1                                                |              |                 | Dun M          |                                                  |                |                                         |
|--------------------------------------------------|------------------------|-----------------------------------------|----------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|-----------------|----------------|--------------------------------------------------|----------------|-----------------------------------------|
| Date I. In                                       | H/a 3                  | Time Start                              | 1830           |                                                  | Time Figi    | <i></i>                                          | 7110112      | Test Du-        | ron<br>Nun 140 | ⊑. <u>τ</u> []                                   | r<br>min.      |                                         |
| Duct Din                                         | nensions               | _ Time StartX _                         | 1370           |                                                  | Diameter     |                                                  |              | Initial Lea     | k Rate         |                                                  | cfm            |                                         |
| PTCF                                             |                        | DGMCF                                   |                | Nozzle D                                         | ia           | inch                                             | es           | Final Leal      | k Rate         |                                                  | cfm            |                                         |
|                                                  |                        | " Hg                                    |                |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
| Static Pre                                       | :65                    | " H20                                   | )              |                                                  | Operator     |                                                  |              | _               |                |                                                  |                |                                         |
| Travers                                          | Clock                  | Dry gas meter                           | ^ P            | ^H                                               | Stack        | Dry gas m                                        | eter temp.   | Hot box         | Probe          | Last                                             | Vacuum         |                                         |
| Point                                            | Time                   | reading ft3                             | in H2O         | ļ.                                               | Temp. F      |                                                  | Outlet       | Temp.           | Temp           | Impinger                                         |                |                                         |
|                                                  | _                      | 34.100                                  | -              | <del> </del>                                     | · · · ·      |                                                  |              | ,               |                |                                                  |                |                                         |
|                                                  |                        |                                         | <u> </u>       |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
|                                                  |                        | 94.26                                   |                |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
|                                                  |                        | <del> </del>                            |                |                                                  |              | <del></del> -                                    | ·            |                 |                |                                                  |                |                                         |
| <del></del>                                      |                        |                                         |                | <del> </del>                                     |              | <del> </del> -                                   |              |                 |                |                                                  |                |                                         |
|                                                  |                        | <u> </u>                                | <u></u>        |                                                  |              | ļ <u> </u>                                       |              |                 |                | !                                                |                |                                         |
| <del>                                     </del> |                        | <del> </del>                            |                | <del> </del>                                     |              | <del> </del>                                     |              | <del> </del>    |                | -                                                |                |                                         |
|                                                  |                        | <del> </del>                            |                | <del> </del>                                     |              |                                                  |              |                 |                |                                                  | ļ <u></u>      |                                         |
|                                                  |                        | <b>_</b>                                |                |                                                  |              | <b></b> _                                        |              | <u> </u>        |                |                                                  |                | ļ                                       |
| <u> </u>                                         |                        | <b></b>                                 |                |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
|                                                  | <del>_</del>           |                                         |                |                                                  |              |                                                  | <u> </u>     | <u> </u>        | ļ. <u>.</u>    |                                                  | <u> </u>       |                                         |
|                                                  |                        |                                         |                |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
|                                                  |                        |                                         |                |                                                  | <u> </u>     |                                                  |              |                 |                |                                                  |                |                                         |
|                                                  |                        |                                         |                |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
|                                                  |                        |                                         |                |                                                  |              |                                                  |              |                 |                | ·                                                |                |                                         |
|                                                  |                        |                                         |                |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
|                                                  |                        | 1                                       |                |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
|                                                  | ····                   |                                         |                |                                                  |              |                                                  | <del>-</del> |                 |                |                                                  |                |                                         |
|                                                  | <del> </del>           |                                         |                | <del>                                     </del> |              |                                                  |              |                 |                |                                                  |                |                                         |
|                                                  |                        | <del> </del>                            |                | <b>.</b>                                         |              | ]                                                |              | <del> </del>    | <u> </u>       |                                                  |                |                                         |
|                                                  |                        |                                         |                |                                                  |              |                                                  |              | <u> </u>        | <u> </u>       | <u> </u>                                         |                |                                         |
|                                                  |                        | <del> </del>                            | <u> </u>       |                                                  |              | <del> </del>                                     |              |                 | *              |                                                  | <del></del>    |                                         |
|                                                  |                        | <del></del>                             |                |                                                  |              | <del>                                     </del> |              | <del> </del>    | <del> </del>   | <del>                                     </del> |                |                                         |
|                                                  |                        | <del>-</del>                            |                | <del> </del>                                     | <del></del>  | <del> </del>                                     |              | <del>├</del> ── | <del> </del>   | <del></del>                                      | <del> </del> - | <del> </del>                            |
|                                                  | -                      | <del> </del>                            |                | <u> </u>                                         |              |                                                  | <u> </u>     |                 |                |                                                  |                |                                         |
| <b> </b>                                         |                        | <del> </del>                            | <del> </del> - | <del> </del>                                     |              | -                                                | <del></del>  |                 | <del> </del>   | -                                                |                | <del> </del>                            |
|                                                  | <del></del>            | <del> </del>                            |                | -                                                | <del> </del> |                                                  |              | <del> </del>    | <del> </del>   | <b></b> -                                        |                |                                         |
|                                                  |                        | <del> </del>                            |                | <b> </b>                                         | ļ            |                                                  |              |                 | <del> </del>   |                                                  |                | ļ                                       |
|                                                  |                        | <u> </u>                                | <u></u>        | <u></u>                                          |              | -                                                |              | <u> </u>        | <del> </del>   | <u> </u>                                         | ļ              | <b></b>                                 |
| <b></b>                                          |                        | 2 0000000000000000000000000000000000000 |                |                                                  |              | <u> </u>                                         |              | 7 <b>.</b>      |                |                                                  |                | *************************************** |
| Avg.                                             |                        |                                         |                |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
| Check'd                                          |                        |                                         |                |                                                  |              |                                                  |              |                 |                |                                                  |                |                                         |
| FILTER<br>AMBIEN<br>PROBE                        | #<br>IT TEMP<br>LENGTH | A (61-30                                |                |                                                  |              | % Moistur<br>Flowrate (                          | e<br>DSCFM)  |                 |                |                                                  |                |                                         |
| REMAR                                            |                        |                                         |                |                                                  |              |                                                  |              |                 |                |                                                  | <b>-</b>       |                                         |

Page \_\_\_\_ of \_\_\_

| Plant N  | lame 43        | Plant                                        | Yates St | ation Bo | <u>iler No.</u> | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                |                 |                |              |               |
|----------|----------------|----------------------------------------------|----------|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------|-----------------|----------------|--------------|---------------|
| Sampling | Location       | I ESP OU                                     | tlet     |          | Train _         | Ammon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ia/Hydro                                                                               | gen Cya                        | nide            | Run No         | . <u>/</u>   |               |
| Date     | 129 93         | Time Start 6                                 | 741      | ·        | Time Fini       | sh <u>0938</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        | Test Dura                      | tion            | 109            | min.         |               |
| Duct Din | nensions_      | <u> н'ч"</u> х_                              | <u> </u> |          | Diameter        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft                                                                                     | Initial Lea                    | k Rate <u>-</u> | <u>010)12'</u> | cfm          |               |
| PTCF     | 84             | DGMCF9                                       |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | Final Lea                      | k Rate 🚣        | 0.0150         | 125 cfm      |               |
|          |                | <u>5                                    </u> |          |          | Operator        | 75B/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | APE                                                                                    | _                              | ,               | r=1.63         |              |               |
| Travers  | Clock          | Dry gas meter                                | ^ P      | ^н       | Stack           | Dry gas m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ter temp.                                                                              | Hot box                        | Probe           | Last           | Vacuum       |               |
| Point    | Time           | reading ft3                                  | in H2O   | in H2O   | Temp. F         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Outlet                                                                                 | Temp.                          | Temp            | Impinger       | in. Hg       |               |
|          | 5741           | 674-000                                      | .95      | 1.55     | 278             | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74                                                                                     | 267                            | 271             | 63             | 8.0          |               |
|          | 0810           | 6935                                         | .95      | 155      |                 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                                                                     | 25%                            | 245             | 60             | 8.0          |               |
|          | 0816           | 697.43                                       | .95      | 1-50     | 270             | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81                                                                                     | 254                            | 262             |                | 80           | $\overline{}$ |
|          | 0825           | 703.5                                        | 824      | 1,50     | 280             | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83                                                                                     | 266                            | 249             | 56             | 8.0          |               |
|          | 0836           | 710.7                                        | .95      | 1.58     | 280             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83                                                                                     | 265                            | 254             |                | 8.0          |               |
|          | 0855           | 723.34                                       | 0.91     | 1.55     | 287             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85                                                                                     | 257                            | 244             | 51             | 8-0          |               |
|          |                | 736,40                                       | 0.90     | 160      | 278             | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87                                                                                     | 257                            | 242             | -57            | 800          |               |
|          | 042013         | 0 747.525                                    |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
| •        |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                | -               |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                | -               |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                | _                                            |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                  |                                |                 |                |              |               |
|          | -              |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
|          |                |                                              | NAP      |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                               |                                |                 |                |              |               |
| Avg.     | _              | 73.525                                       | 09680    | 1.547    | 280             | 81.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |                                |                 |                |              |               |
| Check'd  | 540            | 73,525                                       | (2004)   |          | Para day        | 1 1916 5 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |                                |                 |                |              |               |
|          |                |                                              |          | <u> </u> | <u> </u>        | 11 10 100000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vananta susu susu su es es                                                             |                                | and the second  |                |              |               |
|          | LE # <u>16</u> | 1405                                         |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gesegen tote protes years<br>soon of the Costop of the<br>social and the social social |                                |                 |                | :<br>><br>8  |               |
| FILTER   |                |                                              |          | -        |                 | % Moistur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e                                                                                      |                                |                 |                |              |               |
|          |                |                                              |          |          |                 | 100 miles (100 miles ( | DSCFM)_                                                                                |                                |                 |                | \$           |               |
|          | _              | <del></del> -                                |          |          |                 | Isokinetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (%)                                                                                    | 8000 <b>(80</b> 8886) <u>(</u> | 45.048.998.800  |                | į            |               |
| EUIER I  | "A I ERIAL     | · <del></del>                                |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                |              |               |
| REMAR    | KS             |                                              |          |          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                |                 |                | <del>-</del> |               |

Page of Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Name 10 93 Plant Plant Yates Station Boiler No. 1 Train Ammonia/Hydrogen Cyanide Run No. Z Sampling Docation Dutet Date Time Start Time Finish 110 Test Duration 95 Duor Dimensions !! X !!- Diameter ft Initial Leak Rate : 00702 cfm PTCF \_84 DGMCF 1-857 Nozzle Dia. .223 inches Final Leak Rate 6.006 (2) 12 cfm Bar Press 29.92 " Hg 0.992 APEN K=1.63 @75 Tm =1.69@ Operator Static Press \_\_\_\_\_ " H2O ^ H Stack Dry gas meter temp. Hot box Probe Vacuum Travers Clock Dry gas meter in H2O in H2O Temp. F Inlet Outlet Point Time reading ft3 Temp. Temp Impinger in Hg 2*54* 856 59 864.57 6.75 84 258 283 258 87 0.96 1.60 88 881.05 284 7-0 489 78 0.12 1.60 278 90 7-0 894-0 094 1.50 894.45 1.9587 1.5182 2794 88.2 Avg. Check'd CONSOLE # 161403 % Moisture FILTER # \_\_\_\_ Flowrate (DSCFM)\_\_\_\_ AMBIENT TEMP. lackinetic (%)\_\_\_\_ PROBE LENGTH LINER MATERIAL REMARKS

Page \_\_\_\_ of \_\_\_\_

| Plant !                                          | Name                                             | Plant                                        | Yates St    | ation Bo           | iler No.  | 1                                                                                                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|--------------------------------------------------|--------------------------------------------------|----------------------------------------------|-------------|--------------------|-----------|-----------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|------------|-------|
| Sampling                                         | Location_                                        | ESP Q                                        | 11/e+       |                    | Train _   | Ammon                                                                                                           | ia/Hydro          | gen Cya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nide              | Run No   | . <u>೨</u> | -     |
| Date 6                                           | 127 93                                           | Time Start                                   | <u> 725</u> |                    | Time Fini | sh <u>085</u>                                                                                                   | 6                 | Test Dura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion              | 91       | min.       |       |
| Duct Dir                                         | nensions_                                        | <i>11.4"</i> x                               | 11.4        |                    | Diameter  |                                                                                                                 | ft                | Initial Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | k Rate <u>. 4</u> | 01010    | tt_cfm     |       |
| PTCF _                                           | 84                                               | Time Start                                   | 7           | Nozzle D           | ia! >2 Z  | 3 . 211 inch                                                                                                    | <b>c</b> s        | Final Leaf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | k Rate <u>. C</u> | 07012    | cfm_cfm    |       |
| Bar Pres<br>Static Pr                            | ess - 11.0                                       | ) "Hg<br>) "H20                              | )           |                    | Operator  | <u> </u>                                                                                                        | 3                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | K 1.8    | 35         |       |
| Travers                                          | Clock                                            | Dry gas meter                                | ^ P         | ^ H                | Stack     | Dry gas me                                                                                                      | eter temp.        | Hot box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe             | Last     | Vacuum     |       |
| Point                                            | Time                                             | reading ft3                                  | in H2O      | in H2O             | Temp. F   | Iniet                                                                                                           | Outlet            | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp              | Impinger | in. Hg     |       |
|                                                  | 0725                                             |                                              | .89         | 1.6                | 280       |                                                                                                                 | 77                | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 263               |          | 6.0        |       |
|                                                  | 6733                                             | 988.45                                       | .89         | 1.6                | 280       | 90                                                                                                              | 79                | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 260               |          | 6.0        |       |
|                                                  | 0741                                             | 993.96                                       | 89          | 1.6                | 280       | 96                                                                                                              | 81                | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 258               | 54       | 6.0        |       |
|                                                  | 0753                                             | 1001.28                                      | .89         | 1.6                | 277       | 99                                                                                                              | 84                | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 255               |          | 60         |       |
|                                                  | 0803                                             | 1002.26                                      | .85         | 1.6                | 278       | 101                                                                                                             | 87                | 754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25%               | 53       | 60         |       |
|                                                  |                                                  | 1019.65                                      | .89         | 1.6                | 279       | 162                                                                                                             | 89                | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 249               | 54       | 6.5        |       |
|                                                  | 0830                                             | 1028.04                                      | .89         | 1.6                | 280       | 106                                                                                                             | 92                | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 257               |          | 65         |       |
|                                                  |                                                  | 1034.58                                      |             |                    | 280       | 107                                                                                                             | 93                | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>253</b>        |          |            |       |
| <del></del>                                      |                                                  | 1046.443                                     | - 01        |                    | 200       | (0)                                                                                                             | • •               | 7.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250               | 5        |            |       |
|                                                  | 0.00                                             | 10 10. 10 )                                  |             | <u> </u>           |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  | <u>                                     </u> |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  | <u> </u>                                         |                                              |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              | ļ           |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  | ļ                                                |                                              |             |                    |           |                                                                                                                 |                   | Į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |          |            |       |
|                                                  |                                                  |                                              |             |                    |           | ,                                                                                                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              |             |                    |           | 77                                                                                                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
| <del>                                     </del> | <del> </del>                                     |                                              |             |                    |           |                                                                                                                 |                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |          |            |       |
|                                                  | 1                                                |                                              |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ]        |            |       |
|                                                  | 1                                                |                                              | <u> </u>    | <u> </u>           | <u> </u>  |                                                                                                                 |                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |          |            |       |
|                                                  | <u> </u>                                         |                                              |             | <u> </u>           | ļ         | ļ                                                                                                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ļ        |            | ····· |
|                                                  |                                                  |                                              |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  | <u> </u>                                     | <u></u>     |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              |             | 1                  |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  | j                                            |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]                 |          |            |       |
| <b></b>                                          | <del>                                     </del> |                                              |             | <u> </u>           |           | <del></del>                                                                                                     |                   | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | <u> </u> | <u> </u>   |       |
| Avg.                                             |                                                  | 63 443                                       | 10000       | 77.00              | 2-93      | 40-8. Disk 844 A                                                                                                | 915               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              |             |                    | OK ( TAU  | 2000 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
| Check'd                                          | 1                                                | Faust schools and res                        |             | s resignating that | 130 30 5  | Least Page 1                                                                                                    |                   | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | ı        |            |       |
| CONSO                                            | LE# /                                            | 61403                                        |             |                    |           | Velocity                                                                                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
| FILTER                                           | " <del>9</del>                                   | <u>()</u>                                    |             |                    |           | % Moister                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  | T-                                               |                                              |             | •                  |           | Flowrate /                                                                                                      | DSCFM)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
|                                                  |                                                  |                                              |             |                    |           |                                                                                                                 | (%)               | - Commence (Commence (Comm |                   |          |            |       |
|                                                  | MATERIA                                          |                                              |             |                    |           | ः। प्रशासन्तरः सम्बद्धाः ।                                                                                      | .+. >> ₹2 <u></u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>          |          | •          |       |
|                                                  |                                                  |                                              |             |                    |           |                                                                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |            |       |
| REMAR                                            | RKS                                              | Broke                                        | NOZZ        | k 6                | efore     | run                                                                                                             | swife             | hto .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.22              | -9       | _          |       |

Page \_\_\_\_ of \_\_\_\_

| Plant Name                                                                                                                                                                                                                                                                                                                                                                          |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Date 6-29-25 Time Start Time Finish Test Duration min.  Duct Dimensions X Diameter ft Initial Leak Rate cfm  PTCF DGMCF Nozzle Dia. inches Final Leak Rate cfm  Bar Press "Hg  Static Press "H2O Operator  Travers Clock Dry gas meter P A Stack Dry gas meter temp. Hot box Probe Last Vacuum Point Time reading ft3 in H2O in H2O Temp. F Inlet Outlet Temp. Temp Impinger in. Hg |                                                  |
| PTCF DGMCF Nozzle Dia inches Final Leak Rate cfm  Bar Press " Hg  Static Press " H2O Operator Quelle  Travers Clock Dry gas meter ^ P                                                                                                                                                                                                                                               |                                                  |
| PTCF DGMCF Nozzle Dia inches Final Leak Rate cfm  Bar Press " Hg  Static Press " H2O Operator Quelle  Travers Clock Dry gas meter ^ P                                                                                                                                                                                                                                               |                                                  |
| Bar Press "Hg Static Press "H2O Operator Qulle  Travers Clock Dry gas meter ^P ^H Stack Dry gas meter temp. Hot box Probe Last Vacuum Point Time reading ft3 in H2O in H2O Temp. F Inlet Outlet Temp. Temp Impinger in. Hg                                                                                                                                                          | n                                                |
| Travers Clock Dry gas meter P H Stack Dry gas meter temp. Hot box Probe Last Vacuum Point Time reading ft3 in H2O in H2O Temp. F Inlet Outlet Temp. Temp Impinger in. Hg                                                                                                                                                                                                            |                                                  |
| Travers Clock Dry gas meter ^ P                                                                                                                                                                                                                                                                                                                                                     | n                                                |
| Point Time reading ft3 in H2O in H2O Temp. F Inlet Outlet Temp. Temp Impinger in Hg                                                                                                                                                                                                                                                                                                 |                                                  |
| 1325 90183<br>90.350                                                                                                                                                                                                                                                                                                                                                                | 1                                                |
| 90.350                                                                                                                                                                                                                                                                                                                                                                              | <del>                                     </del> |
|                                                                                                                                                                                                                                                                                                                                                                                     | +                                                |
|                                                                                                                                                                                                                                                                                                                                                                                     | <del>                                     </del> |
|                                                                                                                                                                                                                                                                                                                                                                                     | +                                                |
| ┠──┼┈┈┼┈┈┼┈┈┼┈┈┼┈┈┼                                                                                                                                                                                                                                                                                                                                                                 | +                                                |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                         | <del>                                     </del> |
| ┠┈╌┼╌┈┼╌┈┼╌┈┼╼┈┼╼┈┼┈┼                                                                                                                                                                                                                                                                                                                                                               | ┼                                                |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     | <del>  </del>                                    |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                     | <del>                                     </del> |
| <del>┠──┼──┼──┼──┼──┼──┼</del>                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| <del>┠──┤──┤</del> ── <del>┤</del> ┈─ <del>┤</del> ┈─ <del>┤</del> ┈─┤                                                                                                                                                                                                                                                                                                              | 1 1                                              |
| ┠──┼──┼──┼                                                                                                                                                                                                                                                                                                                                                                          | <del>  </del>                                    |
| ┠┈┈┼┈┈┼┈┈┼┈┈┼┈┈┼┈┈                                                                                                                                                                                                                                                                                                                                                                  | ╅                                                |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                             | <del> </del>                                     |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| Avg. —                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
| Check'd                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| CONSOLE # A   6   7,4 Velocity                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| CONSOLE # A 16134 Velocity  FILTER # 654 SMoisture                                                                                                                                                                                                                                                                                                                                  |                                                  |
| AMBIENT TEMP. Flowrate (DSCFM)                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| PROBE LENGTH lsokinetic (%)                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| LINER MATERIAL                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| REMARKS                                                                                                                                                                                                                                                                                                                                                                             |                                                  |

ESP OUTLET

| Date //         | Location    | 700                       | Yates St     | D(                                     | Train        |                    | Particula     | ا مرو<br>ate-Radio                                       | muclide             | s 1          | Run No.      | 1               |
|-----------------|-------------|---------------------------|--------------|----------------------------------------|--------------|--------------------|---------------|----------------------------------------------------------|---------------------|--------------|--------------|-----------------|
|                 | 24/93       | Time Start                | 1040         |                                        | Time Fin     |                    |               | Test Dur                                                 | ation               | 198 **       |              |                 |
| Duct Din        | nensions    | Time StartX               | 11/40        | <del></del>                            | Diameter     |                    |               | Initial Le                                               |                     |              |              |                 |
| PTCF (          | 84          | DGMCF /                   | 709          | Nozzle D                               |              |                    |               |                                                          |                     | 2.009        | cím          |                 |
|                 |             | 53 · Hg                   |              |                                        |              | <del>/</del> ***** |               |                                                          | <u></u>             |              |              |                 |
|                 | ess/        |                           | 0            |                                        | Operator     |                    | of E          |                                                          |                     |              |              |                 |
| Travers         | Clock       | Det one mater             | ^ P          | ^ H                                    | Stack        | D                  |               |                                                          |                     | 1            |              |                 |
| Point           | 1           | Dry gas meter reading ft3 | in H2O       | in H2O                                 | i            | Dry gas m          |               | Hot box                                                  | Probe               | Last         | Vacuum       |                 |
| Point           | (MIN)       |                           | <u> </u>     |                                        | Temp. F      | <b></b> -          | Outlet        | Temp.                                                    | Temp                | Impinger     |              |                 |
| -               | 10¢ 0       | 509.48                    | 1.70         | 1-26                                   | 283          | 97                 | 89            | 257                                                      | 277                 | 7/           | 5-75         |                 |
|                 | 22.6        | 517.92                    | 1.10         | 120                                    | 184          | 157                | 94            | 259                                                      | 275                 | 92           | 5-5          |                 |
|                 | 46.8        | 532.23                    | 110          | 1-15                                   | 286          | 107                | 99            | 255                                                      | 21/                 | フユ           | 5-25         |                 |
|                 | 63.0        | 541.725                   | 1.20         | 1.25                                   | 285          | 108                | /2/           | 256                                                      | 2/8                 | 79           | 5.25         |                 |
|                 | <b>38</b> 9 | 557.17                    | 1.25         | 1.30                                   | 288          | 113                | 106           | 258                                                      | 277                 | クフ           | 5-5          |                 |
|                 | 110.5       | 575.05                    | 1.20         | 1.32                                   | 284          | 100                | 107           | 277                                                      | 253                 | 70           | 5.5          |                 |
|                 | 202         | 625 UN                    | 1-2          | 1.3                                    | 287          | 112_               | 104           | 252                                                      | 260                 | 62           | 6            |                 |
| i               | 2/.4        | 10102.61                  | 1.2          | 1.2                                    | 788          | 115                | 108           | 253                                                      | 281                 | 67           |              |                 |
|                 | 30/1        | 688.28                    | 1.20         | 1.23                                   | 289          | 108                | 103           | 253                                                      |                     | 63           | 6            |                 |
| *               | 329.0       | 702.5                     | 1:6          | 1-5/                                   | 601          | 100                | <del>//</del> | مدرع                                                     | 266                 | -0-          | 5.5          |                 |
|                 |             |                           | 1.7          | 1 2 3                                  | <del> </del> |                    | <del> </del>  | <del> </del>                                             | <del> </del>        | <del> </del> | <del> </del> |                 |
| *               | 321.0       | 702.5                     | 1.2          | 1.23                                   |              |                    |               | <del>                                     </del>         | }                   | <del> </del> | <b> </b>     |                 |
| مورد            |             | 145.9                     | 1 0          | 7 3                                    | 7            | Cont               |               |                                                          | 1                   |              | <u> </u>     |                 |
| 3/20-4          |             | 749.45                    | 1.2          | 1-2                                    | 282          | 88                 | 80            | 257                                                      | 254                 | 47           | 2.5%         |                 |
|                 | 7014        |                           | <u> </u>     |                                        | <u> </u>     |                    | 177           | -                                                        | 22.                 | ļ            |              |                 |
|                 | 7/2.4       | 765-80 1                  | 25           | /35                                    | 3/3          | 90                 | 82            | 255                                                      | 27/                 | 69           |              |                 |
| 7               | 4610        | 75.07                     | 1.25         | 1.35                                   | 977          | 91                 | 86            | 251                                                      | 231                 | 64           | 2.5          |                 |
|                 | 522.0       | 831.80                    | 1.25         | 135                                    | 284          | 88                 | 183           | 33                                                       | 266                 | 62           | 2,5          |                 |
|                 | 592.4       | 873.94                    | 1125         | 1.35                                   | 283          | 52                 | 85            | 253                                                      | 270                 | 66           | 2.5          |                 |
|                 | 646,6       | 906.48                    | 1.25         | 1,35                                   | 283          | 93                 | 86            | 252                                                      | 271                 | 68           | 2.5          |                 |
|                 | 7095        | 955.17                    | 1,25         | 1/35                                   | 282          | 91                 | 84            | 254                                                      | 272                 |              | 25           | <del></del>     |
|                 | 748.3       |                           | 1,25         | 1,35                                   | r            | 84                 | 82            | 251                                                      | 282                 | 66           | 2.5          |                 |
|                 | 412.11      | 1024.10                   | 1125         | 125                                    | 279          | 53                 | 86            | 251                                                      | 271                 | (F           | 25           |                 |
|                 | 913.5       | 67.13                     | 1,25         | 1:35                                   | 280          | 94                 | 86            | 2 6 3                                                    | 272                 | 25           |              |                 |
| ļ-—             | 971.9       | 103,91                    | 1,25         | 1,35                                   | 279          | 94                 | 87            | 200                                                      |                     |              | 215          |                 |
|                 |             | 138.97                    | 1 2          | 1:2-                                   |              |                    | <del></del>   | 25                                                       | 271                 | 127          | 2.5          |                 |
|                 | 1027.9      | T                         | 11045        | 1:35                                   | 28/          | 56                 | 188           | 253                                                      | 271                 | 62           | 2.5          |                 |
| م السو          | 1077.2      | 169.17                    | 1.35         | 1                                      | 275          | <del>+</del>       | 87            | 353                                                      | 374                 |              | 3.5          |                 |
| 14.4M           | 1137.1      | 205.40                    | 1.20         | 1. 25                                  | 279          | 93                 | 86            | 252                                                      | 276                 | 2451         | 2.5          |                 |
|                 | 166.7       | 12257                     | Salatanian 2 | 10000000000000000000000000000000000000 | <b>1</b>     | -                  | <del> </del>  | 1<br>20 od 30. s 1 od 1                                  | 3 (3): 000 (3): 000 |              | <u> </u>     | 800.000.000.000 |
|                 |             |                           |              |                                        |              |                    | 1             |                                                          |                     |              |              |                 |
| Avg.<br>Check'd |             |                           |              |                                        |              |                    |               | 1 (20000) 1 (400<br>1 (2000) 1 (400)<br>1 (2000) 1 (400) |                     |              |              |                 |

**ESP OUTLET** 

| Duct Dir                  | nensions_//                      | Time StartXXXX   | 11'4'                                         | Nozzle D    | Diameter   | sh <u>06</u><br>inch | ft                     | Test Dura<br>Initial Lea<br>Final Lea | ik Rate Q | 005D1      |        |             |
|---------------------------|----------------------------------|------------------|-----------------------------------------------|-------------|------------|----------------------|------------------------|---------------------------------------|-----------|------------|--------|-------------|
|                           |                                  | ng<br>H20        | )                                             |             | Operator   | AGORGE               | o Me                   | <u>s</u> fits                         |           | K          | = (.06 | ,           |
| Travers                   | Clock                            | Dry gas meter    | ^ P                                           | ^ H         | Stack      | Dry gas m            | eter temp.             | Hot box                               | Probe     | Last       | Vacuum |             |
| Point                     | Time                             | reading ft3      | in H2O                                        | in H2O      | Temp. F    | Inlet                | Outlet                 | Temp.                                 | Temp      | Impinger   | in. Hg |             |
| 1050                      | 1050                             | 243.171          | 1.0                                           | 1.1         | 283        | 83                   | 84                     | 258                                   | 280       | 70         | 2      |             |
| (                         | 15"                              | 252.04           | 1.0                                           | 1.1         | 283        | 87                   | 84                     | 245                                   | 270       | 72         | 5-     |             |
|                           | 59"                              | 2258Le           | 40                                            | 1.1         | 784        | 96                   | 89                     | 254                                   | 282       | 70         | 5      |             |
|                           | 104                              | 300,44           | 110                                           | 1.2         | 284        | 97                   | 92                     | 254                                   | 275       | 68         | 5      | -           |
|                           | 124,4                            | 317.23           | 1.1                                           | 1.35        | 285        | 100                  | 74                     | 254                                   | 284       | 7)         | 45     | <del></del> |
|                           | 150                              | 327.64           | 1.0                                           | 1.1         | 285        | 102                  | 96                     | 251                                   | 270       | 75         | 5      |             |
| į                         | 211                              | 362.32           | 1.0                                           | 1, )        | 786        | 102                  | 98                     | 252                                   |           | 69         | 4      |             |
|                           | 265.1                            | 392-19           | 1.05                                          | 11/         | 286        | 105                  | 100                    | 253                                   | 255       | 7/         | 4      |             |
| *                         | 312                              | 417.51           | , <u>, , , , , , , , , , , , , , , , , , </u> |             |            |                      |                        |                                       |           |            |        |             |
| 7                         | 3120                             | 417.6            | 1.0                                           | 1.1         | 287        | 103                  | 100                    | 253                                   | 261       | 68         | 2.0    |             |
| 1720                      |                                  | 458.20           | 1.0                                           | 1.1         | <b>788</b> | 112                  | 105                    | 252                                   | 249       | 67         | 4.0    |             |
| 7                         | 474,5                            | 508.98           | 1.0                                           | 1.1         | 284        | 107                  | 101                    | 953                                   | 255       | 68         | 4,0    |             |
|                           | 534.5                            | 544.55           | 15                                            | 14          | 285        | 101                  | 96                     | 253                                   | 260       | 65         | 4.0    |             |
|                           | 606.0                            | 584.01           | 1.0                                           | 111         | 280        | 99                   | 93                     | 252                                   | 353       | 61         | 4.0    | **          |
|                           | 6515                             | 60860            | 140                                           | 1.1         | 280        | 59                   | 85                     | 253                                   | 251       | 63         | 4:0    |             |
|                           | 653.6                            | 632,72           | 10                                            | 1.1         | 28 H       |                      | 92                     | 252                                   | 260       | 18         | 4.0    |             |
|                           | 74572                            | 661.67           | 1.0                                           | 111         | 282        | 97<br>53             | 85                     | 253                                   | 255       | 55         | 40     |             |
| <del></del>               | 799.0                            | 691.64           | ارن                                           | 1.1         | 182        | 91                   | 86                     | 252                                   | 258       | <b>₹</b> 7 | 4.0    |             |
|                           | 887-3                            | 739.44           | 1.0                                           | 1.1         | 280        | 94                   | 58                     | 253                                   | 264       | 61         | 4.0    |             |
|                           | 94050                            | 768.28           | 1.0                                           | 1.0         | 279        | 92                   | 87                     | 252                                   | 255       |            | HIA    |             |
|                           | 1021.9                           | 813.06           |                                               | 101         | 275        | 85                   | 84                     | 253                                   | 250       | 63         | 4.0    |             |
|                           | 1074,2                           | 841,93           | 1.0                                           | 1.1         | 279        | 88                   | 87                     | 253                                   | 25        |            | 4.5    |             |
|                           | 112113                           | 866.48           | 10                                            | 1. (        | 279        | 91                   | 85                     | 253                                   | 252       | 50         | 415    |             |
|                           | 1170                             | 8 94. 38         | 1.0                                           | 1.1         | 260        | 90                   | 85                     | 2532                                  | 201       |            | 5      |             |
|                           | 1182.4                           | 701-34           |                                               |             |            |                      | <u> </u>               |                                       |           |            |        |             |
|                           |                                  |                  |                                               |             |            |                      |                        |                                       |           |            |        |             |
|                           |                                  |                  |                                               |             |            |                      |                        |                                       |           |            |        |             |
| Avg.                      |                                  | <i>45</i> 8.079  | J 0092                                        | 1.1         | 2828       |                      | 93.9                   |                                       |           |            |        |             |
| Check'd                   |                                  |                  |                                               |             |            |                      |                        |                                       |           |            |        |             |
| FILTER<br>AMBIEN<br>PROBE | LE#<br>#<br>NT TEMP.<br>LENGTH _ | 10'6             |                                               |             |            | % Moistu<br>Flowrate | ne_<br>DSCFM)_<br>(%)_ |                                       |           |            | •      |             |
|                           |                                  | Stop to some ash | •                                             | c. <b>t</b> | av Fn      | T                    | <b>л</b> Д 4           | inel                                  | lov       |            |        |             |

 $\wedge$ 

**ESP OUTLET** Page \_\_\_\_ of \_\_\_\_ Plant Name Plant Yates Station Boiler No. 1 EXP OUT Train Bulk Particulate-Radionuclides Run No. 3 Sampling Location Time Finish 06/9 Test Duration 6/9 min. Diameter ft Initial Leak Rate 0.0076/10 cfm PTCF 84 DGMCF 1.005 Nozzle Dia. . 197 inches Final Leak Rate 1005 0106 cfm Bar Press 2942 "Hg K=1.09 Nous\_ -//.*D*\_\* H2O Operator Static Press ^ P Clock Dry gas meter Stack Dry gas meter temp. Hot box Probe Travers Vacuum reading ft3 in H2O in H2O Temp. F Inlet Point Time Outlet Temp. Temp Impinger in Hg 278 1.2 260 1.05 24 927.0 249 1.05 280 94 89 255 250 105 1.2 284 1.05 105 101 1.05 105 109 104 246 1/2 1.45 103 104 251 101 367 286 101 58 **286** 284 TMS 104 105 257 261 105 1.05 1,05 2811 1.95 1.2 280 280 1.05 88 105 11.2 86 279 11377 56577 1.05 1.2 275 627 580.3 0619 667.090 1.0217 1.200 2820 Avg. Check'd CONSOLE # 4/1/400 Velocity % Mousture FILTER # \_\_\_\_\_ 928 Flowrate (DSCFM) AMBIENT TEMP. lsokinetic (%)\_\_\_\_\_ PROBE LENGTH 10' 66455 LINER MATERIAL REMARKS

10f1

| ESP OUTLET |     |
|------------|-----|
| 1          | . / |

| Plant N    | Name _                                           | Plant                                            | Vates St                                         | ation Bo         | iler No.                                         | 1                                     |                                                                                                               |              |                                                  | Page Z                                            | _ of                                             |                       |
|------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------|--------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|-----------------------|
| Samelina   | Location                                         | OU/cf                                            |                                                  |                  | Train                                            |                                       | <br>Particula                                                                                                 | ite-Ex. N    | <b>letals</b>                                    | Run                                               | No. /                                            |                       |
| Date 4/2   | 24/47                                            | Time Start                                       |                                                  |                  | _                                                | sh CD70                               |                                                                                                               |              |                                                  |                                                   |                                                  | _                     |
| Duct Din   | nensions                                         | 11'4" X                                          | 11'4"                                            | _                | Diameter                                         |                                       | ft                                                                                                            | Initial Le   | ak Rate                                          | 0.015                                             | cfm                                              |                       |
| PTCF_      | 184                                              | // // X _<br>DGMCF 9                             | 98                                               | Nozzle D         | ia                                               | inch                                  | es                                                                                                            | Final Lea    | k Rate 2                                         | -014                                              | cfm                                              |                       |
| Bar Press  | s <u>29.5</u>                                    | Hg                                               |                                                  |                  | -2                                               | 30                                    |                                                                                                               |              |                                                  |                                                   | ,                                                | 3.4                   |
| Static Pro | eus <u>-//</u>                                   | /" H20                                           | )                                                |                  | Operator                                         |                                       |                                                                                                               |              |                                                  |                                                   |                                                  |                       |
| Travers    | Clock                                            | Dry gas meter                                    | ^ P                                              | ^ н              | Stack                                            | Dry gas m                             | eter temp.                                                                                                    | Hot box      | Probe                                            | Last                                              | Vacuum                                           |                       |
| Point      | Time                                             | reading ft3                                      | in H2O                                           | in H2O           | Temp. F                                          |                                       | Outlet                                                                                                        | Teinp.       | Temp                                             | Impinger                                          | in. Hg                                           |                       |
|            | 0                                                | 11/20                                            | 1.30                                             | 260              | 287                                              | 99                                    | 9/                                                                                                            | 257          | 252                                              | 67                                                | 12                                               |                       |
|            | 9. i                                             | 420.67                                           | 1-30                                             | 2.58             | 256                                              | 100                                   | 92                                                                                                            | 256          | 25 3                                             | 12.                                               | 12                                               |                       |
| <b></b> _  | 41.3                                             | 497.85                                           | 1.30                                             | 2.61             | 285                                              | 102                                   | 94                                                                                                            | 259          | 248                                              | 84                                                | 11.8                                             |                       |
| <u> </u>   | 121.9                                            | 566.92                                           | 1.3                                              | 2.6              | 282                                              | 109                                   | 47                                                                                                            | 259          | 253                                              | 76                                                | 12                                               |                       |
|            | 184                                              | 620.24                                           | 1.3                                              | 2.6              | 288                                              | 1/4                                   | 102                                                                                                           | 26/          | 20                                               | 70                                                | 12                                               |                       |
|            | 226.1                                            | 656.70                                           | 1,15                                             | 2.65             | 289                                              | 106                                   | 9-1                                                                                                           | 261          | 25/                                              | 53                                                | 11.5                                             |                       |
| X          | 253                                              | 1,40.1                                           | 1//                                              | 400              |                                                  | 100                                   | <del>                                     </del>                                                              | <b>1</b>     | <del> -/-</del>                                  | <u>ر ر ر</u>                                      | 1.00                                             |                       |
| <b> </b>   | 253                                              | 680.1                                            | 1,15                                             | 2.65             |                                                  |                                       | <del> </del>                                                                                                  | <del> </del> | <del>                                     </del> | <del>                                     </del>  | <del>                                     </del> |                       |
|            | 377.6                                            | 734.0-                                           | 1.10                                             |                  | 282                                              | 89                                    | -1                                                                                                            | 257          | 249                                              | 49                                                | 10.5                                             |                       |
| र्भग       | 333.7                                            | 745.75                                           | 1.10                                             |                  | 20                                               | 86                                    | 8/                                                                                                            | 100          | 4.1                                              | 1//                                               | 10.3                                             |                       |
|            |                                                  | 746.3                                            | <del>                                     </del> | :                |                                                  | <u> </u>                              |                                                                                                               |              |                                                  | · · · · · · · · · · · · · · · · · · ·             | <del>                                     </del> |                       |
| +a.r       |                                                  | 757.75                                           | 1.20                                             | 2.45             | 283                                              | 89                                    | 80                                                                                                            | 258          | 249                                              | 50                                                | 7.5                                              |                       |
| 73.63      | 3594                                             | 798.16                                           | 1.20                                             | 2.45             |                                                  | 93                                    |                                                                                                               |              |                                                  |                                                   | 7-5                                              |                       |
| 7192       | 4080                                             |                                                  | 1.20                                             |                  | Ţ                                                | 91                                    | 85                                                                                                            | 257          | 257                                              | 56                                                | 7.5                                              | <del></del>           |
| ¥          | 539.8                                            |                                                  | 1,20                                             | 2.45             | _                                                | 93                                    | 83                                                                                                            | 257          | 249                                              | 49                                                | 7 — _ 1                                          |                       |
|            |                                                  | 946,30                                           | <del>                                     </del> |                  |                                                  | 54                                    | 84                                                                                                            | 258          | 353                                              | 47                                                | 7.5                                              |                       |
| Ì          |                                                  |                                                  | 1,20                                             | 2,45             |                                                  | 91                                    | 1                                                                                                             | 258          | 350                                              | 5-                                                | 7.5                                              |                       |
|            | 1                                                | 1016.18                                          | 1:20                                             |                  | ł .                                              |                                       | 80                                                                                                            | 255          | 251                                              | 50                                                | 80                                               | <del></del>           |
| <u></u>    | 7421                                             | 70:38                                            | 1120                                             | T                |                                                  | 93                                    | 83                                                                                                            | 258          | 350                                              | 52-                                               | 8.0                                              |                       |
|            |                                                  | 108.30                                           | 120                                              | T -              | 378                                              | 92                                    | 81                                                                                                            | 260          | 350                                              | 46                                                | 810                                              |                       |
| <b></b>    | 275                                              | 213,46                                           | 1,20                                             | 2,45             | 10                                               | 91                                    | 82                                                                                                            | 258          | 257                                              | 48                                                | 8.0                                              |                       |
| <b> </b>   | <del>                                     </del> |                                                  | <del>                                     </del> | <del></del>      | <del>+</del>                                     | 42                                    | 6.2                                                                                                           |              |                                                  | 50                                                | · · · · · · · · · · · · · · · · · · ·            |                       |
| }          | 471.9                                            | 25719                                            | 1,20                                             | 2.45             | 279                                              | 22                                    | 183                                                                                                           | 355          | 251                                              |                                                   | 8.0                                              | -                     |
| 12.8hr     | 10235                                            | 343.67                                           | 1.15                                             | 2,48             | 279                                              | 91                                    | 82                                                                                                            | 257          | 250                                              | 45                                                | 8,0                                              |                       |
| 11.00      |                                                  | 3695                                             | 1, /3                                            | 2.35             | 274                                              | 91                                    | 06                                                                                                            | 257          | 210                                              | 72                                                | 8-0                                              |                       |
| ļ          | 111110                                           | 367/5                                            | <del>                                     </del> |                  | <del>                                     </del> |                                       |                                                                                                               |              | ┼                                                | <u> </u>                                          | +                                                |                       |
| <b> </b>   | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     | <del> </del>     | <u>;</u><br>                                     | 1                                     | <del>                                     </del>                                                              | + ,          | +                                                | <del>                                      </del> | +                                                | <del>  </del>         |
| <b> </b>   | -                                                | <del> </del>                                     | <del>  _</del>                                   | <del>}</del>     | 1                                                |                                       | <del>                                     </del>                                                              | -}           | 1                                                | <del>}                                    </del>  | <del>}</del>                                     |                       |
| Ava        | <del> </del>                                     |                                                  | 1/00                                             |                  |                                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                               |              | 1                                                |                                                   |                                                  |                       |
| Avg.       |                                                  | 906.5                                            | 1.100 8                                          | 7 UA             | 282                                              | 90.9                                  |                                                                                                               |              |                                                  |                                                   |                                                  |                       |
| Check'd    |                                                  | 7/273                                            | (4. 10 - V. Hr.)                                 | A Contraction on | 160                                              |                                       | e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de |              | • <b>1</b>                                       | a transcriber                                     |                                                  | , i                   |
| CONSO      | LE#                                              | 1/6/395                                          |                                                  |                  |                                                  | Velocity_                             | Section 15                                                                                                    |              |                                                  |                                                   | &                                                |                       |
|            | # 910                                            | 929                                              |                                                  | -                |                                                  | % Moistu                              |                                                                                                               | , A BOOK WAS |                                                  |                                                   | S.<br><b>≅</b>                                   |                       |
| AMBIEN     | NT TEMP.                                         | 90                                               |                                                  |                  |                                                  |                                       | DSCFM)_                                                                                                       |              |                                                  |                                                   |                                                  |                       |
|            | LENGTH                                           | 10'                                              |                                                  |                  |                                                  | Isokinetie                            | (%)                                                                                                           |              |                                                  |                                                   | <u> </u>                                         |                       |
| LINER      | MATERIAI                                         | L <u>'</u>                                       |                                                  |                  |                                                  |                                       |                                                                                                               |              |                                                  |                                                   |                                                  |                       |
| REMAR      | .K.c                                             | MIZZIETO                                         | 000                                              | ,                | 230                                              | .230                                  | 230                                                                                                           |              |                                                  |                                                   |                                                  |                       |
| CT-IAI W.  |                                                  |                                                  |                                                  |                  |                                                  |                                       |                                                                                                               | Alla         | 1                                                | 1                                                 |                                                  |                       |
| C-8        | 0                                                | Lost Permission                                  | <b>w</b> 🕙                                       | 16100            | mento m                                          | וויים                                 | 590)                                                                                                          | - priva      | اد لممه                                          | 100 AB ()                                         | as H                                             | $\gamma \sim \varphi$ |
|            |                                                  | resions 6                                        | 1620                                             | <b>)</b>         |                                                  |                                       | **                                                                                                            | 54517        | eut 10                                           | -8MM                                              | 125 T                                            | 71/2 /Y               |

ESP OUTLET

| C . 1"     | lame       | Plant<br>550 00 |        |        | Train    |                | Particula  | to Ev. N    | Matals      | D 1               | No. 2                       |   |
|------------|------------|-----------------|--------|--------|----------|----------------|------------|-------------|-------------|-------------------|-----------------------------|---|
| Sampling   | 7 10 QZ    | Time Start      | 1040   |        | _        | ish <u>66.</u> |            |             |             |                   | <b>10.</b> <u>←</u><br>min. | _ |
| Duct Din   | nensions 1 | $\frac{1.4}{x}$ | 11.4   |        |          |                |            | Initial Lea | nk Rate 4   | 0.0096            |                             |   |
| PTCF       | 8          | DGMCF 0.94      |        |        |          |                | ies        |             |             | .060              |                             |   |
|            |            | 5 " Hg          |        |        |          |                | ι Δ        |             |             | 6                 | <del>///</del>              |   |
| Static Pro |            | 1/* н2с         | )      |        | Operator | Assorted       | ll state   | <u> </u>    | K=1.        | 9                 |                             |   |
| Travers    | Clock      | Dry gas meter   | ^ P    | ^н     | Stack    | Dry gas in     | eter temp. | Hot box     | Probe       | Last              | Vacuum                      |   |
| Point      | Time       | reading f13     | in H2O | in H2O | Temp. F  | Inlet          | Outlet     | Temp.       | Temp        | Impinger          | in. Hg                      |   |
|            | 1040       | 390.40          | 1.7    | 2,3    | 282      | 18             | 77         | 278         | 254         | 63                | 8                           |   |
|            | 22"        | 407.91          | 1.2    | 2.3    | 283      | 92             | 81         | 269         | 253         | 62                | 8                           |   |
|            | 70"        | 446.06          | 1.2    | 2,3    | 284      | 100            | 88         | 257         | 254         | 64                | 8                           |   |
|            | 116        | 483.1           | 1.2    | 2.3    | 284      | 101            | 91         | 260         | 252         | 23                | S                           |   |
|            | 1325       | 496-2           | 1.2    | 2-3    | 285      | 183            | 17         | 259         | 250         | 34                | 8                           |   |
|            | 162        | 570.08          | 1.2    | 23     | 286      | 104            | 94         | 262         | 253         | 56                | ક                           |   |
|            | 223        | 569.59          | 1.2    | 2.3    | 286      | 105            | 95         | 259         | 253         | 20                | ક                           |   |
|            | 276.6      | 612-07          | 1-25   | 2,35   | 286      | 108            | 91         | 259         | 250         | 53                | 8                           |   |
| STUP       | 3160       | 644.78          |        |        |          |                |            |             |             |                   |                             |   |
| Shit       | 00.00      | 644.92          | 1.2    | 2.3    | 286      | 104            | 97         | 261         | 253         | 54                | 5                           |   |
| 1225       | 00.00      | 116.50          |        |        |          |                |            |             |             |                   |                             |   |
|            | · 80.9     | ¥2.04           | 1,2    | 2.3    | 386      | 106            | 17         | 261         | 250)        | 57                | 5                           |   |
|            | 143.0      | 520,60          | 112    | 2,3    | 284      | 101            | 94         | 255         | 252         | 52                | 5                           |   |
|            | 212.5      | 585,76          | 1,2    | 2.3    | 281      | 99             | 51         | 696         | 250         | 49                | 5                           |   |
|            | 258.0      | 921.51          | 1,2    | 23     | 281      | 98             | 90         | 260         | 251         | 51                | 5                           |   |
|            | 300.0      | 955.15          | 1.2    | 2,7    | 284      | 98             | <b>ዩ</b> ና | A 745       | એ તસ        | 47                | 5                           |   |
|            | 357.8      | 996:15          | 1,2    | 3,3    | 281      | 95             | 86         | 259         | 251         | 48                | 5                           |   |
|            | 405,5      | 1038.30         | 1,2    | 2,3    | 280      | 92             | 83         | 255         | <i>3</i> 50 | 48                | 6                           |   |
|            | 493.7      | 1108.81         | 1.2    | 2.3    | 279      | 95             | 85         | 258         | 251         | 30                | 6                           |   |
|            | 546.9      | 1150.79         | 1.2    | 2.3    | 278      | 93             | 84         | 25>         | 250         | 47                | 6                           |   |
|            |            | 1214.88         | 1,2    | 2.7    | 279      | 90             | 82         | 257         | 250         | $\mathcal{C}_{0}$ | T)                          |   |
|            |            | 1255.44         |        | 2.3    | 275      | 85             | 80         | 257         | i           | 50                | 6                           |   |
|            |            | 1291.96         | 1.2    | 2.7    | 280      | 92             | 82         | 259         | 289         | 44                | 6.5                         |   |
|            | 778        | 1232.13         | 1.2    | 23     | 280      | 92             | ४३         | 258         | 255         | 44                | 7                           |   |
|            | 787,1      | 1339.29         |        |        |          |                |            |             |             |                   |                             |   |
|            |            |                 |        |        |          |                |            |             |             |                   |                             |   |
|            |            |                 |        |        |          |                |            |             |             |                   |                             |   |
|            |            |                 |        |        |          |                |            |             |             |                   |                             |   |
| Avg.       |            | 948.750         | 11.08  | 2,300  | 2125     | 926            | ise i iir  |             |             |                   |                             |   |
| Check'd    |            |                 |        |        | Agar a   |                | 4 ( ) ( )  |             |             |                   |                             |   |

Page \_\_\_\_ of \_\_\_

Plant Name Plant Yates Station Boiler No. 1

Sampling Location For Out For Train — Particulate Metals Run No.

Date 6/21/23 Time Start 1/37 Time Finish 0621 Test Duration 1/25 min. Duct Dimensions (1'7' X 11'4" Duct Dimensions 1/4" X 1/4" Diameter ft Initial Leak Rate -010 10" cfm PTCF 084 DGMCF 1.999 NOZZLE DIA. . 229 inches Final Leak Rate 010 6" cfm Bar Press Z9.42 "Hg Operator <u>ND/TM/TJB</u> Static Press -// "H2O K=1.97 Travers | Clock | Dry gas meter ^ P ^ H Stack Dry gas meter temp. Hot box Probe Last Vacuum in H2O in H2O Temp. F Point Time reading ft3 Inlet Outlet Temp. Temp Impinger in Hg 97 347 00 271 94 20 361.15 283 85 245 253 394.7 250 104 2.53 474.01 109 253 102 255 106 101 259 106 249 202 96 103 98 250 635.3 97 292 164 259 95 260 TAD 102 249 249 257 249 255 250 284 44 1149 349 45 121.4 1014,22 85 260 l 249 46 275 85 257 250 45 51 257 249 42 1097.0 135.63 0.57 378 55 158 247 42 2621 1125 812.605 19890 1.900 285 Check'd Velocity\_\_\_\_ FILTER # \_\_\_\_ % Moisture Flowrete (DSCFM) AMBIENT TEMP. PROBE LENGTH Isokinetic (%) LINER MATERIAL REMARKS

ESP OUTLET

Plant Name \_\_\_\_ Plant Yates Station Boiler No. 1 Sampling Location SSP OUTLET Train Size Fract. Particulate Run No. 82 Date 2/26/93 Time Start 1/30 Time Finish 0636 2/27 Test Duration 1/09 min.

Duct Dimensions 1/4" X 1/4" Diameter ft Initial Leak Rate 0506 2/20 PTCF .84 DGMCF 1.007 Nozzle Dia. .2// inches Final Leak Rate \_\_\_ cfm Bar Press 29,55 " Hg Operator Works Static Press -// ^ H ^ P Stack | Dry gas meter temp. Travers | Clock | Dry gas meter | Hot box Probe Last Vacuum in H2O Temp. F Point Time reading ft3 in H2O Inlet Outlet Temp. Temp linpinger in Hg 5708.850 70\_ 2 84 2\_ 100 101 286 2 235.0 .0 2 8 D 2 281 70 TheD 2 104110 85 Slo 2 \* stopset 592,5 11260,72 85 80 2 82 1103 1253.08 11087 1256.47 687.620 1384 1.450 278.7 Avg. Check'd console # #16/396 FILTER # 1258 (Thimble Velocity % Moisture Flowrate (DSCFM) AMBIENT TEMP. lsokinetic (%) PROBE LENGTH LINER MATERIAL REMARKS AHD 1.775 \* ampty silver jul

ESP OUTLET

| 1"           |                | Plant<br>Outle                          | <b></b>       |             | Train     | Size Fra                                         | <br>ict. Parti | culate                                           | Run                     | Page /                                  | I         |                                                  |
|--------------|----------------|-----------------------------------------|---------------|-------------|-----------|--------------------------------------------------|----------------|--------------------------------------------------|-------------------------|-----------------------------------------|-----------|--------------------------------------------------|
| ampung       | Location       | Time Start  If Y X  DGMCF 1.6           | 6140          |             | Time Fini | sh 270                                           | 0 415          | Test Dum                                         | 1376                    | 2                                       | لب<br>min |                                                  |
| uet Di-      | 174195         | Thire Start Y                           | 1             | 144         | Diameter  |                                                  | - <u>4 2-2</u> | Initial Lea                                      | ik Rate                 | 0017                                    | 12. cfm   |                                                  |
|              | kη<br>γη       | ^                                       | 07            | Nozzie D    | ia21(     | inch                                             | es             | Final Leaf                                       | k Rate                  | <u> </u>                                | cfm       |                                                  |
| ar Press     | -07<br>29 T    | 3" Hg                                   | <u> </u>      | . TO LEEU D |           |                                                  |                | ,                                                |                         |                                         |           | Kal                                              |
| tatic Pre    | ee -1          | 3" Hg<br>[" H20                         | )             |             | Operator  | Mou                                              | le stal        |                                                  |                         |                                         |           |                                                  |
|              |                |                                         |               |             |           |                                                  |                |                                                  |                         |                                         |           |                                                  |
| ravers       | J              | Dry gas meter                           |               |             | i .       | Dry gas m                                        |                | <b>†</b> i                                       |                         | Last                                    | Vacuum    |                                                  |
| Point        | Time           | reading ft3                             | in H2O        | in H2O      | Temp. F   | Inlet                                            | Outlet         | Temp.                                            | Temp                    | Impinger                                | in. Hg    | <u> </u>                                         |
|              | 0              | 715.378                                 | .78           | 1.288       | 278       | 81                                               | 78             |                                                  |                         | 70                                      | 2         |                                                  |
| ĺ            | 9              | 720-37                                  | સ્ટ્ર         | 14125       | 278       | 83                                               | 78             |                                                  |                         | 66                                      | 2         |                                                  |
|              | 40             | 739.96                                  | 1.0           | 1,94        | 279       | 54                                               | 85             |                                                  |                         | 68                                      | 2         |                                                  |
|              | 64             | 75427                                   | 1.0           | 1.4         | 281       | 35                                               | 88             |                                                  | <del></del>             | 69                                      | 2_        |                                                  |
|              | 30             | 270.55                                  | 7.0           | 13          | 282       | 100                                              | 92             |                                                  |                         | 65                                      | 2_        |                                                  |
|              | 131            | 795.60                                  | 1.0           | 1.3         | 283       | 101                                              | 55             |                                                  | <del></del>             | 64                                      | 1_        |                                                  |
|              | 163            | 815.04                                  | 1.0           | 1.3         | 284       | 104                                              | 97             |                                                  |                         | 67                                      | 2_        | <del>                                     </del> |
|              | 188            | 831.18                                  | /, 0          | 1.3         | 284       | 102                                              | 96             | <del> </del>                                     | _                       | 59                                      | 2         | <del> </del>                                     |
| 1            | <del></del>    |                                         | .95           | 1.3         |           | <del>                                     </del> |                |                                                  |                         |                                         | 7         |                                                  |
| <del> </del> | 2/1            | 846.38                                  | 94            | 1.2         | 285       | 104                                              | 96             | <del> </del>                                     |                         | 61                                      | 2         |                                                  |
|              | 254            | 872.89                                  |               |             | 286       | 96                                               |                |                                                  |                         | 68                                      |           | <del>                                     </del> |
| -            | 290            | 394.6                                   | 1.0           | 1.4         | 283       |                                                  | 93             |                                                  |                         | 57                                      | 2.0       | <del>  -</del>                                   |
|              |                | 948,25                                  | _             | 1,4         | 287       | 100                                              | 93             |                                                  |                         | 62                                      |           | <u> </u>                                         |
|              |                | 989.68                                  | 1.0           | 1.4         | 290       | 105                                              | 99             | ļ                                                |                         | 45                                      | 2         |                                                  |
|              |                | <del>860</del> 883                      |               |             |           |                                                  |                |                                                  |                         |                                         |           |                                                  |
|              | 624-8          | 1107.82                                 | ,93           | 1.7         | 28/       | 87                                               | 80             |                                                  |                         | 55                                      | 2         |                                                  |
|              | 6740           | 1.138.68                                | 0.93          | 1.4         | 282       | 89                                               | 83             |                                                  |                         | $\Omega$                                | 2         |                                                  |
|              |                | 173,00                                  | 0.53          | 1.4         | 282       | 89                                               | 82             |                                                  |                         | 56                                      | ূ         |                                                  |
|              |                | 217.31                                  | 0193          | 1,4         | 282       | ₹0                                               | 8 1            |                                                  |                         | 57                                      | 2.5       | †                                                |
|              | 857.1          | 251.94                                  |               | T           | 279       | 89                                               | 83             |                                                  |                         | 62                                      | 2,5       | 1                                                |
|              |                | 304.910                                 |               |             | -         |                                                  |                |                                                  |                         |                                         |           |                                                  |
| 12 12/       | 9/1/10         | 305.125                                 | 0.43          | 1.14        | 279       | 84                                               | 74             | <u> </u>                                         |                         | 61                                      | 2.5       |                                                  |
|              | 103.0          | 34417                                   | 0.53          |             | 277       | 90                                               | 82             |                                                  |                         | 64                                      | 2,5       | <del>                                     </del> |
|              |                |                                         |               | 1,3         |           | 8-8                                              | 81             |                                                  |                         |                                         |           |                                                  |
|              | 101A.O         | 372.63                                  | 0.86          |             | 279       | · ·                                              |                | <del>                                     </del> |                         | 54                                      | 2.5       | $\vdash$                                         |
|              | 1118.2         | 416,54                                  | 0.86          | 1.3         | 278       | 89                                               | 82             | <del> </del>                                     | <u> </u>                | 52                                      | 2.5       | 1                                                |
|              | 1177.5         | 451.70                                  | 0.86          |             | 278       |                                                  | \$1            | <del> </del>                                     | <del> </del>            | 5(                                      | 3.5       | <del> </del>                                     |
|              |                | 184110                                  | 0.86          |             | 278       | 90                                               | 83             | -                                                | <del> </del>            | 53                                      | 3.5       | -                                                |
| -1.          |                | 513.84                                  | 0.86          |             | 278       | 84                                               | 83             | <u> </u>                                         |                         | 50,                                     | 3.5       | 1                                                |
|              | 1257.3         | 554.81                                  | 0.84          | 1.2         | 278       | 88                                               | 82             | <u> </u>                                         | 5 12 m 2 m 2 s          | 5-1                                     | 25        |                                                  |
| vg.          |                | н <b>осново з</b> угурыя по соятаяцью с |               |             | 10,000    |                                                  | gartan         |                                                  |                         |                                         |           |                                                  |
| heck'd       |                | 852.132                                 | 9581          | 13455       | 281.1     |                                                  | 89.8           |                                                  |                         |                                         |           |                                                  |
|              | •_             | 116/38/                                 |               |             |           | Later Living 193                                 | rativit iz     | n viitti tittaaase                               | cupustassan basar t     | ::::::::::::::::::::::::::::::::::::::: | t:        |                                                  |
|              |                | A 16/396                                |               | \           |           | - 1 120 (2) <del>[7]</del>                       |                | and the second second second                     |                         |                                         |           |                                                  |
|              | #              |                                         | <u>h.mble</u> | .)          |           |                                                  | <b>18</b>      |                                                  |                         |                                         |           |                                                  |
|              | ' <del>-</del> | <del> </del>                            |               |             |           |                                                  | DSCFM)_        |                                                  |                         |                                         |           |                                                  |
|              | LENGTH _       |                                         |               |             |           | Isokinetic                                       | (%)            | 2 300 M                                          | e unan Lugari (Sa) (Sa) | o (1990) (1990)                         | <u> </u>  |                                                  |
| INEK N       | ATERIAL        | ′ <del></del>                           |               |             |           |                                                  |                |                                                  |                         |                                         |           |                                                  |

ESP OUTLET Page of Plant Name Plant Yates Station Boiler No. 1 Sampling Location 25P OWLET Train Size Fract. Particulate Run No. 3 Sampling Location Control Time Finish DGL / rest Duration

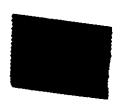
Date L 26 93 Time Start 12/8 Time Finish DGL / rest Duration

Diameter ft Initial Leak Rate 7.005 66 cfm

Time Finish DGL / rest Duration

Time Finish DGL / rest Duration

Time Finish DGL / rest Duration Bar Press 29, 42 - Hg Operator Leve Static Press - 1/- 0 " H2O R=101.3 ^ H Travers | Clock | Dry gas meter | ^ P Stack Dry gas meter temp. Hot box Probe Last Vacuum in H2O in H2O Temp. F Inlet Outlet Point Time reading ft3 Temp Impinger in Hg Temp. 284 258.76 1-6 214.7 282 92 1.2 1.6 1.6 282 63 300.7 1.2 160 92 128 286 :05 330.67 101 104 215 415.7 103 503.1 350 397.7 +31.78 286 <u>ሙ</u> 1.6 84 52 2 461.0 578112 281 2 50 129 49 4 2 47 49 2\_ 771.07 1.0 278 48 125 93 88 49 130 44 1.0 274 87 122 1.0 48 10 91 86 122 274 45 1.4 274 84 125 1055 5 950.42 1.0 47 1 970 557 0627 1090 Avg. Check'd CONSOLE # 4161394 FILTER# 1255 (Thimble) % Moisture Flowrate (DSCFM)\_\_\_\_ AMBIENT TEMP. Isokinetie (%)\_ PROBE LENGTH LINER MATERIAL


REMARKS

|              | UTLET                  | Station Boiler N | _                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |              |             |
|--------------|------------------------|------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------|-------------|
| Run No       | <u>/</u><br>5/21/63    |                  | <u> </u>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Operator                                   | TB           |             |
|              | •                      |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |              | <del></del> |
| Sorbing Reag | gents:                 | (Cb2)            | (O2)_                                     | (CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ))                                         |              |             |
| Replicate    | Original               | (CO2)            | (CO2)                                     | (02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (O2)                                       | (CO)         | (CO)        |
| Number       | Volume                 | Reading 2        | Volume                                    | Reading 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume                                     | Reading 4    | Volume      |
|              | Reading                | (ml)             | (2-1)                                     | (ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3-2)                                      | (ml)         | (4-3)       |
|              |                        | <u> </u>         | (ml)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (ml)                                       |              | (ml)        |
| 1            | 0                      | 6.0              | 6.0                                       | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.4                                       |              |             |
| 2            | υ                      | 6.2              | 6.2                                       | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.8                                       |              |             |
| 3            | 0                      | 6.6              | 6.6                                       | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.0                                       |              |             |
| <u> </u>     |                        |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |              |             |
|              |                        |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |              |             |
|              |                        |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |              |             |
|              |                        |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |              | <b>y</b>    |
|              |                        |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                   |              |             |
|              |                        |                  | . 4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |              |             |
|              |                        |                  | *                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                          |              |             |
|              |                        |                  | 65                                        | g 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131                                        |              |             |
| Averaged Re  | sults:                 | % CO2            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | <del></del>  |             |
| Averaged Re  | esults:                |                  |                                           | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 252          |             |
| Averaged Re  | esults:                | % CO2            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y-2                                        | ,            | ESP         |
| -            | sults:<br>ar Weight, M | % CO             |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | ,            | ESP O       |
| -            | ar Weight, M           | % CO             | Rur                                       | n #Trai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y-2                                        | t            | ESP O       |
| -            | ar Weight, M           | % CO             | Rur                                       | n #Trai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y-2                                        | t            | ESP O       |
| -            | ar Weight, M           | % CO             | Rur<br>Cor<br>Dat                         | n # Trai<br>mponent<br>te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-2<br>n <u>O1AO</u><br>2<br>9 Time        | Sm           | PIT TJE     |
| -            | =0.44_<br>(%C          | % CO             | Rur<br>Cor<br>Dat<br>D2)<br>Lat           | $\frac{1}{n} # \int_{-\infty}^{\infty} Train$ $\frac{1}{n} ponent have \frac{1}{n} = \frac{1}{n} + \frac{1}{n} = \frac{1}{n} \frac{1}{n} = \frac{1}{n} + \frac{1}{n} = \frac{1}{n} + \frac{1}{n} = \frac{1}{n} = \frac{1}{n} + \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}$ | Y-2<br>n_O_L\O\Z<br>QTime<br>Analysis      | Sm<br>(62 Oz | plr 7JB     |
| -            | =0.44_<br>(%C          | % CO             | Rur<br>Cor<br>Dat<br>D2)<br>Lat           | $\frac{1}{n} # \int_{-\infty}^{\infty} Train$ $\frac{1}{n} ponent have \frac{1}{n} = \frac{1}{n} + \frac{1}{n} = \frac{1}{n} \frac{1}{n} = \frac{1}{n} + \frac{1}{n} = \frac{1}{n} + \frac{1}{n} = \frac{1}{n} = \frac{1}{n} + \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}{n} = \frac{1}$ | Y-2<br>n_O_L\O\Z<br>QTime<br>Analysis      | Sm           | plr 7JB     |
| Dry Molecul  | =0.44(%C               | % CO             | Rur<br>Cor<br>Dat<br>(D2)<br>Lat<br>+ Tar | n # Train mponent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y-2<br>n_O_L_NO2<br>QTime<br>AnalysisFinal | Sm<br>(62 Oz | plr 7JB     |

ASSUME 02= 8.0 (0,= 11.1



|              | _            | Station Boiler N |             |              | Comments _ |                                         |         |
|--------------|--------------|------------------|-------------|--------------|------------|-----------------------------------------|---------|
| Location     | ST UUT       | Het              | <del></del> | <del> </del> |            |                                         | ·       |
| Date 6       | -<br>/22/93  |                  |             | <del></del>  | Operator   | TTB / 1.                                | MP      |
|              |              |                  |             |              |            | ·····                                   |         |
| Sorbing Reas | gents:       | (CO2)            | (02)_       | (CC          | ))         |                                         |         |
|              |              |                  |             |              |            |                                         |         |
| Replicate    | Original     | (CO2)            | (CO2)       | (O2)         | (O2)       | (CO)                                    | (CO)    |
| Number       | Volume       | Reading 2        | Volume      | Reading 3    | Volume     | Reading 4                               | Volume  |
|              | Reading      | (ml)             | (2-1)       | (ml)         | (3-2)      | (ml)                                    | (4-3)   |
|              |              |                  | (ml)        |              | (ml)       |                                         | (ml)    |
| /            | 0,0          | 11.2             | 11,2        | 19.0         | 7.8        |                                         |         |
| 2            | 0.0          | 11.1             | 1/11        | 19.0         | 7.9        |                                         |         |
|              |              |                  |             |              |            |                                         |         |
|              |              |                  |             |              |            |                                         |         |
|              |              |                  |             |              |            |                                         |         |
|              |              |                  |             |              |            |                                         |         |
|              |              |                  |             |              |            |                                         |         |
|              | <u> </u>     |                  |             |              |            |                                         |         |
|              |              |                  |             |              |            |                                         |         |
|              |              |                  |             |              |            |                                         |         |
| Averaged Re  | sults:       | % CO2            | 11.2        | % O2_        | 7.9        |                                         |         |
| •            |              |                  |             | -            |            |                                         |         |
|              |              | % CO             |             | % N2_        | 80.9       | 7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |         |
|              |              |                  |             |              |            |                                         |         |
| Dry Molecul  | ar Weight, M | W (dry) =        |             |              |            |                                         |         |
|              | =0.44        | +0.32            | +(          | 0.28         |            |                                         |         |
|              |              | O2) (%0          |             |              |            |                                         |         |
|              |              |                  |             |              |            |                                         |         |
| •            | =            | _+               | +           |              | Y-2        | 54                                      |         |
|              |              |                  | Run         | #2 Train     |            |                                         | ESP     |
|              |              |                  |             | ponent Do    |            |                                         | _ESP C  |
|              |              |                  |             |              | LAT        |                                         |         |
|              |              |                  |             |              |            |                                         | . — _ ^ |
|              |              |                  | Date        | 6-22-6       | Time_      | Smp                                     | 11JB    |



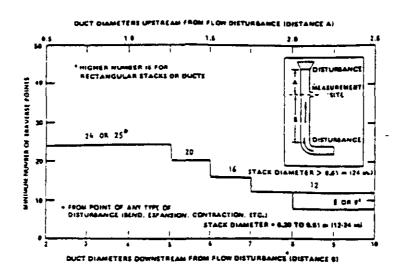
|                     |                               | Station Boiler N           |                                  |                           | Comments _                      |                                       | <del></del>                     |
|---------------------|-------------------------------|----------------------------|----------------------------------|---------------------------|---------------------------------|---------------------------------------|---------------------------------|
|                     |                               | Het                        |                                  |                           |                                 |                                       |                                 |
| Run No.             | <br> 23 93                    | ···                        |                                  | <del></del>               | Operator                        | TMO                                   |                                 |
| Date                | 127117                        | ·····                      |                                  | <del></del>               | Operator                        | 77-4                                  |                                 |
| Sorbing Reas        | gents:                        | (CO2)                      | (O2)_                            | (CC                       | ))                              |                                       |                                 |
| Replicate<br>Number | Original<br>Volume<br>Reading | (CO2)<br>Reading 2<br>(ml) | (CO2)<br>Volume<br>(2-1)<br>(ml) | (O2)<br>Reading 3<br>(ml) | (O2)<br>Volume<br>(3-2)<br>(ml) | (CO) Reading 4 (ml)                   | (CO)<br>Volume<br>(4-3)<br>(ml) |
| 1                   | 0.0                           | 10.6                       | 10.6                             | 19.0                      | 8.4                             |                                       |                                 |
| <u>/</u>            | 0.0                           | 10.6                       | 10.6                             | 19.1                      | 8.5                             |                                       |                                 |
|                     |                               |                            |                                  |                           |                                 |                                       | *****                           |
|                     |                               |                            |                                  |                           |                                 |                                       |                                 |
|                     | 1                             |                            |                                  |                           |                                 |                                       |                                 |
|                     |                               |                            |                                  |                           |                                 |                                       | <del></del>                     |
| Averaged Re         | esults:                       | % CO2                      | 10.6                             | % O2<br>% N2_             | 8.5                             |                                       |                                 |
|                     |                               | % CO                       |                                  | % N2_                     | 80.9                            |                                       |                                 |
| Dry Molecul         | lar Weight, M                 | W (dry) =                  |                                  |                           |                                 |                                       |                                 |
|                     | =0.44                         | +0.32_                     | +(                               | 0.28                      |                                 |                                       |                                 |
|                     |                               | (%02)                      |                                  |                           |                                 |                                       |                                 |
|                     | =                             | +                          | <br>Run # 3                      | Train 60                  | Y-255<br>Sat                    | ٥                                     | ESP Inlet                       |
|                     |                               |                            |                                  | nt boug                   |                                 | · · · · · · · · · · · · · · · · · · · | Stack                           |
|                     |                               |                            | =                                | 23-93                     | Time                            | Smplr 7                               | TB                              |
|                     |                               |                            |                                  | site Anal                 |                                 |                                       |                                 |
|                     |                               |                            |                                  |                           | <b>C</b>                        |                                       | C-                              |



| Plant        | Plant Yates S | tation Boiler No | o. 1           | _           | Comments _ | <u> </u>   |             |
|--------------|---------------|------------------|----------------|-------------|------------|------------|-------------|
| Location     | FSP C         | Sutlet           |                |             |            |            |             |
| Run No.      | Run           | 2-1 R            | in 1 bp        | ase2        |            | _          |             |
| Date         | 06            | 25-93            | <del></del>    | <del></del> | Operator   | DJV        | <del></del> |
| Sorbing Reag | ents:         | (CO2)            | (O2)           | (CO         | )          |            |             |
| Replicate    | Original      | (CO2)            | (CO2)          | (O2)        | (O2)       | (CO)       | (CO)        |
| Number       | Volume        | Reading 2        | Volume         | Reading 3   | Volume     | Reading 4  | Volum       |
|              | Reading       | (mi)             | (2-1)          | (ml)        | (3-2)      | (ml)       | (4-3)       |
|              |               |                  | (메)            |             | (ml)       |            | (ml)        |
|              | 0.0           | 11.2             |                | 18.8        | 7.6        |            |             |
| 2            | 0.0           | 11.2             | 11.2           | 18.8        | 7.6        |            |             |
|              |               |                  |                |             |            |            |             |
|              |               |                  |                |             |            |            |             |
|              |               |                  |                |             |            |            |             |
|              |               |                  |                |             |            |            |             |
|              |               |                  |                |             |            |            |             |
| Averaged Re  | sults:        | % CO2            | 11,2           | % O2        | 7.6        |            |             |
|              |               | % CO             | · · · · ·      | % N2        |            | 9114E -    |             |
| Dry Molecula | ar Weight, M  | W (dry) =        |                |             |            |            |             |
|              | =0.44         | +0.32            | +0             | .28         |            |            |             |
|              | (%C           | 02) (%0          | 2) (%C         | CO + % N2)  |            |            |             |
|              |               |                  |                |             | Y-329      | )          |             |
|              | =             | _+               | _+<br>Run #    | Train       |            |            | EZP O       |
|              |               |                  | Compon         | ient bag    |            |            |             |
| N.           |               |                  | <del>-</del> . |             | Time /54   | Smplr 7    | JB          |
| -            |               |                  | _              |             |            |            |             |
|              |               |                  | Lab ∩ſ         | ) Sute      | Analys     | is (0 > 0) | 7           |

| Plant             | Plant Yates S | station Boiler N | 10. 1         | _                | Comments _  |                                                  | <u> </u>         |
|-------------------|---------------|------------------|---------------|------------------|-------------|--------------------------------------------------|------------------|
| Location <u>2</u> | -SP Cut       | He t             | ·             |                  |             |                                                  |                  |
| Run No            | shase 2       | Non 2            |               |                  |             | _                                                |                  |
| Date              | 6/26/93       | run 2            |               |                  | Operator    | TMP                                              |                  |
|                   | / /           | <b>/</b>         |               | -                |             |                                                  |                  |
| Sorbing Reag      | ents:         | (CO2)            | (O2)_         | (CC              | D)          |                                                  |                  |
|                   |               |                  |               |                  |             |                                                  |                  |
|                   | <del>,</del>  |                  |               |                  |             |                                                  |                  |
| Replicate         | Original      | (CO2)            | (CO2)         | (02)             | (O2)        | (CO)                                             | (CO)             |
| Number            | Volume        | Reading 2        | Volume        | Reading 3        | Volume      | Reading 4                                        | Volume           |
|                   | Reading       | (ml)             | (2-1)         | (ml)             | (3-2)       | (ml)                                             | (4-3)            |
|                   |               |                  | (ml)          |                  | (ml)        | <u>                                     </u>     | (ml)             |
| /                 | 0.0           | 1100             | 11.0          | 18,6             | 7.6         |                                                  |                  |
| 2                 | 00            | 11.2             | 11.2.         | 18,6             | 7.4         |                                                  |                  |
|                   |               |                  |               | 1                | 11.         |                                                  |                  |
|                   |               |                  |               |                  |             | † · · · · · · · · · · · · · · · · · · ·          |                  |
|                   |               |                  |               |                  |             |                                                  |                  |
| ·                 |               | <u> </u>         |               | <del>   </del>   |             | <del>                                     </del> |                  |
|                   | <u> </u>      |                  |               | <u> </u>         |             |                                                  |                  |
|                   |               |                  |               |                  | <u> </u>    |                                                  |                  |
|                   | <u> </u>      | <u> </u>         |               | <u> </u>         | <u> </u>    |                                                  |                  |
|                   |               |                  |               |                  |             |                                                  |                  |
|                   |               |                  |               |                  |             |                                                  |                  |
|                   | 14            | <i>«</i> cos     | 11.1          | g 02             | 7.0         |                                                  |                  |
| Averaged Re       | suits:        | % CO2            |               | %_O2             | 1/3         |                                                  |                  |
|                   |               |                  |               | % N2             |             |                                                  |                  |
|                   |               | π co             |               |                  | <del></del> | <del></del>                                      | `                |
| Dry Molecul       | ar Weight, M  | W (drv) =        |               |                  |             |                                                  |                  |
| Diy Molocul       | ar worgh, m   | ··· (aly)        |               |                  |             |                                                  |                  |
|                   | =0.44         | +0.32            | +1            | 0.28             |             |                                                  |                  |
|                   | (%0           |                  |               |                  |             |                                                  | - <del>-</del> - |
|                   | (,,,,         | (11              | ,             |                  | Y-40        | <b>1</b> 6                                       |                  |
|                   | =             | +                | + <u>.</u>    | 2                | ,           |                                                  | _ESP Inle        |
|                   | -             |                  | Run #         | Train_           | ONat        | •                                                | ESP Outle        |
|                   |               |                  |               | _                | wez-        | Brig                                             | Stac             |
|                   |               |                  | -             |                  |             |                                                  | 720              |
|                   | •             |                  |               | 6-26-2           |             |                                                  | IJB              |
|                   |               |                  | 'Lab <u>c</u> | nsite            |             | rsis <u> </u>                                    | <del>Z</del>     |
|                   |               |                  | Tare '        | WT(g) <u>//b</u> | Fin         | al Wt(g)                                         | <u>a</u>         |

|                                         |              | Station Boller N                                   |          | _            | Comments _    | <del></del>                     |          |
|-----------------------------------------|--------------|----------------------------------------------------|----------|--------------|---------------|---------------------------------|----------|
|                                         |              | tkt                                                |          |              |               |                                 |          |
| Run No                                  | <u> 2-3</u>  |                                                    |          |              |               | -                               |          |
| Date                                    | 6/27/        | <i>53</i>                                          |          | <del></del>  | Operator      | TMP                             |          |
|                                         | •            | (CO2)                                              |          |              |               |                                 |          |
| Sorbing Reas                            | gents:       | (CO2)                                              | (O2)_    | (CC          | <b>D</b> )    |                                 |          |
|                                         |              |                                                    |          |              |               |                                 |          |
| Replicate                               | Original     | (CO2)                                              | (CO2)    | (O2)         | (O2)          | (CO)                            | (CO)     |
| Number                                  | Volume       | Reading 2                                          | Volume   | Reading 3    | Volume        | Reading 4                       | Volume   |
| • • • • • • • • • • • • • • • • • • • • | Reading      | (ml)                                               | (2-1)    | (ml)         | (3-2)         | (ml)                            | (4-3)    |
|                                         |              | (/                                                 | (ml)     | (/           | (ml)          | , , ,                           | (ml)     |
| /                                       | 0.0          | 11.4                                               | 11.4     | 19.0         | 7.6           |                                 |          |
| 2                                       | 0,0          | 11.4                                               | 11.4     | 19.0         | 7.6           |                                 |          |
|                                         |              | <del> "'                                    </del> | 77.7     | 77.0         | 7.0           | 1                               |          |
| ···· <u> </u>                           |              | <u> </u>                                           |          |              |               | +                               |          |
|                                         |              | <del> </del>                                       |          |              |               |                                 |          |
|                                         |              | <u> </u>                                           |          | <del> </del> |               |                                 |          |
|                                         |              |                                                    |          | <del> </del> | <del> </del>  |                                 |          |
|                                         |              |                                                    |          |              |               | <del> </del>                    |          |
| <del></del>                             | <u> </u>     | <u> </u>                                           | <u> </u> | <del>!</del> |               | 11                              |          |
|                                         |              |                                                    |          |              |               |                                 |          |
|                                         |              |                                                    |          |              |               |                                 |          |
| Averaged Re                             | sults:       | % CO2                                              | 11.4     | % O2_        | 7.6           |                                 |          |
| -                                       |              |                                                    |          | <del></del>  |               | <del></del>                     |          |
|                                         |              | % CO                                               |          | % N2_        | _ <del></del> |                                 |          |
|                                         |              |                                                    |          |              |               |                                 |          |
| Dry Molecul                             | ar Weight, M | W (dry) =                                          |          |              |               |                                 |          |
|                                         | =0.44        | . 0. 33                                            |          | n 10         |               |                                 |          |
|                                         |              | +0.32_<br>(%0) (%0                                 |          | U.28         |               |                                 |          |
|                                         | (200         | .02) (70)                                          | •        |              |               | Y-452                           |          |
|                                         | =            | +                                                  | + 1      | Run # 2-3 T  | :             | 1-432                           |          |
|                                         |              |                                                    |          | "            | ain orsi      | 7                               | ECD      |
|                                         |              |                                                    |          | omponent_    | ORSAT         |                                 | ESP      |
|                                         |              |                                                    | T.       | ate 6/27     | 13 Time       | 1300 Sn nalysis Co. Final Wt(a) |          |
|                                         |              |                                                    | L        | ab Dn Si     | ke A          | no luc                          | npir_738 |
|                                         |              |                                                    | Ta       | are WT(g)    |               | nalysis 2                       | 1002     |
|                                         |              |                                                    |          |              |               | Final Welol                     |          |


### TRAVERSE FIELD DATA SHEET

Plant Name Plant Yates Station Boiler Nol Stack Diameter 11 4" x 11 4"

Sampling Location\_ ESP DUTLET Sample Port Diameter 4"

Date 06-19-93 Sample Port Depth 18"

Operator RVW | TWM Distance Upstream Distance downstream



| averse Point Number | 1           |                 |              | Мип          | iber Tri | werse i                                        | Points | On A D       |      | •            |        |              |
|---------------------|-------------|-----------------|--------------|--------------|----------|------------------------------------------------|--------|--------------|------|--------------|--------|--------------|
|                     | 2           | 4               | 6            | a            | 10       | 12                                             | 14     | 16           | 18   | 20           | 22     | 24           |
|                     | 14.6        |                 | 4.4          | <u> </u>     | 1 28     | 2.1                                            | 1,8    | 1.6          | 1.4  | 1.3          |        |              |
| <del></del>         |             |                 |              |              |          |                                                |        |              |      |              |        | 1,1          |
| 5                   |             | 25.0            |              |              |          |                                                |        |              |      |              |        | 3.2          |
| <u> </u>            |             | j 7 <b>5.</b> 0 |              |              |          |                                                |        |              |      |              | 6.6    |              |
| 4                   | 1           | 82.3            | 70.4         | 32.3         | 22.6     | 17.7                                           | 14.6   | 12.5         | 10.5 | 9.7          | 8.7    | 7.9          |
| 5                   | 1           | ,               | 85.4         | 67.7         | 34.2     | 25.0                                           | 20.1   | 16.9         | 14.6 | 12.9         | 11.6   | 10.5         |
| 6                   | ı           |                 | 95.6         | 80.6         | 45.8     | 35.6                                           | 26.9   | 22.0         | 18.8 | 16.5         | 14,6   | 13.2         |
| 7                   | 1           | ·               | 1            | 19.5         | 77.4     | 64.4                                           | 36.6   | 28.3         | 23.4 | 20.4         | 18.0   | 16.1         |
| ð                   |             |                 | i            | 96.8         | 85.4     | 75.0                                           | 63.4   | 37.5         | 29.6 | 25.0         | 21.8   | 19.4         |
| Ģ                   |             | ,               |              |              | 91.6     | 82.3                                           | 73.1   | 62.5         | 34.2 | 30.6         | 26.2   | 23.0         |
| 10                  | ŀ           | i               |              | i            | 97.4     | 88.2                                           | 79.9   | 71.7         | 61.4 | 38.4         | 31.5   | 27.2         |
| :1                  | 1           | <u> </u>        | i            | ı            |          | 93.3                                           | 85.4   | 78.0         | 70.4 | 61.2         | 39.3   | 32.3         |
| 12                  | 1           | !               | i            | 1            | :        | 97.9                                           | 90.1   | 1421         | 78.4 | 69.4         | 80.7   | 39.8         |
| 13                  | 1           | 1               | i            | i            | !        |                                                | ₽4.3   | 47.5         | 81.2 | 75.0         | 60.5   | 60.2         |
| 14                  | :           |                 | i            |              | ,        |                                                | 94.2   | 01.5         | 85.4 | 79.6         | 73.8   | 67.7         |
| · š                 | i           |                 | i            | :            | Ī        |                                                |        | 95,1         | 80.1 | 1.58         | 78.2   | 72.1         |
| `6                  | -           | 1               |              |              | [        |                                                | 1      | 98.4         | 92.5 | 57,1         | 82.0   | 77.0         |
| 17                  |             | <del></del>     | <del></del>  |              |          | :                                              | ,      | 1            | 95.6 | 96.3         | 1 85.4 | 80.6         |
| 18                  |             |                 | 1            |              |          | <u>.                                      </u> |        |              | P8.6 | 93.3         | 38.4   | 83.0         |
| :9                  |             |                 | :            |              |          |                                                | -      | ·            | !    | 86.1         | 91.3   | 84.4         |
| 20                  | 1           |                 | <del>.</del> |              | ;        | ·<br>:                                         | ī      | :            |      | 94.7         |        |              |
| 21                  | 1           | ;               |              | ;            |          |                                                |        |              |      |              | 90.5   |              |
| 22                  | i           | <del></del>     | -            | 1            |          |                                                |        |              |      | <u> </u>     | 94.9   | <del>.</del> |
| 73                  | <del></del> |                 |              | <u></u>      |          | <del>.</del>                                   | i      |              |      |              |        | 94.4         |
| 24                  |             | 1               |              | <del> </del> |          |                                                |        | <del>'</del> |      | <del>:</del> |        | 64.          |

|          | Traverse Points    |
|----------|--------------------|
| No.      | Distance From Wall |
|          | PORT DEDTH INCOM   |
| 1        | 126.5              |
| 2        | 143.5              |
| 3        | 60.5               |
| 4        | 77.5               |
| 5        | 194.5              |
| 6        | 111.5              |
| 7        | 128.5              |
| 8        | 1145.5             |
| 9        |                    |
| 10       |                    |
| 11       |                    |
| 12       |                    |
| 13       |                    |
| 14       |                    |
| 15       |                    |
| 16       |                    |
| 17       |                    |
| 18       |                    |
| 19       |                    |
| 20       | 1                  |
| 21<br>22 | !                  |
|          |                    |
| 23       | <u> </u>           |
|          | <u> </u>           |



| 0-1-        | Location  | 1140000      | Time Of                               | 100                  | ٠. ا ١١ ١٨                                       | 46.00 T'-                             | - Elejah    | 11 20                                            |                                        |
|-------------|-----------|--------------|---------------------------------------|----------------------|--------------------------------------------------|---------------------------------------|-------------|--------------------------------------------------|----------------------------------------|
| Duct Dim    | ensions . |              | <i>f</i> "                            | x //                 | ' 4"                                             | ft or Dia                             | ameter _    |                                                  | ······································ |
| PTCF        | 2.84      |              |                                       | ^                    | %но ≫                                            | - 7. <i>0</i>                         |             |                                                  | <del></del> '                          |
| Bar Press.  | ensions   | 48           |                                       | ″ Ha                 | % CO                                             | 7                                     | -<br>- % !  | V                                                |                                        |
| Static Pres | ss        | 10           | <del></del>                           | _ " H <sub>3</sub> O | % CO, _2                                         | ≈ 9.0                                 | % F         | 1,                                               |                                        |
| Operator i  | nitiais   | IWM R        | vw_                                   | _ '                  | % O,                                             | 7.4                                   | %(          | й, <u> </u>                                      |                                        |
|             | all fle   |              |                                       |                      | 4                                                |                                       |             | •                                                |                                        |
|             | Sta       | sck Temp. °F |                                       | Veid                 | city Pressure                                    | * H <sub>2</sub> O                    |             | Other (                                          | )                                      |
| Pt.         | #1        | #2           | Ave.                                  | #1                   | #2                                               | Ave.                                  | #1          | #2                                               | Ave.                                   |
| WI-1        | 207       |              |                                       | 0.88                 |                                                  |                                       |             |                                                  |                                        |
| 2_          | 205       |              |                                       | 0.75                 | 0.90                                             |                                       |             |                                                  |                                        |
| 3,          | 207       | _            |                                       | 0.58                 | 0.66                                             |                                       |             |                                                  | <u> </u>                               |
| 4           | 207       |              | <del></del>                           | 0.36                 | ļ ļ                                              | · · · · · · · · · · · · · · · · · · · | · · · · · · | <u> </u>                                         |                                        |
|             | 206       |              |                                       | 0,35                 | ļļ                                               |                                       |             | <u> </u>                                         | <del></del>                            |
| 6           | 200       |              |                                       | 0.57                 | <u> </u>                                         |                                       |             |                                                  |                                        |
| 7,          | 197       |              | · · · · · · · · · · · · · · · · · · · | 0.69                 |                                                  |                                       |             |                                                  |                                        |
|             | 192       |              |                                       | 0.68                 |                                                  |                                       |             |                                                  | <del></del>                            |
| W2-1        | 2.00      |              |                                       | 0.85                 |                                                  |                                       |             |                                                  |                                        |
| 2_          | 209       |              |                                       | 0.46                 |                                                  |                                       |             |                                                  |                                        |
| 3,          | 2.09      |              |                                       | 0.74                 |                                                  | ·                                     | <u> </u>    |                                                  |                                        |
| 4/          | 209       |              | <del></del> .                         | 0.92                 |                                                  |                                       |             |                                                  | <del></del>                            |
|             | 205       |              |                                       | 0.62                 | <u> </u>                                         |                                       | <u> </u>    |                                                  | <del></del>                            |
| -6          | 203       |              |                                       | 0,56                 | <u> </u>                                         |                                       | <u> </u>    | -                                                | <del></del>                            |
| 7/          | 194       |              |                                       | 0.7                  |                                                  |                                       |             | <del> </del>                                     |                                        |
| 8           | 194       |              |                                       | 0.77                 | <b> </b>                                         | · · · · ·                             |             | <del>                                     </del> |                                        |
|             | <u> </u>  |              |                                       | <u> </u>             | <del>                                     </del> |                                       | <u> </u>    |                                                  | <del></del>                            |
| <u> </u>    | L         | j            |                                       | <u> </u>             | <u> </u>                                         |                                       | <u> </u>    | <u> </u>                                         |                                        |

 $12\% co_{2} + 7.40_{2} + 80.6 W_{2} = 30.23$  29.36 wet 57.11 ft/s  $c.94 = \frac{7.11 \text{ ft}}{5} = \frac{1422 \text{ ft}^{2}}{5} = \frac{445,320.9 \text{ ft}^{2}}{5} = \frac{315,910 \text{ dscf}}{5}$ 

### VELOCITY PROFILE FIELD DATA

|             | 10          |                                               |               |                      | <del>-</del>         |                    |            |                    |                |
|-------------|-------------|-----------------------------------------------|---------------|----------------------|----------------------|--------------------|------------|--------------------|----------------|
|             |             |                                               |               | <del></del>          |                      |                    |            |                    |                |
|             |             |                                               |               |                      |                      |                    |            |                    | (HH <b>MM)</b> |
|             |             |                                               |               |                      |                      |                    |            |                    | ft.            |
| PTCF        |             |                                               | <del></del>   |                      | % H <sub>2</sub> O _ | <u> </u>           | _          |                    |                |
| Bar Press.  | <del></del> |                                               | <del></del>   | " Hg                 | % CO                 |                    | _ % 1      | N <sub>2</sub>     |                |
| Static Pres | is          | <u>-</u>                                      | <del></del> . | _ " H <sub>2</sub> O | % CO <sub>2</sub> .  |                    | % F        | <sup>1</sup> 2     |                |
| Operator I  | nitials     | . <u>.                                   </u> |               |                      | % O <sub>2</sub> _   |                    | % (        | CH <sub>4</sub> —— |                |
|             | St          | ack Temp. *I                                  | f             | Veic                 | city Pressure        | * H <sub>2</sub> O |            | Other (            | }              |
| Pt.         | #1          | #2                                            | Ave.          | #1                   | #2                   | Ave.               | <b>#</b> 1 | #2                 | Ave.           |
| W3-1        | 20/         |                                               |               | 0.85                 |                      |                    |            |                    |                |
| 2           | 210         | 260                                           |               | 0,94                 |                      |                    |            |                    |                |
| 7           | 218 2       | thermone                                      | اح            | 1.1                  |                      |                    |            |                    |                |
| 4           | 202         |                                               |               | 1.15                 |                      |                    |            |                    |                |
|             | 189         | _                                             |               | 1.1                  |                      |                    |            |                    |                |
| 6           | 181         |                                               |               | 0,93                 |                      |                    |            |                    |                |
|             | 180         |                                               |               | 0.73                 |                      |                    |            |                    |                |
| 4           | 180         |                                               |               | 0,43                 |                      |                    |            |                    |                |
| W4-1        | 203         |                                               |               | 0.88                 |                      |                    |            |                    |                |
| ک           | 192         |                                               |               | 0.99                 |                      |                    |            |                    |                |
| 3           | 191         |                                               |               | 1,03                 |                      |                    |            |                    |                |
| 7           | 215         |                                               |               | 1.25                 |                      |                    |            |                    |                |
| 5           | 211         |                                               |               | 1.3                  |                      |                    |            |                    |                |
| 6           | 199         |                                               |               | 1.1                  |                      |                    |            |                    |                |
| 7           | 191         |                                               |               | 0.80                 |                      |                    |            |                    |                |
| 8           | 191         |                                               |               | 0.47                 |                      |                    |            |                    |                |
|             |             |                                               |               |                      |                      |                    |            |                    |                |
|             |             |                                               |               |                      |                      |                    |            |                    |                |
| Weather     |             |                                               |               |                      |                      |                    |            |                    |                |
| Remarks     | ·           |                                               |               |                      |                      |                    |            |                    |                |

## VELOCITY PROFILE FIELD DATA

| Plant Nam        |             |              |         |                      |                |                    |          |                                               |              |
|------------------|-------------|--------------|---------|----------------------|----------------|--------------------|----------|-----------------------------------------------|--------------|
| Sampling         | Location    |              |         |                      | Sample         | Ident              |          |                                               | <del></del>  |
| Date             | (N          | (YYQQMI      | Time St | art                  | (НН            | MM) Tim            | e Finish |                                               | (HHMM)       |
| <b>Duct Dime</b> | ensions     |              | ر       | <u> </u>             |                | _ft. or Di         | ameter _ |                                               | ft.          |
| PTCF             |             |              |         |                      | % H,O _        |                    | -        |                                               |              |
| Bar Press.       | -           |              | ····    | " Hg                 | % co _         |                    | _ % 1    | l <sub>2</sub>                                |              |
| Static Pres      | <b></b>     |              |         | _ " H <sub>2</sub> O | % CO,          |                    | <u> </u> |                                               |              |
|                  | nitials     |              |         |                      | % O, _         |                    | % C      | Н <u>.                                   </u> | <del></del>  |
|                  |             |              |         |                      | -              |                    |          |                                               |              |
|                  | St          | ack Temp. °f |         | Ve                   | ocity Pressure | 1 H <sub>2</sub> O | <u> </u> | Other (                                       | )            |
| Pt.              | #1          | #2           | Ave.    | #1                   | #2             | Ave.               | #1       | #2                                            | Ave.         |
| W5-1             | 219         |              |         | 0.99                 |                |                    |          |                                               |              |
| 2                | 221         |              |         | 0.97                 |                |                    | _        |                                               |              |
| 3                | 202         |              |         | 1.2                  |                |                    |          |                                               |              |
| 4                | 22/         |              |         | 1.25                 |                |                    |          |                                               |              |
| 5_               | 216         |              |         | 1.10                 |                |                    |          |                                               |              |
| 6                | 207         |              |         | 0.7                  |                |                    |          |                                               |              |
| 7                | 191         |              |         | 0.8                  |                |                    | 1        |                                               |              |
| 8                | 171         |              |         | 0.58                 |                |                    |          |                                               |              |
| 126-1            | 216         |              |         | 0,93                 |                |                    |          |                                               |              |
| 2                | 225         |              |         | 0.85                 |                |                    |          |                                               |              |
| 3                | 227         |              |         | 0,66                 |                |                    |          |                                               |              |
| 4                | 226         |              |         | 0.71                 |                |                    |          |                                               |              |
| 5                | 219         |              |         | 0.59                 |                |                    |          |                                               |              |
| 6                | 204         |              |         | 0.69                 |                |                    |          |                                               |              |
| ר                | 194         |              |         | 0.81                 |                |                    |          |                                               |              |
| 8                | 191         |              |         | 277                  |                | <u> </u>           |          |                                               |              |
|                  |             |              |         | Joe                  |                |                    |          |                                               |              |
|                  | 203.        |              |         | 0.896                | <u> </u>       |                    |          |                                               |              |
| Weather          |             | /TJB         | VAP     | 876                  | V 138          | bc2                |          |                                               |              |
| Remarks          | <del></del> |              |         |                      |                |                    |          |                                               | <del>.</del> |

| ASSUMED MOISTURE % /Z. O               | METER BOX NO. $\sqrt{-11}$ (PPK) | METER FACTOR 1.0113     | PROBE HEATER SETTING $130^{\circ}C$ | COMMENTS ZALL | Royd # 1 - RATE 1808 Franker | ROLL B. TOOK BLOKEL          | The state of the state of             |
|----------------------------------------|----------------------------------|-------------------------|-------------------------------------|---------------|------------------------------|------------------------------|---------------------------------------|
| PLANT Plant Yates Station Boiler No. 1 | DATE 6-21-93                     | SAMPLING LOCATION STACK | RUN NO.                             | OPERATOR SEH  | AMBIENT TEMPERATURE 77°F     | BAROMETRIC PRESSURE 24.35 14 | RIANK TIME NIMBERS T. 44 A LIC. 44 TK |

| Test    | Leak Check ("Hg) | ж (Нg)   | Tube N | Sampling | Clock   | Gas Meter                    | Moter       | Stack                     | DGM  | Probe          | 1st Condensor | 2nd Candensor | Pump Vacuum             |
|---------|------------------|----------|--------|----------|---------|------------------------------|-------------|---------------------------|------|----------------|---------------|---------------|-------------------------|
| Number  | Pre              | Post     | (Lab)  | (min)    | Time TH | Reading                      | Pressure    | Temp                      | Temp | Temp           | Outlet Temp   | Outlet Temp   | Outlet Temp Outlet Temp |
| /       | 0.82%            | 25.12.4  | -      | 0        | 13216   | 0.000                        | 1224        | 128                       | 7081 | 134%           |               | 206           | 4.0                     |
|         |                  |          | 38A    | 20       | 1345    |                              | 28"H        | 128F                      | 21.0 | 7,5 3,781 7,17 |               | 2.8           | 0,0                     |
|         |                  |          | 1/0    | 30       | 5551    |                              | 2.2" 14     | 128F                      | 25.0 | 7.h 7.KI 7.22  | 7.4           | 2.2           | 4.5                     |
|         |                  | _        | 38B    | 40       | 5071    | 26.485                       | <u>ر</u> ،  |                           |      |                |               |               |                         |
|         |                  |          |        |          |         |                              |             |                           |      |                |               |               |                         |
| 7       | 0.27.            | 0.011    | -      | 0        | भाड     | 0.000                        | 22.休        | 128F                      | 23%  | 1384 Br        | 128           | 120           | 5.0                     |
|         |                  | )        | 12.A   | Q        |         | 5.007                        | 五、"张        | 1295 246                  | 747  | 133ºC 7ºC      | 705           | 1             | 4.0                     |
|         |                  |          | 1/C    | 20       | 35      | 7, 8 7,89 252 3821 7,12 2056 | 21.18       | 1821                      | 25%  | 132            | <i>8</i> °°   |               | 50                      |
|         |                  |          | 223    | 30       |         | 15021                        | Z./"K       | 7821                      | 200  | 13300          | 2%            | 206           | 6.0                     |
|         |                  |          |        | 01       |         | 20.210                       |             |                           |      |                |               |               |                         |
| 3       | 80.00<br>100.00  | 26.65°.  | ٢      | 0        | 615     | 0.000                        | J1. H.Z     | 7851                      | 2%   | 7.85/          | 55            | 706 80        | 80                      |
|         |                  |          | ZAA    | O        | 5251    | 5.400                        | 22'K        | 221 128F26 13813°C        | 2002 | 135C           | 3.6           | 200           | 4.5                     |
|         |                  |          | 1/1    | 20       | 1535    | 10,705                       | 227/4       | 22 14 178 242 B32 4°C     | 202  | Back           | 7.4           | Jot           | 4,0                     |
|         |                  |          | 20     | 30       | 1545    | 15.420                       | Z2'K        | 128F                      | 27.6 | 133.2          | 46            | 7°C           | 5.0                     |
|         |                  |          |        | 40       | 1555    | 20:250                       | 有           | STEM ON TUBER 27 B BLOKEN | 3€£  | 73 B B4        | DEEH          | FRE           | 202.                    |
| - Start | 2007             | क्टिंग   | -      | 0        | 1615    | 0000                         | 247         | 24th 1285 762             | 762  | 1330           |               | 2.8           | 40                      |
| 7       |                  | <b>)</b> | 364    | 0)       | 1625    | 6.530                        | 2.2.张       | 3821                      | 26%  | 133.5          | 29            |               | 3.5                     |
|         |                  |          | 1/0    | 07       | 1635    | 10.650                       | 7.621 11.77 | 1.001                     | ST   | B32            | 7,9           | 206           | 3.5                     |
|         |                  |          | Sled   | 30       | 1645    | S                            | 7.1.拓       | 12K 27C                   | 26   | 133,5          | $\overline{}$ | 36            | 3.5                     |
|         |                  |          |        | Ş        | 1655    | 20.20                        | )           |                           |      |                |               |               |                         |

COMMENTS RAIN HUMID PROBE HEATER SETTING\_ ASSUMED MOISTURE %\_ METER BOX NO.\_ METER FACTOR\_ TEST NO. Plant Yates Station Boiler No. 1 BLANK TUBE NUMBERS T: AMBIENT TEMPERATURE\_ BAROMETRIC PRESSURE SAMPLING LOCATION OPERATOR HUN NO. PLANT DATE

1.0113

| Ę                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5     | 7     |        | 1      |        |        |       |        |          | Ţ      | I     |       |        |        | _      | Ħ                    | Ŧ | _  | 7- | - |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--------|--------|--------|-------|--------|----------|--------|-------|-------|--------|--------|--------|----------------------|---|----|----|---|
| Pumb Vacuu       | Person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0   | 17    | 202    | 2.5    |        | 7      | 30    | 35     | 4.0      |        | 77    | 40    | 40     | 40     |        |                      |   |    |    |   |
| 2nd Condenso     | Out of the Court o | α     | 4     | 4      | Q.     |        | 4      | 1     | 4      | $\omega$ |        | 4     | 7     | 7      | 0      |        |                      |   |    |    |   |
| 1st Condensor    | Outle Temo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3     | 3     | 5      | Ş      |        | 9)     | 1     | 5      | 7        |        | S     | ~     | 7      | Λ.     | •      |                      |   |    |    |   |
| Probe            | ا<br>قره                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.2  | 133   | 132    | 134    |        | 133    | 133   | 133    | 133      |        | /33   | 133   | /33    | 133    | •      |                      |   |    |    |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     | 20    | 7      | 23     |        | 26     | 26    | 27     | 50       |        | 29    | 52    | 52     | 30     |        |                      |   |    |    |   |
| Stack            | Temp T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05    | 129   | 131    | /3/    |        | 129    | 130   | 130    | 130      |        | 128   | 621   | 871    | 128    |        |                      |   |    |    |   |
| Meter            | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1.7 | 2.2   | 2.1    | 17     |        | 2,3    | 2.1   | 2.1    | 2.1      |        | 2.2   | 2.2   | 2.2    | 2.2    |        | at the second second |   |    |    |   |
| Gas Meter        | Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000 | 00h 3 | 10.605 | 15.155 | 095.C. | 0.00   | 5,250 | 10.150 | 15.250   | DO.240 | 0.000 | 5.350 | 10.200 | 15.150 | Do 640 |                      |   |    |    |   |
| Clock            | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0650  | 0500  | 0710   | 6720   | 0730   |        | :55   | 0805   | 0815     | 82.5   | 0840  | 0850  | 0900   | 0310   | 0850   |                      |   |    |    |   |
| Sampling         | (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0     | 10    |        | 30     | 40     | 0      | 10    | 2      | 30       | 40     | 0     | 5     | 22     | 30     | 40     | ŀ                    |   |    |    |   |
| Tube N           | (Lab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _     | 184   | 1/C    | 18 B   |        | -      | 184   | 1/0    | 233      |        | -     | 717   | 1/0    | Z/B    |        | F                    | • | 77 |    |   |
| ck ('Ho)         | Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1636  |       |        |        |        | 9.823  | )     |        |          |        | 0.997 |       |        |        |        |                      |   |    |    |   |
| Leak Check ('Hg) | Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | id de |       | į      |        |        | .23.8° |       |        |          |        | 5000  |       |        |        |        |                      |   |    |    |   |
| Test             | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |       |        |        |        | 7      |       |        |          |        | 3     | =     |        |        |        |                      |   |    |    |   |

| ASSUMED MOISTURE %                     | METER BOX NO. $\sqrt{-11}$ (pp.) | METER FACTOR (. DILS    | PROBE HEATER SETTING 130°C | COMMENTS     |           |                           |                                      |  |
|----------------------------------------|----------------------------------|-------------------------|----------------------------|--------------|-----------|---------------------------|--------------------------------------|--|
| PLANT Plant Yates Station Boiler No. 1 | DATE 6-23-93                     | SAMPLING LOCATION STACK | RUNNO. 3                   | OPERATOR JEH | MPERATURE | BAROMETRIC PRESSURE 24.23 | BLANK TUBE NUMBERS T: 08 4 T/C: 08 B |  |

|         | Leak Check ('Hg) |         | Z eqn_ | Ø        | Clock | Gas Meter | , vete   | S C | ₹<br>00 | Prob | ist Condensor | tat Condensor 2nd Condensor | Part Vacuum |
|---------|------------------|---------|--------|----------|-------|-----------|----------|-----|---------|------|---------------|-----------------------------|-------------|
| Number  | Pre-             | Pos     | 2      | E E      |       | Heading   | Fressure | Gwa | -emb    | duis | Caffer Temp   | dwellenno                   | 1           |
|         | 0,000            | 3.00t   | ٢      | 0        | 0655  | 0.000     | 2.3      | 127 | 23      | 133  | 5             | 0/                          | 55          |
|         |                  |         | ISA    | <u>5</u> | S0£.0 | 5.105     | 2.2      | 128 | 24      | 134  | \$            | Ø                           | 4.0         |
|         |                  |         | 1/0    | 20       | 5120  | 10,150    | 2.1      | 128 | 25      | 134  | 7             | 9                           | 4.0         |
|         |                  |         | 153    | 30       | 2240  | 15.200    | 2.1      | 128 | 77      | 135  | #             | 1                           | 50          |
|         |                  |         |        | 1        | 0735  | 20,200    |          |     |         |      |               |                             |             |
|         | £000             | 0000    | 1      | 0        | 0805  | 0.00      | 2.2      | 128 | 260     | 133  | 4             | 6                           | 3.0         |
|         |                  |         | 8      | 91       | 0815  | 5.050     | 7.7      | 128 | 26      | 135  | Ŋ             | 2                           | 2.5         |
|         |                  |         | 1/0    | 20       | 0825  | 10,050    | 7.7      | 128 | 26      | 134  | γ             | h                           | 2.5         |
|         |                  |         | 83     | 36       | 0835  | 15.150    | 2.2      | (28 | 77      | 1.32 | 9             | 6                           | 2.5         |
|         |                  |         |        | 40       | 5480  |           | 2.2      | 128 | 24      | (33  | 6             | 10                          | JEH         |
| 8000000 | ogot<br>dioit    | ),OG 00 | T      | 0        | 0160  | 6,000     | 2.2      | 128 | 26      | 133  | 9             | 01                          | 2.5         |
|         | ļ                |         | オア     | 10       | 0250  |           | 2.7      | 128 | 26      | 134  | Ł             | 01                          | 30          |
|         |                  |         | 1/C    | 22       | 0830  | 10.300    | 2.2      | 971 | 26      | 133  | ኍ             | 6                           | 4.0         |
|         |                  |         | HB     | 8        | 0410  | 15,350    | 7.7      | 128 | 27      | 132  | 4             | 10                          | ろり          |
|         |                  |         |        | 0H       | 0620  | 20:20     |          |     |         |      |               |                             |             |
|         |                  |         | ۰      | 0        |       |           |          |     |         |      |               |                             |             |
|         |                  |         |        |          |       |           |          |     |         |      |               |                             |             |
|         |                  |         | 1/C    |          |       |           |          |     | -       |      |               |                             |             |
|         |                  |         |        |          |       |           |          |     |         |      |               |                             |             |
|         |                  |         |        |          |       |           |          |     |         |      |               |                             |             |
|         |                  |         |        |          |       |           |          |     |         |      |               |                             |             |

| METEL BOX                                                                                                                                                         | Condensor Pump Vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000<br>770<br>700<br>700<br>700<br>700<br>700<br>700<br>700 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| 2/13<br>2/13<br>144<br>3/23 FOL ME                                                                                                                                | Outer Temp. Outer Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Newe                                                         |  |
| PE %                                                                                                                                                              | Probe<br>A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T T T T T T T T T T T T T T T T T T T                        |  |
| ASSUMED MOISTURE % METER BOX NO. METER FACTOR PROBE HEATER SETTING COMMENTS ANDI CAL DATE 2                                                                       | Power 22 Permit Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Prope | 82 22                                                        |  |
| ASSUMED MOISTUMETER BOX NO. METER FACTOR PROBE HEATER SE COMMENTS COMMENTS COMMENTS CALL DATE SCAMPLE #                                                           | 12.8<br>12.8<br>12.8<br>12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 977<br>977<br>977                                            |  |
|                                                                                                                                                                   | Motor 2.2. 2.2. 2.2. 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77.77                                                        |  |
|                                                                                                                                                                   | Gas Motor Reading 0.020 2.480 5.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>2.500<br>7.500<br>7.500<br>7.500<br>10.045          |  |
|                                                                                                                                                                   | Clock Time 0.000 6.500 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H871124<br>1134<br>1134<br>1134                              |  |
| 14 K 14 K TEST NO. 22-26 27-26 3A T/C:                                                                                                                            | Sempling (min) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02220                                                        |  |
| St. 23                                                                                                                                                            | Tube N (Leb) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1                      |  |
| Plant Yates Station Boiler No. 1  6-23-33  OCATION STACK  COCATION STACK  ADIT TEST  TEST  THE STACK  THEST  C PRESSURE 21-2  C PRESSURE 21-2  E NUMBERS T: OBA T | ck ('Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200 gr                                                       |  |
|                                                                                                                                                                   | Leak Check ('Hg) Pre 8.00 % P. P. P. P. P. P. P. P. P. P. P. P. P. P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |  |
| PLANT DATE SAMPLING RUN NO. OPERATOR AMBIENT TE BAROMETR BLANK TUB                                                                                                | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                            |  |
|                                                                                                                                                                   | 1961-X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 561-1                                                        |  |

### MODIFIED METHOD 5 FIELD DATA SHELT

| PLANT NAME Plant Yates Station Boiler No. 1         | :                                     | Page of                                      |
|-----------------------------------------------------|---------------------------------------|----------------------------------------------|
| SAMPLING LOCATION STOCK DATE 6 2043 TIME START 1240 | RUN NO. TIME FINISH 1755              | TEST DURATION 240 min.                       |
| PTCF 0.84 DGMCF 0.44 NOZZLE<br>BAR PRESS 29.31 Hg   | DIAMETER 13 Fe<br>E DIA. 0 196 inches | INITIAL LEAK RATE 0.000 Ccfm/5"/6            |
| STATIC PRESS - 0.5 " H20                            | OPERATOR EZ                           | <br> <br> <br> <br> <br> <br> <br> <br> <br> |

| Point Ti    | ock<br>me   | Dry gas meter<br>reading ft3 | ^ P<br>in H2O | ^ H<br>in H2O | Stack   | Dry gas m | eter temp. | Hot box | Probe         | Last        | Vacuum     | Cond.   |
|-------------|-------------|------------------------------|---------------|---------------|---------|-----------|------------|---------|---------------|-------------|------------|---------|
|             |             | reading ft3                  | in H2O        | ニーロコへ         |         |           |            |         |               |             |            |         |
| E-1 12      |             |                              |               | in H2O        | Temp. F | inlet     | Outlet     | Temp.   | Temp          | Impinger    | in. Hg     | Exit    |
| E-1 12      |             |                              |               |               |         |           |            |         |               | }           |            | Temp. F |
| E-1         |             | <u></u>                      | 0 1-          | 0 00/         | i 0 (   |           |            | 30:     | 0 4 6         |             | <i>i</i> - |         |
| u           |             | 756.882                      | 0.75          | 0.934         | 126     | 73        | 72         | 251     | 249           | 59          | 4.0        | 38      |
| 12          | 50          | 762:280                      | 0.74          | 0.92          | 127     | 75        | 72         | 251     | 256           | 55          | 4.0        | 38      |
| $E^{-2}$ 13 | 00          | 767. 400                     | 0.76          | 0.95          | 128     | 79        | 74         | 253     | 257           | 50          | 4.0        | 39      |
| L i3        | 10          | 772.465                      | 0.76          | 0.95          | 128     | 83        | 75         | 255     | 751           | 47          | 4.0        | 41      |
| E-3 13      | 20          | 777.761                      | 0.60          | 0.75          | 128     | 88        | 78         | 252     | 250           | 42          | 4.0        | 39      |
| 13          | 30          | 182-425                      | 0.62          | 0.77          | 128     | 90        | 80         | 253     | 264           | 45          | 4.0        | 39      |
| 576P 13 1   | <b>\$ D</b> | 181.198                      |               | PORT          | CHAN    | 7(5 (     | LOAK       | CUGEK   |               | 9 6         | 45         |         |
| N-1 13      | 45          | 787 270                      | 0.75          | 0.934         | 127     | 89        | 82         | 251     | 252           | 52          | 4.0        | 38'     |
| 13          | 55          | 792.550                      | 0.74          | 6.92          | 128     | 91        | 84         | 253     | 238           | 46          | 4.0        | 40      |
| N-2 140     | 25          | 797. 795                     | 0.75          | 0.934         | 129     | 95        | 85         | 254     | 256           | 49          | 4.5        | 39      |
|             | 15          | 803-140                      |               | 0.934         | 129     | 97        | 87         | 253     | 243           | 50          | 4.5        | 39      |
| N-3 14      | 25          | 808-475                      |               | 0.75          | 129     | 99        | 89         | 255     | 241           | 50          | 4.0        | 41      |
| 14          |             | 813.200                      | 0.66          | 0.75          | 129     | 100       | 91         | 254     | 241           | 51          | 4.0        | 4/      |
|             | 45          | 818.148                      |               | PORT          | come    | FE        | LONK       |         | 04            | 9 6         |            |         |
| W-1141      |             | 818-201                      | 0-68          | 0.85          | 115     | 98        | 92         | 255     | 242           | 56          | 4.0        | 40      |
|             |             | 823.330                      | 0:68          | 0.85          | 124     | 100       | 93         | 254     | 242           | 53          | 410        | 43      |
| W-2 15      |             | 828.410                      | 0.67          | 0-83          | 128     | 100       | 93         | 253     | 2.48          | 50          | 4.0        | 41      |
| 152         |             | 833.575                      | 0.67          | 0.83          | 128     | 101       | 94         | 254     | 245           | 49          | 410        | 40      |
| W-3 15      |             | 838.675                      | 0.56          | 0.69          | 129     | 103       | 95         | 255     | 264           | 49          | 4.0        | 41      |
| 15 4        | بسسمه       |                              |               | 507           | 128     | 102       | 96         | 254     | 240           | 5/          | 40         | 41      |
| STOP 15 5   | -           | 848.095                      | 0 2 6         | PORT          |         | VGE       |            | re cire |               |             | 611/10     | /       |
|             |             |                              | h / C         |               |         | 88        | 88         | 251     | 254           | 55          | 4.8        | 36      |
| 5-/ 105     |             |                              | 0.68          | 0-85          | 124     | _         | 88         | -       |               | <del></del> |            |         |
| 170         |             | 853 420                      | 0.68          | 0.85          | 128     | 90        |            | 254     | 242           | 45          | 4.0        | 38      |
| 5-2 171     |             | 858.580                      | 0.74          | 0.92          | 122     | 94        | 89         | 251     | 246           | 50          | 4.0        | 39      |
|             |             | 863 842                      | 0.74          | 0.92          | 128     | 97        | 90         | 253     | 240           | 48          | 4.0        | 39      |
| 5-3 173     |             |                              | 0.61          | 0.76          | 120     | 100       | 91         | 254     | 250           | 46          | 4.0        | 39      |
| 144         |             |                              | 0.62          | 0.77          | 128     | 10/       | 92         | 255     | 256           | 47          | 4.0        | 39      |
| END. 170    | 5           | 878.925                      |               |               |         |           |            |         |               | 1 '         |            |         |
|             | T           |                              |               |               |         |           |            |         |               |             |            |         |
| Avg.        | _ (         | 7.830 S.                     | a823          | .85           | 127     | 89.       | 61         |         | 140000 (2408) |             |            |         |
| Check'd     |             | 121.788                      |               |               |         | 17)       |            |         |               |             |            |         |

| CONSOLE # A 16   36  |       |
|----------------------|-------|
| FILTER #             |       |
| AMBIENT TEMP. 15     |       |
| PROBE LENGTH 6'      |       |
| LINER MATERIAL GLASS | LINES |

| Vetocity   |    |   | engun<br>ekster | (4)<br>2008 | iyan<br>Salah | . <sub>(1</sub> . 2003)<br>2. 2003) |      | (A. 1888) |
|------------|----|---|-----------------|-------------|---------------|-------------------------------------|------|-----------|
| % Moistu   | e  |   |                 |             |               |                                     |      |           |
| Flowrate ( | DS | C | FM              |             |               |                                     |      |           |
| lsokinetic |    |   |                 |             | W.            |                                     | S. O |           |

| S |
|---|
|   |

### MODIFIED METHOD 5 FIELD DATA SHEET

|          | PLANT             | NAME _        | Plant Yates St               | ation Boile   | г No. 1      |                                                            |                                         |                     |                  |                    | Page _           | of               |                 |
|----------|-------------------|---------------|------------------------------|---------------|--------------|------------------------------------------------------------|-----------------------------------------|---------------------|------------------|--------------------|------------------|------------------|-----------------|
|          | SAMPL             | ING LOCA      | TION STA                     | ek.           | -            |                                                            | RUN NO                                  | . 2                 |                  |                    |                  |                  |                 |
|          | DATE 6            | 122/93        | TIME START                   |               | 5            |                                                            | NISH                                    | 15                  | TEST DU          | JRATION            | 240              | m                | nin<br>fn/5" /# |
|          | PTCF (            | DIMENSION     | DGMCF D19                    | <del></del>   | NOZZLE       | DIAMET                                                     |                                         | inches              | FINAL L          | LEAK KA<br>EAK RAT | E OON            | 130 E            | cim 9 149       |
|          | BAR PR            | ESS 29        | 34/* Hg                      |               | <b>-</b> -   |                                                            |                                         | 7                   |                  |                    |                  |                  |                 |
|          | STATIC            | PRESS         | . 7-50                       | H2O           |              | OPERAT                                                     | OR <u>L</u>                             | <u> </u>            | <del></del>      |                    |                  | 17               | 1000            |
| 1        |                   |               | I B                          | Λp            | ×.,,         | I Caral                                                    | Dec ess es                              |                     | l Harban         | Peobe              | Last             | K=               | والمساوية       |
| Ì        | Traverse<br>Point | Clock<br>Time | Dry gas meter<br>reading tt3 | in H2O        | ^H<br>in H2O | Stack<br>Temp. F                                           | Dry gas m<br>Inlet                      | Outlet              | Hot box<br>Temp. | Probe<br>Temp      | Last<br>Impinger | Vacuum<br>in. Hg | Cond.<br>Exit   |
|          |                   |               |                              |               |              | ·                                                          |                                         |                     |                  |                    |                  |                  | Temp. F         |
| <b>(</b> | <u> </u>          | 0 2-1         | 000 7                        | <b>- 7</b> (: | 0 00         | 127                                                        |                                         | -                   | 250              | 0.11               | <i>-</i> ,       | <del>   </del>   |                 |
| ا (      | E-1               | 0755          | 868 .530                     |               | 0.92         | 127                                                        | 75                                      | 70                  | 253              | 244                | 51               | 6.0              | 44              |
|          | r 7               | 0875          | 894-415                      | 0-13          | 0.92         | 128                                                        | 80                                      | 73                  | 254              | 243<br>265         | 60<br>50         | 5,5<br>5,5       |                 |
| 1        | <u> </u>          | 08725         | 964.330                      | 0.14          | 0.92         | 128                                                        | 86                                      | 76                  | 254              | 266                | 41               | 5.5              | 44              |
|          | E-3               | <del></del>   | 909.060                      |               |              | 128                                                        | 95                                      | 83                  |                  | 254                | 45               | 5.D              | 48              |
|          | <u> </u>          | <del> </del>  |                              | 0.64          | 0.79         | 128                                                        | 96                                      | 85                  | 255<br>255       | 265                | 42               | 5.0              | 43              |
| ı        | STOP              | 08755         | 919.437                      | PORT          | CHAN         |                                                            | 16                                      | LEAL                |                  |                    | 5 e 8            | " Hq.            | -73             |
|          | N-1               | 0800          | 919.532                      | 0.73          | 0.91         | 127                                                        | 94                                      | 86                  | 251              | 248                | 47               | 00               | 41              |
|          |                   |               | 924.565                      | 0.73          | 0.91         | 128                                                        | 96                                      | 88                  | 256              | 255                | 4Z               | 6.0              | 42              |
| ı        | がーフ               | 0820          | 930-160                      | 0.14          | 0.97         | 128                                                        | 99                                      | 83                  | 254              | 265                | 44               | 6:0              | 43              |
|          |                   | <del></del>   | 435.485                      | 0.74          | 0.92         | 128                                                        | 101                                     | 91                  | 255              | 260                | 47               | 6.0              | 44              |
|          | N-3               | 08 40         | 940.840                      | 0.64          | 0.79         | 129                                                        | 102                                     | 93                  | 254              | 264                | 46               | 5.5              | 44              |
|          |                   | 0850          | 945.899                      | 064           | 0.79         | 128                                                        | 102                                     | 93                  | 254              | 258                | 47               | 5.5              | 44              |
|          |                   | 0900          | 950.805                      | PORT          |              | VGE                                                        | 70-                                     | LEAK                | <u> </u>         |                    | € 8"             |                  |                 |
|          | W-1               | 0905          | 950.895                      | 0.68          | 0.85         | 128                                                        | 98                                      | 93                  | 254              | 245                | 53               | 5.5              | 42              |
|          |                   | 0916          | 956.145                      | 0.68          | 0.85         | 128                                                        | 100                                     | 94                  | 255              | 261                | 48               | 5.5              | 43              |
|          | W-2               | 0915          | 961.300                      | 0.67          | 0.83         | 128                                                        | 102                                     | 95                  | 253              | 258                | 50               |                  | 43              |
| 1        |                   | 0935          | 966-170                      | 0.67          | 0.83         | 128                                                        | 104                                     | 95                  | 254              | 256                | 49               | 5.5              | 43              |
|          | W-3               | 0945          | 971.282                      | 0.55          | 0.68         | 128                                                        | 106                                     | 97                  | 256              | 264                | 50               | 5.0              | 44              |
| Į        |                   | 0955          | 976.000                      | 0.55          | 0.68         | 129                                                        | 106                                     | 98                  | 255              | 257                | 5/               | 50               | 45              |
|          | 5000              | 1005          | 980.819                      | PORT          |              | NGE                                                        | 40,001                                  |                     | CHEC             | K. 9               | 1                |                  |                 |
|          |                   | 1015          | 980 893                      | 0.67          | 0.83         | 128                                                        | 102                                     | 98                  | 254              | 260                | 46               | 5.5              | 43              |
| ١        |                   | 10 25         | 987.534                      | 0.67          | 0.83         | 128                                                        | 103                                     | 98                  | 255              | 253                | 43               | 5.5              | 44              |
|          | 5-2               | 1035          | 992.670                      | 6.75          | 0.93         | 129                                                        | 106                                     | 99                  | 256              | 252                | 44               | 6.0              | 46              |
| ĺ        |                   | 1045          | 998.554                      | 0-75          | 0-93         | 128                                                        | 109                                     | 100                 | 256              | 253                | 44               | 7.5              | 45              |
| ہے       | <u>s- 3</u>       | +             | 005.682                      | 0-64          | 0.79         | 129                                                        | 111                                     | 100                 | 254              | 25/                | 46               | 5.6              | 45              |
| t        | END.              | 1105          | 010.763                      | 0.64          | 0.79         | 129                                                        | 110                                     | 101                 | 253              | 256                | 47-              | 50               | 45              |
| ٥        | Sigo              | 11.15         | 015-838                      | ļ             |              | <del> </del>                                               | \ <u> </u>                              | ļ <u>.</u>          |                  |                    | 1                |                  | <u> </u>        |
|          |                   | ļ <u>.</u>    | 1 0005                       |               |              | ror-W                                                      |                                         |                     |                  |                    |                  |                  |                 |
|          | Avg.              |               | 27.568                       | 0.4126        | - 85         | 1287                                                       | 14                                      | 7                   |                  |                    |                  |                  |                 |
|          | Check'd           |               | 27.049                       |               |              | $1D_{\perp}$                                               |                                         |                     |                  |                    |                  |                  |                 |
|          | CONSO             | LE# All       | 1361                         | - 0.825       | ۶۱           | Velocity                                                   |                                         |                     | 636533336        |                    |                  |                  |                 |
|          | FILTER            |               | / <del>/ `~</del> /          | - 0.0         |              | % Moisu                                                    | 0.0000000000000000000000000000000000000 |                     |                  |                    |                  |                  |                 |
|          |                   | NT TEMP.      | 75°F                         | -             |              | <ul> <li>- content soleto (150 tanello</li> </ul>          | (DSCFM)                                 |                     |                  |                    |                  |                  |                 |
|          |                   | LENGTH_       |                              |               |              | <ul> <li>A 6000000000000000000000000000000000000</li></ul> | (%)                                     | 2007 BAD, BALL 1000 |                  |                    |                  |                  |                 |
|          | LINER             | MATERIAL      | <u>G1455</u>                 |               |              | ***************************************                    |                                         |                     |                  |                    |                  |                  |                 |
|          |                   |               | •                            |               |              |                                                            |                                         |                     |                  |                    |                  |                  |                 |
|          | REMAR             |               | E. e                         | n             | ٠ ـ •        |                                                            |                                         |                     |                  |                    |                  |                  |                 |
|          |                   | 7             | STARTED (                    | e 0655        | COQQE        | (TW F04                                                    | ZDQ IN                                  | INMAL               | HOUR I           | OG TIME            | 100e 517         | HLi              |                 |

C-102

### MODIFIED METHOD 5 FIELD DATA SHEET

|            |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                         |                        |                                          |                                                               |         |              |                 | •               |          |
|------------|---------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------|------------------------------------------|---------------------------------------------------------------|---------|--------------|-----------------|-----------------|----------|
| PLANT      | NAME          | Plant Yates St   | ation Boile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. 1                                   |                                         | <del></del>            |                                          |                                                               |         | Page/        | _ of _ <i>1</i> |                 |          |
| SAMDI I    | NG LOCA       | TION STA         | CK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                         | RUN NO                 | ı                                        | 3                                                             |         |              | _               |                 |          |
| DATE       | 23 93         | TIME START       | 0645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                                       | TIME FI                                 | NISH                   | 118                                      | TEST D                                                        | JRATION | 24           | <u>ი</u> _      | nin<br>fm/5"/45 |          |
| DUCT D     | IMENSION      | NS DGMCF 0 - 991 | _ x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NOZZLE                                  | DIAMET                                  | ER 195                 | inches                                   | INITIAL                                                       | LEAK RA | TE 6 VO      | 30 C            | cfm 7 4         |          |
| PTCF C     |               | 9-19 Hg          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NOZZEE                                  |                                         |                        | •                                        | FINALL                                                        | LAK KA  | E 0.00       | <del>, ,</del>  |                 | <b>-</b> |
| STATIC     | PRESS         | 0.5              | H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | OPERAT                                  | or $\underline{E}$     | <u>e</u>                                 |                                                               |         |              | .,              |                 |          |
|            |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                         |                        |                                          |                                                               |         |              | K=              | 1-214           | _        |
| Traverse   | Clock         | Dry gas meter    | ^ P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ^ H                                     | Stack                                   | Dry gas m              |                                          | Hot box                                                       | Probe   | Last         | Vacuum          | Cond.           |          |
| Point      | Time          | reading ft3      | in H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in H2O                                  | Temp. F                                 | Inlet                  | Outlet                                   | Temp.                                                         | Temp    | Impinger     | in. Hg          | Exit            |          |
|            |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                         |                        |                                          |                                                               |         |              |                 |                 |          |
| E-1        | 0645          | 030-212          | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.801                                   | 126                                     | 73                     | 70                                       | 254                                                           | 255     | 57           | 3.5             | 47              |          |
|            | 0655          | 635-110          | 0-68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0826                                    | 127                                     | 80                     | 73                                       | 255                                                           | 267     | 5 <b>c</b>   | 3.5             | 45              |          |
| E-2        | 0705          | 039.955          | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.849                                   | 128                                     | 85                     | 76                                       | 254                                                           | 245     | 47           | 4,0             | 46              | l        |
|            | 0715          | 044.935          | 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.849                                   | 128                                     | 88                     | 78                                       | 255                                                           | 250     | 43           | 4.0             | 45              |          |
| E-3        | 0725          | 049.995          | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.716                                   | 128                                     | 93                     | 8/                                       | 754                                                           | 255     | 43           | 4.0             | 41              |          |
|            | 0735          | 054.455          | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.716                                   | 127                                     | 95                     | 83                                       | 255                                                           | 254     | 43           | 4.0             | 42              |          |
| STOP       | 0745          | 059.353          | PORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CIAA                                    | (GE                                     |                        | LE                                       | K                                                             | HECK    | < 0.00       | 2e 7"           | 14              |          |
| N-1        | 0754          | 059.923          | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.826                                   | 126                                     | 92                     | 86                                       | 256                                                           | 250     | 54           | 4.5             | 47              | 1        |
|            | 0804          | 065.010          | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.801                                   | 128                                     | 94                     | 88                                       | 254                                                           | 760     | 45           | 4.5             | 45              |          |
| N-2        |               | 070.065          | 6.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.876                                   | 128                                     | 100                    | 90                                       | 255                                                           | 260     | 46           | 4.5             | 46              |          |
|            | 0824          | 075-170          | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.826                                   | 128                                     | 102                    | 92                                       | 254                                                           | 245     | 46           | 45              | 45              |          |
| N-3        | 0834          | 080 282          | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.704                                   | 128                                     | 104                    | 90                                       | 255                                                           | 260     | 46           | 45              | 46              |          |
|            | 08 44         | 085,045          | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.764                                   | 128                                     | 104                    | 95                                       | 253                                                           | 248     | 18           | 4.5             | 48              | 1        |
|            | 0854          | 089-825          | PORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHAN                                    |                                         | 1, -,                  | LE                                       |                                                               | HECK    | 20.00        |                 | "42             | 1        |
|            | 0900          | 089.9 58         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.753                                   | 127                                     | 101                    | 96                                       | 254                                                           | 248     | 51           | 5.5             | 50              |          |
|            | 0910          | 097.450          | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.753                                   | 128                                     | 103                    | 96                                       | 253                                                           | 26/9    | 5 f          | 4.5             | 48              |          |
| w-2        |               | 102.190          | 0-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.753                                   | 128                                     | 103                    | 96                                       | 25×                                                           | 260     | 50           | 4.5             | 47              | 1        |
|            | 0930          | 107.000          | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.753                                   | 128                                     | 104                    | 97                                       | 257                                                           | 265     | 47           | 45              | 45              | 1        |
| W-3        | 0940          | 114.375          | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.631                                   | 128                                     | 106                    | 92                                       | 254                                                           | 257     | SUE          | 4.0             | 47              |          |
| <u> </u>   | 0950          |                  | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.631                                   | 128                                     | 105                    | 98                                       | 254                                                           | 266     | 53           | 4.0             | 50              |          |
| 5708       | 1000          | 123.517          | PORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                         | 103                    | 4 541                                    | <del> /</del>                                                 | KK      |              | @71             | <del></del>     | 1        |
|            | 10 19         | 123.605          | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.813                                   | 128                                     | 98                     | 96                                       | 254                                                           | 258     | 56           | 4.0             | 146             | 1        |
| 8-1        | 10 28         | 128.925          | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.753                                   | 129                                     |                        | 46                                       | 255                                                           | 267     | 50           | 1.0             | 44              | 1        |
| S- 2       | 1038          | 133 395          | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 129                                     | 100                    | 98                                       | 255                                                           | 260     |              | 4.0             | 7/6             | 1        |
| 2- 4       | 10 48         |                  | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0813                                    | 129                                     | 104                    | 48                                       |                                                               | 263     | 51           |                 | 46 2            | 1        |
| C 2        |               | 138-736          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.813                                   | 130                                     | 106                    | · · · · · ·                              | 256                                                           |         |              | 110             | 44              | نا       |
| <u>s-3</u> | 10 58         | 143.640          | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0:753                                   | 130                                     | 109                    | 101                                      | 253                                                           | 264     | 57           | 4.5             |                 | Ţ,       |
| 5.0        | 1108          | 149.399          | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-753                                   | 130                                     | 11,1                   | 101                                      | 254                                                           | 250     | 50           | 7.2             | 46              | f        |
| END        | 1118          | 156-627          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | <del></del>                             | <u> </u>               |                                          | <u> </u>                                                      |         | <del> </del> | -               | <del> </del>    | 1        |
|            | ر م           |                  | o sent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 120                                     | 400                    | 122 -1                                   |                                                               |         |              |                 |                 | 1        |
| Avg.       |               | 120-415          | CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE |                                         | 128                                     | 98.2                   | 90.7                                     |                                                               |         |              |                 |                 | 1        |
| Check'd    |               | 125-624          | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100000000000000000000000000000000000000 | T the second                            | Addition of the second |                                          |                                                               |         | 1            |                 |                 | j        |
| CONSO      | LE#_A         | 161361           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | Velocity                                |                        | Lagranga (17 kg 18<br>Tagas (18 avilland | 110: 10: 10:000000000000000000000000000                       |         |              |                 |                 |          |
| FILTER     |               | 10/00/           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | % Moist                                 | ***************        |                                          |                                                               |         |              |                 |                 |          |
|            | Y<br>NT TEMP. | 77°F             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 31,549,000,000,000,000                  | (DSCFM)                |                                          |                                                               | ·       |              |                 |                 |          |
|            |               | 1 1 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | - 7 7 T T T T T T T T T T T T T T T T T |                        |                                          | <ul> <li>- 1 20 20 20 20 20 20 20 20 20 20 20 20 20</li></ul> | 4       |              |                 |                 |          |

| CONSOLE #            | YCROCHY          |
|----------------------|------------------|
| FILTER #             | % Moisture       |
| AMBIENT TEMP. 77°F   | Flowrate (DSCFM) |
| PROBE LENGTH         | Isokinetic (%)   |
| LINER MATERIAL GLASS |                  |

REMARKS

## MCDIFIED METHOD 5 FIELD DATA SHEET

|               |              | Plant Yates St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                       |                 |                          |             |                    |                  | Page/           |                      |                |
|---------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|-----------------|--------------------------|-------------|--------------------|------------------|-----------------|----------------------|----------------|
| AMPLI         | NG LOCA      | TION S<br>TIME START<br>NS DGMCF 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tack             |                                       | <del></del>     | RUN NO                   | . <u>FB</u> | <u> </u>           |                  |                 |                      | _              |
| DATE_         | <u> </u>     | TIME START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :0.is            |                                       | TIME FI         | VISH                     | 012         | TEST DU            | IRATION          |                 | <u> </u>             | in.            |
| SACE<br>DOCLD | MENSIO       | NS<br>DGMCF 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ₹\$û             | NOZZI E                               | DIAME!          | رم جـــــــر<br>المحالية | inches      | INITIAL<br>FINAL L | EAK RAT          | E 0.00          | ئے۔۔۔۔۔ <sup>د</sup> | m e /2 '       |
| BAR PRI       | ESS          | " Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u></u>          |                                       | <u>. ب</u>      |                          |             |                    |                  |                 |                      | ****           |
| STATIC        | PRESS        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H2O              |                                       | OPERAT          | OR                       | DJV W       | AW_                |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
| Fraverse      | Clock        | Dry gas meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ^P               | ^ Н                                   | Stack           | Dry gas m                |             | Hot box            | Probe            | Last            | Vacuum               | Cond.          |
| Point         | Time         | reading 1t3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in H2O           | in H2O                                | Temp. F         |                          | Outlet      | Temp.              | Temp             | Impinger        |                      | Exit           |
| Politi        | I Illine     | resums no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1120             | III 1120                              | remp.           | uner                     | Odilet      | tenth.             | . Cinp           | ampinger        |                      | Temp. F        |
| í             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 | •                        |             |                    | 268              |                 |                      | <u> </u>       |
|               | 1015         | 741.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                       |                 | 81_                      | 80          | 250                | <u> </u>         | 75              |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
| Ì             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | •                                     |                 |                          | •           |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             | <u> </u>           |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               | •••          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , ,            |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
| <del></del>   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      | _              |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    | ·                |                 |                      |                |
| <del></del>   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       | <del></del>     |                          |             |                    |                  |                 |                      | <del></del>    |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      | <del></del> -  |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
| 1             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 | ,                        |             |                    |                  |                 |                      |                |
| 1             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | · · · · · · · · · · · · · · · · · · · |                 |                          |             |                    |                  |                 |                      |                |
|               | <del></del>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             | <b>[</b> ]         |                  |                 | <u> </u>             |                |
| -             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
| <u>†</u>      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
| <del>}</del>  |              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | }                |                                       |                 |                          |             |                    |                  |                 |                      | <del></del>    |
|               |              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                       |                 |                          |             | <u> </u>           |                  |                 |                      |                |
| )             |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                       | ·               |                          |             | 1                  |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       | ì               |                          |             | ·                  |                  |                 |                      |                |
| <del></del>   |              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                       | <u> </u>        |                          |             | <del></del>        |                  |                 |                      |                |
| <del></del>   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       | <del></del>     |                          |             |                    | <del></del>      | <del></del>     |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
| Avg.          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
| Check'd       | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1888 827         |                                       | Talenda (n. 18. | 17878,847                |             | 12.00.00           |                  |                 |                      |                |
|               |              | A Section to the Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Secti | P. 12.200 (1997) |                                       |                 |                          |             | 1 (No. 1 (2004)    | er i especi e ha | From secure 20. | econoci nei teeno    | to control and |
| CONICOI       | E# A         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                       | Velocity        |                          |             |                    |                  |                 |                      |                |
|               | .Е# <u>.</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               | #            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                                       |                 | ire                      |             |                    |                  |                 |                      |                |
|               |              | <u>80+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                       | Flowrate        | (DSCFM)                  |             |                    |                  |                 |                      |                |
|               |              | 6'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                       | Isokinetic      | (%)                      |             |                    |                  |                 |                      |                |
| LINER N       | /ATERIAL     | _ Gless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
|               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |
| REMAR         | KS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                       |                 |                          |             |                    |                  |                 |                      |                |

C-104

ENTERED GEL- WHO.

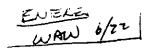
## SOURCE SAMPLING FIELD DATA SHEET

Page \_\_\_\_\_\_\_ of \_\_\_\_\_

| Plant N        | lame     | Plant                                        | Yates St | ation Bo       | iler No.                                         | 1                                                |                              |              |                                  |                                                  |         | (Table)     |
|----------------|----------|----------------------------------------------|----------|----------------|--------------------------------------------------|--------------------------------------------------|------------------------------|--------------|----------------------------------|--------------------------------------------------|---------|-------------|
| Sampling       | Location | STACK                                        | <u> </u> |                | Train _                                          | A                                                | ldehyde                      | s            | Rur                              | 1 No. <u>/</u>                                   | -1      | 34.5        |
| Date <u>oc</u> | -21-93   | Time Start                                   | 1340     |                | Time Fin:                                        | ish <u>14</u>                                    | 08                           | Test Dura    | tion                             | 28                                               | min.    | 6           |
| Duct Din       | nensions | x_                                           |          |                | Diameter 13 th                                   |                                                  |                              | Initial Lea  | k Rate _c                        | <u></u> cfm                                      |         |             |
| _              |          | DGMCF                                        | 00_      | Nozzle D       | ia. <u> </u>                                     | 147 inch                                         | CS .                         | Final Lea    | k Rate <table-cell></table-cell> | 1.001 € 6                                        | ·/_cfm  | A Pa        |
|                |          | <u>3/</u> " Hg                               |          |                |                                                  |                                                  |                              |              |                                  |                                                  | 0.764   | ,           |
|                |          | .5 " H2C                                     |          |                |                                                  |                                                  |                              |              |                                  |                                                  | 0. 7864 | /           |
| Travers        | Clock    |                                              |          |                | 4                                                | Dry gas m                                        | eter temp.                   | Hot box      | Probe                            |                                                  | Vacuum  |             |
| Point          | Time     | reading ft3                                  | in H2O   | in H2O         | Temp. F                                          | Inlet                                            | Outlet                       | Temp.        | Temp                             | Impinger                                         | in. Hg  |             |
| N-I            | 1346     | 571.567                                      | 0.59     | 0.46           | 128                                              | 79                                               | 78                           | 257          | 265                              | 74                                               | 2.0     |             |
| N-,            | 1356     | 577,780                                      | 0.59     |                | 128                                              | 83                                               | 80                           | 256          | 261                              | 59                                               | 2.0     |             |
| N-I            | 1404     | 580.760                                      | 0.59     | 0.46           | 126                                              | 85                                               | 81                           | 261          | 265                              | 51                                               | 2.6     |             |
| Stop           | 1408     | 582.274                                      |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                | i                                                |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         | _           |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                | ·        |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  | -                                                |         | -           |
|                |          |                                              |          |                |                                                  | <del>                                     </del> |                              | <del> </del> | ·· · · · ·                       | -                                                |         |             |
|                |          | <del> </del>                                 |          |                |                                                  |                                                  |                              | 1            |                                  |                                                  |         |             |
|                |          | <u>.                                    </u> |          |                | <del> </del>                                     |                                                  |                              |              |                                  | <del>                                     </del> |         |             |
|                |          |                                              |          |                | <del>                                     </del> | <del>                                     </del> |                              | ļ            | <del></del>                      | <del> </del>                                     |         |             |
|                |          |                                              |          | <u> </u>       | ļ                                                |                                                  |                              |              |                                  | <del>                                     </del> |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  | ļ                                                |         | -           |
|                |          | <u> </u>                                     |          |                |                                                  |                                                  |                              |              |                                  | -                                                |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              | ř        |                |                                                  |                                                  |                              |              | <u> </u>                         | <u> </u>                                         |         |             |
|                |          | <u> </u>                                     |          |                |                                                  |                                                  |                              | <u> </u>     |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          | j                                            |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              | 1                                |                                                  |         |             |
|                |          |                                              | DAP      | <del></del>    |                                                  | <del> </del>                                     |                              | <del> </del> | 1                                | <del>                                     </del> |         | · · · · · · |
| Ava            |          | 10.707                                       | 0.766    |                | 127                                              | BI                                               | An .                         |              |                                  |                                                  |         |             |
| Avg.           |          |                                              | V. (VV)  |                | Company of                                       |                                                  |                              |              |                                  |                                                  |         |             |
| Check'd        | 1/1/     | 10.707                                       |          | <u>Langeri</u> | Life du grae.                                    | generali ing il                                  |                              |              | 1                                | I                                                | l.      |             |
| CONSO          | LE#      | A16136Z                                      |          |                |                                                  | Velocity                                         | _46                          | سي           |                                  |                                                  |         |             |
|                |          | NA.                                          |          |                |                                                  | % Moistu                                         | THE STREET CONTRACTOR STREET |              |                                  |                                                  |         |             |
|                |          | <b>フ</b> ロナ                                  |          | -              |                                                  | Flowrate (                                       |                              |              |                                  |                                                  |         |             |
|                | LENGTH   |                                              |          |                |                                                  |                                                  | (%)                          |              |                                  |                                                  |         |             |
|                | _        | - Glass                                      |          |                |                                                  | . and                                            | <b>▼</b> . ∪.₹               |              | ·····                            |                                                  | •       |             |
|                |          |                                              |          |                |                                                  |                                                  |                              |              |                                  |                                                  |         |             |
| REMAR          | KS       |                                              | Sing     | <u>le 4.</u>   | Isok                                             | instic.                                          |                              | H + ime      | es C                             | <u>07</u>                                        |         |             |



Page \_\_\_\_ of


| Sampling                                     | Location_                                        | Plant<br>STACK                                   |              |                | Train _                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           |                |                |  |
|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|----------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------|--------------|---------------------------|----------------|----------------|--|
| Date OG                                      | -22-93                                           | Time Start                                       | 0715         |                | Time Finish 0745 Test Duration 30     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           | min            | ~ . <b>~</b> . |  |
| Duct Din                                     | nensions_                                        | ×_                                               |              |                | Diameter 13 ft Initial Leak Rate 0.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           | 2_cfm (2) 7    |                |  |
| _                                            |                                                  | DGMCF 1.0                                        | 06           | Nozzle D       | ia. <u>0.17</u>                       | 47_inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ės                | Final Leal                                       | k Rate < C   | 7.00 IE                   | <u>) "</u> cfm |                |  |
| Bar Press 29,34 " Hg Static Press -0.5 " H20 |                                                  |                                                  |              | Operator DJV   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K = 0.7753        |                                                  |              |                           |                |                |  |
| Trave.                                       | Clock                                            | Dry gas meter                                    | ^ P          | ^ H            | Stack                                 | Dry gas m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eter temp.        | Hot box                                          | Probe        | Last                      | Vacuum         |                |  |
|                                              | <del> </del>                                     | reading ft3                                      | in H2O       |                | Temp. F                               | inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Outlet            | Тетр.                                            | Temp         | Impinger                  |                |                |  |
| W- (                                         | 0715                                             | 591.804                                          |              | 0.45           | 13)                                   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77_               | 251                                              | 263          | 75                        | 2.0            |                |  |
|                                              |                                                  | 595, 160                                         | 0.59         | 0.45           | /33                                   | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79_               | 267                                              | 263          | 5G                        | 2.0            |                |  |
| 9                                            | 0933                                             | 597.715                                          | 0.59         | 0.45           | /33                                   | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                | 257                                              | 265          | 56                        | 2.6            |                |  |
|                                              | 0739                                             | 600.660                                          | 0.59         | 0.45           | /33                                   | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82                | 264                                              | 259          | 58                        | 2.0            |                |  |
|                                              | 0745                                             | 602. 890                                         | <u> </u>     |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  | <u> </u>     |                           |                |                |  |
|                                              |                                                  |                                                  | ļ            |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              | _                         |                |                |  |
|                                              | ]<br>                                            |                                                  |              |                | -                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              | <br>                      |                |                |  |
|                                              |                                                  |                                                  |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           |                |                |  |
|                                              |                                                  |                                                  |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           |                |                |  |
|                                              |                                                  |                                                  |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | <del> </del>                                     |              | <del></del>               |                |                |  |
|                                              |                                                  | <del> </del>                                     |              | _              | <del></del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           |                |                |  |
|                                              |                                                  | <del> </del>                                     | <del> </del> |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | <del> </del>                                     |              |                           |                |                |  |
|                                              | <del> </del>                                     | <del>                                     </del> |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>          |                                                  |              |                           |                |                |  |
|                                              |                                                  | <del> </del>                                     | <u> </u>     | <del> </del> - | <u> </u>                              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>          |                                                  |              |                           |                |                |  |
|                                              |                                                  | <u> </u>                                         | ļ            |                | <u> </u>                              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u></u>           | <u> </u>                                         | <u> </u>     |                           |                |                |  |
|                                              |                                                  |                                                  |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>          |                                                  | <u></u>      |                           |                |                |  |
|                                              |                                                  | i                                                | <u></u>      |                | <u> </u>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           |                |                |  |
|                                              |                                                  |                                                  | [            | ]              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  | Ţ            |                           |                |                |  |
|                                              |                                                  |                                                  |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 1                                                |              |                           |                |                |  |
|                                              |                                                  | <u> </u>                                         |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           |                |                |  |
|                                              |                                                  |                                                  |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                 |                                                  |              | <u> </u>                  |                |                |  |
|                                              | <del> </del> -                                   |                                                  | <del> </del> | <del> </del>   | <del> </del>                          | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del> </del>      | <del> </del>                                     | <del> </del> | <del> </del>              |                |                |  |
|                                              | <b></b>                                          |                                                  |              | -              | <del> </del>                          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | <del>                                     </del> | <del> </del> | ļ                         |                |                |  |
|                                              | <del> </del> -                                   |                                                  |              |                |                                       | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del> </del>      | <del> </del>                                     | <del></del>  | <del> </del>              |                |                |  |
|                                              | <del> </del>                                     |                                                  | <b></b>      |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | ļ                                                |              |                           |                |                |  |
| ļ                                            | ļ <u> </u>                                       | <del> </del>                                     |              |                | <u> </u>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ļ                 |                                                  | <u> </u>     |                           |                |                |  |
|                                              |                                                  |                                                  |              | <u> </u>       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>          | ļ. <u></u>                                       |              | <u> </u>                  |                |                |  |
|                                              | L                                                |                                                  |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           |                | =::            |  |
|                                              |                                                  |                                                  | [            |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                  |              |                           |                |                |  |
|                                              |                                                  |                                                  |              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>          |                                                  |              |                           |                |                |  |
| Avg.                                         |                                                  | 11.086                                           | 0 7/01       | A 4-           | 1100                                  | 400 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                 |                                                  |              |                           |                |                |  |
| Check'd                                      | <del>                                     </del> |                                                  | 7. 1.00      |                | 734.3                                 | 200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - |                   |                                                  |              |                           |                |                |  |
| Check d                                      |                                                  |                                                  |              | sayara nila    | 1000 July 15/2                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 10000 1000000 |                                                  |              |                           |                |                |  |
| CONSO                                        | LE#                                              | A 161362                                         |              |                |                                       | Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 46,45                                            |              |                           |                |                |  |
|                                              | CONSOLE #                                        |                                                  |              |                |                                       | U0000000000000 N. 0002 NW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | re .              |                                                  |              |                           |                |                |  |
|                                              |                                                  |                                                  |              | -              |                                       | Flowrate (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DSCFM)_           | 28                                               | 975          |                           |                |                |  |
| PROBE                                        | AMBIENT TEMP. 70+ PROBE LENGTH 6                 |                                                  |              |                |                                       | 2000 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (%)               |                                                  |              | Concurrence Coloco Coloco |                |                |  |
|                                              |                                                  | L <u>G/q35</u>                                   |              |                |                                       | i etalen ikkisia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                                                  |              |                           | ·              |                |  |
| REMAR                                        | .KS                                              | Si                                               | gle 9+.      |                | All To                                | mes C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>0</u> T        | <u>-</u>                                         | ·            |                           | -              |                |  |



| Page | of | r | ا الله الله الله الله الله الله الله ال |
|------|----|---|-----------------------------------------|
|      | ,  |   |                                         |

| Plant N      | Name                                  | Plant                                            | Yates St                                         | ation Bo | iler No.                                         | 1              |              |              |              |          | ,        |         |
|--------------|---------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|----------------|--------------|--------------|--------------|----------|----------|---------|
| Sampling     | Location_                             | Stack                                            |                                                  |          | Train _                                          | A              | Aldehyde     | 3            | _ Run        | No. 💆    | <u> </u> |         |
| Date OC      | . 23-93                               | Time Start                                       | 0700                                             |          | Time Fin                                         | ish <u>073</u> | 30           | Test Dura    | ition        | 30       | min.     | 7. ~ 11 |
| Duct Din     | nensions                              | Time Start X                                     |                                                  |          | Diameter                                         | 13             | <u></u> ft   | Initial Lea  | ık Rate 🙎    | 2007     | cfm      | JJ"     |
| PTCF _       | 0.84                                  | DGMCF                                            | 006                                              | Nozzle D | <u>7 ر. ہ</u>                                    | <u>47</u> inch | es           | Final Lea    | k Rate       | 0.002    | ctm 🙋    | 10 "    |
|              |                                       | 19 " Hg                                          | _                                                |          |                                                  | ^              |              |              |              |          | K = 0.   | 7766    |
|              |                                       | <u> 「 H20</u>                                    |                                                  |          |                                                  |                |              |              |              |          | , J      |         |
| Travers      | Clock                                 | Dry gas meter                                    | ^ P                                              | ^ H      | Stack                                            | Dry gas me     | eter temp.   | Hot box      | Prob€        | Last     | Vacuum   |         |
| Point        | Time                                  | reading ft3                                      | in H2O                                           | in H2O   | Temp. F                                          | Inlet          | Outlet       | Temp.        | Temp         | Impinger | in. Hg   |         |
| W-i          | 0700                                  | 616.602                                          | 0.56                                             | 0.43     | 130                                              | 79             | 76           | 262          | 258          | 65       | 2.0      |         |
| ļ            | 0705                                  | G18.425                                          | 0.56                                             | 0.43     | 130                                              | 79             | 76           | 261          | 255          | 55       | 2.0      |         |
|              | 0110                                  | 620.255                                          | 0.56                                             | 0.43     | 131                                              | 80             | 77           | 259          | 258          | 56       | 2.0      |         |
|              | 0715                                  | 622,070                                          | 0.56                                             | 0.43     | 130                                              | 83             | 78           | 259          | 260          | 57       | 2.0      |         |
|              | 0720                                  | c 23.895                                         | 0.55                                             | 0.43     | 131                                              | 83             | 78           | 260          | 257          | 57       | 2.0      |         |
|              | 0725                                  | 625.710                                          | 0.55                                             | 0.43     | 131                                              | 86             | 80           | 262          | 258          | 57       | 2.0      |         |
| Ston         | 0730                                  | 627. 531                                         |                                                  |          |                                                  |                |              |              |              |          |          |         |
| ,<br>L       |                                       |                                                  |                                                  |          |                                                  |                |              |              |              |          | <u> </u> |         |
|              |                                       |                                                  |                                                  |          |                                                  |                |              |              |              |          |          |         |
|              |                                       |                                                  |                                                  |          |                                                  |                |              |              |              |          |          |         |
|              |                                       |                                                  |                                                  |          |                                                  |                |              |              |              |          |          |         |
|              |                                       |                                                  |                                                  |          |                                                  |                |              |              |              |          |          |         |
|              |                                       |                                                  |                                                  |          |                                                  |                |              |              |              |          |          |         |
|              |                                       |                                                  |                                                  |          |                                                  |                |              |              |              |          |          |         |
|              |                                       | <del> </del>                                     |                                                  |          |                                                  |                |              |              |              |          |          |         |
|              |                                       | <del>                                     </del> | <del>                                     </del> |          |                                                  |                |              |              |              |          |          |         |
| <del> </del> |                                       | <del> </del>                                     |                                                  |          | <del>                                     </del> |                |              |              |              |          |          |         |
|              |                                       | <u> </u>                                         |                                                  |          |                                                  |                |              |              |              |          |          |         |
|              |                                       | <del> </del>                                     | <del> </del>                                     |          | <del> </del>                                     | <del> </del>   | <u> </u>     |              |              |          |          |         |
| <u> </u>     |                                       |                                                  | <del>                                     </del> |          | -                                                |                |              |              |              |          |          |         |
| <b> </b>     |                                       |                                                  | <u> </u>                                         |          |                                                  | <del> </del>   | !            | <del> </del> |              |          |          |         |
|              | <u> </u>                              |                                                  |                                                  |          |                                                  |                |              |              | <u> </u>     |          |          |         |
|              | · · · · · · · · · · · · · · · · · · · |                                                  |                                                  |          |                                                  |                |              |              |              |          |          |         |
|              |                                       |                                                  | <del> </del>                                     |          | ļ                                                | ļ              |              | ļ            | ļ            | -        | <u> </u> |         |
|              |                                       | ļ                                                |                                                  |          | <u> </u>                                         |                |              | <u> </u>     |              | <u> </u> |          |         |
|              |                                       |                                                  |                                                  |          |                                                  | <u> </u>       |              |              |              |          |          |         |
|              |                                       |                                                  |                                                  |          |                                                  | ļ              |              | ļ            | ļ            | ļ        |          |         |
|              | <u> </u>                              |                                                  |                                                  |          |                                                  |                |              |              |              | ļ        |          |         |
|              |                                       |                                                  |                                                  |          |                                                  |                |              |              |              |          |          |         |
| Avg.         |                                       | 10.929                                           | 0.7461                                           | 0.43     | /30.5                                            | 79             | 6            |              |              |          |          |         |
| Check'd      |                                       | 075                                              |                                                  |          | in Section .                                     |                | a Victoria d |              |              |          |          |         |
|              |                                       | A 161362                                         |                                                  |          |                                                  | Velocity_      |              | 45.15        |              |          |          |         |
|              | FILTER #                              |                                                  |                                                  |          |                                                  | % Moistur      | •            |              |              |          |          |         |
|              |                                       | <u> 70 +</u>                                     |                                                  |          |                                                  | Flowrate (     |              |              | 59. <b>9</b> |          |          |         |
|              |                                       | <u> </u>                                         |                                                  |          |                                                  | Isokinetic     | (秀)          |              |              |          |          |         |
| LINER !      | MATERIA                               | L <u>Glass</u>                                   |                                                  |          |                                                  |                |              |              |              |          |          |         |
| REMAR        | KS                                    |                                                  | Single                                           | 04.      | A                                                | 1 Times        | COT          |              |              |          |          |         |

|            | lame              |                                                  |                                                  |              |                |                         |                      |                                   |                                       |                                       |                | _                                                |
|------------|-------------------|--------------------------------------------------|--------------------------------------------------|--------------|----------------|-------------------------|----------------------|-----------------------------------|---------------------------------------|---------------------------------------|----------------|--------------------------------------------------|
| Sampling   | Location_         | Stack                                            |                                                  |              | Train _        | A                       | ldehyde              | <u> </u>                          | _ Rur                                 | 1 No. <u> </u>                        | 1ELD           | Best.<br>018<br>018"                             |
| Date _&    | -20-9             | Time StartX                                      | <u> 1325</u>                                     |              | Time Fini      | sh <u>/ 3</u>           | 269                  | Test Dura                         | tion                                  | 1.00                                  | min.           | _                                                |
| Duct Din   | nensions_         | x                                                | 7-006                                            | JECT         | Diameter       | <u> 13.2</u>            | ft                   | Initial Lea                       | k Rate _                              | 0.00                                  | <b>4</b> cfm ( | 218                                              |
| PTCF _     | .84               | DGMCF/.                                          | 006                                              | Nozzle D     | ia             | <u> </u>                | cs                   | Final Leal                        | Rate 🚄                                | 2.00                                  | cfm_cfm_4      | 218"                                             |
|            |                   | " Hg                                             | _                                                |              |                | ~~                      | =14                  |                                   |                                       |                                       | _              | _                                                |
| Static Pro | <u>— O</u>        | -5/ H2C                                          | <u> </u>                                         |              | Operator       | _52                     |                      |                                   |                                       |                                       |                |                                                  |
| Travers    | Clock             | Dry gas meter                                    | ^ P                                              | ^ H          | Stack          | Dry gas me              | eter temp.           | Hot box                           | Probe                                 | Last                                  | Vacuum         |                                                  |
| Point      | Time              | reading ft3                                      | in H2O                                           | in H2O       | Temp. F        | Inlet                   | Outlet               | Temp.                             | Temp                                  | Impinger                              | in. Hg         |                                                  |
| 41Lor      | 1376              | 563.880                                          |                                                  |              |                |                         |                      |                                   |                                       |                                       | 18             |                                                  |
| 560        |                   | 564.932                                          |                                                  |              |                |                         |                      | -                                 |                                       |                                       | 70             |                                                  |
| 7          |                   |                                                  |                                                  |              |                |                         |                      |                                   |                                       |                                       |                |                                                  |
|            |                   |                                                  |                                                  |              |                |                         |                      |                                   |                                       |                                       |                | <del>                                     </del> |
|            |                   |                                                  | <del>                                     </del> |              |                |                         |                      |                                   | · · · · · · · · · · · · · · · · · · · |                                       |                |                                                  |
|            |                   | <del>                                     </del> |                                                  |              |                |                         |                      |                                   |                                       |                                       |                |                                                  |
| -          |                   | <b>-</b>                                         |                                                  | <del> </del> | † <del>-</del> |                         |                      |                                   |                                       |                                       |                |                                                  |
|            |                   | <u> </u>                                         |                                                  |              |                |                         |                      | -                                 |                                       |                                       |                |                                                  |
|            | <del> </del>      | <del>                                     </del> |                                                  |              |                |                         |                      |                                   |                                       |                                       |                |                                                  |
|            |                   | <del></del>                                      |                                                  |              |                |                         |                      |                                   |                                       |                                       |                |                                                  |
|            |                   | <del> </del>                                     |                                                  | <br>         |                |                         |                      |                                   |                                       |                                       |                | <del>                                     </del> |
|            | l                 | <del> </del>                                     |                                                  |              |                |                         |                      |                                   |                                       |                                       |                | <del>                                     </del> |
|            |                   |                                                  |                                                  |              |                |                         |                      |                                   |                                       |                                       |                |                                                  |
|            |                   | <del> </del>                                     | <del>-</del>                                     |              |                |                         |                      |                                   | <del></del>                           |                                       |                | <del>                                     </del> |
|            |                   | <del> </del> -                                   |                                                  |              | <del> </del>   |                         |                      |                                   |                                       |                                       |                | <b></b>                                          |
|            | <del> </del>      |                                                  | <del></del>                                      |              |                |                         |                      |                                   |                                       |                                       |                | <del> </del>                                     |
| ļ          |                   | <del> </del>                                     | _                                                |              |                |                         |                      |                                   |                                       |                                       |                | <del>                                     </del> |
|            |                   |                                                  |                                                  |              | ļ              |                         |                      |                                   |                                       |                                       | <del></del> _  |                                                  |
|            |                   | <u></u>                                          |                                                  | <del></del>  | ļ              |                         |                      |                                   |                                       |                                       |                | <u> </u>                                         |
|            | <u></u>           |                                                  |                                                  |              | ļ              |                         |                      |                                   |                                       |                                       |                |                                                  |
|            |                   | <u> </u>                                         |                                                  | <u></u>      |                |                         |                      | <u> </u>                          |                                       | <u> </u>                              |                |                                                  |
|            | ļ                 | <b></b>                                          |                                                  |              | <u> </u>       |                         |                      |                                   |                                       |                                       |                | <u> </u>                                         |
|            | <u> </u>          |                                                  |                                                  |              |                |                         |                      | ļ                                 |                                       |                                       |                | <u> </u>                                         |
|            |                   |                                                  |                                                  |              | <u> </u>       |                         |                      | <u></u>                           |                                       |                                       |                | <u> </u>                                         |
|            |                   |                                                  |                                                  |              | <u> </u>       | <u> </u>                | <u> </u>             |                                   |                                       |                                       | <u></u>        | <b>↓</b>                                         |
|            |                   |                                                  |                                                  |              |                |                         |                      | ļ                                 |                                       |                                       |                |                                                  |
|            | <u> </u>          |                                                  |                                                  |              |                |                         |                      |                                   |                                       |                                       |                | <b>↓</b>                                         |
|            |                   |                                                  |                                                  |              |                |                         |                      |                                   |                                       |                                       |                | <b>↓</b>                                         |
|            |                   |                                                  |                                                  |              |                |                         |                      |                                   |                                       |                                       |                |                                                  |
| Avg.       |                   |                                                  |                                                  |              |                |                         | 13.24 (A).           |                                   |                                       |                                       |                |                                                  |
| Check'd    |                   |                                                  |                                                  |              |                |                         |                      |                                   |                                       |                                       |                |                                                  |
|            |                   | 14.51                                            |                                                  |              | <del></del>    | 2.880/801/2019          | BOSINGER BELIEF BOOK |                                   | (10) (10) (10)                        |                                       |                |                                                  |
| CONSO!     | 나는 #              | 416136                                           | <u> </u>                                         |              |                |                         |                      |                                   |                                       |                                       |                |                                                  |
| AMDIEN     | #                 | A16136<br>                                       |                                                  | -            |                | % Moistur<br>Flowrate ( |                      |                                   |                                       |                                       |                |                                                  |
| DRUBE      | i iemp.<br>Iengtu | 99°F                                             | <del></del>                                      |              |                | Isokinetie              |                      | wice, 200,000,000,000,000,000,000 |                                       |                                       |                |                                                  |
| LINER      | MATERIAL          |                                                  |                                                  |              |                | ABUS INCHES             |                      |                                   | <u> </u>                              |                                       | ì              |                                                  |
|            |                   |                                                  |                                                  |              |                |                         |                      |                                   |                                       |                                       |                |                                                  |
| REMAR      | KS                | BLAR                                             | IK-                                              |              | ····           |                         | <del></del>          |                                   |                                       | · · · · · · · · · · · · · · · · · · · | -              |                                                  |



Page \_\_\_\_ of \_\_\_\_\_\_\_

|             |                   | Plant              |                                                |          |                   |               |                                 |                                                  |                  |                                         |         |              |
|-------------|-------------------|--------------------|------------------------------------------------|----------|-------------------|---------------|---------------------------------|--------------------------------------------------|------------------|-----------------------------------------|---------|--------------|
| Sampling    | g Location_       | Star               | <u>ck                                     </u> |          | Train _           | M23 -         | Dioxins/                        | Furans                                           | Rur              | i No. <u>√-</u>                         | 1_      |              |
| Date og     | -21-93            | Time Start         | 1400                                           |          | Time Fini         | sh <u>193</u> | 3                               | Test Dura                                        | tion             | 240                                     | min.    |              |
|             |                   | x_                 |                                                |          |                   |               |                                 |                                                  |                  |                                         |         |              |
| PTCF _      | 0.84              | DGMCF _1.02        | 19                                             | Nozzle D | ia. <i>3F = 0</i> | inch_         | ės .                            | Final Lca                                        | k Rate _C        | 001 81                                  | of cim  |              |
|             |                   | 3) Hg              |                                                |          |                   |               |                                 |                                                  |                  |                                         |         |              |
| Static Pro  | ess               | 3.5 H2C            | )                                              |          | Operator          |               | TV                              | <del></del>                                      |                  | R=1.                                    | 352 g   |              |
| Travers     | Clock             | Dry gas meter      | ^ P                                            | ^ H      | Stack             | Dry gas m     | eter temp.                      | Hot box                                          | Probe            | Last                                    | Vacuum  | Cond         |
| Point       | Time              | reading ft3        | in H2O                                         | in H2O   | Temp. F           | Inlet         | Outlet                          | Temp.                                            | Temp             | Impinger                                | in. Hg  | 00+          |
| E -1        | 1400              | 678.367            | 0.67                                           | 0.84     | 122               | 68            | G 7                             | 254                                              | 243              | 56                                      | 5.0     | 58           |
|             | 1410              | 683.005            | 0.67                                           | 0.84     | 122               | 71_           | 68                              | 257                                              | 247              | 42                                      | 5.0     | 53           |
| E.Z         | 1420              | 687.810            | 0.68                                           | 0.85     | 122               | 73            | 69                              | 256                                              | 245              | 43                                      | 5.0     | 48           |
| _           | 1430              | 692,705            | 0.67                                           | 0.84     | /23               | 77_           | 72                              | 257                                              | 256              | 42                                      | 50      | 53           |
| F.3         | 1440              | G97 585            | 0.56                                           | 0.70     | /23               | 79            | 74                              | 257                                              | 256              | 45                                      | 4.5     | 51           |
|             | 1550              | 702.055            | 0.56                                           | 0.70     | 124               | 84            | 78                              | 259                                              | 243              | 48                                      | 4.5     | 52           |
| Stoo        | 1500              | 706.556            |                                                | leak ck  | I                 | @ 10"         |                                 |                                                  |                  |                                         |         |              |
| N-L         | 1505              | 20G. G78           | 0.70                                           | 088      | 1                 | 80            | 78                              | 256                                              | 241              | 58                                      | 5.0     | 55           |
|             | 1515              | 711. GG5           | 0.67                                           | 0.84     | 122               | 83            | 78                              | 253                                              | 24/              | 45                                      | 5.0     | 5/           |
| N·2         | 1575              | 716.625            | 0.70                                           | 0.88     | 122               | 94            | 79                              | 259                                              | 242              | 44                                      | 5.0     | 48           |
|             | 1535              | 721.685            | 0.70                                           | 0.88     | 123               | 84            | 81                              | 262                                              | 244              | 46                                      | 5.0     | 49           |
| N-3         | 1545              | 726.650            | 0.54                                           | 0.74     |                   | 90            | 83                              | 260                                              | 247              | 47                                      | 4.5     | 50           |
| - N         | 1555              | 731 290            | 0.59                                           | 0.74     | 123               | 89            | 8.2                             | 258                                              | 248              | 46                                      | 4.5     | 50           |
| CI.         | 1605              | 735.924            | 0,00                                           |          |                   | 2 0.0         |                                 | 5"                                               | 77.              | 76                                      | 3/3     | <u> </u>     |
| Stop        |                   | i                  | 0.02                                           | 100k     |                   |               | 79                              | 260                                              | 144              | <i>a.</i>                               |         | <u></u>      |
| W-I         | 1720              | 736.028            | 0.62                                           | 0.78     | 127               | 80            |                                 |                                                  | 245              | 6.0                                     | .5.0    | 57           |
|             | 1730              | 741.950            |                                                | 0.78     | 126               | 80            | 78                              | 255                                              | 250              | 40                                      | 5.0     | 50           |
| W-2         | 1740              | 745. 415           | 0.62                                           | 0.78     | 124               | 73            | 80                              | 257                                              | 247              | 42                                      | 5.0     | 52           |
|             | 1752              | 751. 100           | 0.62                                           | 0.78     | 124               | 86            | 82                              | 257                                              | 248              | 40                                      | 50      | 49           |
| $\omega$ -3 | 1800              | 754.870            | 0.50                                           | 0.62     | 124               | 86            | 82                              | 2G1                                              | 256              | 42                                      | 4.5     | 50           |
| <b>-</b>    | 1810              | 759 145            | 0.51                                           | 0.63     | 124               | 86            | 81                              | 7.45                                             | 252              | 43                                      | 4,5     | 50           |
| Shop        | 1820              | 763. 481           |                                                | icak     |                   |               | -                               | 1                                                |                  |                                         |         | <del> </del> |
| 5-1         | /833              |                    |                                                | 0.85     | /22               | 81            | ६०                              | 251                                              | 248              | 58                                      | 5.0     | 57           |
| <b></b>     | 1843              | 768.505            | 0.70                                           | 0.88     | 122               | 83            | 80                              | 250                                              | 257              | 42                                      | 5.5     | 50           |
| 5-2         | 1853              | 713.555            | 0.71                                           | 0.88     | 123               | \$7           | 82                              | 254                                              | 246              | 47                                      | 5.5     | 52           |
| <u> </u>    | 1903              | 778.630            | 0.71                                           | 0.88     | /23               | 89            | <b>F</b> 3                      | 254                                              | 761              | 47                                      | 5.5     | 52           |
| 2-3         | 1913              | 783. 720           | 0.59                                           | 0.74     | 124               | 90            | 84                              | 254                                              | 264              | 47                                      | 5.5     | 51           |
|             | 1923              | 788. 405           | 0.59                                           | 0.74     | 124               | 90            | 84                              | 243                                              | 251              | 48                                      | 5.5     | 52           |
|             | 1933              | 793,092            |                                                |          |                   |               |                                 |                                                  |                  |                                         |         |              |
| Avg.        | <u> </u>          | 114.442.           | 0.7956                                         | 0.7946   | 123.3             | 80            | 63                              |                                                  |                  |                                         |         |              |
| Check'd     | 1                 | 714_72516          | VTB                                            |          |                   |               |                                 |                                                  |                  |                                         |         |              |
|             |                   | Lu                 | IAA                                            |          |                   | Tringione's e | si njak <u>jan</u> s            | : <u>24404</u> 000000000000000000000000000000000 |                  | .:::::::::::::::::::::::::::::::::::::: | · · · · |              |
|             |                   | 4 IG I 394         |                                                |          |                   | Velocity_     | The second of the second of the |                                                  |                  |                                         |         |              |
|             |                   | NA                 |                                                | -        |                   |               |                                 |                                                  |                  |                                         |         |              |
|             |                   | <u>70 +</u><br>5 ' |                                                |          |                   |               |                                 | 297,                                             |                  |                                         |         |              |
|             | LENGTH<br>MATERIA |                    |                                                |          |                   | TEORINGUE     | (29 <u>3</u>                    |                                                  | a a magnificação |                                         |         |              |
| CHIER       | IIIA I ERIA       | L C lass           | <del></del>                                    |          |                   |               |                                 |                                                  |                  |                                         |         |              |
| REMAR       | RKS               | As                 | Times                                          | COT      |                   |               |                                 |                                                  | <del></del> -    |                                         | -       |              |

Page \_\_\_\_ of \_\_\_\_

|                                      | _     | Plant                         |        |          |                     |            | <br>Diouina/I | ? <u>.</u> | D        | No 1                                    |        | : <u>.</u>    |
|--------------------------------------|-------|-------------------------------|--------|----------|---------------------|------------|---------------|------------|----------|-----------------------------------------|--------|---------------|
|                                      | _     | STAC                          |        |          |                     |            |               |            |          |                                         |        |               |
| _                                    |       | Time Start                    |        |          |                     | sh         |               |            |          | 240                                     |        |               |
|                                      |       | DCMCE X                       |        |          |                     | 13 '       |               |            |          |                                         |        |               |
|                                      |       | DGMCF/.                       | 024    | Nozzie D | 12. <u>O.C.</u>     | 73aca      | CS            | rinai Lea  | k Rate Z | 0.001 €                                 | Cim    |               |
|                                      |       | <u>3</u>                      | )      |          | Operator            |            | JV            | _          |          |                                         | 1. 23  | 52            |
| Travers                              | Clock | Dry gas meter                 | ^ P    | ^н       | Stack               | Dry gas me | ter temp.     | Hot box    | Probe    | Last                                    | Vacuum | Conc          |
| Point                                | Time  | reading ft3                   | in H2O | in H2O   | Temp. F             | inlet      | Outlet        | Temp.      | Temp     | Impinger                                | in. Hg | <u>0</u> 0+   |
| E-1                                  | 0812  | 809.159                       | 0.73   | 0,90     | 127                 | 7.         | 7/            | 248        | 253      | 65                                      | 5.0    | 61            |
| <u> </u>                             | 0822  | 814.180                       | 0.73   | 0.90     | 128                 | 76         | 72            | 251        | 245      | 4/3                                     | 5.0    | 49            |
| F-2                                  | 0832  | 819.185                       | 0.72   | 0.89     | 129                 | 8.0        | 74            | 250        | 256      | 45                                      | 5.0    | 48            |
| J                                    | 0842  | 824.240                       | 0.72   | 0.89     | 129                 | 82         | 76            | 252        | 249      | 41                                      | 5.0    | 49            |
| E-3                                  | 0852  | 829.255                       | 0.64   | 0.79     | 129                 | 84         | 78            | 251        | 253      | 44                                      | 5.0    | 51            |
| <u> </u>                             | 09#2  | 834.030                       | 0.64   | 0.79     | /30                 | 87         | 81            | 253        | 244      | 46                                      | 5.0    | 51            |
| Stop_                                | 0912  | 838.804                       |        |          | jeok                | ck:        | <0.001        | @ 10       | " Na     |                                         |        |               |
| N-I                                  | 0917  | 838.817                       | 0.75   | 0.93     | 128                 | 83         | 81            | 254        | 252      | 55                                      | 5.5    | 59            |
|                                      | 0927  | 844.050                       | 0.75   | 0.93     | 129                 | 97         | 82            | 252        | 242      | 43                                      | 5.5    | 52            |
| N-2                                  | 0937  | 849.240                       | 0.73   | 0.90     | 129                 | 88         | 82            | 252        | 248      | 45                                      | 5.5    | 51            |
| <b></b>                              | 0947  | 854.465                       | 0.73   | 0.90     | 128                 | 90         | 84            | 257        | 251      | 46                                      | 5.5    | 51            |
| N-3                                  | 0957  | 859.590                       | 0.57   | 0.70     | 130                 | 93         | 87            | 253        | 243      | 48                                      | 50     | 50            |
|                                      | 1007  | 864 165                       | 0.57   | 0.70     | 130                 | 94         | 88            | 255        | 243      | 46                                      | 5.0    | 49            |
| Stop                                 | 1017  | 868.758                       |        |          | Itak                | ck :       | (0.001        | @ 10       | "Hg      |                                         |        |               |
| W-1                                  | 1026  | 868.817                       | 0.68   | 0.84     | 130                 | 89         | 87            | 255        | 242      | 56                                      | 5.5    | 54            |
|                                      | 1037  | 874 265                       | 0.68   | 0.84     | 128                 | 90         | 87            | 252        | 251      | 42                                      | 5.5    | 52            |
| w-2                                  | 1047  | 879. 200                      | 0.64   | 0,79     | 129                 | 92         | 88            | 254        | 250      | 44                                      | 5.0    | 50            |
|                                      | 1057  | 884.185                       | 0.64   | 0.79     | 128                 | 92         | 88            | 252        | 248      | 45                                      | 5.0    | 49            |
| W-3                                  | 1107  | 888.940                       | 0.54   | 0.67     | 128                 | 93         | 89            | 252        | 243      | 47                                      | 5.0    | 49            |
|                                      | 1/17  | 893,445                       | 0.54   | 0.67     | 129                 | 94         | 90            | 254        | 265      | 47                                      | 5.0    | 50            |
| Stoo                                 | 1127  | 897.948                       |        |          | /eat                | ck =       | 40,001        | @ 12       | " Ha     |                                         |        |               |
| 5-1                                  | 1136  | 898.035                       | 0.70   | 0.86     | 127                 | 93         | 90            | 252        | 255      | 50                                      | 5.5    | 51            |
|                                      | 1146  | 903140                        | 0.70   | 0.86     | 128                 | 94         | 90            | 252        | 248      | 46                                      | 5.5    | 49            |
| <u>૬-</u> ૨                          | 1150  | 908, 165                      | 0.70   | 0.86     | 127                 | 95         | 91            | 257        | 242      | 46                                      | 5,5    | 49            |
|                                      | 1206  | 913 280                       | 0.71   | 0.88     | 126                 | 95         | 91            | 252        | 266      | 43                                      | 575    | 48            |
| 5-3                                  | 1216  | 918,405                       | 0.57   | 0.70     | 127                 | 98         | 93            | 255        | 257      | 45                                      | 5.0    | 48            |
|                                      | 1226  | 923.040                       | 0.57   | 0.70     | 127                 | 97         | 93            | 253        | 263      | 48                                      | 5.0    | 50            |
| End                                  | 1236  | 927.672                       |        |          |                     |            |               |            |          |                                         |        |               |
| Avg.                                 | -     | +/15                          | 0.8141 | 0 8100   | 128.3               | 36         | .9            |            |          |                                         |        |               |
| Check'd                              |       | 118.294                       |        |          | 1.00 St. 11. 70 St. |            |               |            |          |                                         |        |               |
| Check'd<br>CONSO<br>FILTER<br>AMBIEI |       | 118.294<br>A161394<br><br>70+ |        |          | (15.3<br>(778       |            | e             |            |          | (80000000000000000000000000000000000000 |        | C1000 L-20000 |

| Plant N     | Name           | Plant            | Yates St        | ation Bo | iler No.        | 1                                       |                                       |                                              |                                         |                                         |                |       |
|-------------|----------------|------------------|-----------------|----------|-----------------|-----------------------------------------|---------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------|----------------|-------|
| Sampling    | Location       | STACK            |                 |          | Train_          | M23 -                                   | Dioxins/                              | Furans                                       | Run                                     | No                                      | 3              |       |
| Date 00     | -23-93         | Time Start       | 0810            |          | Time Fini       | sh /24                                  | 19                                    | Test Dura                                    | tion                                    | 240                                     | min.           |       |
| Duct Din    | nensions_      | x_               |                 |          | Diameter        | 13                                      | ft                                    | Initial Lea                                  | k Rate <u>c</u>                         | .002€                                   | دُأm <u>ح</u>  |       |
| PTCF _      | 0.84           | DGMCF            | <u>029</u>      | Nozzle D | ia. <u>0. 1</u> | 95 inch                                 | es                                    | Final Lea                                    | k Rate <u>&lt; (</u>                    | 0.001@                                  | <u>/ O</u> ctm |       |
|             |                | 19" Hg           |                 |          |                 |                                         |                                       |                                              |                                         | •                                       |                |       |
| Static Pro  | === <u>- 0</u> | . <b>5</b> * H20 |                 |          | Operator        |                                         | <u>11</u>                             | _                                            |                                         |                                         | 1,24           | 27    |
| Travers     | Clock          | Dry gas meter    | ^ P             | ^ H      | Stack           | Dry gas me                              | eter temp.                            | Hot box                                      | Probe                                   | Last                                    | Vacuum         | Cond  |
| Point       | Time           | reading ft3      | in H2O          | in H2O   | Temp. F         | Inlet                                   | Outlet                                | Temp.                                        | Temp                                    | Impinger                                | in. Hg         | 00+   |
| E-l         | 0810           | 960.872          | 0.66            | 0.82     | 127             | 25                                      | 74                                    | 249                                          | 262                                     | 70                                      | 5,0            | 68    |
|             | 0820           | 965,650          | 0.66            | 0.82     | 127             | 76                                      | אל                                    | 248                                          | 243                                     | 45                                      | 5.0            | 55~   |
| E-2         | 0830           | 970,425          | 0.68            | 0.85     | 127             | 80                                      | 76                                    | 252                                          | 244                                     | 44                                      | 50             | 52    |
|             | 0840           | 975.335          | 0.58            | 0.85     | 128             | 83                                      | 78                                    | 152                                          | 24/                                     | 46                                      | 5.0            | 52    |
| E-3         | 0850           | 980.270          | 0.54            | 0.47     | 128             | 80                                      | 79                                    | 254                                          | 250                                     | 49                                      | 5,0            | 53    |
|             | 0900           | 984.665          | 0.54            | 0.67     | 129             | 86                                      | 80                                    | 257                                          | 245                                     | 57                                      | 4.5            | 54    |
| Stop        | 0910           | 989 083          |                 |          | lank            |                                         | 0.001                                 |                                              | 2 /0                                    | "Hg                                     |                |       |
| N-(         | 0916           | 989.246          | 0.70            | 0.87     | 128             | 82                                      | 81                                    | 253                                          | 246                                     | 59                                      | 5.0            | 58    |
|             | 0926           | 994.240          | 0.69            | 0.86     | /28             | 84                                      | 81                                    | 251                                          | 246                                     | 45                                      | 5.0            | 5-4   |
| ル・ブ         | 0936           | 999.205          | a.70°           | 0.87     | 128             | 87                                      | 82                                    | 253                                          | 247                                     | 46                                      | 5.0            | 52    |
|             | 2946           | 004.200          | 0.70            | 0.87     | 129             | 8.8                                     | 83                                    | 254                                          | 257                                     | 48                                      | 5.0            | 53    |
| N-3         | 095G           | 009.280          | 0.58            | 0.72     | 129             | 89                                      | 84                                    | 153                                          | 248                                     | 49                                      | 5.0            | 53    |
|             | 100G           | 013,905          | 0.50            | 0.72     | 128             | 89                                      | 83                                    | 252                                          | 25 <sup>-</sup> 3                       | 48                                      | 5.0            | 53    |
| Stop        | 1016           | 018.516          |                 |          | leal            | . ex <                                  | 0.001                                 | c.e.                                         |                                         | 10 " H                                  |                |       |
| 14-1        | 1032           | 018.555          | 0.62            | 0.77     | 127             | 26                                      | 84                                    | 250                                          | 240                                     | <b>G</b> 7                              | 5.0            | 61    |
|             | 1042           | 023, 260         | 0.64            | 0.80     | 129             | 87                                      | 84                                    | 254                                          | 248                                     | 46                                      | 5.0            | 46    |
| <b>ω</b> −2 | 1052           | 028,050          | 0.64            | 0.80     | 129             | 92                                      | 87                                    | 253                                          | 245                                     | 49                                      | 57.0           | 52    |
|             | 1102           | 032.978          | 0.62            | 0.77     | /30             | 94                                      | 8-8                                   | 254                                          | 250                                     | 49                                      | 5.0            | 53    |
| Wi_3        | 1112           | 037.780          | 0.54            | 0.67     | 1.30            | 97                                      | 90                                    | 253                                          | 244                                     | 48                                      | 5.0            | 53.   |
|             | 1/22           | 042.410          | 0.54            | 0.67     | 129             | 98                                      | 91                                    | 253                                          | 254                                     | 60                                      | 5.6            | 53    |
| 54          | 1132           | 046, 912         |                 |          | ì               | r ck                                    | 0.001                                 | CFM                                          | e                                       | " Ha                                    |                |       |
| 5-1         | 1149           | 046.951          | 0.68            | 0.85     | 129             | 92                                      | 92                                    | 253                                          | 255                                     | 67                                      | 5.0            | دی    |
|             | 1159           | 052.020          | 0.68            |          | 1               | 95                                      | 93                                    | 752                                          | 242                                     | 42                                      | 6.0            | 51    |
| 5.2         | 1209           | 056.050          | 0.66            | 0.82     | 129             | 97                                      | 93                                    | 253                                          | 256                                     | 48                                      | 5.0            | 54    |
|             | 12.19          | 062.025          | 0.66            | 0.82     | (30             | 100                                     | 95                                    | 255                                          | 248                                     | 50                                      | 5.0            | 53    |
| s-3         |                | 066,995          | 0.57            | 0.71     | 130             | 101                                     | 96                                    | 254                                          | 251                                     | 49                                      | 5.0            | 52    |
|             | T              | 071.780          | 0.57            | 0.71     | 129             | 102                                     | 96                                    | 253                                          | 253                                     | 51                                      | 5.0            | 51    |
| End         | ſ              | 076.376          |                 |          |                 |                                         |                                       |                                              |                                         |                                         |                |       |
| Avg.        | _              | 115.263TB        | (De             | LIAW     |                 |                                         |                                       |                                              |                                         |                                         |                |       |
| Check'd     | 13             | 16.00            | 0.3966          | .78      | 129             | 813                                     |                                       |                                              |                                         |                                         |                |       |
|             |                | -                | $\searrow$      |          |                 |                                         | · · · · · · · · · · · · · · · · · · · |                                              |                                         | · : : : : : : : : : : : : : : : : : : : | -              |       |
|             |                | A161394          |                 | 0.793    |                 | 200 000000000000                        |                                       |                                              | 000000000000000000000000000000000000000 |                                         |                |       |
|             | #<br>NT TEMP   | 80 +             |                 |          |                 |                                         | DSCFM)                                | <b>0000000000000000000000000000000000000</b> | 60000000000000000000                    |                                         | (              |       |
|             | LENGTH         |                  | · · · · · · · · | COVY     | recl            | 10.000000000000000000000000000000000000 | (%)                                   |                                              |                                         |                                         |                |       |
|             | MATERIAL       |                  | 3               | (, 0 ,   |                 | TOTAL TOTAL SANSAGE                     | ¥77.4°.                               |                                              | (20 (80 (80) ماريون مو                  |                                         | 1              |       |
|             |                |                  |                 |          |                 |                                         |                                       |                                              |                                         |                                         |                |       |
| REMAR       | KS             |                  |                 | 11 Tim   | کی د            | PT                                      |                                       |                                              |                                         |                                         |                |       |
|             |                |                  |                 | .v       | us C<br>guny Es | •                                       |                                       |                                              |                                         |                                         |                | C-111 |
|             |                |                  | >               | area     | guny 2          | MOL                                     |                                       |                                              |                                         |                                         |                |       |

Plant Name Plant Yates Station Boiler No. 1

Sampling Location Stack Train M23 - Dioxins/Furans Run No. F6 Date 06-20-93 Time Start 1037 Time Finish 1037 Test Duration — min.

Duct Dimensions X Diameter 13' ft Initial Leak Rate 0.001 cfm @ 123

PTCF 0.54 DGMCF 1.029 Nozzle Dia. 0.195 inches Final Leak Rate cfm Bar Press 29.36 "Hg Static Press \_\_\_\_\_ \* H2O Operator <u>ATV WAW</u> ^ P <sup>^</sup>H Stack Dry gas meter temp. Hot box Probe Last Travers | Clock | Dry gas meter Vacuum in H2O in H2O Temp. F Inlet Point Time reading ft3 Temp. Temp Impinger Outlet in. Hg 1037 661,294 80 79 254 251 84 Avg. Check'd CONSOLE # \_\_\_\_\_\_ A 16 1 3 9 4 \_\_\_\_\_ % Moisture FILTER # \_\_\_\_ Flowrete (DSCFM) AMBIENT TEMP. 80+ PROBE LENGTH \_\_\_\_ 5\_' lsokinetic (%) LINER MATERIAL Glass REMARKS

| 1-93 Ti<br>nsions DO<br>29.31 -0.5      | Stace me Start X GMCF 9 " Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1330                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time Finis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sh <u>094</u><br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 (ac-23-4<br>ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Secre Due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1sions                                  | X<br>GMCF <u></u> , 9<br>* Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | k Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .84 DO<br>29.31<br>0.5                  | GMCF <u>0,4</u><br>* Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 194                                                                                                                                                                                                                                                                                                | Nozzie D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ia. O./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00 :-ak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | muuai Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 29.31<br>-0.5                           | " Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ure inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Final Leaf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cfm<br>cfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -0.5                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ·-·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | " H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Clock D                                 | ry gas meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                    | ^ H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dry gas me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hot box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| J                                       | reading ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Temp. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Impinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - C4                                                                                                                                                                                                                                                                                               | - °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l T                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~ <del>~ ~ </del>                                                                                                                                                                                                                                                                                  | U . 8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OCU                                                                                                                                                                                                                                                                                                | 0 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T .                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>   </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del></del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Т .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| · • · · · · · · · · · · · · · · · · · · | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 755 111                                 | <u>11. 250</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.64                                                                                                                                                                                                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>6</u> Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / Z. <i>5</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 160.195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE PERSON OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 153 76<br>101 7<br>28 76<br>109 76<br>149 8<br>150 8<br>103 8<br>103 8<br>103 8<br>103 8<br>104 8<br>104 8<br>104 9<br>105 10<br>105 10<br>1 | 153 723.540 101 730.900 28 743.321 109 762.330 147 781.770 149 820.825 150 821.572 103 821.911 129 829.170 149 840.700 127 860.120 102 87.7850 144 869.440 1310 913.305 134 956.945 120 981.057 1215 1009.895 1334 1052.730 1410 1069.620 1412 1086.70 1516 1104.005 1419.400 157.674 153 1171.250 | 153 723.540 0.64<br>101 730.900 0.64<br>28 743.321 0.64<br>109 762.330 0.64<br>147 781.770 0.64<br>149 820.825 0.64<br>150 821.572<br>103 821.911 0.64<br>129 829.170 0.64<br>129 829.170 0.64<br>127 860.120 0.64<br>127 860.120 0.64<br>127 860.120 0.64<br>127 869.440 0.64<br>130 913.305 0.64<br>134 956.945 0.64<br>134 956.945 0.64<br>134 956.945 0.64<br>133 10.29.845 0.64<br>133 10.29.845 0.64<br>133 10.29.845 0.64<br>140 1069.620 0.64<br>1410 1069.620 0.64<br>1410 1086.70 0.64<br>1410 1086.70 0.64<br>1410 1086.70 0.64<br>1410 1086.70 0.64 | 153 723.540 0.64 0.80 101 730.900 0.64 0.80 28 743.321 0.64 0.80 109 762.330 0.64 0.80 149 820.825 0.64 0.80 150 821.572 163 821.911 0.64 0.80 149 840.700 0.64 0.80 141 869.440 0.64 0.80 141 869.440 0.64 0.80 151 1009.855 0.64 0.80 153 10.29.845 0.64 0.80 153 10.29.845 0.64 0.80 153 10.29.845 0.64 0.80 153 10.29.845 0.64 0.80 153 10.29.845 0.64 0.80 153 10.29.845 0.64 0.80 151 1009.855 0.64 0.80 151 1009.855 0.64 0.80 151 1009.855 0.64 0.80 151 1009.855 0.64 0.80 151 1009.855 0.64 0.80 153 10.29.845 0.64 0.80 153 10.29.845 0.64 0.80 155 10.52.730 0.64 0.80 157 10.64 0.80 157 10.64 0.80 157 10.64 0.80 | 153 723.540 0.64 0.80 128 101 730.900 0.64 0.80 128 28 743.321 0.64 0.80 127 109 762.330 0.64 0.80 127 147 781.770 0.64 0.80 127 150 821.572 103 821.911 0.64 0.80 124 129 829.170 0.64 0.80 124 129 829.170 0.64 0.80 124 129 829.170 0.64 0.80 124 129 829.170 0.64 0.80 124 129 829.170 0.64 0.80 124 129 829.170 0.64 0.80 124 129 829.440 0.64 0.80 124 120 823.845 0.64 0.80 124 120 981.850 0.64 0.80 124 121 1009.85 0.64 0.80 124 121 1009.85 0.64 0.80 124 121 1009.85 0.64 0.80 124 121 1009.85 0.64 0.80 124 121 1009.85 0.64 0.80 124 121 1009.85 0.64 0.80 124 121 1009.85 0.64 0.80 124 121 1086.70 0.64 0.80 124 121 1086.70 0.64 0.80 124 122 1086.70 0.64 0.80 124 124 1086.70 0.64 0.80 124 125 1157.674 0.64 0.80 124 125 1157.674 0.64 0.80 124 125 1157.674 0.64 0.80 126 | 153 723.540 0.64 0.80 128 94 101 730.900 0.64 0.80 128 94 128 741.321 0.64 0.80 127 103 109 762.330 0.64 0.80 127 103 147 781.770 0.64 0.80 124 101 149 820.825 0.64 0.80 124 108 29 829.170 0.64 0.80 124 99 129 829.170 0.64 0.80 124 81 129 840.700 0.64 0.80 124 81 129 840.700 0.64 0.80 124 95 124 860.120 0.64 0.80 124 91 1202 877.850 0.64 0.80 124 95 124 867.440 0.64 0.80 124 95 124 867.440 0.64 0.80 124 105 134 956.945 0.64 0.80 124 106 125 1009.835 0.64 0.80 124 106 125 1009.835 0.64 0.80 124 106 125 1009.835 0.64 0.80 124 106 125 1009.835 0.64 0.80 124 106 126 1104.080 0.64 0.80 124 104 140 1069.620 0.64 0.80 124 104 1412 1086.70 0.64 0.80 124 101 1516 1104.085 0.64 0.80 124 101 1516 1104.085 0.64 0.80 124 101 1516 1104.085 0.64 0.80 124 101 1517.674 REDIACE 5:0 6-5 157.674 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 6-5 157.675 REDIACE 5:0 | 133   733.540   0.64   0.80   128   94   95   128   141   321   0.64   0.80   128   94   95   28   741   321   0.64   0.80   127   103   95   147   781.770   0.64   0.80   124   101   96   149   820.825   0.64   0.80   124   101   96   133   821.911   0.64   0.80   124   128   108   103   103   821.911   0.64   0.80   124   81   79   149   840.700   0.64   0.80   124   88   81   27   860.120   0.64   0.80   124   88   81   27   860.120   0.64   0.80   124   95   90   124   85   124   103   155   134   155   945   0.64   0.80   124   105   97   134   155   945   0.64   0.80   124   106   97   134   155   945   0.64   0.80   124   106   97   134   155   945   0.64   0.80   124   106   97   134   155   945   0.64   0.80   124   106   97   134   155   945   0.64   0.80   124   106   97   134   156   945   0.64   0.80   124   106   97   134   156   945   0.64   0.80   124   106   97   134   156   945   0.64   0.80   124   104   97   140   106   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160 | 153 733.540 0.64 0.80 128 94 85 -  101 730.900 0.64 0.80 128 94 85 -  28 743.321 0.64 0.80 128 94 85 -  28 743.321 0.64 0.80 127 103 95 -  109 762.330 0.64 0.80 127 103 95 -  147 781.770 0.64 0.80 124 101 96 -  49 820.825 0.64 0.80 124 101 96 -  103 821.512  103 821.911 0.64 0.80 124 81 79 -  149 840.700 0.64 0.80 124 88 81 -  27 860.120 0.64 0.80 124 95 90 -  144 840.700 0.64 0.80 124 95 90 -  144 840.700 0.64 0.80 124 95 90 -  144 840.700 0.64 0.80 124 95 90 -  144 849.440 0.64 0.80 124 105 97 -  134 87.445 0.64 0.80 124 106 99 -  134 97.845 0.64 0.80 124 106 99 -  134 97.945 0.64 0.80 124 106 99 -  135 1009.85 0.64 0.80 124 106 99 -  151 1009.85 0.64 0.80 124 104 97 -  140 1069.620 0.64 0.80 124 104 97 -  1412 1086.70 0.64 0.80 124 104 97 -  1412 1086.70 0.64 0.80 124 101 95 -  1516 1104.005 0.64 0.80 124 101 95 -  1516 1104.005 0.64 0.80 124 101 95 -  153 1171.250 0.64 0.80 124 101 95 -  153 1171.250 0.64 0.80 124 101 94 -  153 1171.250 0.64 0.80 124 101 94 -  153 1171.250 0.64 0.80 124 101 94 -  153 1171.250 0.64 0.80 124 101 94 -  153 1171.250 0.64 0.80 124 101 94 -  153 1171.250 0.64 0.80 124 101 94 - | 153 73.540 0.64 0.80 1.28 95 88 101 730.900 0.64 0.80 128 94 85 28 743.321 0.64 0.80 127 103 95 29 762.330 0.64 0.80 127 103 95 247 781.770 0.64 0.80 127 103 95 249 820.825 0.64 0.80 124 101 96 249 820.825 0.64 0.80 124 101 96 249 820.825 0.64 0.80 124 81 79 249 829.170 0.64 0.80 124 81 79 249 829.170 0.64 0.80 124 88 81 249 829.170 0.64 0.80 124 88 81 249 829.170 0.64 0.80 124 88 81 249 829.170 0.64 0.80 124 95 90 249 829.850 0.64 0.80 124 95 90 244 889.440 0.64 0.80 124 105 97 249 829.850 0.64 0.80 124 105 97 249 829.850 0.64 0.80 124 105 97 249 829.850 0.64 0.80 124 106 99 249 825.850 0.64 0.80 124 106 99 249 825.855 0.64 0.80 124 106 99 249 825.855 0.64 0.80 124 106 99 249 825.855 0.64 0.80 124 106 99 249 825.855 0.64 0.80 124 106 99 249 825.855 0.64 0.80 124 106 99 249 825.855 0.64 0.80 124 106 99 249 825.855 0.64 0.80 124 106 99 249 825.855 0.64 0.80 124 104 97 249 825.855 0.64 0.80 124 104 97 249 825.855 0.64 0.80 124 104 97 249 825.855 0.64 0.80 124 104 97 249 825.855 0.64 0.80 124 104 97 249 825.855 0.64 0.80 124 104 97 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825.855 0.64 0.80 124 101 95 249 825 1157.874 0.44 0.80 1250 1250 1250 94 93 2455 1157.874 0.44 0.80 1250 1250 1250 94 93 255 1157.874 0.44 0.80 0.80 1250 1250 94 93 255 1157.874 0.44 0.80 0.80 1250 1250 1250 94 93 255 1157.874 0.44 0.80 0.80 1250 1250 94 93 255 1157.874 0.44 0.80 0.80 1250 1250 94 93 255 1157.874 0.44 0.80 0.80 1250 1250 94 93 255 1157.874 0.44 0.80 0.80 1250 1250 94 93 - | 153 73.540 0.64 0.80 128 94 85 - 60  101 730.900 0.64 0.80 128 94 85 - 60  28 741.321 0.64 0.80 127 103 95 - 60  109 762.330 0.64 0.80 127 103 95 - 60  147 181.770 0.64 0.80 124 101 96 - 60  50 821.512  103 821.911 0.64 0.80 124 101 96 - 60  28 829.170 0.64 0.80 124 99 79 - 64  149 820.825 0.64 0.80 124 88 81 - 66  129 829.170 0.64 0.80 124 88 81 - 66  120 287.800 0.64 0.80 124 88 81 - 66  120 287.800 0.64 0.80 124 95 90 - 67  131 93.305 0.64 0.80 124 105 97 - 67  134 156.945 0.64 0.80 124 106 99 - 67  134 156.945 0.64 0.80 124 106 99 - 64  120 981.051 0.64 0.80 124 106 99 - 67  121 109.815 0.64 0.80 124 106 99 - 64  121 109.815 0.64 0.80 124 106 99 - 67  133 1029.845 0.64 0.80 124 106 99 - 67  144 109.845 0.64 0.80 124 106 99 - 67  151 109.845 0.64 0.80 124 106 99 - 67  151 109.845 0.64 0.80 124 106 99 - 67  151 109.845 0.64 0.80 124 106 99 - 67  151 109.845 0.64 0.80 124 106 99 - 67  151 109.845 0.64 0.80 124 106 99 - 67  151 109.845 0.64 0.80 124 106 99 - 67  151 109.845 0.64 0.80 124 109 95 - 67  151 109.845 0.64 0.80 124 109 95 - 67  151 109.845 0.64 0.80 124 101 95 - 67  151 109.855 0.64 0.80 124 101 95 - 67  151 119.400 0.64 0.80 124 101 95 - 67  151 119.400 0.64 0.80 124 101 95 - 67  151 119.400 0.64 0.80 124 101 95 - 67  152 1157.674 REDIA 5.0 647  153 1171.250 0.64 0.80 126 94 93 - 68 | 153 733.540 0.64 0.80 128 95 88 - 60 12.0  1601 730.900 0.64 0.80 128 94 85 - 10 13.0  28 741.321 0.64 0.80 127 103 95 - 60 17.0  177 781.770 0.64 0.80 124 101 96 - 60 17.0  49 820.825 0.64 0.80 124 101 96 - 60 17.0  179 820.825 0.64 0.80 124 101 96 - 60 17.0  170 3821.512  170 0.64 0.80 124 101 96 - 75 13.0  171 840.700 0.64 0.80 124 88 81 79 - 64 12.0  171 840.120 0.64 0.80 124 88 81 - 66 12.0  171 841 842 0.64 0.80 124 95 90 - 67 12.0  171 841 842 0.64 0.80 124 95 90 - 67 12.0  171 841 842 0.64 0.80 124 106 97 - 62 12.0  171 841 95 945 0.64 0.80 124 106 97 - 67 12.0  171 171 171 0.64 0.80 124 106 97 - 67 12.0  171 171 171 0.64 0.80 124 106 97 - 67 12.0  171 171 171 0.64 0.80 124 106 97 - 67 12.0  171 171 171 0.64 0.80 124 106 97 - 67 12.0  171 171 171 0.64 0.80 124 106 97 - 67 12.0  171 171 171 0.64 0.80 124 106 97 - 67 12.0  171 171 171 0.64 0.80 124 104 97 - 67 12.0  171 171 171 0.64 0.80 124 104 97 - 67 12.0  171 171 171 0.64 0.80 124 104 97 - 67 12.0  171 171 171 0.64 0.80 124 104 97 - 67 12.0  171 171 171 0.64 0.80 124 104 97 - 67 12.0  171 171 171 0.64 0.80 124 104 97 - 67 12.0  171 171 171 0.64 0.80 124 101 95 - 67 12.0  171 171 171 0.64 0.80 124 101 95 - 67 12.0  171 171 171 0.64 0.80 124 101 95 - 67 12.0  171 171 171 0.64 0.80 124 101 95 - 67 12.0  171 171 171 0.64 0.80 124 101 97 - 67 12.0  171 171 171 0.64 0.80 124 101 97 - 67 12.0  171 171 171 0.64 0.80 124 101 97 - 67 12.0  171 171 171 0.64 0.80 124 101 97 - 67 12.0  171 171 171 0.64 0.80 124 101 97 - 67 12.0  171 171 171 0.64 0.80 124 101 97 - 67 12.0  172 173 171 171 0.64 0.80 124 101 97 - 67 12.0  173 174 174 0.64 0.80 124 101 97 - 67 12.0  173 174 175 0.64 0.80 124 101 97 - 67 12.0 |

Page \_\_\_\_\_ of \_\_\_\_

| Plant N    | Name       | Plant               | Yates St     |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|------------|------------|---------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----|
| Sampling   | Location   | Stac                | 4            |                                                  | Train _                                          | P                                                | SD                                      |                                                  | Run N                                            | lo/_                                                                                                           | _                                                | -   |
| Date oc    | ·22-93     | Time Start 13       | 30 (06       | <u>~21</u> ~43)                                  | Time Fin                                         | ish                                              |                                         | Test Dura                                        | tion                                             |                                                                                                                | min.                                             |     |
| Duct Din   | nensions   | Stace Time Start 13 | <del></del>  | `                                                | Diameter                                         | 13                                               | ftft                                    | Initial Lea                                      | k Rate _                                         | 2,00                                                                                                           | cfm                                              |     |
| PTCF _     | 0.84       | DGMCF 0.9           | 94           | Nozzle D                                         | ia. <u>0.1</u>                                   | 9 <i>6</i> inch                                  | es                                      | Final Leal                                       | k Rate                                           |                                                                                                                | cfm                                              |     |
| Bar Press  | <u> 29</u> | .34" Hg             |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
| Static Pro | css        | <i>0.5</i> " H20    | )            |                                                  | Operator                                         |                                                  |                                         | _                                                |                                                  |                                                                                                                |                                                  |     |
| Travers    | Clock      | Dry gas meter       | ^ P          | ^ H                                              | Stack                                            | Dry gas me                                       | eter temp.                              | Hot box                                          | Probe                                            | Last                                                                                                           | Vacuum                                           | ~ ^ |
| Point      | Time       | reading ft3         | in H2O       |                                                  | Temp. F                                          |                                                  | Outlet                                  | Temp.                                            | Temp                                             | Impinger                                                                                                       | in. Hg                                           | Jup |
| 5 .        |            | 10-0-0              |              |                                                  |                                                  |                                                  |                                         | -                                                |                                                  |                                                                                                                |                                                  |     |
| S-1        | 0838       | 195.040             |              | 0.80                                             |                                                  | 107                                              | 99                                      |                                                  |                                                  | 58                                                                                                             | 12.0                                             | 3/0 |
|            | 0920       | 217.180             |              |                                                  |                                                  | 110                                              | 103                                     | ļ. <u></u>                                       |                                                  | 56                                                                                                             | 12.6                                             | 300 |
| र्खेट      | 0945       |                     |              | M5 7/                                            | HAH                                              | HO P                                             | ORT 3                                   | /                                                |                                                  |                                                                                                                |                                                  |     |
| 56         | 0945       | 231.343             |              | OK                                               | <u> </u>                                         |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
| -          | -          |                     |              |                                                  | <u>.</u> .                                       |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              | <del> </del>                                     |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  |                                                  | -                                                |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         | <u> </u>                                         |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  | ļ                                                |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  | <u> </u>                                |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  |                                                  | _                                                |                                         |                                                  | <u> </u>                                         | <u></u>                                                                                                        |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  | -                                                                                                              |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            | _          | <del> </del>        |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  | <u> </u>                                                                                                       |                                                  |     |
|            |            |                     |              |                                                  | _                                                |                                                  |                                         |                                                  |                                                  | <b>—</b> ——                                                                                                    |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         | <del>                                     </del> |                                                  | <del> </del>                                                                                                   | <del>                                     </del> |     |
|            |            |                     |              | <del> </del>                                     | <del>                                     </del> | ]                                                |                                         | <del> </del>                                     |                                                  | <del> </del>                                                                                                   | <del> </del> -                                   |     |
|            |            |                     |              | <del> </del>                                     |                                                  |                                                  |                                         | <del> </del>                                     | <del>                                     </del> |                                                                                                                | <del> </del>                                     |     |
|            |            |                     |              | <del>                                     </del> | -                                                | <del> </del> -                                   | <u> </u>                                |                                                  | <del> </del>                                     | ┼──                                                                                                            | <del> </del>                                     |     |
| _          |            |                     |              | <del>                                     </del> | <del>  -</del>                                   | <del>                                     </del> |                                         |                                                  | <del> </del>                                     |                                                                                                                |                                                  | -   |
|            |            |                     | <del> </del> | <b></b>                                          | <del>                                     </del> | <del> </del>                                     |                                         |                                                  | ļ <u>-</u>                                       |                                                                                                                | <del> </del>                                     | -   |
|            |            | ļ                   |              | <del>                                     </del> | ļ                                                | ļ                                                |                                         | <del> </del>                                     |                                                  |                                                                                                                | <del></del>                                      |     |
|            | ļ          | <b> </b>            |              | 1                                                |                                                  |                                                  |                                         |                                                  | <del> </del> _                                   | <del> </del>                                                                                                   |                                                  |     |
|            | <u> </u>   |                     |              | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | ļ                                       | <u> </u>                                         |                                                  | <u> </u>                                                                                                       |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
| Avg.       | _4         | 5710.285            | 0.800        | 80                                               | 125                                              | 96                                               |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
| Check'd    |            | 519.149TB           |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            |                     |              |                                                  |                                                  |                                                  |                                         | annan ann an an an                               |                                                  | en de de la constante de la co |                                                  |     |
|            |            | 16/365              |              |                                                  |                                                  | Velocity                                         | 000000000000000000000000000000000000000 |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            | SET AA              |              |                                                  |                                                  | % Moistur                                        |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
|            |            | <u>70†</u>          |              |                                                  |                                                  | Flowrate (                                       |                                         | a fin Irin Isin dina kananana kataba             | Contract of the second                           | i en en la librar en el en el en el en el en el el el el el el el el el el el el el                            |                                                  |     |
|            |            |                     |              |                                                  |                                                  | isokinetic                                       | (%)                                     |                                                  |                                                  |                                                                                                                | Š                                                |     |
| LINER I    | MATERIA    | L <u>Steel</u>      |              |                                                  |                                                  |                                                  |                                         |                                                  |                                                  |                                                                                                                |                                                  |     |
| REMAR      | .KS        | A(/                 | Times        | C01                                              | -                                                |                                                  |                                         |                                                  |                                                  | -                                                                                                              | 96ta                                             |     |

Flue-Gas Sampling Log

| pousou:                     | Sample Kun #:          |
|-----------------------------|------------------------|
| lant Location: Managed Con- | Soda-Lime Trap#: 5 400 |
| )ate: 6-25-43               | Iodated Carbon #: 💪 👡  |
| uel Type:                   | Pump#: 3               |
| ollution Control: ESD_TDB   | Probe#: 1              |
| ampling Point STA K         | Filter ID: 10          |

|         | start       |         |         | stop    |         | elapsed | mean               | mean    |
|---------|-------------|---------|---------|---------|---------|---------|--------------------|---------|
| time    | zero        | flow    | time    | zero    | flow    | time    | zero               | flow    |
| (hh:mm) | (1/min)     | (1/min) | (hh:mm) | (1/min) | (1/min) | (min)   | (1/min)            | (1/min) |
| 2050    | 05.0 250.0- | 0.500   | 1025    | •       | 0.489   | 200.0   | 200.0 -0.005 0.495 | 0.495   |
| 7       |             |         |         |         |         |         |                    |         |
|         |             |         |         |         |         |         |                    |         |
|         |             |         |         |         |         |         |                    |         |
|         |             |         |         |         |         |         |                    |         |
|         |             |         |         |         |         |         |                    |         |
|         |             |         |         |         |         |         |                    |         |
|         |             |         |         |         | TOTALS: |         |                    |         |

| 0.00<br>0.10<br>le: 100.0<br>lon: | COMMENTS:  LEAVENECK METER = -0.026  " " PROBE = -0.025  PROBE TEMS = 100°C CT & 120°C |
|-----------------------------------|----------------------------------------------------------------------------------------|
|                                   |                                                                                        |

Flue-Gas Sampling Log

| 338                      | 18000                               | 3.5                  | . !         | wedd.                     | NAME OF THE         |
|--------------------------|-------------------------------------|----------------------|-------------|---------------------------|---------------------|
| 22.2                     | 80.00                               | .X.,                 |             |                           |                     |
|                          | 7.                                  |                      |             |                           |                     |
| <b>780</b>               | 38.01                               |                      |             | ( See l                   |                     |
| 38                       |                                     | 80.00                | - SE        |                           |                     |
| 33                       | 300                                 | Age                  |             |                           |                     |
| 38                       | 1831                                |                      | 1           | 3.6                       |                     |
| 15,87                    | 3,279                               |                      |             |                           | 1000 y 1            |
| 100                      |                                     |                      |             |                           |                     |
| 34,                      | 1. 1.                               | V 1                  |             | (1997)                    |                     |
|                          |                                     |                      |             | 34.5                      | 200                 |
| 11.0                     | 11.00                               |                      |             |                           | 000                 |
| 11.5                     | 100                                 | 88.3                 |             |                           | 40.00               |
| - C.                     | 200                                 | 22.0                 | 1           | 200                       |                     |
| 1.                       | -                                   |                      |             | 1000                      | Co.                 |
| 3841                     | 20.0                                |                      |             | 100 P                     | 1888. J             |
|                          | -403                                | - 407                |             |                           | 0.000               |
| 38                       | 20 X                                |                      | -594        |                           | .000                |
|                          | <b>₩</b>                            | 30 E                 |             | 20.5                      | 983                 |
| 1,239                    |                                     | \$2.5K.F             | 200         | 250                       |                     |
|                          |                                     |                      |             |                           |                     |
|                          | ×                                   |                      | 1.00        |                           | 300                 |
|                          |                                     |                      | 3.1         |                           |                     |
|                          | A 18                                |                      |             | 100                       |                     |
| N I                      |                                     |                      |             | 333                       |                     |
| IV                       | Stat.                               |                      |             |                           |                     |
| •                        | 1                                   |                      |             |                           |                     |
| -37                      |                                     |                      | h. H        | 1.32                      |                     |
|                          | : ≠=:                               | 4-1                  | 11          | [ # E                     |                     |
|                          |                                     | 1                    |             |                           |                     |
|                          | -                                   |                      |             | (                         |                     |
|                          | ्रत                                 |                      |             | - 4                       | (Sex.)              |
| ===                      | _;►                                 | . W                  |             | ~                         | 100                 |
| 7                        |                                     |                      |             | 1                         |                     |
|                          |                                     |                      |             | 30                        | 423                 |
| -                        | نه                                  | . 70                 | • 4         | 200                       | 100                 |
|                          |                                     | 6.3                  |             |                           |                     |
|                          |                                     |                      |             | 13.5                      |                     |
| 40                       |                                     |                      |             | € 6                       | السزا               |
| _                        |                                     | 9                    | #           | *                         | <b>.</b>            |
| $\overline{\mathcal{L}}$ | 54.3                                | 9                    | Ö.          | الله                      |                     |
| -                        |                                     |                      | =           | - A                       | 1 7                 |
| ਯ                        | -                                   | 70                   | , i         |                           | ΙШ.                 |
| -                        |                                     | TO                   |             | 0                         |                     |
| ਰ                        | 0:                                  |                      |             |                           | + ===               |
| Sample Run #:            | Soda-Lime Trap#                     | Iodated Carbon#      | Pump#:      |                           | Filter ID:          |
| -                        |                                     |                      | <u> </u>    | -                         | -                   |
|                          | F0 -                                |                      |             | w.31                      | 1 × 5 .             |
|                          |                                     |                      | 1           |                           |                     |
| . :                      | 100                                 | [ ·                  | 1 ::        | 1 : /                     | I                   |
| :                        |                                     |                      | 1           | 1 - 1                     | 1                   |
|                          | ŧ                                   |                      | 1           | 3.4                       | [ N .               |
|                          |                                     |                      | 1           |                           | 100                 |
|                          |                                     |                      | 1           | ~~                        | 130 c               |
|                          |                                     |                      | i           |                           | 1 800               |
|                          |                                     |                      |             |                           |                     |
|                          | €                                   | Ara i                | 1 .         |                           | l 🏁                 |
|                          | 1                                   |                      | 1.3         | A                         |                     |
|                          | Q.                                  |                      |             | 1                         |                     |
|                          | \bar{\bar{\bar{\bar{\bar{\bar{\bar{ |                      |             | 36                        | V                   |
|                          | Į.                                  |                      | 3<br>3<br>3 | h                         | ¥                   |
|                          | Į.                                  |                      |             | h                         | 3                   |
|                          | S.                                  |                      |             | h                         | Ą                   |
|                          | Į.                                  |                      |             | 片人                        | N Y Y               |
|                          | T.                                  |                      |             | 片る                        | 7                   |
| 20 mm                    |                                     |                      |             | 45 - GS                   | 12 TE               |
|                          |                                     |                      |             | 45-05                     | 454                 |
|                          | AT THE PERSON NAMED IN              |                      |             | 120-UN                    |                     |
|                          | Service Constitution                | 8.                   |             | Th-OM                     | O CACE              |
|                          | Month.                              | 2                    |             | Mo-UP                     | STACK.              |
|                          | Bearing. Con                        |                      |             | : Mo-UP                   | STACK.              |
| M                        | Character. Con                      | <b>62</b> -          |             | 1: Eb-JP                  | STACK.              |
|                          | Theres. Co.                         |                      |             | ol: Ess-JP                | STAGK.              |
|                          | Theory.                             | 2-7                  |             | rol: GD-JP                | E STREK             |
|                          | 1: American Con                     | 2-7                  |             | itrol: CD-JP              | nt Orker            |
|                          | III. Magazza, Cra                   | £-72                 |             | ntrol: AD-JF              | int Stack           |
|                          | On: America.                        | 6-72                 |             | ontrol: ESD-JF            | oint Stack          |
|                          | tion: America.                      | (2-72-)              |             | Control: ED-JF            | Point Stack         |
|                          | ation: Alberta.                     | (2-72-9              |             | Control: AD-UP            | Point Strack        |
|                          | Cation: Alberta.                    | (B-77-9)             | e:          | n Control: 120-17         | g Point Stack       |
| 22X :                    | scation: Alegania, Car              | G-7-7                | pe: Coke    | in Control: 150-3F        | ng Point STACK      |
| or: //ces                | ocation: Assette.                   | 62-72-7              | ype: Cot.   | on Control: ED-JF         | ing Point Stack     |
| sor Years                | Location: Albertal. Con             | Eb-72-7              | 'ype: ( *** | tion Control: ED-IP       | ling Point STACK    |
| nson: Years              | t Location: Aleganian, Car          | : 7-72-9 ::          | Type:       | tion Control: ESD- 3P     | pling Point STACK   |
| msor: //czs              | nt Location: Alagana.               | 6. <b>642-7</b> ia   | l Type:     | lution Control: ED-JP     | upling Point STACK  |
| onson: Vees              | unt Location: Alegana.              | ite: 6-45-43         | el Type:    | Nution Control: 150-37    | mpling Point STACK  |
| ponson: //ces            | lant Location: Aleganter, Cre       | ate: <b>6-76-9</b> 3 | uel Type:   | ollution Control: 130-17  | ampling Point STACK |
| Sponsor VACES            | Plant Location: America, Con        | Date: 6-76-73        | uel Type:   | Pollution Control: 150-7P | Sampling Point John |

|         |      | <u></u> | •     |  |  |     |              |
|---------|------|---------|-------|--|--|-----|--------------|
| mean    |      | (1/min) | -     |  |  |     | 0500         |
| mean    | zero | (1/min) | -0025 |  |  |     | -0.025 0.500 |
| elapsed |      | (min)   |       |  |  |     | 82           |
|         | flow | (1/min) | 2500  |  |  |     | TOTALS:      |
| stop    | zero |         |       |  |  |     |              |
|         | time | (hh:mm) | 5471  |  |  |     |              |
|         | flow | (1/min) | 0.500 |  |  | 7-4 |              |
| start   |      | (1/min) |       |  |  |     |              |
|         | time | (hh:mm) | MIK   |  |  |     |              |

| r Volume (1): <b>O.00</b> | COMMENTS:                       |
|---------------------------|---------------------------------|
| rrection (1): 1419-5 0.10 | LEAK CHECK THEOXON NETER 0.026  |
| grator Volume: 100,00     | LEAN aHECK THOUSE DOORES -0.026 |
| Flow Correction:          | 7                               |
| y STP) volume (1):        | 7,021 7 77,001                  |
| <b>C</b>                  |                                 |
| 0.0                       |                                 |
| 14.0                      |                                 |
| 700.0                     |                                 |
|                           |                                 |

# Flue-Gas Sampling Log

| Sponsor: Art. Sample Run #: Soda-Lime Trap#: S-333  Date: Control: Exp. Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Trap#: Soda-Lime Tr |                                                 |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------|---------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | $\times$ $\times$   | 36.000        | 3000                                         | 9.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000000  |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | (i)                 | 80. jul       | S 30                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000000                                         |                     | 88.888        | (A) (A)                                      | 888.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,000                                           | 900000              |               |                                              | 33000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                     | 30 W          | 3000                                         | 330.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33801    |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 0.000               |               |                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                     | (A.W.)        | 4.466                                        | (%) X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ***                                           |                     | 200           | 900                                          | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ****     |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | :                   |               | 2.00                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | XXX 93   |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 2000000             | 22.00         | W. 20                                        | 338.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98800.1  |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                           | 0.000               |               | S                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4000)                                          |                     |               | 9.00                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 02,000              | Sh. 333       | 00000                                        | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 333333   |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100000                                          |                     | 80 m          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100000                                          |                     | <b>***</b>    | W 30.                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | SECTION 1           | ' (1888)      | 200                                          | - XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3333                                            | 8 2 32              |               | $\mathcal{Z} \otimes \mathcal{Z}$            | - CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: Exp. Trap#: Point: Start Trap#: Filter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 8.ass               | <i>*</i> ~    | ***                                          | 388 AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpTPS Probe#: 30 Point: Free: 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                           |                     | 1 x6          | **************************************       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 333                                             | i ak.               | <b>30 900</b> |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | (8) x (9) x         | \$: ≱ີ        |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | 8 ľ                 |               |                                              | W 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | 6. a                | 28.88         | 300                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8600 ME  |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                           | 888 VI              | 888 Y         | 80 W                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                     | ## J          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | \$***************** | <b>*****</b>  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | 8.7                 | £ 28          |                                              | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Sample Run #: Soda-Lime Trap#: Lodated Carbon #: Control: ExpT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.88                                            | 200 B               | <b>₩</b> ₩    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Control: State Control: Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: State Control: Sta |                                                 |                     | 200 mars      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 440                                           |                     | (S) (S)       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 388 G F  |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000                                            |                     |               | 180 X                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.000                                          | 2.44                | 20            |                                              | 20000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3000 N   |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 (6.78)                                       | 2 X                 |               |                                              | & V&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200000                                          | S. 197              |               | 46.                                          | <b>₩</b> ~~4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30000303 |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3830                                            | 300                 | ⊗⊑:           |                                              | . 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 388      |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . • •                                           | ₩.₩                 |               | <b>2000</b>                                  | ندههدا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #E                                              |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                                            |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333 X X  |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | \$ 2000             | 55 mg         | <b>*************************************</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | Serie.              | 经票据           |                                              | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 80 - Zel            | XX 1.2        |                                              | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 23 - A              |               | 300.00                                       | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mark.                                           | ® ≘®                | A             |                                              | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 4-4                 | - T           | ***                                          | <b>****</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 mm 6   |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 2.1                 | <b>.</b>      | 34-                                          | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2200     |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                               |                     | W-33          |                                              | <b>****</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33300 B  |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | ×                   |               |                                              | 83-A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-1      |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | . U                 | 2.00          | S - 3                                        | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.1      |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                     |               |                                              | 6 × 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X        |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                               |                     | 抽一剂           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22       |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Control: September Control: ESP-TFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                             | 75                  | 9             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷÷:      |
| Control: STREET STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                               | S                   | 9]            | L                                            | Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ξ.       |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               | S                   | 9]            | L                                            | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ij.      |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               | S                   | 91            | P                                            | $ \mathbf{P}_{\mathbf{f}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ij       |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               | S                   | ][6           | P                                            | $  \mathbf{P}_{\mathbf{f}}  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E        |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               | S                   | 16            | $  P_1  $                                    | $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fi       |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               | S                   | Io            | F                                            | $ \Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fi       |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \mathbf{S} $                                  | S                   | Io            | $ P_1 $                                      | $ P_{t} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fi       |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                               | S                   | Io            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion: 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion:<br>A 2<br>Outrol:<br>Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion:<br>A 2<br>Outrol:<br>Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion:<br>A 2<br>Outrol:<br>Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion; (e=) Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| tion; (e=) Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Plant Location: Date: Fuel Type: Pollution Control Sampling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Plant Location: Date: Location: Fuel Type: Pollution Control Sampling Point:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Plant Location: Date: Fuel Type: Pollution Contr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Valuant Location Date: Caludion Cont Pollution Cont Sampling Poin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Plant Location Date: Fuel Type: Pollution Con Sampling Poi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Plant Locatif Date: Fuel Type: Pollution Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Plant Locati Date: Fuel Type: Pollution Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Plant Locat Date: Fuel Type: Pollution C Sampling P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Plant Loca Date; Fuel Type: Pollution ( Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                               |                     |               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Sponsor: Plant Loc Date: Fuel Type Pollution Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S                                               |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Sponsor<br>Plant Lo<br>Date;<br>Fuel Typ<br>Pollutior<br>Samplin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                               |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Sponso Plant Lo Date: Fuel Ty Pollutio Samplir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S S                                             |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Sponst<br>Plant I.<br>Date:<br>Fuel Ty<br>Pollutii<br>Sampli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S S S S S S S S S S S S S S S S S S S           |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Spons Plant Date: Fuel T Pollut Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S 22 31                                         |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Spon<br>Plant<br>Date<br>Fuel<br>Pollu<br>Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S S S S S S S S S S S S S S S S S S S           |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Spoi<br>Plan<br>Date<br>Fuel<br>Polls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Som And Some Some Some Some Some Some Some Some |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Sport Plan Flue Flue Sam Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S Social S                                      |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Sale Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S S S S S S S S S S S S S S S S S S S           |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S S S S S S S S S S S S S S S S S S S           |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S Sonson                                        |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| TOWNS TO HER TO HER TO THE SUPPLY SHOULD BE SEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S Substitution S Substitution S                 |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sponsor: State Sponsor                          |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sponsor: Sponsor                                |                     |               |                                              | Control: EXP-TTPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |

|         |      |         | 1     |              |  | _ | - | ,       |
|---------|------|---------|-------|--------------|--|---|---|---------|
| mean    |      | (I/min) |       | 0.230        |  |   |   |         |
| mean    | zero | (1/min) |       | 0.220 0.230  |  |   |   |         |
| elapsed | time | (min)   |       | 240          |  |   |   | :       |
|         | flow | (1/min) |       | . 080        |  |   |   | TOTALS: |
| stop    | zero | (1/min) |       | - 200 - 420C |  |   |   |         |
|         | _    | )       |       | 5711         |  |   |   |         |
|         | flow | (1/min) | 0.500 |              |  |   |   |         |
| start   | zero | (1/min) | 2200  |              |  |   |   |         |
|         | time | (hh:mm) | - 55% |              |  |   |   |         |

| Integrator Volume (I):                | COMMENTS                    |
|---------------------------------------|-----------------------------|
| Officet Competion (1): A 15           |                             |
| Oliser Collection (1): 0.10           | THE CHIEF THROWN ACTED TO   |
| Total Integrator Volume: 46.0         | LEM CHECK -THOSOM DROVE - C |
| CO <sub>2</sub> Mass Flow Correction: |                             |
| Actual (dry STP) volume (1):          | 2,021 7_7 7,000             |
| % 0 <sub>2</sub> : <b>8.0</b>         |                             |
| % CO <sub>2</sub> : <b>(D, n</b>      | Law From DIJE TO MOISTERPE  |
| % H <sub>2</sub> O: <b> 5.</b> O      | TEAN MAINTAINED AS          |
| ppm SO <sub>2</sub> : <b>260</b>      | METHOD.                     |
|                                       |                             |

-0.025

1. P. C.

# Flue-Gas Sampling Log

|                          |                       | _                      |          | _            |                         |
|--------------------------|-----------------------|------------------------|----------|--------------|-------------------------|
| Doka.                    | ersd                  |                        | <0.598   | O            |                         |
| 3 760                    |                       |                        | (3.8K)   |              |                         |
| 100000                   | 19 m                  |                        |          |              |                         |
|                          |                       |                        |          |              |                         |
| 0.00                     | 7 377                 |                        |          | 700          |                         |
| . <u>18</u> 70           | 4300                  | 20/2                   |          | . 9          | 3                       |
| -1 $(1 < 1)$             | 100                   |                        | i        |              |                         |
| 749                      |                       | 100                    |          |              | 1.51                    |
|                          | 3                     | WW.                    | 1        |              |                         |
| ¥                        |                       |                        |          | ÇAN.         | 5 V.                    |
| 7                        | 1.1.2                 |                        |          |              | 200                     |
|                          | 1 (100)<br>1 (200)    | 30                     |          |              | , The .                 |
| - 7                      | <b>₩</b> .            |                        |          | 100          |                         |
| -                        | No.                   | 100                    | 4        | 4000         | 343 <sub>0</sub>        |
| M                        | a                     | O                      |          | 777          |                         |
| - 22                     | $\sim$                | -                      | 3.5-     | 1.5          | 1000                    |
|                          | : 0                   |                        |          | 0.0          | 18                      |
| -9                       | M                     | V                      |          |              | 1.00                    |
| J                        |                       |                        | احدا     | 19           |                         |
| , Ш                      | 1000                  |                        | 11.      | <b>(</b> 2 ) |                         |
| تعزا                     |                       | 2.1                    | *        |              | 1                       |
|                          | #                     | #                      |          |              | O                       |
|                          |                       |                        | ×        |              | 1                       |
|                          | ررم                   |                        | 35x #3   |              | *                       |
| <b>#</b>                 | , 🛏                   | 2                      | 3        |              | 93                      |
| -                        |                       | 'n                     | 1        | 33.          | - 3                     |
| ≕                        | ករ                    |                        |          | Y.Y          |                         |
|                          | 7                     | 7                      |          | 300          |                         |
|                          | Ξ.                    | $\mathbf{V}$           | 100      | 11. 3        | <b> </b>                |
| 0                        | 17                    | ਹ                      | -        |              | -                       |
| -                        |                       | Ø.                     | <b>*</b> | 7            | 7                       |
| -                        | ाउ                    | 7.                     | 1        | 5            | ~                       |
| =                        | 7                     |                        | <b>*</b> | 0            | *                       |
| ₹5                       | 0                     | <b> </b>               | <b>5</b> |              | -                       |
|                          |                       |                        |          |              |                         |
| S                        | Š                     | $\simeq$               | 7        | 7            | 1                       |
| Sample Run #: Halo Blank | Soda-Lime Trap#: 5405 | Iodated Carbon #: 2405 | Pump#:   | Probe#       | Filter ID:              |
| ်                        | $ \mathbf{S} $        | 10                     | P        | $\sim$       | H                       |
| လ                        | $ \mathbf{S} $        | )<br> <br>             | T        | ું [P        | F                       |
| S                        | $\mathbf{S}$          | )   [c                 | I L      |              |                         |
| S                        | $ \mathbf{S} $        | )     [c               | a l      |              | H Section               |
| S                        | $ \mathbf{S} $        | )]                     | T        |              |                         |
| S                        | S                     |                        | T        |              |                         |
| S                        |                       |                        |          |              |                         |
| S                        |                       |                        |          |              | <u> </u>                |
| S                        |                       |                        |          |              | <u> </u>                |
| 8                        |                       |                        |          |              | <u>I</u>                |
| 8                        |                       |                        |          |              | $oldsymbol{\mathrm{I}}$ |
| S                        |                       |                        |          |              | H                       |
| S                        |                       |                        |          |              |                         |
| S                        |                       |                        |          |              |                         |
| 8                        |                       |                        |          |              |                         |
| 8                        | S. S.                 |                        |          | SPINK P      | $oldsymbol{\mathrm{d}}$ |
| 8                        |                       |                        |          |              | <u>4</u>                |
| S                        |                       |                        |          |              | <u> </u>                |
| S                        |                       |                        |          |              | 4                       |
| S                        |                       |                        |          |              | 4 STACK                 |
| S                        |                       |                        |          |              | ne sypte                |
| S                        |                       |                        |          |              | ding street             |
| S S                      |                       |                        |          |              | onite system            |
| S                        |                       |                        |          |              | Point Street            |
| . //es                   |                       |                        |          |              | g Point: Stree          |
| S // ES                  |                       |                        |          |              | ng Points STACK         |
| sor: //-c=s              |                       |                        |          |              | ling Point: STACK       |
| nson: Vaces              |                       |                        |          |              | pling Points Stree      |
| onsor: Veres             |                       |                        |          |              | npling Point: STACK     |
| S // Insort              |                       |                        |          |              | impling Point: STACK    |
| Sponsor: 1/1025          |                       |                        |          |              | Sampling Points STACK   |

| mean  | flow<br>(1/min) |        |
|-------|-----------------|--------|
| mean  | zero<br>(1/min) |        |
| 1     | time .          | H 1    |
|       | flow<br>(1/min) | 0.500  |
| stop  | zero<br>(1/min) | -0.026 |
|       | time<br>(hh:mm) | 1120   |
|       | flow<br>(1/min) | 0.500  |
| start | zero<br>(1/min) | -0.07  |
|       | time<br>(hh:mm) | 11.15  |

| Integrator Volume (1):         | COMMENTS:                         |
|--------------------------------|-----------------------------------|
| Offset Correction (1):         | LEAK CHACK THEOX + NETER = -0.027 |
| Total Integrator Volume: 0.000 |                                   |
|                                |                                   |
| Actual (dry STP) volume (l):   |                                   |
| % <b>0</b> <sub>2</sub> :      |                                   |
| % CO <sub>2</sub> :            |                                   |
| % H <sub>2</sub> O;            |                                   |
| ppm SO <sub>2</sub> :          |                                   |
|                                |                                   |

|                                     |                                                  |                                                  | SOURC    | CE SAM                                           | IPLING            | FIELD                                            | DATA :             | SHEET          |                                                  | Page                                             | of      |          |
|-------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|-------------------|--------------------------------------------------|--------------------|----------------|--------------------------------------------------|--------------------------------------------------|---------|----------|
| Plant N                             | Name                                             | Plant                                            | Yates St | ation Bo                                         | oiler No.         | 1                                                |                    |                |                                                  |                                                  |         |          |
|                                     |                                                  |                                                  |          |                                                  | Train_            |                                                  | Anions             |                | Run N                                            | o                                                |         |          |
| Date 6                              | 25 93                                            | Stack<br>Time Start b                            | 940      |                                                  | Time Fin          | ish/ 5                                           | 5                  | Test Dura      | ation                                            | 134                                              | min     | 1144     |
| Duce Du                             | 11CH210U2                                        | x_                                               |          |                                                  | Diameter          | ish <u>      5</u><br>    13<br> inch            | ft                 | Initial Lea    | ak Rate <u>C</u>                                 | 2·000                                            | O ctu y | <u> </u> |
| PTCF _                              | 0.84                                             | DGMCF 100                                        | 6        | Nozzie D                                         | ia. <u>6. 195</u> | inch                                             | ies                | Final Lea      | k Rate                                           | Starr C                                          | etm     | נייי     |
| Bar Pres<br>Static Pro              | s <u>29-4</u><br>ess <u>- 0-(</u>                | 29.33 Hg<br>- 0 " H20                            |          |                                                  | Operator          | Ez                                               |                    | <del></del>    |                                                  | <u> </u>                                         | 1.160   | <u></u>  |
| Travers                             | Clock                                            | Dry gas meter                                    | ^ P      | ^ H                                              | . Stack           | Dry gas m                                        | eter temp.         | Hot box        | Probe                                            | Last                                             | Vacuum  |          |
| Point                               | Time                                             | reading ft3                                      | in H2O   | in H2O                                           | Temp. F           | Inlet                                            | Outlet             | Temp.          | Temp                                             | Impinger                                         | in. Hg  |          |
| N-3                                 | 0940                                             | 739,155                                          | 0.62     | 0.719                                            | 131               | 85                                               | 85                 | 254            | 253                                              | 61                                               | 1.0     |          |
|                                     | 0950                                             | 743920                                           | 0.62     | 0.72                                             | 132               | 58                                               | 85                 | 255            | 250                                              | 53                                               | 1.0     |          |
|                                     | 1000                                             | † <del></del>                                    | 0.62     | 6.22                                             | 133               | 91                                               | 86                 | 254            | 264                                              | 54                                               | 1.0     |          |
|                                     | 1018                                             |                                                  |          | 077                                              | 133               | 95                                               | 88                 | <del></del>    | 256                                              | 56                                               | 1.0     |          |
|                                     | 1041                                             | 767 - 445                                        | 0.62     |                                                  | <del></del>       | 97                                               | 90                 | <del></del>    | 260                                              | 57                                               | 1.0     |          |
|                                     | 1055                                             | 174.002                                          | 0.62     | 0.72                                             |                   | 97                                               | 91                 | 253            | 258                                              | 58                                               | 1.0     |          |
|                                     | 1110                                             |                                                  | 0.62     | 0.72                                             | 132               | 97                                               | 9)                 |                | 255                                              | 53                                               | 1.0     |          |
|                                     | 1141                                             | 795 . 376                                        |          | 0.72                                             | <del></del>       | 98                                               | 92                 | 251            | 258                                              | 53                                               | 50      |          |
| ND                                  | 1155                                             | 801.650                                          |          |                                                  |                   |                                                  |                    |                |                                                  |                                                  |         |          |
|                                     |                                                  | <b>X</b>                                         |          |                                                  |                   |                                                  |                    |                |                                                  |                                                  |         |          |
|                                     | <u> </u>                                         |                                                  |          |                                                  |                   | <u> </u>                                         |                    |                |                                                  |                                                  |         |          |
|                                     |                                                  |                                                  |          |                                                  |                   |                                                  |                    |                |                                                  |                                                  | _       |          |
|                                     |                                                  |                                                  |          |                                                  |                   |                                                  |                    | <del></del>    | <u> </u>                                         |                                                  |         |          |
|                                     |                                                  |                                                  |          |                                                  |                   |                                                  |                    |                | <del>                                     </del> |                                                  |         |          |
|                                     |                                                  |                                                  |          |                                                  |                   |                                                  |                    |                |                                                  |                                                  |         |          |
|                                     |                                                  |                                                  |          |                                                  |                   |                                                  |                    |                | ļ                                                |                                                  |         |          |
|                                     | t -                                              | ţ · · · · · · · · ·                              |          |                                                  |                   |                                                  |                    |                |                                                  |                                                  |         |          |
|                                     | <del>                                     </del> | <del> </del>                                     |          |                                                  |                   |                                                  |                    | $\vdash$       |                                                  | 1                                                |         |          |
| <b></b>                             |                                                  |                                                  |          | i -                                              |                   |                                                  |                    |                |                                                  |                                                  |         |          |
|                                     |                                                  |                                                  |          |                                                  |                   |                                                  |                    |                |                                                  |                                                  |         |          |
|                                     |                                                  |                                                  |          |                                                  |                   |                                                  |                    |                | <del></del> -                                    | <del>                                     </del> |         |          |
|                                     |                                                  |                                                  |          |                                                  | † · · · · · · ·   | <u> </u>                                         | <u> </u>           | <del> </del>   | <del> </del>                                     | <del>                                     </del> |         |          |
| <b> </b>                            | <del>                                     </del> | <del>                                     </del> |          |                                                  |                   | <del> </del>                                     |                    | -              | <del>                                     </del> |                                                  |         |          |
|                                     | <del>                                     </del> |                                                  |          | <del>                                     </del> |                   | <del> </del>                                     |                    | <del> </del>   |                                                  | <del>                                     </del> | -       |          |
|                                     | <u> </u>                                         | <del> </del>                                     | <u> </u> |                                                  | <del> </del>      |                                                  |                    | <del> </del>   | <del> </del>                                     | <del>                                     </del> |         |          |
|                                     | <del>                                     </del> |                                                  | _        |                                                  |                   | <del>                                     </del> |                    |                | <del> </del>                                     | <del>                                     </del> |         |          |
| 1                                   |                                                  | <del>                                     </del> |          | 1                                                |                   | <del> </del>                                     |                    | <del> </del>   | -                                                | <del> </del>                                     |         |          |
| }                                   | <del>                                     </del> | 1                                                |          | <del>                                     </del> |                   | 1                                                | <b></b>            | <del> </del> - | 1                                                | <del> </del>                                     |         |          |
| Avg.                                |                                                  | 62:415                                           | 70-710   | 750                                              | /32 2             | a subsection in                                  | 91.066             |                |                                                  |                                                  |         |          |
| Check'd                             | <del>                                     </del> | V 40 1 1 1                                       | # 16 F40 |                                                  | 134 A             |                                                  | TINU LOLO          |                |                                                  |                                                  |         |          |
| CONSOI<br>FILTER<br>AMBIEN<br>PROBE | LE# // 90C<br>NT TEMP.<br>LENGTH                 | 6'                                               |          |                                                  |                   | % Moistur<br>Flowrate (                          | e<br>DSCFM)<br>(%) |                | <b>I</b>                                         |                                                  |         |          |
| REMAR                               | KS                                               |                                                  |          |                                                  |                   |                                                  |                    | <del></del>    |                                                  |                                                  | •       |          |

Page of \_

| Plant N    | Vame             | Plant            | Yates Si                              | tation Bo       | iler No.        | . 1                                              |            |                               |             |          |              |   |
|------------|------------------|------------------|---------------------------------------|-----------------|-----------------|--------------------------------------------------|------------|-------------------------------|-------------|----------|--------------|---|
| Sampling   | Location_        | 5tack Time Start |                                       |                 | Train           |                                                  | Anions     |                               | Run N       | o. 2.    |              |   |
| Date 6     | 26/95            | Time Start       | 1325                                  |                 | Time Fin        | ish (53)                                         | 0          | Test Dura                     | ıtion .     | 131      | min.         |   |
| Duct Din   | nensions_        | X                |                                       |                 | Diameter        | 13_                                              | ft         | Initial Lea                   | ık Rate D   | .001 P   | 15 c.格       |   |
| PTCF C     | 184              | DGMCF 1.00       | )6                                    | Nozzie D        | ia. 0.19!       | 5inch                                            | ics        | Final Leal                    | k Rate Z    | ar oo i  | ID: H        | - |
|            |                  | " Hg             |                                       |                 |                 |                                                  |            |                               |             |          | q            |   |
| Static Pro | ess <u>- 0.5</u> | H20              | )                                     |                 | Operator        | EZ                                               |            | _                             |             | K=       | 1.1586       |   |
| Travers    | Clock            | Dry gas meter    | ^ P                                   | ^н              | Stack           | Dry gas m                                        | eter temp. | Hot box                       | Probe       | Last     | Vacuum       |   |
| Point      | Time             | reading ft3      | in H2O                                | in H2O          | Temp. F         |                                                  | Outlet     | Temp.                         | Temp        | Impinger | 1 1          |   |
| E-3        | 1325             | 881.665          | 6.60                                  | 0-695           | 133             | 105                                              | 102        | 262                           | 257         | 69       | 1.5          |   |
|            |                  | 884.320          |                                       |                 | 133             | 106                                              | 102        | 260                           | 256         | 61       | 1.5          |   |
|            |                  | 888.460          |                                       | 0.672           | 133             | 107                                              | 103        | 260                           | 256         | 59       | 1.5          |   |
|            |                  | 893.515          |                                       | 0-672           |                 | 106                                              | 102        | 258                           | 252         | 56       | 1.5          | 1 |
|            | 1409             | 902 - 185        | 0.58                                  | 0.622           |                 | 106                                              | 101        | 258                           | 255         | 59       | 1.5          |   |
|            | 1434             |                  | 6.59                                  | 0 672           |                 | 108                                              | 102        | 258                           | 256         | 57       | 1.5          |   |
|            | 1445             |                  | 0.58                                  | 0.672           |                 | 108                                              | 102        | 257                           |             |          |              |   |
|            | 1504             | 917.420          | 0.28                                  |                 |                 | 107                                              |            |                               | 753<br>753  | 60       | 1.5          |   |
|            |                  | 934.998          | 0-58                                  | 0.672           |                 | 108                                              | 102        | 257                           |             |          | 1.5          |   |
|            |                  |                  | · · · · · · · · · · · · · · · · · · · | 0.672           |                 | <del></del>                                      | 102        | 256                           | 254         | 63       | 1.5          |   |
|            |                  | 940.110          | 0-58                                  | 0.672           | 154             | 108                                              | (02        | 256                           | 255         | 60       | 1.5          |   |
|            | 1536             | 942-028          |                                       | <u> </u>        |                 |                                                  |            |                               |             |          |              |   |
|            |                  | <u> </u>         | <del> </del>                          |                 |                 |                                                  |            |                               |             |          |              |   |
|            |                  |                  |                                       |                 |                 |                                                  |            |                               |             | <u> </u> |              |   |
|            |                  |                  |                                       |                 | _               |                                                  |            |                               |             |          |              |   |
|            |                  | <u> </u>         |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
|            |                  |                  |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
|            |                  |                  |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
|            |                  |                  |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
|            |                  |                  |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
|            |                  | <u> </u>         |                                       |                 |                 |                                                  |            |                               |             | ]        |              |   |
|            |                  |                  |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
|            |                  |                  |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
| ·          |                  |                  |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
|            |                  |                  |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
|            |                  |                  |                                       |                 |                 |                                                  |            |                               | -           |          |              |   |
|            |                  |                  |                                       |                 | <del></del>     | <u> </u>                                         | -          |                               | <u> </u>    |          |              |   |
|            |                  |                  | <del></del>                           |                 |                 | <del>                                     </del> |            |                               |             |          | <del> </del> |   |
|            |                  |                  | -                                     |                 |                 |                                                  |            |                               | <del></del> |          |              |   |
| Avg.       |                  | 60-363           | h-Go                                  | 0192            | 122             | r regionale de co                                | 104.45     |                               |             |          |              |   |
| Check'd    |                  |                  | 7/68/8                                |                 |                 |                                                  | 124.40     |                               |             |          |              |   |
|            |                  |                  | /(00.0                                | enten gill i Au | gagarana serige |                                                  |            |                               |             |          |              |   |
| CONSOL     | E # OCC A        | 161362           |                                       |                 |                 | Velocity_                                        |            |                               |             |          |              |   |
| FILTER     | 1651             | 436              |                                       |                 |                 | % Moistur                                        | e          |                               |             |          |              |   |
|            | IT TEMP.         | 85°F             |                                       |                 |                 |                                                  | DSCFM)     | <u>Bidishdermerenenserser</u> |             |          |              |   |
|            | LENGTH _         | 6'               | <del></del>                           |                 |                 | lsokinetic                                       | (%)        |                               |             |          |              |   |
| LINER N    | ATERIAL          | . GLASS.         |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
| REMAR      | KG               |                  |                                       |                 |                 |                                                  |            |                               |             |          |              |   |
| WEINI WK!  | n.J              | <del></del>      |                                       |                 |                 | *                                                |            |                               | <del></del> |          |              |   |

Page \_\_\_\_ of \_\_\_\_

| Plant N                                          | Name                                             | Plant         | Yates St                                         | ation Bo                                         | oiler No.                                        | 1                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
|--------------------------------------------------|--------------------------------------------------|---------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------|--------------|---------------|--------------|
| Sampling                                         | Location_                                        | Stack         |                                                  |                                                  | Train _                                          |                                             | Anions<br>5<br>ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | Run No          | <u> ک</u>    |               |              |
| Date b                                           | 27 93                                            | _Time StartC  | 845                                              |                                                  | Time Fini                                        | ish <u>105</u>                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test Dura                                        | tion            | 30           | min           | 11_          |
| Duct Dir                                         | nensions_                                        | DGMCF   O     |                                                  |                                                  | Diameter                                         | <u>13</u>                                   | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial Lea                                      | k Rate <        | 0.001        | <b>E</b> effi |              |
| PTCF_                                            | 0.84                                             | DGMCF PC      | <u> </u>                                         | Nozzie D                                         | ia. <u>D'19</u>                                  | <u>5</u> inct                               | ics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Final Leaf                                       | k Rate <u> </u> | ্ত তথা       | Celly,        | 199          |
| Bar Pres                                         | s <u>19.2</u>                                    | * Hg          |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               | •            |
| Static Pro                                       | ess <u> </u>                                     | ·5 H20        | )                                                |                                                  | Operator                                         | <u>ES</u>                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                |                 |              | K= 1.16       | 06           |
| Travers                                          | Clock                                            | Dry gas meter | ^ P                                              | ^ H                                              | Stack                                            | Dry gas m                                   | eter temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hot box                                          | Probe           | Last         | Vacuum        |              |
| Point                                            | Time                                             | reading ft3   | in H2O                                           | in H2O                                           | Temp. F                                          |                                             | Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp.                                            | Temp            | Impinger     | in. Hg        |              |
| E-3                                              | 0845                                             | 995,520       | 6-640                                            | 0-74                                             | 132                                              | 93                                          | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 264                                              | 260             | 69           | 7.0           | <del></del>  |
|                                                  | 0850                                             | 997.990       |                                                  |                                                  | 132                                              | 94                                          | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 269                                              | 258             | 55           | 1.0           |              |
|                                                  | 6900                                             | 003.00        |                                                  |                                                  | 132                                              | 98                                          | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 259                                              | 257             | 54           | 1.0           |              |
| <u> </u>                                         | 0910                                             | 007.555       |                                                  |                                                  | •                                                | 101                                         | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 259                                              | 260             | 56           | 1.0           |              |
|                                                  | 0830                                             | 086,910       |                                                  |                                                  |                                                  | 104                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 260                                              | 760             | 56           | 1.0           |              |
| <u> </u>                                         | 1002                                             | 032.586       | 0-640                                            | 0-24                                             | 133                                              | 107                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                              | 261             | 61           | 1.0           |              |
| <u> </u>                                         | 1010                                             | 035.830       |                                                  |                                                  |                                                  | 107                                         | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 260                                              | 261             | 60           | 1.0           |              |
| <del>                                     </del> | 10 25                                            | 043.040       |                                                  |                                                  |                                                  | 109                                         | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 260                                              | 262             | 60           | 100           |              |
| <b></b>                                          | 1035                                             | 047.855       | 1.( ((E                                          | 2.26                                             | 132                                              | 109                                         | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | 262             |              | 1.0           |              |
|                                                  | 1045                                             | 051.76        | 0.642                                            | 6.14                                             | 137                                              |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>                                     </del> |                 | 60<br>57     | ò             |              |
| <u> </u>                                         | 1055                                             | 052.756       | 0.040                                            | 0.74                                             | 1,22                                             | 110                                         | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 260                                              | 263             | 21           | 170           | <u></u>      |
| ļ                                                | いりつつ                                             | 054.495       |                                                  | <u> </u>                                         | <u> </u>                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
| ļ                                                |                                                  |               |                                                  |                                                  | <del> </del> -                                   |                                             | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                     | <u> </u>        |              |               |              |
| <u> </u>                                         | ļ                                                |               |                                                  |                                                  | ļ                                                |                                             | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>                                     </del> |                 |              |               |              |
| <u> </u>                                         |                                                  |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                         |                 |              |               |              |
| <b></b>                                          | <u> </u>                                         |               |                                                  |                                                  |                                                  | <u> </u>                                    | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                 | <del></del>  |               |              |
| <u> </u>                                         | ļ                                                |               |                                                  |                                                  | <u> </u>                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
|                                                  | ļ                                                |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
| <u> </u>                                         |                                                  |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
|                                                  |                                                  |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
|                                                  |                                                  |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
|                                                  |                                                  |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
|                                                  |                                                  |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
| ·                                                |                                                  |               |                                                  |                                                  |                                                  |                                             | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                 |              |               |              |
| <b></b>                                          | <del> </del>                                     |               |                                                  |                                                  | <del> </del>                                     |                                             | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                     |                 |              |               |              |
| <del></del>                                      | <del>                                     </del> | 1             | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | <del></del>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                     |                 |              |               |              |
|                                                  | <del>                                     </del> | <del> </del>  |                                                  |                                                  | <del>                                     </del> | <del></del>                                 | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                     | <del> </del>    |              |               |              |
| <u> </u>                                         | <del> </del>                                     |               | <del>                                     </del> |                                                  |                                                  |                                             | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del> </del>                                     | <del> </del>    |              |               | <del> </del> |
| <b></b>                                          | <del>                                     </del> | <del> </del>  |                                                  | <del></del>                                      |                                                  |                                             | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                     |                 |              |               |              |
| <b></b>                                          |                                                  |               | <b>X</b>                                         | 4.1                                              | 120                                              | 1-44                                        | Def.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                | ala E           | V . 2 7 0    |               |              |
| Avg.                                             | <del>  -</del> -                                 | 6 .935        | 0.64                                             |                                                  | 53                                               | 103.6                                       | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (60- L                                           | COU.            | 570 60       | J.O           |              |
| Check'd                                          | <u> </u>                                         |               | 1,81833                                          |                                                  |                                                  |                                             | 1100.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I                                                |                 |              |               |              |
| CONSO                                            | I E #                                            | A161362       |                                                  |                                                  |                                                  | Valen                                       | 85,29949, 9,978155.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18,1642.000.000                                  |                 | 510000000000 | •             |              |
| FILTER                                           |                                                  | )             |                                                  |                                                  |                                                  | <ul><li>1.12 (A.1. AVC MC 900000)</li></ul> | ne .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                 | •            |               |              |
|                                                  | NT TEMP.                                         | 80 F          |                                                  | •                                                |                                                  |                                             | DSCFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                 |              |               |              |
|                                                  | LENGTH                                           | - 11          |                                                  |                                                  |                                                  | 200000000000000000000000000000000000000     | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                 |              |               |              |
|                                                  | MATERIA                                          | 7.14.50       |                                                  |                                                  |                                                  | - SANK KAMAN                                | . A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Co |                                                  | <u></u>         |              | •             |              |
|                                                  |                                                  |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              |               |              |
| REMAR                                            | KS                                               |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              | _             |              |
|                                                  |                                                  |               |                                                  |                                                  |                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |              | -             |              |

Page \_\_\_\_ of \_\_\_\_

| Plant N<br>Sampling                 | lame                           | Plant STACK Time Start          | Yates St | ation Bo    | iler No. Train Time Fini | 1<br>sh 14 2 | nions       | Test Dura   | Run No   | . <u>Fb</u>   | min.     |   |
|-------------------------------------|--------------------------------|---------------------------------|----------|-------------|--------------------------|--------------|-------------|-------------|----------|---------------|----------|---|
| Bar Press                           | * <i>'ひ</i> り・5                | STACK  Time Start               |          | Nozzle Di   |                          |              | ft          | Initial Lea | k Rate 0 | .000 (0       | Actim to | 1 |
| Travers                             | Clock                          | Dry gas meter                   | ^ P      | ^ H         | Stack                    | Dry gas me   |             | Hot box     | Probe    | Last          | Vacuum   |   |
| Point                               |                                | i .                             | in H2O   | in H2O      | Temp. F                  | Inlet        | Outlet      | Temp.       | Temp     | Impinger      | in. Hg   |   |
|                                     | 1422                           | 676-012                         |          |             |                          |              |             |             |          |               |          |   |
|                                     | 1400                           | 010-319                         |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     | <u></u>                        |                                 |          |             |                          |              | <u> </u>    |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                | <u> </u>                        |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          | -           |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              | -           |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                | <del> </del>                    |          |             |                          |              |             |             |          |               |          |   |
|                                     | <del></del>                    |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          | <u></u>     |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          | <u> </u>     |             |             |          |               |          |   |
| <del></del>                         |                                |                                 |          |             | _                        | <u> </u>     |             | -           |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
|                                     |                                |                                 |          |             | _                        |              |             |             |          |               |          |   |
| Aus                                 |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
| Avg.<br>Check'd                     |                                |                                 |          |             |                          |              |             |             |          |               |          |   |
| CONSOI<br>FILTER<br>AMBIEN<br>PROBE | LE#<br>#<br>NT TEMP.<br>LENGTH | #161362<br>887<br>61<br>L GIASS |          |             |                          | Flowrate (   | e<br>DSCFM) |             |          | *             |          |   |
| REMAR                               | KS                             | *******                         |          | <del></del> |                          |              |             |             |          | - <del></del> |          |   |

|                  |                |                                                 | SOURC                                             | CE SAM                                            | IPLING                                            | FIELD                                   | DATA S                                           | SHEET                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page                                             | of <u>}</u>      | Table As a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon |
|------------------|----------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dlant 1          | Name           | Plant                                           | Vates Si                                          | ation Bo                                          | niter No                                          | 1                                       |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | <del></del>    |                                                 | <del>,                                     </del> |                                                   |                                                   |                                         | <br>is/Hydro                                     | ogen Cva                                         | nide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Run No                                           | . /              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date             | 25 62          | Time Start                                      | 3647                                              |                                                   | Time Fin                                          | ish 0904                                | -                                                | Test Due                                         | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 137                                              | min              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Duct Dir         | mensions       | X                                               | <u></u>                                           |                                                   | Diameter                                          | 13                                      | ft                                               | Initial Le                                       | ak Rate 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000                                             | 15m              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PTCF             | D'84           | DGMCF C                                         | ) <del>o</del> ù                                  | Nozzie D                                          | ia. 0 · 19                                        | 5 incl                                  | ies                                              | Final Lea                                        | ik Rate Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sove                                             | cfm7             | 1 by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bar Pres         | 15 16-U        | 5 C C C C C C C C C C C C C C C C C C C         |                                                   |                                                   | Operator                                          | E2                                      |                                                  |                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                |                                                 |                                                   | <del>, , , , , , , , , , , , , , , , , , , </del> | <del>,</del>                                      | <del></del>                             |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | K=1.             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Travers<br>Point | Clock<br>Time  | Dry gas meter reading ft3                       | ^ P<br>in H2O                                     | ^ H<br>in H2O                                     | Stack<br>Temp. F                                  | Dry gas m                               | Outlet                                           | Hot box<br>Temp.                                 | Probe<br>Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Last<br>Impinger                                 | Vacuum<br>in. Hg |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W-3              | 0647           | 677.224                                         | 0.57                                              | 0.69                                              | 130                                               | 78                                      | 74                                               | 256                                              | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                               | 2.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 0700           | 683.225                                         |                                                   | 0-69                                              | 130                                               | 82                                      | 76                                               | <b>Z</b> 54                                      | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59                                               | 2.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 0713           | 689. 235                                        | 0.51                                              | 0.69                                              | 13 1                                              | 85                                      | 78                                               | 254                                              | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58                                               | Z·2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 0733           | 68.255                                          | 0.57                                              | 0-69                                              | 132                                               | 90                                      | 82                                               | 254                                              | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56                                               | 2.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b> </b>         | 0747           | 704.442                                         | 0.57                                              | 0.69                                              | 132                                               | 91                                      | 83                                               | 255                                              | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 576                                              | 7.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 0800           | 710.004                                         | 0.57                                              | 0.65                                              | 132                                               | 92                                      | 85                                               | 257                                              | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56                                               | 2.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| l                | CS13           | 716-160                                         | 0-57                                              | 0.65                                              | 133                                               | 93                                      | 86                                               | 53                                               | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56                                               | 2.0              | <del>  </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | 0825           | 721.599                                         | 0.57                                              | 0.64                                              | 132                                               | 93                                      | 87                                               |                                                  | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55                                               | 2.0              | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b></b> _        | 0834           | 1000                                            | 0.57                                              | 0.66                                              | けし                                                | 93                                      | 87                                               | 254                                              | 259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54                                               | 2.0 -            | <b></b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | 0841           | 731 . 450                                       | 0.57                                              | 0.06                                              | 133                                               | 94                                      | 38                                               | 157                                              | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51                                               | 2.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>         | 0902           | 738 - 225                                       |                                                   | 0.66                                              | L33                                               | 94                                      | 88                                               | 256                                              | 761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                               | 2.0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>         | <del></del> _  | 739 005                                         | 034                                               | 0.66                                              | 100                                               | 1 7                                     | 1 -0                                             | C 10                                             | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>                                     </del> |                  | <del>  </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| END.             | DY DCF         | 127 005                                         | <del> </del>                                      | <del> </del>                                      | -                                                 | <del> </del>                            | <del>                                     </del> | <del> </del> -                                   | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                     | -                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b> </b>         |                |                                                 |                                                   | <u> </u>                                          |                                                   |                                         | -                                                |                                                  | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                  | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <del> </del>     |                |                                                 |                                                   | -                                                 | <del>                                     </del>  |                                         |                                                  | <del>                                     </del> | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                  | <del>  </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | <del> </del>   |                                                 |                                                   | <del>                                     </del>  | <del>                                     </del>  | 1                                       | <del>                                     </del> | <del> </del>                                     | <del>\</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>  -</del>                                   |                  | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b></b>          | ┼              |                                                 |                                                   | -                                                 |                                                   |                                         |                                                  | -                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                  | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u> </u>         |                |                                                 | <del></del>                                       | <del> </del>                                      | <del>                                     </del>  |                                         |                                                  | <del> </del>                                     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | <del> </del>     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | <del> </del> - |                                                 |                                                   | <del> </del>                                      | <del>  /                                   </del> | -                                       | <del>                                     </del> | 1                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                         | <del>  -</del>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | <del> </del> - | <u> </u>                                        |                                                   | <del> </del>                                      | /                                                 | -                                       |                                                  | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                     | <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b> </b>         | <del> </del>   |                                                 |                                                   | <del>                                     </del>  | <del>/</del>                                      | -                                       |                                                  | <u> </u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                         |                  | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | <del> </del>   | -                                               | <del>                                     </del>  | <u> </u>                                          | <u> </u>                                          | <u> </u>                                | ļ                                                | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                     | <del> </del>     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | <u> </u>       | <u> </u>                                        | ļ <u>-</u>                                        | <u> </u>                                          | <del></del>                                       | <del> </del>                            | ļ                                                | <del>                                     </del> | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ┼                                                | <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | <u> </u>       |                                                 | <del> </del>                                      | <del> </del>                                      |                                                   | <del></del>                             | <del> </del>                                     | <del> </del>                                     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ļ                                                | <u> </u>         | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | <del> </del> - |                                                 | <del>  -</del>                                    | <del> </del>                                      | <del> </del>                                      | +                                       |                                                  | <del> </del>                                     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                     | <b> </b>         | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | <u> </u>       | <del> </del>                                    | ļ                                                 | -                                                 | <del> </del>                                      | <del> </del>                            | -                                                | <del> </del>                                     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                         |                  | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | <u> </u>       | <u> </u>                                        |                                                   | -                                                 | -                                                 | <del> </del>                            | <del>                                     </del> | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                | <u> </u>         | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | ļ              | <del> </del>                                    |                                                   | ļ                                                 |                                                   |                                         | ļ                                                | <b></b>                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                     | <u> </u>         | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ļ                | <u> </u>       | \$50 0710000°5********************************* |                                                   |                                                   | 100.412 =                                         |                                         |                                                  |                                                  | X 2000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (100) (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (100) (1000 (1000 (1000 (1000 (100) (1000 (1000 (100) (1000 (1000 (100) (1000 (1000 (1000 (100) (1000 (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (1000 (100) (100) (100) (1000 (100) (100) (100) (1000 (100) (100) (100) (100) (100) (1000 (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) (100) |                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Avg.             | <del> </del>   | 61/181                                          |                                                   |                                                   | Committee and a second second second              | 81.54                                   |                                                  | and the second second second                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Check'd          | 1 Scr          | -                                               |                                                   | <u>'B</u>                                         |                                                   |                                         | 86.318                                           | 1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                | l                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COLICO           |                | AIC1 362                                        | V. 7549                                           | 83                                                |                                                   | <b>17</b>                               | emerososion ingoc                                | :: 1:                                            | Calabanas menus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | ŝ                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | LE #           | 11.01.30                                        | <del></del> -                                     |                                                   |                                                   |                                         | re,                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AMDIE            | NT TEMP.       | 70°í                                            |                                                   | -                                                 |                                                   | 1.0000000000000000000000000000000000000 | re<br>(DSCFM)_                                   | 10.00                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | LENGTH         |                                                 |                                                   |                                                   |                                                   | - 1 1000 A.C. A.WOM                     | (%)                                              | T - 600 TOOL WATER                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                | L GLASS                                         |                                                   | -                                                 |                                                   | 100 Enicic                              | N 29 8                                           | June 200 18 20                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u>&amp;</u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ŘEMAR            |                | CHANGE KS                                       | 1.160                                             | 6 340                                             | 10 mg 14                                          | 42 MUI                                  | meë                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  |                |                                                 |                                                   |                                                   |                                                   |                                         |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page \_\_\_\_ of \_\_\_\_

| Plant N    | Name           | Plant                                            | Yates St                                         | tation Bo          | iler No.                                          | 1                                         |                                              |                        |                                        |                            | _                                       |                                         |
|------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------|------------------------|----------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------|
| Sampling   | Location_      | Stock Time Start                                 |                                                  |                    | Train _                                           | Ammon                                     | ia/Hydro                                     | gen Cya                | nide                                   | Run No                     | . 2                                     |                                         |
| Date 116   | <u> </u>       | Time Start                                       | 145                                              |                    | Time Fini                                         | sh <u>  3 5</u>                           | ft                                           | Test Dura              | tion                                   | 90                         | min                                     |                                         |
| Duct Din   | nensions       | X_                                               |                                                  | <del></del> -      | Diameter                                          | 13                                        | ft                                           | Initial Lea            | ik Rate <u>O</u>                       | .000 G                     | 15 cfm                                  |                                         |
| PTCF C     | 7.84           | DGMCF 1.00                                       | 96                                               | Nozzle D           | ia. <u>0 19</u>                                   | 5_inch                                    | es                                           | Final Lea              | k Rate <u>O</u>                        | 001 (E                     | 10cfiffy                                |                                         |
| Bar Press  | s <u>29.3</u>  | とし " Hg<br>・5 " H20                              |                                                  |                    |                                                   |                                           |                                              |                        |                                        | ,                          | •                                       |                                         |
| Static Pro | ess <u>– D</u> | · <u>5                                    </u>   | )                                                |                    | Operator                                          | Et                                        |                                              |                        |                                        | K                          | = 1.158                                 | 36                                      |
| Travers    | Clock          | Dry gas meter                                    | ^ P                                              | ^ H                | Stack                                             | Dry gas m                                 | eter temp.                                   | Hot box                | Probe                                  | Last                       | Vacuum                                  |                                         |
| Point      | Time           | reading ft3                                      | in H2O                                           | in H2O             | Temp. F                                           | Inlet                                     | Outlet                                       | Temp.                  | Temp                                   | Impinger                   | in. Hg                                  |                                         |
| E-3        | 1145           | 840.130                                          | 0.60                                             | 0.695              | 134                                               | 91                                        | 90                                           | 239                    | 252                                    | 70                         | 4.0                                     | · - · ·                                 |
|            | 1150           | 842.895                                          | 0.60                                             | 0-695              | 133                                               | 91                                        | 90                                           | 249                    | 252                                    | 58                         | 4.0                                     |                                         |
|            | 1155           | 844.820                                          | 0.60                                             | 0 645              | 133                                               | 94                                        | 91                                           | 260                    | 256                                    | 56                         | 4.0                                     |                                         |
|            | 1200           | 847.075                                          |                                                  | 0415               | 133                                               | 96                                        | 91                                           | 256                    |                                        | 57                         | 4.5                                     |                                         |
|            | 12.05          | 849.420                                          |                                                  | 0.695              |                                                   | 99                                        | 93                                           | 257                    | 256                                    | 58                         | 4.0                                     |                                         |
|            | 1215           | 854.290                                          |                                                  | 0695               |                                                   | 101                                       | 95                                           | 258                    | 253                                    | 57                         | 4.0                                     |                                         |
|            | 1230           |                                                  |                                                  | 0.672              |                                                   | 104                                       | 97                                           | 264                    | 258                                    | 54                         | 4.0                                     |                                         |
|            | 1243           |                                                  | T -                                              | 0.672              |                                                   | 107                                       | 99                                           | 263                    | 26]                                    | 54                         | 4.0                                     |                                         |
|            | 1255           |                                                  | 6 58                                             | 0.672              |                                                   | 107                                       | 101                                          | 262                    | 257                                    | 55                         | 410                                     |                                         |
|            | 1309           | 818.699                                          |                                                  | 0:672              |                                                   | 109                                       | 102                                          | 263                    | 256                                    | 54                         | 4.0                                     |                                         |
| END        | 1315           | 881.442                                          | 0 / 0                                            | V 67 C             | <del>  '                                   </del> | 101                                       | 100                                          | -00-                   | 928                                    |                            | <u></u>                                 |                                         |
| 1740       |                | 047 - 772                                        |                                                  | <del> </del>       |                                                   |                                           | <br>                                         |                        |                                        | <del></del>                |                                         |                                         |
|            |                |                                                  | <del></del>                                      | <del> </del> -     | _                                                 |                                           |                                              |                        | <u> </u>                               | <u>L</u>                   | _                                       |                                         |
|            |                |                                                  |                                                  | <del> </del>       |                                                   |                                           |                                              |                        |                                        | <del> </del>               |                                         |                                         |
| <u> </u>   |                |                                                  |                                                  |                    |                                                   |                                           |                                              |                        | <u> </u>                               |                            |                                         |                                         |
|            |                |                                                  |                                                  |                    |                                                   |                                           |                                              |                        | <u> </u>                               |                            |                                         |                                         |
| <b></b>    | 1              | <u> </u>                                         |                                                  | ļ                  |                                                   |                                           | <u> </u>                                     | <u> </u>               |                                        |                            |                                         |                                         |
|            |                |                                                  | <del>                                     </del> | <del></del>        |                                                   |                                           |                                              | -                      | <u> </u>                               | <del></del>                |                                         |                                         |
| ļ          |                | <del> </del>                                     | <u> </u>                                         | <del> </del>       |                                                   |                                           | <u>                                     </u> | <b>_</b>               |                                        |                            |                                         |                                         |
| <b></b>    | I              | -                                                | <u> </u>                                         |                    |                                                   | ·                                         |                                              |                        | ļ <u>.</u>                             | <u> </u>                   |                                         |                                         |
|            |                |                                                  |                                                  |                    |                                                   |                                           |                                              |                        |                                        |                            |                                         |                                         |
| <u> </u>   |                |                                                  |                                                  |                    |                                                   | <del></del>                               |                                              |                        | -                                      | ļ                          |                                         |                                         |
| ļ          |                | ļ                                                |                                                  |                    | ļ                                                 |                                           |                                              | ļ                      |                                        |                            |                                         |                                         |
| <b> </b>   |                | ļ                                                |                                                  |                    |                                                   |                                           | <del> </del>                                 |                        | <u> </u>                               |                            |                                         |                                         |
| ļ          |                |                                                  |                                                  |                    |                                                   |                                           |                                              | <u> </u>               |                                        | <u> </u>                   |                                         |                                         |
| ļ          | -              | <u> </u>                                         | <u> </u>                                         | ļ                  |                                                   | ļ <u>.</u>                                |                                              | ļ                      | <u> </u>                               |                            |                                         |                                         |
| <u> </u>   |                |                                                  |                                                  | <u> </u>           |                                                   | <u></u>                                   | ļ                                            | ļ                      | <b></b>                                |                            |                                         |                                         |
|            |                |                                                  | ļ                                                | ļ                  |                                                   |                                           |                                              |                        | ļ                                      | <u> </u>                   |                                         |                                         |
|            |                | 2000 Arms 100 100 100 100 100 100 100 100 100 10 |                                                  | a processor income |                                                   |                                           |                                              | Linguage               |                                        |                            | 200000000000000000000000000000000000000 | *************************************** |
| Avg.       |                | 41.312                                           |                                                  |                    | 133, 4                                            |                                           | 97.4                                         |                        |                                        |                            |                                         |                                         |
| Check'd    |                |                                                  | 116808                                           |                    |                                                   |                                           |                                              | 1                      |                                        |                            |                                         |                                         |
|            |                | H1613                                            | 362                                              |                    |                                                   | i Tillian i III seertiistasse.            | 99998810055                                  | 41, 11 10000000000000  | ************************************** | o 513000000000000000000000 | , <del></del>                           |                                         |
| FILTER     | LE DOS         | ( 00                                             | / <u>^</u>                                       |                    |                                                   | Velocity_                                 | end business and control of the              |                        |                                        |                            |                                         |                                         |
|            | TEMP.          | 54.E                                             | Ψ                                                | -                  |                                                   | - 50,000 A4660 400 T000000000             | ne<br>DSCFM)                                 |                        |                                        |                            |                                         |                                         |
|            | LENGTH         | <u> </u>                                         |                                                  |                    |                                                   | <ul> <li>Mountidous dubocobos.</li> </ul> | DSCFM)<br>(%)                                | CARRELINARY, CARLESTON |                                        |                            |                                         |                                         |
|            | MATERIA!       | L GLAS                                           | 5                                                | •                  |                                                   | 430EIRTUS                                 | V-7                                          |                        |                                        |                            | i e                                     |                                         |
|            |                |                                                  | -                                                |                    |                                                   |                                           |                                              |                        |                                        |                            |                                         |                                         |
| REMAR      | KS             |                                                  | ·                                                |                    |                                                   |                                           |                                              |                        |                                        |                            | -                                       |                                         |

Page of

| Plant !                                           | Name            | Plant                                            | Yutes St    | ation Bo                                         | iler No.         | 1                                       |                                                  |                                                  |                                                  |                                         | _                                              |                                         |
|---------------------------------------------------|-----------------|--------------------------------------------------|-------------|--------------------------------------------------|------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|
| Sampling                                          | Location_       | Stack Time Start U X DGMCF 1.00                  |             |                                                  | Train            | Ammon                                   | ia/Hydro                                         | gen Cya                                          | nide                                             | Run No                                  | . <u>3                                    </u> |                                         |
| Date 6                                            | 27/93           | Time Start U                                     | 635         |                                                  | Time Fini        | sh 0809                                 |                                                  | Test Dura                                        | ition 94                                         | <del> </del>                            | min.                                           |                                         |
| Duct Du                                           | mensions_       | x_                                               | <del></del> |                                                  | Diameter         | <u></u>                                 | ft                                               | Initial Les                                      | ik Raic 0                                        | . on (a)                                | 6 6 fm                                         | ,                                       |
| PTCF_                                             | 0.84            | DGMCF 1.0                                        | 06          | Nozzie D                                         | ia. <u>0-194</u> | 5inch                                   | ies                                              | Final Lea                                        | k Rate <u>Z(</u>                                 | 20016                                   | J. Com                                         | 7                                       |
| Bar Pres                                          | s <u>19.01</u>  | " Hg                                             |             |                                                  |                  |                                         |                                                  |                                                  |                                                  | _                                       | •                                              |                                         |
| Static Pr                                         | ess <u>~ ()</u> | • <b>5</b> • H2C                                 |             |                                                  | Operator         | <u>Et</u>                               |                                                  |                                                  |                                                  | K:                                      | 1.160                                          | 6                                       |
| Travers                                           | Clock           | Dry gas meter                                    | ^ P         | ^ H                                              | Stack            | Dry gas m                               | eter temp.                                       | Hot box                                          | Probe                                            | Last                                    | Vacuum                                         |                                         |
| Point                                             | Time            | reading ft3                                      | in H2O      | in H2O                                           | Temp. F          | ŀ                                       | Outlet                                           | Temp.                                            | Temp                                             | Impinger                                | in. Hg                                         |                                         |
| W-3                                               | 0635            | 951.795                                          | 0.62        | 0-12                                             | 133              | 78                                      | 15                                               | 265                                              | 257                                              | 62                                      | 4.5                                            |                                         |
|                                                   | 0640            | 954.000                                          | 0.62        | 0-72                                             | 133              | 80                                      | 76                                               | 263                                              | 25%                                              | 5٩                                      | 4.5                                            |                                         |
|                                                   | 0649            | 958.140                                          | ひして         | 0.72                                             | 133              | 84                                      | 78                                               | 264                                              | 1.58                                             | 58                                      | 4.5                                            |                                         |
|                                                   | 0700            | 963.185                                          | 0-62        | 0.72                                             | 13.7             | 88                                      | 80                                               | 264                                              | 258                                              | 60                                      | 4.5                                            |                                         |
|                                                   | 0712            | 968 - 736                                        | 0.62        | 0.72                                             | 133              | 90                                      | 82                                               | 259                                              | 255                                              | 59                                      | 4.5                                            |                                         |
|                                                   | 0721            | 973.022                                          | 0.62        | 0.72                                             | 133              | 92                                      | 84                                               | 257                                              | 25¥                                              | 57                                      | 4.5                                            |                                         |
|                                                   |                 |                                                  | 0.62        | 0.72                                             |                  | 94                                      | 86                                               | 257                                              | 252                                              | 52                                      | 4.5                                            |                                         |
|                                                   | 0748            |                                                  |             |                                                  |                  | 95                                      | 88                                               | 260                                              | 259                                              |                                         | 4.5                                            |                                         |
|                                                   | 1080            | 992-000                                          |             |                                                  |                  | 97                                      | 90                                               | 260                                              | 258                                              | 54                                      | 4.5                                            |                                         |
|                                                   | 0809            | 995.300                                          |             |                                                  |                  | <del>   </del>                          |                                                  |                                                  |                                                  |                                         |                                                |                                         |
|                                                   | 1               |                                                  |             |                                                  | <u> </u>         |                                         |                                                  |                                                  |                                                  |                                         |                                                |                                         |
|                                                   |                 |                                                  |             | ·                                                |                  |                                         |                                                  |                                                  |                                                  |                                         |                                                |                                         |
|                                                   |                 |                                                  |             |                                                  |                  |                                         |                                                  |                                                  |                                                  |                                         |                                                |                                         |
| <del> </del> -                                    |                 |                                                  | <u> </u>    |                                                  |                  |                                         |                                                  | <u> </u>                                         | <u> </u>                                         |                                         |                                                |                                         |
| <del>                                      </del> |                 | <del>                                     </del> |             |                                                  |                  |                                         | <del>                                     </del> |                                                  |                                                  |                                         |                                                |                                         |
|                                                   |                 |                                                  | <u> </u>    |                                                  |                  |                                         |                                                  |                                                  | <del></del>                                      |                                         |                                                |                                         |
| <b></b> -                                         | <del> </del>    | <del> </del>                                     |             |                                                  |                  |                                         | <del>                                     </del> |                                                  | <u> </u>                                         |                                         | <u> </u>                                       |                                         |
| <b></b>                                           |                 |                                                  |             |                                                  |                  |                                         | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> |                                         |                                                |                                         |
| <b>-</b>                                          |                 | <del>                                     </del> |             |                                                  | <del> </del>     | <u> </u>                                | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <u> </u>                                | 1                                              |                                         |
| <b>├</b> ──                                       |                 |                                                  |             |                                                  | <del> </del>     | }                                       | <del> </del>                                     | <del> </del>                                     |                                                  | <u> </u>                                |                                                |                                         |
|                                                   | <u> </u>        | 1                                                |             |                                                  | <del> </del>     |                                         | <del> </del>                                     | <del> </del>                                     | <del>                                     </del> | <u> </u>                                | <u> </u><br>                                   |                                         |
| <u> </u>                                          |                 |                                                  | <u> </u>    |                                                  | <u> </u>         | <b></b> -                               | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     |                                         | <u> </u>                                       |                                         |
| <u> </u>                                          |                 |                                                  | <u> </u>    |                                                  |                  |                                         | <del> </del>                                     | <del> </del>                                     | · · ·                                            | <del> </del>                            |                                                |                                         |
| }                                                 | -               | 1                                                |             | <del>                                     </del> |                  | -                                       | 1                                                | <del> </del>                                     | <del>  -</del> -                                 | <del> </del>                            |                                                |                                         |
| <b> </b>                                          | <del> </del>    |                                                  |             | <b></b>                                          |                  |                                         |                                                  | <u> </u>                                         | <del> </del>                                     | -                                       |                                                |                                         |
| <b></b>                                           |                 | 1                                                |             | <del>                                     </del> | <b> </b>         |                                         |                                                  |                                                  |                                                  |                                         | -                                              |                                         |
|                                                   |                 |                                                  |             | <del></del> _                                    | <u> </u>         |                                         |                                                  |                                                  |                                                  | <del></del>                             | 1                                              |                                         |
| <u> </u>                                          | -               | <b></b>                                          |             | <del>                                     </del> |                  | <del> </del>                            |                                                  | <del>                                     </del> |                                                  |                                         |                                                |                                         |
|                                                   |                 | 207 X 207 2022 2022                              |             |                                                  |                  |                                         | A. 322                                           | 4.2                                              |                                                  |                                         | 100 PHONE A                                    | *************************************** |
| Avg.                                              |                 | 43.505                                           |             |                                                  | 13.5             | 68.65                                   | 81.111                                           | 241.0                                            | USE #                                            | 3/1/                                    | 43                                             |                                         |
| Check'd                                           | 1]              |                                                  | 78740       |                                                  |                  |                                         | 85.39                                            |                                                  | 1                                                |                                         |                                                |                                         |
| CONTO                                             |                 | 161362                                           |             |                                                  |                  | WW. 1729222                             | 2006 00 50 50 50 50 50 50 50 50 50 50 50 50      | 31803188118811881                                |                                                  | (3,000000000000000000000000000000000000 | <br>\$                                         |                                         |
| FILTER                                            |                 | 145                                              |             |                                                  |                  | 1.0000000000000000000000000000000000000 | ne                                               | <b>0.00000000000000000000000000000000000</b>     |                                                  |                                         |                                                |                                         |
|                                                   | NT TEMP.        | 1221                                             |             | •                                                |                  |                                         | DSCFM)_                                          |                                                  |                                                  |                                         |                                                |                                         |
|                                                   | LENGTH          | 6'                                               |             |                                                  |                  |                                         | (%)                                              |                                                  |                                                  |                                         |                                                |                                         |
|                                                   | MATERIA         |                                                  |             |                                                  |                  |                                         | **** <u>*********************************</u>    |                                                  |                                                  | · · · · · · · · · · · · · · · · · · ·   | <u> </u>                                       |                                         |
|                                                   | N               |                                                  | ·           |                                                  |                  |                                         |                                                  |                                                  |                                                  |                                         |                                                |                                         |
| REMAI                                             | RKS             |                                                  |             |                                                  |                  |                                         |                                                  |                                                  |                                                  |                                         | _                                              |                                         |

Page 1 of 1

| Plant N    | lame                                    | Plant                         | Yates St | ation Bo    | iler No.             | 1                                                                                                              |            | _           |             |          |             |   |
|------------|-----------------------------------------|-------------------------------|----------|-------------|----------------------|----------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|----------|-------------|---|
| Sampling   | Location_                               | STACK Time Start X DGMCF 1.00 | 11(12    |             | Train_               | Ammon                                                                                                          | ia/Hydro   | gen Cya     | <u>nide</u> | Run No   | . <u>FR</u> |   |
| Date Ob    | 124143                                  | Time Start                    | 1412     | <del></del> | Time Fini            | sh <u>141</u>                                                                                                  | <u>,</u>   | Test Dura   | ition       | <u> </u> | -min 91     | 4 |
| Duct Din   | hensions<br>.C/I                        | DOMOE 1:00                    |          | Namela D    | Diameter<br>:. o i C | 7 inch                                                                                                         | n          | Initial Lea | k Rate _C   | POST C   | Chi         | 1 |
| Box Dress  | 79.33                                   | DGMCF 1100                    |          | NOZZIE D    | ia. <u>U 1 1</u>     | uici                                                                                                           | 100        | Liner CCS   | K Kate      |          | - 3000      |   |
| Static Pre | - 10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 | 7 Hg<br>5 " H2C               | )        |             | Operator             | Eŧ                                                                                                             | 124        |             |             |          |             |   |
|            |                                         | Dry gas meter                 |          |             |                      |                                                                                                                |            | Hot box     | Pecho       | Last     | Vacuum      |   |
| Point      |                                         | \$                            | in H2O   |             |                      | Inlet                                                                                                          | Outlet     | Temp.       | Temp        | Impinger |             | I |
| Polit      |                                         |                               | 11 1120  | ш, п.20     | remp. 1              | Inct                                                                                                           | Outlet     | remp.       | City        | impuiget | III. 11g    |   |
|            | 1412                                    |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            | 1415                                    | 676.000                       |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            | <del></del>                             |                               |          |             | <u> </u>             |                                                                                                                | <b></b>    |             |             |          |             |   |
|            |                                         |                               |          |             | ļ <u> </u>           |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
| <u></u>    |                                         |                               |          |             |                      |                                                                                                                | ļ <u>.</u> |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             | 1        |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            | <u> </u>    |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               | ····     |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      | Ī                                                                                                              |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             | Î           |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         | -71.4.4.                      |          |             |                      |                                                                                                                |            | <u> </u>    | <del></del> |          |             |   |
| Avg.       |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
| Check'd    |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
|            |                                         |                               |          |             |                      |                                                                                                                |            |             |             |          |             |   |
| CONSO      | E # A1<br># 94                          | 61362                         |          |             |                      | Velocity_                                                                                                      |            |             |             |          |             |   |
| FILTER     | # <u>946</u>                            | 000                           |          |             |                      | 100000000000000000000000000000000000000                                                                        | ne         |             |             |          |             |   |
|            | T TEMP.                                 |                               |          |             |                      | A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 2011 A 201 | DSCFM)_    |             |             |          |             |   |
|            | LENGTH                                  | L GLASS                       |          |             |                      | Isokinetic                                                                                                     | (%)        |             |             |          |             |   |
| LINEK      | MA I EKIA                               | - M-427                       |          |             |                      |                                                                                                                |            |             |             |          |             |   |
| REMAR      | KS                                      |                               |          |             |                      |                                                                                                                |            |             | . iii.      |          |             |   |

STACK

|      |    |    | i |
|------|----|----|---|
| Page | ١, | of | 1 |

|                 |                                                  | STA:          |                                                  | ation Be                                         | Train          |           | <br>Particula                                    | te_Dadic                                         | muclide                                          | . T                                              | Run No.                                          | 1       |
|-----------------|--------------------------------------------------|---------------|--------------------------------------------------|--------------------------------------------------|----------------|-----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------|
| Date / -        | ->41-83                                          | Time Start /  | 223                                              |                                                  |                | sh 015    |                                                  |                                                  |                                                  |                                                  | o_min.                                           | <u></u> |
|                 |                                                  | X_            |                                                  |                                                  |                | JZ.       |                                                  |                                                  |                                                  |                                                  | cfm €                                            | 215"    |
|                 |                                                  | DGMCF_O       |                                                  |                                                  | ia. 0.2        | inch      | es OJ V                                          | Final Lea                                        | k Rate (7                                        | .000                                             | cfm C                                            | 1/1     |
|                 |                                                  | 33_" Hg       |                                                  |                                                  |                |           |                                                  |                                                  |                                                  |                                                  |                                                  |         |
|                 |                                                  | - H2C         | )                                                |                                                  | Operator       | JE        | H                                                | <b>-</b> -                                       |                                                  |                                                  |                                                  |         |
| Travers         | Clock                                            | Dry gas meter | ^ P                                              | ^ H                                              | Stack          | Dry gas m | eter temp.                                       | Hot box                                          | Probe                                            | Last                                             | Vacuum                                           |         |
| Point           | Time                                             | reading ft3   | in H2O                                           | in H2O                                           | Temp. F        | inict     | Outlet                                           | Temp.                                            | Temp                                             | Impinger                                         | in. Hg                                           |         |
| 815-2           | 1223                                             | 469.418       | 0.71                                             | 1-98                                             | 128            | 94        | 74                                               | 251                                              | 251                                              | 60                                               | 7.0                                              |         |
|                 |                                                  | 493,740       |                                                  | 1.99                                             | 128            | 102       | 94                                               | 250                                              | 250                                              | 61                                               | 6.0                                              |         |
|                 |                                                  | 512.945       |                                                  | 1.99                                             | 128            | 105       | 94                                               | 257                                              | 750                                              | 45                                               | 6.0                                              |         |
| 4               |                                                  | 528.50        | 0.71                                             | 1.91                                             | 128            | 108       | 97                                               | 750                                              | 251                                              |                                                  | 6.0                                              |         |
| <b></b>         | 2 2 4 4 4                                        | 562.000       |                                                  | 1.92                                             |                | 113       | 102                                              | 252                                              |                                                  |                                                  | 4-0                                              |         |
| <u> </u>        | 1488                                             | \$79.165      |                                                  | 1.92                                             | 132            | 114       | 103                                              | 253                                              | 254                                              |                                                  | 6.0                                              |         |
| <b></b>         | 15/5                                             | 610.889       | 0.71                                             | 1.92                                             | 13/            | 114       | 104                                              | 254                                              | 753                                              | 63                                               | 6.0                                              |         |
| 700             | 157                                              | 612.880       |                                                  | KTY                                              |                |           | WINC                                             | ,  —                                             | 154                                              |                                                  | C-H                                              | WDZ     |
| 374             |                                                  | 612985        |                                                  | 1.92                                             |                | 104       | 101                                              | 252                                              | 250                                              |                                                  | 5.0                                              |         |
|                 | 553                                              | 632.090       |                                                  | 192                                              | +              | 106       | 99                                               | -                                                |                                                  | 57                                               | 5,0                                              |         |
| <del></del>     | 1627                                             | (58.250       |                                                  | 1.92                                             | 129            | 100       | 94                                               | 450                                              | 251                                              | 37                                               |                                                  |         |
| 7 >             | 1904                                             | 776.56        |                                                  | 1.92                                             | 130            |           | 2                                                |                                                  | 243                                              | 68                                               | 150                                              |         |
| <b> </b>        | 1934                                             | 799 40        |                                                  | 1.92                                             | 13/            | 94        | 85                                               | 250                                              |                                                  | 57                                               | 20                                               |         |
| <b> </b>        | 2026                                             |               | 0.71                                             | 1,92                                             | 132            | 98        | 85                                               | 252                                              | 26.2                                             | 25                                               | 5.5                                              |         |
| 47.0            | 2126                                             |               | 0,73                                             | 117 =                                            | /30            | 18        | 88                                               | 353                                              | 2602                                             | 58                                               | 6.5                                              |         |
|                 | 2219                                             | 925,610       | 0.72                                             | 1.57                                             | /70            | 00        |                                                  | 1.0                                              | 0-2                                              | 1/2                                              | 1.5                                              |         |
| stert           | Ī                                                | 925,740       | 1 7                                              | 1.97                                             | /30            | 90        | 86                                               | 252                                              | 353                                              | 60                                               | 6.5                                              |         |
| <b>—</b> —      | 4313                                             | 963.90        | 6,73                                             |                                                  | 130            | 98        | 88                                               | 254                                              | 257                                              | 57                                               | 6.5                                              |         |
| <b> </b>        | -                                                | 1005.59       |                                                  |                                                  |                | 96        | 87                                               | 252                                              | 254                                              |                                                  | 6.5                                              |         |
| * 5top          | 0/01_                                            | 1069.209      | E 175                                            | 1.57                                             | 130            | 1.6       | 87                                               | 253                                              | 246                                              | 57                                               | 6.5                                              |         |
| *   <u>Stop</u> | 0133                                             | 10011-201     | <del> </del>                                     | <del>                                     </del> | <del> </del> - |           | <del>                                     </del> |                                                  | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> |         |
|                 | <del> </del>                                     |               |                                                  |                                                  |                |           | <u> </u>                                         | <u> </u>                                         |                                                  | <del> </del>                                     |                                                  |         |
|                 |                                                  |               |                                                  |                                                  | <del> </del>   | <u> </u>  | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     |         |
| <b> </b>        | <del>                                     </del> |               |                                                  | <u> </u>                                         | <del> </del>   |           | <del>                                     </del> |                                                  |                                                  | <del>                                     </del> |                                                  |         |
|                 |                                                  |               |                                                  | -                                                |                |           | 1                                                | <del>                                     </del> | -                                                | <del>                                     </del> |                                                  |         |
| <b> </b>        |                                                  |               | <del>                                     </del> |                                                  |                |           |                                                  |                                                  |                                                  | <del>                                     </del> |                                                  |         |
|                 |                                                  |               |                                                  |                                                  |                |           |                                                  |                                                  |                                                  |                                                  |                                                  |         |
|                 |                                                  | coo cel       | 84588                                            | 1.94                                             | 179.8          |           | 97.3                                             | 6.00.00                                          |                                                  |                                                  |                                                  |         |
| Avg.            |                                                  | 211324        |                                                  |                                                  |                |           |                                                  |                                                  |                                                  |                                                  |                                                  |         |

STACK

|                 | Name           |                  | Yates St  |                                         |                |                                           |                            |                    |                                                  |                |                | _                                                |
|-----------------|----------------|------------------|-----------|-----------------------------------------|----------------|-------------------------------------------|----------------------------|--------------------|--------------------------------------------------|----------------|----------------|--------------------------------------------------|
|                 |                | STA              |           |                                         | Train _        |                                           | Particula                  | te-Radio           | nuclide                                          | s R            | un No.         | 2                                                |
| Date _          | <u>-25-93</u>  | Time Start       | 0840      | <del></del>                             | Time Fini      | sh <u>033</u>                             | <u> </u>                   | Test Dura          | tion & C                                         | 38-2010        | <u>—</u> min.  |                                                  |
|                 | nensions       |                  |           |                                         | Diameter       |                                           | <u> </u>                   | Initial Lea        | k Rate                                           | 2-010          | cfm <b>_</b> _ |                                                  |
|                 |                | DGMCF            | <u>88</u> | Nozzie D                                | ia. <u>0.2</u> | inch                                      | es                         | Final Lea          | k Rate                                           | 2.009          | cfm@           | 0/4                                              |
|                 |                | 41 " Hg          |           |                                         | _              | . سيسيه                                   |                            |                    |                                                  |                |                |                                                  |
| Static Pro      | ess <u>- 0</u> | <u>.51</u> " H20 | )         |                                         | Operator       | -3E                                       | <u> </u>                   |                    |                                                  | ·              |                |                                                  |
| Travers         | Clock          | Dry gas meter    | ^ P       | ^ អ                                     | Stack          | Dry gas m                                 | eter temp.                 | Hot box            | Probe                                            | Last           | Vacuum         |                                                  |
| Point           | Time           | reading ft3      | in H2O    | in H2O                                  | Temp. F        | Inlet                                     | Outlet                     | Temp.              | Temp                                             | Impinger       | in. Hg         |                                                  |
| 5-1             | soci^          | 771.158          | .7z       | 1.9(                                    | 130            |                                           |                            | 260                | 251                                              |                |                |                                                  |
| 1               | 0841           |                  |           |                                         |                | OCKE                                      | $\Delta I P$               | ENA                | CEA                                              |                |                |                                                  |
|                 | 0920           |                  | -73       | 1.23                                    |                | 30                                        | #7                         | 251                | 253                                              | 5z             | 30             | 1                                                |
| 31/164          | 0940           |                  |           | 1.92                                    | 129            | 84                                        | 76                         | 252                | 253                                              | 46             | 3.0            |                                                  |
| <b>-</b>        |                |                  |           | 1.16                                    | 129            | 47                                        | 80                         |                    | _                                                | 4.5            | 30             |                                                  |
| <u> </u>        | 0955           |                  | -         | !<br>                                   | 147            |                                           | 00                         | 252                | 250                                              | 77             |                |                                                  |
| Stop            | 1042           | 831.423          | ,04       |                                         | <del> </del>   |                                           | <del>  </del>              |                    | <del>                                     </del> |                |                | <del> </del> -                                   |
| start           | 1324           | 831,423          | 0.58      | 1,53                                    | 127            | 83                                        | 93                         | 255                | 247                                              | 당)             | 3.0            | <b></b>                                          |
| <b></b>         | 1333           | 837 465          |           | 1.53                                    | 127            | 86                                        | 83                         | 252                | 243                                              | 47             | 3.0            | <u> </u>                                         |
| <b></b>         | 1405           | 851.925          |           | 2.006                                   | 128            | 96                                        | 87                         | 254                | 255                                              | 52             | 3.0            | <u> </u>                                         |
|                 |                |                  |           | 1.17                                    | 128            | 101                                       | 90                         | 251                | 241                                              | 54             | 3.0            | <u> </u>                                         |
| STOP            |                | 913-418          |           | noved                                   |                | time for                                  |                            | OW.                |                                                  | <u> </u>       |                | <b>ļ</b>                                         |
| STONE           | 1525           | 913.488          | 067       | 1.77                                    | 128            | 100                                       | 89                         | 253                | 248                                              | 57             | 3.0            | <u> </u>                                         |
| L               | 1605           | 943.425          |           | 1.77                                    | 129            | 186                                       | 96                         | 254                | 250                                              | 52             | 3.0            |                                                  |
|                 | 1659           | 983 300          | 0.69      | 1.82                                    | 129            | 107                                       | 98                         | 257                | 255                                              | 52             | 3.0            |                                                  |
| STON            | 1726           | 002.885          |           | noveol                                  | Moisto         | ٠                                         |                            |                    |                                                  |                |                |                                                  |
|                 | 1749           | 002.885          | 0.69      | 1. <del>6</del> 2                       | 130            | 96                                        | 94                         | 254                | 246                                              | 81             | 3.0            |                                                  |
| 2               | 1855           | 59.65            | 0.72      | 1.53                                    | 30             | 106                                       | 96                         | 254                | 261                                              | 51             | 320            |                                                  |
|                 | 1935           | 86,21            | 0.72      | 1.93                                    | 130            | 107                                       | 97                         | 257                | 245                                              | 46             | 3.0            |                                                  |
|                 | 2014           | 115:40           | 1         | 1.93                                    | 129            | 108                                       | 150                        | 857                | 251                                              | 48             | 3.5            |                                                  |
| sko             | 2107           | 154.175          | · "       |                                         | intere         |                                           | cleck                      |                    | @ 14ª                                            | 1 -0           |                | ء .مدر                                           |
| 1 1             | 2112           | 154,300          |           | , — — — — — — — — — — — — — — — — — — — | 128            | 100                                       | 95                         | 253                | 040                                              |                | 3,5            |                                                  |
| rant            | 2311           | 199.26           | 0.74      | 10                                      |                | 1                                         |                            | Ţ — — —            | 246                                              |                |                |                                                  |
| <b>_</b>        |                |                  |           |                                         | /30            | 104                                       | 95                         | 355                | 1                                                | 50             | 3.5            | <del>                                     </del> |
| -               | 2304           |                  | 0.72      | 1.93                                    | 1.30           | 102                                       | 90                         | 256                | 243                                              | <u> </u>       | 3,5            | $\vdash$                                         |
| <u> </u>        | 2359           | 276.53           |           |                                         | 1.30           | 97                                        | 70                         | -2522              | 262                                              | رد_            | 3.5            | <del> </del>                                     |
| 1               | 1018           | 269.746          |           | p ma                                    |                |                                           |                            |                    | 1 1 11                                           | 11.5           | 3 -            | $\vdash$                                         |
| stert           | 0022           | 289.746          |           |                                         | 129            | 52                                        | 86                         | 253                | 240                                              | 48             | 3.5            | ├                                                |
| <b></b>         | 0123           | 333.11           |           | 1.93                                    |                | 95                                        | 87                         | 254                | 245                                              |                | 3.5            | 1                                                |
| <u> </u>        | 0218           | 37-3.5/          | 0.72      | 193                                     | 128            | 96                                        | 88                         | 255                | 264                                              | 20             | 3.5            |                                                  |
| Avg.            |                |                  |           |                                         |                | JESSO HARRA                               |                            |                    | 1                                                | 1              |                |                                                  |
| Check'd         | <u> </u>       |                  |           |                                         |                |                                           |                            |                    | l .                                              | l              |                |                                                  |
| 001/00          |                | 1                |           |                                         |                |                                           | an 1994 - Principal (1994) |                    | 200000000000000000000000000000000000000          | ************** | b.             |                                                  |
|                 |                | 161397           |           |                                         |                | Velocity_                                 | 1000000000110-4-0000       |                    |                                                  |                |                |                                                  |
| مرسفة دانا      |                | # 988<br>75°C    |           | -                                       |                | a Million and a company of the control of | re                         |                    |                                                  |                |                |                                                  |
| FILTER          | IT TELES       |                  |           |                                         |                | Liomijic (                                | DSCFM)_                    | জন সভা সংক্রিক্টের |                                                  |                |                |                                                  |
| AMBIE           |                |                  |           |                                         |                |                                           | 200                        | 7777 PgCLL1179875  | Harry Stream                                     | NG 48-48-38    | į.             |                                                  |
| AMBIEI<br>PROBE | LENGTH         | Le C             |           |                                         |                | Isokinetie                                | (%)                        |                    |                                                  |                | €<br><b>-</b>  |                                                  |

### MODIFIED METHOD 5 FIELD DATA SHEET

| Point Time reading 63 in H2O in H2O Temp. F inlet Outer Temp. Temp Impinger in Hg Extreme 10314 412.75 0.72 1.53 125 54 87 250 262 48 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                              | Plant Yates St                 | •            |        |                      |                                    |              |         |                   |     | of <u>2</u> |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|--------------------------------|--------------|--------|----------------------|------------------------------------|--------------|---------|-------------------|-----|-------------|--------------------------|
| The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co | AMPLI<br>OATE (       | NG LOCA<br>2-26-9<br>IMENSIO | TION START<br>TIME START<br>NS | <u>x</u>     |        | TIME FII             | RUN NO<br>NISH<br>ER 13            | )2           | TEST DU | RATION<br>LEAK RA | \TE | n           | iin.<br>fm               |
| Point Time reading 13 in H2O in H2O Temp. F Inlet Outer Temp. Temp Impinger in Hg Exit Temp  0314 412.78 0.71 1.53 128 54 87 252 262 48 3  100 0331 425,356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCF<br>AR PR<br>TATIC | ESS 2<br>PRESS               | 9.41 "Hg                       | H2O          | NOZZLE | OPERAT               | <u> 240</u><br>ог <i><u>ЈЕ</u></i> | inches H /Tm | FINAL L | EAK RAT           | E   | (           | :fm                      |
| TOP 0331 425,356  Avg 654,007 53702 186,7 12875 93047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                              |                                |              |        | Stack<br>Temp. F     | Inlet                              |              | Temp.   |                   |     |             | Cond.<br>Exit<br>Temp. F |
| Avg. — 654.007 (33762)   35LR 12855   93.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                              |                                |              | 1,53   | 128                  | <b>\$</b> 4                        | 87           | 252     | 262               | 48  | 3           |                          |
| Avg 654.007 (\$37.02   364.8 128.85   93.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>βρ</u>             | 0331                         | 425,356                        |              |        |                      |                                    |              |         |                   |     |             |                          |
| Avg 654.007 (\$\$702   86LR 128.65 93.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| heck'd —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| heck'd —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| neck'd –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| heck'd —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| heck'd —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| heck'd —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| heck'd —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| heck'd —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| heck'd —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
| heck'd —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                              |                                |              |        |                      |                                    |              |         |                   |     |             |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              | 654.007                        | 133702       | 8618   | 128,95               | 12 . ÷.                            | 93.047       |         |                   |     |             |                          |
| Contents of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the conte | Jheck'd               |                              |                                |              |        |                      | n hat §                            |              |         |                   |     |             |                          |
| ONSOLE # Veboity ILTER # % Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ILTER                 | #                            |                                | <del>.</del> |        | Velocity_<br>% Moist | ıre .                              |              |         |                   |     |             |                          |
| MBIENT TEMP. Flowrate (DSCFM)  ROBE LENGTH Isokinetic (%)  INER MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROBE                  | LENGTH                       |                                |              |        | Isokinetic           | (%)                                |              |         |                   |     |             |                          |

C-137

STACK

|                       | STACE                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           | 1<br>Rulk i           |                       | RADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOCKE<br>MOCKE                        | FUDES                                         | ام کر<br>مار                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| ocation_              | Time Start                                                                                                                                                               | 14.5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time Fini                                                 | sh C)/a               | 14                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 908                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                     |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Diameter                                                  | sn <u> </u>           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92                    |
| \$100\$<br>2 <i>4</i> | DCMCE X                                                                                                                                                                  | RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nozzle D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diameter                                                  | 40 inch               |                       | Final Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k Rate S                              | 50.001                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOZZIE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .a. <u></u> _                                             | inch                  | L3                    | rinai Cea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K 1/010                               | 10 700 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • •                   |
|                       |                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Operator                                                  | DIVE                  | BZ/JEH                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| Clock                 | Dry gas meter                                                                                                                                                            | ^ P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ^ H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                         |                       | eter temp.            | Hot box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Probe                                 | Last                                          | Vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| Time                  | reading ft3                                                                                                                                                              | in H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temp. F                                                   | Inlet                 | Outlet                | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temp                                  | Impinger                                      | in. Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| 357                   | 425.570                                                                                                                                                                  | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130                                                       | 89                    | 88                    | 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 249                                   | 65                                            | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130                                                       | 43                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 48                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           | 75110E                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          | ,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 58                                            | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                     |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          | . (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       | , 0 )                 | ~>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.76                                  | 7.0                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       | 10.                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                                    | 100                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                         |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>           |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ , _                                 | 1                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ł .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |                       | 101                   | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 246                                   | 54                                            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                         | 1                     | <del>-</del>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | <del> </del>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>-</b>              |
|                       |                                                                                                                                                                          | 0,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           | 101                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       |                       | Jak C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 0.001                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130                                                       | 99                    | 95                    | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 353                                   | 54                                            | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| 147                   | 761-24                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                               | 103                   |                       | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 253                                   | 52                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| 236                   | 797.20                                                                                                                                                                   | 043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 131                                                       | <del></del>           |                       | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 244                                   | 52                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |
| 330                   | 837.04                                                                                                                                                                   | 6:73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 132                                                       | 98                    |                       | 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 254                                   | 53                                            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| 034                   | 881.30                                                                                                                                                                   | 0:73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 132                                                       | 99                    | 91                    | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 256                                   | 53                                            | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| 132                   |                                                                                                                                                                          | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /30                                                       | 99                    | 91                    | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 239                                   | 49                                            | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| 132                   |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - A *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           | visture               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           | 89                    |                       | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 255                                   | 51                                            | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                     |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                     |                       | <del></del>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T                                     | T                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                         |                       | j •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 1                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>                           |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       | 694,652                                                                                                                                                                  | <b>F</b> isial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /21                                                       |                       | 97.70                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       |                                                                                                                                                                          | A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | a reconstant for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONTRACTOR CONTRACTOR                                     | a construction of     | TO THE REAL PROPERTY. | <ul> <li>Section of the section /li></ul> | · · · · · · · · · · · · · · · · · · · | essanti e e e e e e e e e e e e e e e e e e e | <b>1</b> 96900990000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|                       | Clock<br>Time<br>357<br>417<br>30<br>34<br>615<br>615<br>72<br>72<br>72<br>72<br>73<br>715<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 29.53 "Hg  -0.5i "H20  Clock Dry gas meter reading ft3  357 425.570  112 436.465  30 495.801  314 495.801  314 495.801  315 526.800  318 580.630  319 580.960  31 617.51  315 657.60  306 693.860  307 761.24  236 797.20  330 837.04  331 881.30  334 881.30  334 881.30  334 967.513  342 1012.34  440 55.04  535 95.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29-33 "Hg  -0.5i "H20  Clock Dry gas meter "P  Time reading ft3 in H20  357 425.570 .71  H1Z 436.465 .72  30 495.801 .72  615 526.800 .73  28 580.630 .73  28 580.630 .73  28 580.630 .73  29 580.630 .73  29 580.630 .73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 617-51 8.73  21 761-24 9.73  23 881-30 9.73  23 923.01 9.73  23 967.573 9.73  34 967.573 9.73  340 55.94 9.73  340 55.94 9.73 | Clock Dry gas meter P P P P P P P P P P P P P P P P P P P | Clock Dry gas meter P | Clock Dry gas meter P | Clock   Dry gas meter   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clock   Dry gas meter   P             | Clock Dry gas meter P                         | Clock Dry gas meter reading ft3 in H20 in H20 Temp. F Inlet Outlet Temp. Temp Impinger 1557 425.570. 74 191 130 89 88 251 247 65 412 436.465. 72 193 130 43 88 251 259 48 30 445.801 257 193 193 108 99 251 259 48 30 445.801 257 193 193 108 99 257 250 58 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 48 251 259 250 53 251 259 48 251 259 250 53 251 259 250 250 250 251 259 250 250 250 251 259 250 250 250 251 259 250 250 250 250 250 250 250 250 250 250 | Clock Dry gas meter P |

SOURCE SAMPLING FIELD DATA SHEET STACK Page of\_ Plant Yates Station Boiler No. 1 Plant Name Bulk Particulate-Ex. Metals Run No. 1 Train Sampling Location Stack Time Finish 0725 (ahs/is) test Duration 1112 min. Date 6/24/93 Time Start 11:50 Diameter 13 ft Initial Leak Rate 0.000@ clim Duct Dimensions X DGMCF 0-994 Nozzle Dia. 0-24 inches PTCF + 84 Final Leak Rate o'vor cfm 844 Bar Press \_\_ 29 - 33 \_\_\_ \* Hg Static Press \_ 70.5 Operator <u>EZ</u> K = 2.864 ^ H ^ P Dry gas meter temp. Clock Dry gas meter Stack Hot box Last Vacuum Travers Probe Point Time reading ft3 in H2O in H2O Inlet Outlet Temp Temp. F Temp. Impinger in. Hg 128 259 6.0 N-7/11:50 157.048 0.62 88 254 60 171.030 0.62 260 1.776 100 90 254 57 6.0 12.08 129 200.7220.62 1.78 52 6.0 12 47 129 106 96 254 260 130 218-635 0-62 1.78 260 56 1310 256 110 96 6.0 131 6.0 1351 249.835 0.62 121 108 257 255 63 283 944 0.62 129 6.0 116 256 1.78 በይ ZUR <u>6.5</u> 130 253 61 1515 1313.926 0.62 1.78 123 117 245 1575 321.817 STOP 130 112 246 57 60 1532 321.820 062 111 254 6.0 362.785 0.62 95 250 56 1625 756 100 6.0 1908 279 94 THE 60 1836 49 2129 2/3 1.78 51 93 2128 242 580,24 0,62 178 515 1216 7.5 2307 0.62 178 127 83 84 251 279 1.78 7.0 98 83 0007 658.05 0.62 128 256 175 94 0.62 84 254 249 *ጉነ*־ 0102 99 235 0.62 1.75 56 75 0.62 257 247 7.5 96 830,01 0,62 7.5 אמשמי

97 91 260 56 +xx sent 10529 1891.598 129 252 7.5 1.78 0.62 8,0 103 256 250 49 0629 937.854 0.62 1.78 129 92 8.0 256 48 0717 969.526 0.62 1.78 128 104 0725 K16-252 97.565 818-991 178740 1.78 129.00 Avg. Check'd Velocity % Moisture # 908 FILTER #

101

89

PROBE LENGTH 6'
LINER MATERIAL GLASS

AMBIENT TEMP.

0453

0524

868.46

1891.465

% Moisture
Flowrate (DSCFM)
Isokinetic (%)

256

\*\*\* seawed ing. cetch, leak their through pleasure 0.000@14"

REMARKS \* ROMONE MONSING FROM THANKING

0.62

Que xt " " " " leak chech through imp: 0:00 2 @ 15" ailica get imp, replaced due to blow out of bettom. liquid level in 3ed imp

C-139

STACK

| Sampling   | Location_        | S77           | KK        |           | Train _         | Bulk           | <u>Particula</u> | ite-Ex. M                             | <u> Ietals</u>                             | _ Run !                                 | ۷o. <u>ک</u>     |         |
|------------|------------------|---------------|-----------|-----------|-----------------|----------------|------------------|---------------------------------------|--------------------------------------------|-----------------------------------------|------------------|---------|
| Date 6     |                  | Time Start 12 | 46        |           | Time Fini       | sh <u>033</u>  |                  | Test Dura                             | tion                                       | <u> </u>                                |                  |         |
| Duct Din   | nensions         | x_            |           |           | Diameter        |                | <u> </u>         |                                       |                                            | ) cor (C                                |                  |         |
| PTCF D     | 811              | DGMCF 0-4     |           | Nozzle Di | ia. <u>0-24</u> | inch           | es               | Final Lea                             | k Rate <u>C</u>                            | 10010                                   | <u>/4</u> ^cfm . | z.'     |
|            | 19.41            | " Hg 1.       |           |           |                 | 社              |                  |                                       |                                            | .,                                      | 2-               | 70      |
| Static Pro | :ss <u>~ 0.2</u> | 120           | )<br>     |           | Operator        |                |                  |                                       |                                            | <u> </u>                                | =2-8/2           | $\not=$ |
| Travers    | Clock            | Dry gas meter | ^ P       | ^ H       | Stack           | Dry gas m      | eter temp.       | Hot box                               | Probe                                      | Last                                    | Vacuum           |         |
| Point      | Time             | reading ft3   | in H2O    | in H2O    | Temp. F         | Inlet          | Outlet           | Temp.                                 | Temp                                       | Impinger                                | in. Hg           |         |
| E-I        | 1246             | 214.097       | 0.64      | 1.75      | 124             | 81             | 8                | 225                                   | 259                                        | 74                                      | 3.0              |         |
|            | 1365             | 225.225       | 0.64      | 1.75      | 124             | 89             | 82               | 252                                   | 248                                        | 50                                      | 3.0              |         |
|            | 13 22            | 237.899       | 0.64      | 1.75      | 124             | 94             | 85               | 254                                   | 250                                        | 52                                      | 3.0              |         |
|            | 1400             | 264,982       | 6-64      | 1.75      | 124             | 49             | 89               | 254                                   | 750                                        | 53                                      | 3.0              |         |
|            | 1430             | 285.726       | 0.64      | 1.75      | 124             | 101            | 92               | 250                                   | 262                                        | 52                                      | 3·0              |         |
| STOP       | 1528             | 326 - 305     |           | Remon     | WOTST           | use F          | con -            | MAIN.                                 |                                            |                                         |                  |         |
| 5724       | 1531             | 326.890       | 0.64      | 1.75      | 124             | 100            | 91               | 251                                   | 260                                        | 53                                      | 3.0              |         |
|            | 1612             | 355-845       | 0.64      | 1.75      | 124             | [0]            | 92               | 25¢                                   | 250                                        | 53                                      | 3.0              |         |
|            | 1G58             | 389,995       | 0.64      | 1.75      | 124             | 101            | 92               | 253                                   | 244                                        | 49                                      | 3,0              |         |
| Stop       | 1729             | 411.792       |           | Stoppe    | d to            | Remo           | e Mo             | tstore                                |                                            |                                         |                  |         |
| Start      | ט־זרן            | 411.792       | 0.64      | 1.75      | 126             | 87             | 88               | 348                                   | 252                                        | 73                                      | 2.0              |         |
| 1          | 1902             | 464.37        | 864       | 1,7       | 126             | 96             | 87               | 254                                   | 253                                        | 46                                      | 20               |         |
|            | 1536             | 488135        | 0.64      | 1,75      | 127             | 95             | 87               | 25.3                                  | 242                                        | 42                                      | 2.0              |         |
|            | 2016             | 5110.39       | 0.64      | 1.75      | 627             | 96             | 87               | 253                                   | 248                                        | 41                                      | ن. يـ            |         |
| stop       | 2114             | 556.829       | ramou.    | ed mo     | isture          |                | & check          | 00010                                 |                                            | Hrough                                  | g. Reas a        | ريد     |
| Skut       | 2118             | 556.935       | I         | 1.75      | 125             | 86             | 83               | Sa                                    | 255                                        | 53                                      | 2.0              | ·       |
|            | 22/2             | 595,23        | 0.64      | 1.74      | 126             | 91             | 82               | 253                                   | 259                                        | 47                                      | 200              |         |
|            | 2305             | 632,71        | 0.64      | 1,75      | 127             | 52             | 84               | 253                                   | 253                                        | 46                                      | 2.0              |         |
| (Jund)     | 000+             | 760.90        |           |           |                 |                |                  |                                       |                                            |                                         |                  |         |
|            | 0001             | 670.90        | 064       | 1.35      | 22              | 92.            | 84               | 257                                   | 252                                        | 48                                      | 2.0              |         |
|            | 0030             | 69125         | 064       | 1.75      | 127             | 89             | 88               | 252                                   | 257                                        | 47                                      | 2.0              |         |
|            | 0125             | 729.41        | 0164      | 1.75      | 126             | 86             | 79               | 253                                   | 256                                        | 70                                      | 2.0              |         |
|            | 0219             | 767,02        | 064       | 1.75      | 126             | 88             | 75               | 253                                   | 256                                        | ルブ                                      | 2.0              |         |
|            | 0312             | 803:01)       |           |           | 124             | 87             | 79               | 253                                   |                                            |                                         | 20               |         |
| 500        | 0731             | 815.698       |           |           |                 | _              |                  |                                       |                                            |                                         |                  |         |
|            |                  |               |           |           |                 |                |                  |                                       |                                            |                                         |                  |         |
|            |                  |               |           |           |                 |                |                  |                                       |                                            |                                         |                  |         |
|            |                  |               |           |           |                 |                |                  |                                       |                                            |                                         |                  | ****    |
| Avg.       |                  | 600.91        | 8000      | 1.75      | 125.4           |                | 89.05            |                                       |                                            |                                         |                  |         |
| Check'd    |                  |               |           |           | Marie (Saulie)  |                |                  |                                       |                                            |                                         |                  |         |
|            |                  | 16136 A10     | • 4 - • • |           |                 | Wasser No. 100 | i naudenii ee il | a - 22 222 september                  | 1150 occope#f# fff                         | 100000000000000000000000000000000000000 | ,                |         |
| FILTER     |                  | # 981         | 1394      |           |                 | Velocity_      | •                | e e e e e e e e e e e e e e e e e e e | <u>ाराज्यका मृत्</u><br>विक्रिक्तिकाराज्यक |                                         |                  |         |
|            | ″<br>≀T TEMP.    | P- 4 - /      |           |           |                 |                | DSCFM)           |                                       |                                            |                                         | 4                |         |
|            | LENGTH           | <del></del>   |           |           |                 |                | (%)              |                                       |                                            |                                         |                  |         |
|            | MATERIA          |               |           |           |                 |                | <u> </u>         |                                       | * 8/307 ( N TS                             |                                         | •                |         |
|            |                  |               |           |           |                 |                |                  |                                       |                                            |                                         |                  |         |

STACK

| Samplin         | g Location     | Stac          | <u></u>                                 |                                 | Train          | _ Bulk                   | Particula                                        | te-Radio      | muclide  | <u>s−</u> ' F  | tun No.       | 3            |
|-----------------|----------------|---------------|-----------------------------------------|---------------------------------|----------------|--------------------------|--------------------------------------------------|---------------|----------|----------------|---------------|--------------|
| Date 6          | 26 93          | Time Start    | 1442                                    |                                 | Time Fini      | ish ac.                  | c // )                                           | Test Dur      | ation    | ያ ያ ፖ          | min           |              |
|                 |                | DGMCF 1.07    |                                         |                                 |                |                          |                                                  | Initial Lea   | k Rate < | 6.000          | 2 /6m 11      | <i>†</i>     |
| PTCF (          | - 84           | DGMCF 1.07    | 9                                       | Nozzle D                        | ia. <u>0.7</u> | finct                    | ies                                              | Final Lea     | k Rate   | 0 001          | <b>€_</b> clm | 1-0          |
| Bar Pres        | is 24-31       | Hg            |                                         |                                 |                | =2                       | 1 11-                                            |               |          |                |               |              |
| Static Pr       | ess            | ' 5 _ " H2C   | )<br>                                   |                                 | Operator       | EZ.                      | 7 ME                                             |               |          |                | K=2.          | 69           |
| Travers         | Clock          | Dry gas meter | ^ P                                     | ^ H                             | Stack          | Dry gas m                | eter temp.                                       | Hot box       | Probe    | Last           | Vacuum        |              |
| Point           | Time           | reading ft3   | in H2O                                  | in H2O                          | Temp. F        | Inlet                    | Outlet                                           | Temp.         | Temp     | Impinger       | in. Hg        |              |
| W-3             | 1442           | 943-115       | 6.58                                    | 1.560                           | 125            | 85                       | 84                                               | 254           | 253      | 65             | 4.0           |              |
|                 |                |               | 0.58                                    | 1.560                           | 126            | 95                       | 87                                               | 252           | 256      | 49             | 4.0           |              |
| \$ W            | 1537           | 979 676       | ZE                                      | KOVE.                           | EXCE           | 5 MO                     | STORE                                            | FRON          | impi     | TICTER         | ر ک           |              |
| * ANT           |                | 929.676       | 0.58                                    | 1-540                           |                | 91                       | 86                                               | 257           | 256      | 55             | 3.5           |              |
|                 | 1617           | 005.940       | 0.58                                    | 1.50                            | 128            | 96                       | 89                                               | 25/           | 254      | 50             | 3.5           |              |
|                 | 1650           | 027.760       | 0.58                                    | 1.56                            | 126            | 97                       | 89                                               | 250           | 254      | 46             | 3.5           | <b>_</b>     |
|                 | 1729           | 54.350        | 0.58                                    | 1.6                             | 126            | 99                       | 90                                               | 253           | 25-3     | 44             | 3.5           | 1            |
| 56p             | 1743           | 63 453        |                                         | /                               | Pomor co       | /_/                      | Moistur                                          | e             | ļ        |                |               | <u> </u>     |
| Start           | 1750           | 63.953        | 0.58                                    | 1.5                             | 126            | 90                       | 8-9                                              | 253           | 249      | 67             | 3.5           | <u> </u>     |
| <u> </u>        | 1823           |               | 0.58                                    | 1.6                             | 128            | 100                      | 91                                               | 255           | 239      | 47             | 3.5           | <u> </u>     |
|                 | 1916           | 126.52        | 055                                     | 116                             | 125            | 94                       | 87                                               | 252           | 241      | 49             | 3,5           | ↓_           |
|                 | 2005           |               | 0.58                                    |                                 | 125            | 91                       | 83                                               | 323           | 256      | 45             | 3.5           | <del> </del> |
| Stop            | 2055           | 194,406       |                                         | Remo                            | vel            | moiste                   |                                                  | ech ch        | rck      | 0,003          | @13"          | ↓            |
| scut            | 3103           | 184.615       | 0.58                                    | 1.6                             | 125            | 83                       | 80                                               | 253           | 253      | 55             | 3.5           | <del> </del> |
|                 | 2146           | 334.01        | 0158                                    | 1.6                             | 12/4           | 91                       | 83                                               | 252           | 239      | 1              | 3.7           | ↓_           |
|                 | 2235           |               | 0.18                                    | 1.6                             | 126            | 92                       | 84                                               | 527           | 244      | 49             | 3.5           | <del> </del> |
|                 | 2329           |               | 0.5E                                    | 1.6                             | 127            | 93                       | 85                                               |               | 253      | 46             | 3,5           | ├            |
| <b></b>         | 0032           |               | 0.58                                    | 116                             | 128            | 92                       | 84                                               | 253           | 248      |                | 3.5           | ┼—           |
| <del></del>     | 6/3/           | 374.90        |                                         | _                               | 125            | 90                       | 83                                               |               | 256      | 44             | 3,5           | ┼—           |
| 2/27            | 2232           | 416.035       |                                         |                                 | nout           | 1                        | Leak                                             |               | 0.000    | T              |               | ┼─           |
| Stut            | 0241           | 416.215       |                                         |                                 | 126            |                          |                                                  |               |          | 55             |               | ╀            |
|                 | 0341           | 458.11        | 0.58                                    | 1.6                             | 126            | 88                       | 80                                               | 251           | 253      | 48             | 7.5           | ┼─           |
|                 | 0439           | 497.84        | 0.55                                    |                                 | 126            | 90                       | 81                                               | 254           | 257      | 42             | 3.5           | +            |
| <b> </b>        | 0533           | 535,24        | 0.58                                    | 1.6                             | 126            | 89                       | 82                                               | 252           | 541      | 43             | 3,5           | +-           |
| <b></b>         | 0916           | 561.891       |                                         |                                 |                | -                        | <del>                                     </del> | -             |          | <del> </del> - | -             | +            |
|                 |                |               |                                         |                                 |                |                          |                                                  |               |          |                |               | 上            |
|                 |                | //19 -2-2-2   | 20.797                                  | 1682                            | 151 2          |                          | OnE02                                            | Daggi, medici |          |                |               |              |
| Avg.<br>Check'd | <del>  -</del> | 618.386       | - 1913 <i>11</i>                        | 1.37 3                          |                |                          | 90,583                                           |               |          | 7              |               |              |
| Check 0         | <u> </u>       | <i>t</i>      | 3-1000000000000000000000000000000000000 | (त्राक्त्रावक्षः (त्रिः) स्त्रा |                | The second of the second | IR ( JAC Design                                  |               |          |                |               | 2 20000      |
| CONSO           | LE#            | 2161394       |                                         |                                 |                | Velocity_                |                                                  |               |          |                |               |              |
| FILTER          |                | F 92.4        |                                         | -                               |                | % Moistu                 | ne                                               |               |          |                |               |              |
|                 | NT TEMP.       | 89°F          |                                         |                                 |                |                          | DSCFM)_                                          |               |          |                |               |              |
| PROBE           | LENGTH .       | - Glass       |                                         |                                 |                | Isokinetic               | (%)                                              |               | - 48 M   |                | Ž             |              |

# MOCIFIED METHOD & FIELD DATA SHEET

| PLANT      | NAME                                             | Plant Yates St                                   | ation Boiler | No. 1      |                                                  | <del></del> - |                   |              |                                                  | Page         | _ of           | _                                                |
|------------|--------------------------------------------------|--------------------------------------------------|--------------|------------|--------------------------------------------------|---------------|-------------------|--------------|--------------------------------------------------|--------------|----------------|--------------------------------------------------|
| SAMPL      | ING LOCAT                                        |                                                  | TACK         |            |                                                  | RUN NO        |                   |              |                                                  | 14           | + _ OV         | •                                                |
| DATE (     | 25-43                                            | TIME START                                       | X 114        |            | DIAMET                                           | NISH          | ₹                 | TEST DU      | RATION<br>LEAK RA                                | TE 40        | . <u>O</u> .   | iin.<br>fm <i>(</i> 2/2                          |
| PTCF       |                                                  | DGMCF O                                          | 994          | NOZZLE     | DIA. D.                                          | 195           | inches            | FINAL L      | EAK RAT                                          | E 0.8        |                | im <b>2</b> (2                                   |
| STATIC     | PRESS                                            | -0.51                                            | H2O          |            | OPERAT                                           | OR            | SEH               |              |                                                  |              |                |                                                  |
|            |                                                  |                                                  |              |            |                                                  |               |                   |              |                                                  |              |                |                                                  |
| Traverse   | Clock                                            | Dry gas meter                                    | ^ P          | ^ H        | ŧ                                                | Dry gas me    |                   | Hot box      | Probe                                            | Last         | Vacuum         | Cond.                                            |
| Point      | Time                                             | reading ft3                                      | in H2O       | in H2O     | Temp. F                                          | Inlet         | Outlet            | Temp.        | Temp                                             | Impinger     | in. Hg         | Exit<br>Temp. F                                  |
| 1          |                                                  |                                                  |              |            | <u> </u>                                         |               |                   |              |                                                  |              |                |                                                  |
| E-1        | 1147                                             | 481.490                                          | -60          | .70        | 128                                              | 80            | 79                |              |                                                  | 68           | 1-0            |                                                  |
| <u>- z</u> | 1159                                             | 987,420                                          | -61          | .72        | 128                                              | 84            | 80                |              |                                                  | 52           | 1.5            |                                                  |
| =3         | 1211                                             | 943.200                                          | .55          | 4ء.        | 128                                              | 89            | 83                |              |                                                  | 55           | 1.5            |                                                  |
| STOP       | 1223                                             | 770.70                                           |              | -          | 170                                              | 00            | 6.1               |              |                                                  | 7-7          |                |                                                  |
| 2-1        | 1233                                             | 193.73                                           | -100         | .30        | 128                                              | 86            | 84                |              |                                                  | 67           | 1.5            | <del>-</del>                                     |
|            | 1247                                             | 1007.300                                         | 38           | -72<br>-68 | 128                                              | 97            | 97                |              |                                                  | 54           | 1-0            |                                                  |
| 5600       | 1311                                             | 1015 654                                         | 1 i=         | 4 10 1 1   | OK                                               | ر د           | (0                |              |                                                  | <u>٦٠٦ ا</u> | 1-0            |                                                  |
| 7-1        | 1318                                             | 1015710                                          | -60          | .71        | 17%                                              | 92            | 90                |              | <del></del>                                      | 62           | 1.0            |                                                  |
| -7         | 1330                                             | 1071.400                                         | -61          | 72         | 125                                              | 47            | 92                |              | <del>-</del>                                     | 56           | ~ <del>~</del> |                                                  |
| -3         | 1342                                             | 1027 Z65                                         | ,55          | -66        | 126                                              | 98            | 92                |              |                                                  | 59           | 1.0            |                                                  |
| 200        | 1354                                             | 1032.900                                         | LE           | 4x C       | HECY                                             |               |                   |              |                                                  |              |                |                                                  |
| 3-         | /358                                             | 1032-920                                         | .56          | .67        | 126                                              | 96            | 93                | _            |                                                  | 61           | 1.0            |                                                  |
| -2         | 1410                                             | 1038510                                          | .58          | -70        | 125                                              | 100           | 94                |              |                                                  | 56           | 1.0            |                                                  |
| _3         | 1422                                             | 1044.300                                         | -59          | H          | 126                                              | 102           | 95                |              |                                                  | 58           | 1.0            |                                                  |
| 5700       | 1434                                             | 1050,179                                         |              |            |                                                  | •             |                   |              |                                                  |              |                | <u> </u>                                         |
| <b></b>    | <u> </u>                                         |                                                  |              |            |                                                  |               |                   |              |                                                  |              |                |                                                  |
| <b></b>    |                                                  |                                                  |              |            |                                                  | -             |                   |              |                                                  |              |                | <b></b>                                          |
| ļ          | <del></del>                                      |                                                  |              |            | ļ                                                |               |                   |              |                                                  | <u> </u>     |                | <u> </u>                                         |
| }          |                                                  | <del> </del>                                     |              |            | <del> </del>                                     |               |                   |              |                                                  | <u> </u>     |                | <del>}</del>                                     |
| <b></b>    | <u> </u>                                         |                                                  | <del></del>  |            | <del> </del> -                                   |               |                   |              | <u> </u>                                         |              |                | <del> </del> -                                   |
|            | <u> </u>                                         |                                                  |              |            |                                                  |               | <u> </u>          |              |                                                  |              |                | <del> </del>                                     |
| <b> </b>   |                                                  | <del>                                     </del> |              |            | <del> </del>                                     |               |                   |              |                                                  |              |                | <del> </del> -                                   |
| -          |                                                  | <del> </del>                                     |              | <u></u>    | <del> </del>                                     |               |                   |              |                                                  |              |                | <del>                                     </del> |
|            | <del>                                     </del> | <del>                                     </del> |              |            | <del>                                     </del> |               |                   |              | <del>                                     </del> | <del></del>  |                | <del></del>                                      |
|            |                                                  |                                                  |              |            |                                                  |               |                   |              |                                                  |              |                |                                                  |
|            |                                                  |                                                  |              |            |                                                  |               |                   |              |                                                  |              |                | <u> </u>                                         |
|            |                                                  |                                                  |              |            |                                                  |               |                   |              |                                                  |              |                |                                                  |
| Avg.       |                                                  | 68 563                                           | 7(6581       | 0.694      | 136.8                                            | 90            | 54                |              |                                                  |              |                |                                                  |
| Check'd    | 1                                                |                                                  |              |            |                                                  |               |                   |              |                                                  |              |                |                                                  |
|            |                                                  | 111 121 1                                        |              |            | 17. 24.155.151051.014.                           |               | 218/28/1141/511 · | . 1803808800 | ·                                                |              |                |                                                  |
| CONSO      | LE#                                              | 4161361                                          | _            |            | Velocity_                                        | re <u>/</u> 4 | <i>.</i>          |              |                                                  |              |                |                                                  |
| AMBIF      | NT TEMP                                          |                                                  | -            |            |                                                  | (DSCFM)       |                   |              |                                                  |              |                |                                                  |
| PROBE      | LENGTH                                           | 6'                                               |              |            |                                                  | (%)           | 200               |              |                                                  |              |                |                                                  |
|            | _                                                | DIDEX                                            |              |            | er a new market                                  |               |                   |              | •                                                |              |                |                                                  |
|            |                                                  | ' /                                              |              |            |                                                  |               |                   |              |                                                  |              |                |                                                  |
| REMAR      |                                                  |                                                  | ـــ ، سر     | _          |                                                  |               |                   |              |                                                  |              |                |                                                  |
|            | AL                                               | LTIMES                                           | -OT          |            |                                                  |               |                   | _            |                                                  |              |                |                                                  |

# MODIFIED METHOD 5 FIELD DATA SHEET

| PLANT    | NAME _           | Plant Yates St | ation Boiler                                   | No. 1       |                                        |              |                |                |                | Page          | _ of     | _               |
|----------|------------------|----------------|------------------------------------------------|-------------|----------------------------------------|--------------|----------------|----------------|----------------|---------------|----------|-----------------|
| SAMPLI   | NG LOCA          | TION 5         | ACX                                            |             |                                        | RUN NO       | . •            | 2              |                | . 41.4        | ,        |                 |
| DATE     | 7-76-93          | TIME START     | X                                              | <u> </u>    | TIME FIN                               |              | 443            | TEST DU        | RATION         | 144<br>TE (2) | <u> </u> | in.             |
| PTCF     | -84              | DGMCF _99      | <u>u^</u>                                      | NOZZLE      | DIA.                                   | E.135        | inches         | FINAL L        | EAK RAT        | TE 0. C       | 52       | im on           |
| BAR PR   | ESS <u>24</u>    | DGMCF _99      |                                                |             | OPERAT                                 |              | JE             | _              |                |               |          | 9               |
| STATIC   | PRESS            | <u>-0.51</u>   | H2O                                            |             | OPERAT                                 | ∪k <u> </u>  | -16-1          |                |                |               |          |                 |
| Traverse | Clock            | Dry gas meter  | ^ P                                            | , H.        |                                        | Dry gas me   |                | Hot box        | Probe<br>Temp  | Last          | Vacuum   | Cond.           |
| Point    | Time             | reading ಗಿರ    | in H2O                                         | in H2O      | Temp. F                                | Inlet        | Outlet         | Temp.          | remb           | Impinger      | in. Hg   | Exit<br>Temp. F |
| とし       | 1041             | 087.000        | -61                                            | .71         | 130                                    | 78           | 79             |                |                | 62            | 1-0      |                 |
| 7        | 105 5            | 6A2 475        | ليرا                                           | .74         | 130                                    | 83           | 81             |                |                | 59            | 10       |                 |
| -3       | 1105             | 088 5%         | 156                                            | .65         | 130                                    | 88           | 82             | _              |                | 1-0           | 10       |                 |
| 460      | 1117             | 103 797        | 1                                              | EAK         | V 0                                    |              |                |                |                |               | 7.0      |                 |
| 1-1      | 1140             | 103.826        | .62                                            | .37         | 130                                    | 87           | 85             |                |                | 65            | 1.0      |                 |
| -2       | 1152             | 109-805        | 64                                             | 74          | 130                                    | 91           | 86             |                |                | 30            | 1-0      |                 |
| _3       | 1206             | 11/2 550       | .57                                            | 66          | 130                                    | 45           | 88             |                |                | 54            | 10       | -               |
| 5/00     | 1718             | 171 230        | 1 2                                            | = Av        | 2                                      |              |                |                |                |               | 1-12     |                 |
|          | 1300             | 171 800        | 5/                                             | -65         | 130                                    | 44           | 91             |                |                | 43            | 1.0      |                 |
| <u> </u> | 13/Z             | 177 151        | 44                                             | 20          | 130                                    | 96           | 92             |                |                | 40            | 10       |                 |
| - 5      | 1376             | 132 525        | -57                                            | 101         | 120                                    | 10Z          | 95             |                |                | (1)           | 10       |                 |
| -5       | 1221             | 132 677        | ) <u>, , , , , , , , , , , , , , , , , , ,</u> | 4 ic 1 -    | OK                                     | 702          | 7.             |                |                | <i>EO</i> 1   | 7.0      |                 |
| 300      | 1036             | 122 016        |                                                | 721         | 130                                    | 96           | 95             |                |                | 15            | 10       |                 |
| 5-1      | 114-51           | 1/1/2 000      | 10                                             | · <b>5</b>  |                                        | 78           | 96             |                |                | (2)           | 50       |                 |
|          | 1/27             | 143.000        | <i>-161</i>                                    |             | 130                                    |              | 97             |                |                | 95            | 5.0      |                 |
| -2       | 1433             | 149.250        | -D#                                            | 167         | 130                                    | 102          | T.             |                |                | ردی           | 5-0      |                 |
| 500      | 1773             | 154-063        |                                                | <del></del> |                                        |              |                |                | <del> </del> - |               |          |                 |
|          |                  |                |                                                |             |                                        | <del></del>  |                |                | <u> </u>       |               |          |                 |
| <b> </b> |                  |                |                                                |             |                                        |              |                |                | <u> </u>       |               |          | <u> </u>        |
|          |                  |                |                                                |             | <u> </u>                               |              |                | ~              | <del></del>    |               |          |                 |
| <b></b>  |                  |                |                                                |             | <u> </u>                               |              | <del> </del> _ |                |                |               |          | <u> </u>        |
| <b></b>  |                  | ļ              |                                                | <del></del> |                                        |              | <b></b>        |                | <u> </u>       |               |          |                 |
| <b> </b> |                  | ļ              |                                                |             |                                        |              |                |                |                |               |          | <u></u>         |
|          |                  |                |                                                |             |                                        |              |                |                |                |               |          |                 |
|          | ·                |                |                                                |             | <b></b>                                | <del> </del> | <b></b>        | ļ              | ļ <del></del>  |               |          | <b></b> _       |
|          |                  |                |                                                |             | ļ                                      |              |                | <u> </u>       |                |               |          |                 |
| ļ        |                  |                |                                                |             |                                        |              |                |                |                | <u> </u>      |          |                 |
|          |                  |                |                                                |             |                                        |              |                |                |                |               |          |                 |
| <u></u>  |                  | <u> </u>       |                                                |             |                                        | ļ            | 1              |                |                |               | ļ        | <u> </u>        |
|          |                  |                |                                                |             |                                        |              |                |                |                |               |          |                 |
| Avg.     |                  |                | 888. NO.                                       |             | 100                                    | Approximate  |                |                |                |               |          |                 |
| Check'd  | _                | 64,971         | 748861                                         | 1892        | 1300                                   |              | 95.70          |                |                |               |          |                 |
| CONSO    | LE#_ <u>A(</u>   | [a[3[a]        |                                                |             | Velocity                               |              | 0.64           | CPS-1/18/18/88 |                |               |          |                 |
| FILTER   | " - <del>-</del> |                | <del></del>                                    |             | 900.0000000000000000000000000000000000 |              | 40             |                | :              |               |          |                 |
| AMBIE    | NT TEMP          | 78°F           | -                                              |             | Flowrate                               | (DSCFM)      |                |                | C              | 0             |          |                 |
|          |                  | 61             |                                                |             |                                        | (%)          |                | 91             | -,,,           | •             |          |                 |
|          |                  | DYDEX          |                                                |             | - បាលកាត់កាត់កា                        |              |                |                | •              |               |          |                 |
|          |                  |                |                                                |             |                                        |              |                |                |                |               |          |                 |

# MODIFIED METROD 5 FIELD DATA SHEET

|           |               |             | Plant Yates St     |                   | No. 1   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | оМб<br><del>-</del>      |                      |               |           | Page     |                   | 2.4   |
|-----------|---------------|-------------|--------------------|-------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|---------------|-----------|----------|-------------------|-------|
| SA        | MPLI          | NG LOCAT    | TION START         | TACK              |         | TIME ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RUN NO                   | <del>-5</del>        | 3<br>TEST DU  | ID A TION | 14       | 1/2 -             |       |
|           |               |             |                    |                   | <u></u> | DIAMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ER                       | 13.0                 | INITIAL       | LEAK RA   | TE O.    | <del>20 7</del> 0 | fm 🕜  |
| PT        | CF            | 84 79       | DGMCFHg            | 4                 | NOZZLE  | ھے۔<br>نے                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2455H                    | inches               | FINAL L       | EAK RAT   | E_0.0    | 08                | efm 🖷 |
| ST        | ATIC          | PRESS       | -0.51              |                   |         | OPERAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OR                       | JEN                  | <del>/</del>  |           |          |                   |       |
| Ta:       | verse         | Clock       | Dry gas meter      | ^ P               | ×н      | Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dry gas m                | eter temp            | Hot box       | Probe     | Lasi     | Vacuum            | Cond  |
|           | Point         | Time        | reading 13         | in H2O            | in H2O  | Temp. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iniet                    | Outlet               | Temp.         | Temp      | Impinger | in. Hg            | Exit  |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                        | i                    |               |           |          |                   | Temp. |
| E         | -1            | 0800        | 154.230            | .66               | .75     | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73                       | 7Z                   |               |           | 68       | 10                |       |
|           | -2            | 0817        | 160.180            | -68               | .77     | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                       | 73                   |               |           | 65       | 1.0               | 1     |
|           | <u>-3</u>     | 0824        | 166-145            | :60               | 168     | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> 8</u> Z              | 76                   |               |           | 65       | 1-0               |       |
|           |               | 0838        | 172.622            |                   | HLV     | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                      |               |           |          |                   |       |
| <u> </u>  | 1-1           | 0901        | 172-655            | <u>-65</u>        | .74     | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84                       | 82                   |               |           | 68       | 1-0               | _     |
| <u> </u>  | <del>-2</del> | ळ्य         | 178.530            | -63               | .74     | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91                       | 85                   |               |           | 5/       | 1.0               |       |
| <u> </u>  | -3            | 0925        | 184-450            | .58               | .67     | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96                       | 88                   |               |           | 54       | 40                |       |
|           | ~ / 1         | 0937        | 190.040            |                   | ar_     | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>(</i> 22              | 00                   |               |           | , 1      |                   |       |
|           | _             | 1011_       | 190.066            |                   | 71      | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92                       | 89                   |               |           | 68       | 1.0               |       |
| -         | <u>-</u> 콘    | 10Z3        | 195660             | r( <del>2</del> 0 | ,69     | /30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48                       | 90<br>92             |               |           | 53       | 1.0               | -     |
| F         | * +           | 1035        | 201380             | <u> </u>          | .60     | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                       | 14                   |               |           | 22       | 1.0               |       |
|           | © D           | 1047        | 26.670             | , 7               | 750     | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94                       | 92                   |               |           | 68)      | 1 -1              |       |
| 42        |               | 1114        | 206.700<br>212-680 | 167               | .72     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96                       | 73                   |               |           | 50       | 1-0               |       |
|           | <u>-2</u>     |             | 218.500            |                   | .67     | 130<br>Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                      | 94                   |               |           | 54<br>54 | 1.0               | _     |
| _         | -3            |             |                    | .30               | .01     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                      | 7-1                  |               |           | 37       | 1-0               |       |
| 3         | (P)           | 1130        | 23.70              |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
| -         | <del></del> † |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | <del></del>          |               |           |          |                   |       |
|           |               |             |                    |                   |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | <del></del>          |               |           |          |                   |       |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   | •     |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           |               |             |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           | Avg.          |             | 69.589             | 78684             | .7117_  | 130,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | 875                  |               |           |          |                   |       |
| Ch        | ieck'd        | _           |                    |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
|           |               | 1           |                    |                   |         | 112000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8************            | 018-8938330 (1888)** | 3 44622300087 |           |          |                   |       |
| CO        | NSOL          | .E# <u></u> | 161361             |                   |         | -10 1000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                      |               |           |          |                   |       |
| TIL<br>AM | LIEK<br>ABIFN | "           | 78°F               | -                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |
| PR        | OBE I         | LENGTH      | 6'                 |                   |         | Flowrate<br>Isokinetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (%)                      |                      |               |           |          |                   |       |
| LIN       | NER N         | ATERIAL     | PYREF              |                   |         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | er Kore e <b>Francis</b> |                      |               |           |          |                   |       |
|           |               |             | ′ /                |                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                      |               |           |          |                   |       |

| Plant               | Plant Yates                   | Station Boiler N           | lo. 1                            | _                         | Comments                        |                     |                                 |  |  |
|---------------------|-------------------------------|----------------------------|----------------------------------|---------------------------|---------------------------------|---------------------|---------------------------------|--|--|
|                     |                               | 5 STACK                    |                                  |                           |                                 | <del> </del>        |                                 |  |  |
| un No               | /                             |                            |                                  | <del></del>               |                                 | T ME.               | C. X.                           |  |  |
| ate 6               | 121/93                        |                            |                                  |                           | Operator                        | Junt 1              | 2JV                             |  |  |
| Sorbing Reas        | gents:                        | (CO2)                      | (02)_                            | (CO)                      | 1                               |                     |                                 |  |  |
| Replicate<br>Number | Original<br>Volume<br>Reading | (CO2)<br>Reading 2<br>(ml) | (CO2)<br>Volume<br>(2-1)<br>(ml) | (O2)<br>Reading 3<br>(mi) | (O2)<br>Volume<br>(3-2)<br>(ml) | (CO) Reading 4 (ml) | (CO)<br>Volume<br>(4-3)<br>(ml) |  |  |
| /                   | 0.0                           | 10.1                       | 18-8                             | 8.7                       | ·                               |                     |                                 |  |  |
| 2                   | 0.0                           | 10.2                       | 19.0                             | 8.8                       |                                 |                     |                                 |  |  |
|                     |                               |                            |                                  |                           |                                 |                     |                                 |  |  |
|                     | _                             |                            |                                  |                           |                                 |                     |                                 |  |  |
|                     |                               |                            |                                  | <u> </u>                  |                                 |                     |                                 |  |  |
| Averaged Re         | sults:                        |                            |                                  | % O2<br>% N2              |                                 |                     |                                 |  |  |
| Ory Molecul         | ar Weight, M                  | W (dry) =                  |                                  |                           |                                 |                     |                                 |  |  |
|                     |                               | +0.32_<br>CO2) (%          |                                  | 0.28<br>CO + % N2)        |                                 |                     |                                 |  |  |
|                     | =                             | +                          | +                                |                           | Y-(                             | 096                 | ESP I                           |  |  |
|                     |                               |                            | Rur                              | #Train                    | OFSaz                           | <u> </u>            | ESP Out                         |  |  |
|                     |                               |                            |                                  | nponent <u>b</u>          |                                 |                     | St                              |  |  |
|                     |                               |                            |                                  |                           | _ 0                             | 1900 Sm             | plr DJV                         |  |  |
|                     |                               |                            |                                  | on site                   |                                 | _                   |                                 |  |  |
|                     |                               |                            |                                  | *                         |                                 | al Wt               | C-1                             |  |  |



|              | -                 |                 | ORSAT I         | DATA SHE                                         | ET            |                |                |
|--------------|-------------------|-----------------|-----------------|--------------------------------------------------|---------------|----------------|----------------|
|              |                   | tation Boiler N |                 |                                                  | Comments      |                | <del></del>    |
| Location     | STACK             |                 |                 |                                                  |               |                |                |
| Run No       | <u> ユ</u>         |                 |                 |                                                  |               |                |                |
| Date         | 6-22-9            | 73              |                 |                                                  | Operator      | JEH            | <u> </u>       |
| Sorbing Reag | gents:            | (CO2)           | (02)_           | (CO)                                             |               |                |                |
| Danka        | O-i-i1            | (CO2)           | (CO2)           | (02)                                             | (00)          | (CO)           | (60)           |
| Replicate    | Original          | (CO2)           | (CO2)           | (O2)                                             | (O2)          | (CO)           | (CO)<br>Volume |
| Number       | Volume<br>Reading | Reading 2 (ml)  | Volume<br>(2-1) | Reading 3                                        | Volume        | Reading 4 (ml) | (4-3)          |
|              | Veaning           | (1111)          | (2-1)<br>(ml)   | (101)                                            | (3-2)<br>(ml) | (1111)         | (ml)           |
| 1            | 0.0               | 10.8            | 10.8            | 19.4                                             | 8.6           |                | (1425)         |
| <del></del>  | <del> </del>      |                 |                 | <del>                                     </del> |               |                |                |
| <u> </u>     | 0-0               | 10.7            | 10.7            | 19-3                                             | 8.6           |                |                |
|              | <u> </u>          |                 | <del></del>     |                                                  |               |                |                |
|              | <u> </u>          |                 |                 |                                                  |               |                |                |
|              |                   |                 |                 |                                                  | <u></u>       |                | <u> </u>       |
|              | ļ                 |                 |                 |                                                  |               |                |                |
|              | ļ                 |                 |                 |                                                  |               |                |                |
|              | <u> </u>          |                 |                 | 1                                                | <u> </u>      | <u> </u>       |                |
|              |                   |                 |                 | % O2                                             | <b>6</b> /    |                |                |
| Averaged Re  | sults:            | % CO2i          | <u>0,8</u>      | % O2                                             | 8.6           |                |                |
|              |                   | % CO            |                 | % N2                                             | 80.6          |                |                |
| De Malacul   | ar Weight, M      | N (d=v) =       |                 |                                                  |               | · <del>-</del> |                |
| Dry Molecul  | ar merkur, m.     | •• (dry) —      |                 |                                                  |               |                |                |
|              | =0.44             | +0.32_          | +0              | 0.28                                             |               |                |                |
|              |                   | 02) (%0         |                 |                                                  | <del></del>   |                |                |
|              |                   |                 |                 |                                                  |               |                |                |
|              | <b>=</b>          | _+              | _+              |                                                  | Y-2           | 52             |                |
|              |                   |                 | Run             | #2 Train                                         | Orste         | er.c           | ESP O          |
|              |                   |                 | Com             | ponent be                                        | cia .         | 7              | 6              |
|              |                   |                 |                 | / ^ -                                            | 73 Time       | Smp            | Ir DTV         |
|              |                   |                 |                 | on Site                                          | Analysis Co   |                |                |
|              |                   |                 |                 | Wt                                               |               |                |                |

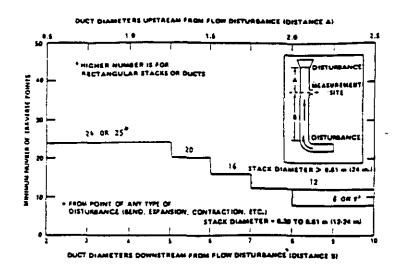
C-146



| Plant          | _Plant Yates S | Station Boiler N | Comments    |                  |              |                                              |                      |
|----------------|----------------|------------------|-------------|------------------|--------------|----------------------------------------------|----------------------|
| Location       | stack_         |                  |             | <del></del>      |              |                                              | ····                 |
|                |                |                  |             |                  |              |                                              |                      |
| Date <u>6/</u> | 22/93          |                  |             | ·····            | Operator     | TMP                                          |                      |
|                |                |                  |             | (CO              |              |                                              |                      |
| Sorbing Rea    | gents:         | (CO2)            | (02)_       | (CO              | ))           |                                              |                      |
|                |                |                  |             |                  |              |                                              |                      |
| Replicate      | Original       | (CO2)            | (CO2)       | (O2)             | (O2)         | (CO)                                         | (CO)                 |
| Number         | Volume         | Reading 2        | Volume      | Reading 3        | Volume       | Reading 4                                    | Volume               |
|                | Reading        | (ml)             | (2-1)       | (ml)             | (3-2)        | (ml)                                         | (4-3)                |
|                |                |                  | (ml)        | ,                | (ml)         |                                              | (ml)                 |
| /              | 0.0            | 10.2             | 10.2        | 18.6             | 8.4          |                                              |                      |
| 2              | 0.0            | 10.2             | 10.2        | 18.7             | 8.5          |                                              |                      |
| <del></del>    |                |                  |             |                  |              | Ţ.                                           |                      |
|                |                |                  |             | 1                |              |                                              |                      |
| <del></del>    |                |                  |             | <del></del>      |              |                                              |                      |
|                |                |                  |             | <del>-</del>     |              |                                              |                      |
|                |                |                  |             |                  |              | <u> </u>                                     | <del></del>          |
|                |                | <u> </u>         |             |                  |              |                                              |                      |
|                | /              | L                | <del></del> | <del></del>      |              | <u></u>                                      |                      |
|                |                |                  |             |                  |              |                                              |                      |
|                |                |                  |             |                  | 5            |                                              |                      |
| Averaged Re    | esults:        | % CO2            | 10.2        | % O2             | <u> </u>     | <u>)                                    </u> |                      |
|                |                |                  |             |                  | 013          | 2                                            |                      |
|                |                | % CO             |             | % N2_            | B1.3         | )                                            |                      |
| Dev Molecu     | lar Weight, M  | (W (dry) =       |             |                  |              |                                              |                      |
| Diy Molwa      | iai weight, w  | · · · (613) —    |             |                  |              |                                              |                      |
|                | =0.44          | +0.32            | +(          | 0.28             |              |                                              |                      |
|                | (%0            | CO2) (%          | 02) (%      | CO + % N2)       | <del></del>  |                                              |                      |
|                |                |                  |             |                  |              |                                              |                      |
|                | =              | _+               | +           |                  | Y-2          | 57                                           |                      |
|                |                |                  | Run         | # <u>3</u> Train | orsut        |                                              | ESP Inlet ESP Outlet |
|                |                |                  | Con         | nponent <u>b</u> | <b>&amp;</b> |                                              | Stack                |
|                |                |                  |             | 6.22-9           | _            | Smr                                          | olr DJV              |
|                |                |                  |             | on site          |              |                                              |                      |
|                |                |                  |             | - W              |              | 75 05                                        | C-14                 |

| Plant                                 | _Plant Yates ! | Station Boiler N | Comments |                |                   |              |                |
|---------------------------------------|----------------|------------------|----------|----------------|-------------------|--------------|----------------|
| Location                              | LAB -          | AUDIT S          | AMPLE    | <del></del>    |                   |              |                |
| Run No. 🗾                             | 4UDIT_         |                  |          |                |                   |              |                |
| Date <u>6/2</u>                       | 23/93          |                  |          |                | Operator          | TMP          | <del>_</del>   |
| ·                                     | ·              | /                |          |                |                   |              |                |
| Sorbing Rea                           | gents:         | (CO2)            | (O2)_    | (CC            | D)                |              |                |
|                                       |                |                  |          |                |                   |              |                |
| D. Harri                              | T Odata        | (000)            | (600)    | (00)           | (00)              | (30)         | (60)           |
| Replicate                             | Original       | (CO2)            | (CO2)    | (O2)           | (O2)              | (CO)         | (CO)<br>Volume |
| Number                                | Volume         | Reading 2        | Volume   | Reading 3      | Volume            | Reading 4    |                |
|                                       | Reading        | (ml)             | (2-1)    | (ml)           | (3-2)             | (ml)         | (4-3)          |
|                                       | 0,0            |                  | (ml)     | 0.             | (ml)              | 1            | (ml)           |
| <u>/</u>                              | <del> </del>   | 0.0              | 0.0      | 9.0            | 9.0               | <del> </del> |                |
| 2                                     | 0.0            | 0.0              | 0.0      | 9.0            | 9.0               |              | ·····          |
|                                       |                |                  |          |                | <u> </u>          |              |                |
|                                       |                |                  | <u> </u> |                |                   |              |                |
|                                       |                |                  |          |                |                   |              |                |
| · · · · · · · · · · · · · · · · · · · |                |                  |          |                |                   |              |                |
|                                       |                |                  |          | <del> </del>   | <u> </u>          | <del> </del> | <u> </u>       |
|                                       |                |                  |          | <del> </del>   |                   | <del> </del> |                |
| Averaged R                            | esults:        |                  |          | % O2_          |                   |              |                |
|                                       |                | % CO             |          | % N2_          |                   |              |                |
| Dry Molecu                            | lar Weight, M  | (W (dry) =       |          |                |                   |              |                |
|                                       | =0.44          | +0.32            | +        | 0.28           |                   |              |                |
|                                       |                |                  | 02) (%   |                | <del></del>       |              |                |
|                                       | = <u></u>      | +                | _+.      |                | Y-19              | 7            | LAB            |
|                                       |                |                  | Run #    | BTrain_        | orsat             |              | ESP Out        |
|                                       |                |                  |          | _              |                   |              | St             |
|                                       |                |                  |          | onent Cy       |                   |              |                |
|                                       |                |                  | Date_    | <u>6-23-93</u> | Time IL           | 150 Smpir    | TMY_           |
|                                       |                |                  | Lab _    | on site A      | Analysis <u>C</u> | 20 0 C       |                |
|                                       |                |                  | Tare '   | W+             | Time!             | W/+          |                |

C-148


|                     |                               | Station Boiler N     | Comments                         |                           |                                 |                     |                        |
|---------------------|-------------------------------|----------------------|----------------------------------|---------------------------|---------------------------------|---------------------|------------------------|
|                     | •                             |                      |                                  |                           |                                 |                     | <u></u>                |
|                     |                               | 25-90                |                                  |                           | Operator                        | TMP                 |                        |
|                     |                               | <u> </u>             |                                  |                           | Operator                        |                     |                        |
| Sorbing Rea         | gents:                        | (CO2)                | (O2)_                            | (CC                       | <b>)</b> )                      |                     |                        |
| Replicate<br>Number | Original<br>Volume<br>Reading | (CO2) Reading 2 (ml) | (CO2)<br>Volume<br>(2-1)<br>(ml) | (O2)<br>Reading 3<br>(ml) | (O2)<br>Volume<br>(3-2)<br>(ml) | (CO) Reading 4 (ml) | (CO) Volume (4-3) (ml) |
| 1                   | 0.0                           | 11.0                 | 11.0                             | 18.8                      | 7.8                             |                     |                        |
| 2                   | 0.0                           | 10.8                 | 10.8                             | 18.6                      | 7.8                             |                     |                        |
|                     |                               |                      |                                  |                           |                                 |                     |                        |
|                     |                               | <u> </u>             |                                  |                           | <u> </u>                        | 1                   |                        |
|                     |                               |                      |                                  |                           |                                 |                     |                        |
| Averaged Re         | esults:                       |                      |                                  | % O2_<br>% N2_            | 7,8                             |                     |                        |
| Dry Molecu          | lar Weight, M                 | (W (dry) =           |                                  |                           |                                 |                     |                        |
|                     | =0.44                         | +0.32                | +0                               | 0.28                      |                                 |                     |                        |
|                     | (%€                           | CO2) (%(             | 02) (%(                          | CO + % N2)                | Y-319                           |                     |                        |
|                     |                               | _+                   | — <sup>+</sup> Run <u>∦·</u>     | Train                     | orsat                           |                     | ESP Inlet ESP Outlet   |
|                     |                               |                      | Compon                           | ent bag                   |                                 |                     | Stack                  |
|                     |                               |                      | Date 6                           | - 25-93                   | _Time_14(                       |                     | 021                    |
|                     |                               |                      | Lab <u>ən</u>                    | <u>site</u>               | Analysi                         | (0, 0;              | <u></u>                |
|                     |                               |                      | Tare W                           | Γ(g)                      | Final                           | Wt(g)               |                        |

| Plant               | Plant Yates S                 | Station Boiler N           | io. 1                    |                           | Comments                |                     |                         |
|---------------------|-------------------------------|----------------------------|--------------------------|---------------------------|-------------------------|---------------------|-------------------------|
|                     | _                             |                            |                          |                           |                         | <del></del>         |                         |
| Run No.             | onase 2                       | run 2                      |                          | <del></del>               |                         |                     |                         |
| Pate                | 6/26/9:                       | run 2_3                    |                          |                           | Operator                | TMP                 |                         |
|                     | •                             | ~                          | _                        |                           |                         |                     |                         |
| Replicate<br>Number | Original<br>Volume<br>Reading | (CO2)<br>Reading 2<br>(ml) | (CO2)<br>Volume<br>(2-1) | (O2)<br>Reading 3<br>(ml) | (O2)<br>Volume<br>(3-2) | (CO) Reading 4 (ml) | (CO)<br>Volume<br>(4-3) |
| /                   | 0.0                           | 11.4                       | (ml)                     | 18.8                      | (ml)                    |                     | (四)                     |
|                     | 0.0                           | 11.4                       | 11.4                     | 18.8                      | 7.4                     |                     |                         |
|                     |                               |                            |                          |                           |                         |                     |                         |
|                     |                               |                            |                          |                           |                         |                     |                         |
|                     |                               |                            |                          |                           |                         |                     |                         |
|                     | <u> </u>                      | <u> </u>                   |                          | <u> </u>                  |                         |                     |                         |
| Averaged Re         | esults:                       |                            | 11.4                     | % O2<br>% N2              | 7.4                     |                     |                         |
| ry Molecu           | lar Weight, M                 | <del>-</del>               |                          |                           |                         | <del></del>         |                         |
|                     | =0.44                         | ±0.32                      | 4.1                      | 0.28                      |                         |                     |                         |
|                     |                               | CO2) (%C                   |                          |                           | <del></del>             |                     |                         |
|                     | =                             | +                          | +                        |                           | Y                       | -385                |                         |
|                     |                               |                            | R                        | un # <u>2-2</u> Tra       | in 085                  | AT                  | ESP<br>ESP O            |
|                     |                               |                            | C                        | omponent                  | CRSAT                   |                     |                         |
|                     |                               |                            | D                        | ate 6 26 ]                | 93 Time                 | 1400 Sm             |                         |
|                     |                               |                            |                          |                           |                         | nalysis 012         |                         |
|                     |                               |                            | T                        | are WT(g)                 |                         | Final Wt(g)_        | <del></del>             |

| Plant       | lant Plant Yates Station Boiler No. 1 |               |          |                                         |                                                  | Comments                              |                   |  |  |  |
|-------------|---------------------------------------|---------------|----------|-----------------------------------------|--------------------------------------------------|---------------------------------------|-------------------|--|--|--|
| Location    | STACK                                 | <del> </del>  |          |                                         |                                                  | · · · · · · · · · · · · · · · · · · · |                   |  |  |  |
| Run No      | 1-3<br>6/27/                          | 33            |          | <del></del>                             | Omerator                                         | TMP                                   |                   |  |  |  |
|             | 0/21/                                 | <u>/2</u>     |          |                                         | Operator                                         | <u> </u>                              |                   |  |  |  |
| Sorbing Rea | gents:                                | (CO2)         |          |                                         | <b>D</b> )                                       |                                       |                   |  |  |  |
|             |                                       |               |          |                                         |                                                  |                                       |                   |  |  |  |
| Replicate   | Original                              | (CO2)         | (CO2)    | (O2)                                    | (O2)                                             | (CO)                                  | (CO)              |  |  |  |
| Number      | Volume                                | Reading 2     | Volume   | Reading 3                               | Volume                                           | Reading 4                             | Volume            |  |  |  |
|             | Reading                               | (ml)          | (2-1)    | (ml)                                    | (3-2)                                            | (ml)                                  | (4-3)             |  |  |  |
|             | <b></b>                               | ļ.———         | (ml)     |                                         | (mi)                                             | <del> </del>                          | (ml)              |  |  |  |
| /           | 0.0                                   | 11.6          | 11.6     | 19.0                                    | 74                                               |                                       |                   |  |  |  |
| 2           | 0.0                                   | 11.6          | 11.6     | 19.0                                    | 7.4                                              |                                       |                   |  |  |  |
|             |                                       |               |          |                                         |                                                  | <u> </u>                              |                   |  |  |  |
|             |                                       |               |          |                                         |                                                  |                                       |                   |  |  |  |
|             |                                       |               |          |                                         |                                                  |                                       |                   |  |  |  |
| <del></del> |                                       |               | 1        | \                                       | <del>                                     </del> |                                       |                   |  |  |  |
| _           |                                       |               |          |                                         |                                                  |                                       |                   |  |  |  |
|             |                                       |               |          |                                         |                                                  |                                       |                   |  |  |  |
| Averaged R  | esults:                               | <del></del>   | 11.6     | % O2                                    | 7.4                                              |                                       |                   |  |  |  |
|             |                                       | ж со          | <u> </u> |                                         |                                                  |                                       |                   |  |  |  |
| Dry Molecu  | lar Weight, M                         | (W (dry) =    |          |                                         |                                                  |                                       |                   |  |  |  |
|             | =0.44                                 | +0.32         | +-1      | 0.28                                    |                                                  |                                       |                   |  |  |  |
|             |                                       | (%02)         |          |                                         | <del></del> -                                    |                                       |                   |  |  |  |
|             | =                                     | +             | +        |                                         | Y                                                | <b>'-453</b>                          |                   |  |  |  |
|             | <u></u>                               | ' <del></del> | Ru       | ın # <u>2-3</u> Tra                     | in <i>o A</i>                                    | LSAT                                  | ESP Ini ESP Outle |  |  |  |
|             |                                       |               | Co       | omponent                                | ORE A                                            | · —                                   | State             |  |  |  |
|             |                                       |               |          |                                         |                                                  | /300 Sm                               | plr DJV           |  |  |  |
|             |                                       |               |          | bon Si                                  |                                                  |                                       | ,                 |  |  |  |
|             |                                       |               |          | re WT(g)                                |                                                  |                                       | 100               |  |  |  |
|             |                                       |               |          | - · · · · · · · · · · · · · · · · · · · |                                                  | T-1119T M.f(8)                        | C-151             |  |  |  |

# TRAVERSE FIELD DATA SHEET

| Plant Name  | Plant Yates Station Boiler No | 1 Stack Diameter 13     |
|-------------|-------------------------------|-------------------------|
| Sampling Lo | cationStack_                  | Sample Port Diameter 4" |
| Date        | 06 - 18 - 93                  | Sample Port Depth 6"    |
| Operator    | OJV, JEH                      | Distance Upstream       |
|             |                               | Distance downstream     |



| raverse Point Number |          |      |             | Nun        | aber Tro |      | Points      | On A D                                         | ATTRO NO    | <u> </u> |             |      |
|----------------------|----------|------|-------------|------------|----------|------|-------------|------------------------------------------------|-------------|----------|-------------|------|
|                      | 2        | 4    | - 6         | <u>i</u> • | 10       | 1 12 | 14          | 16                                             | 18          | 20       | 22          | 24   |
|                      | <u> </u> |      |             | ì          | İ        |      |             |                                                |             |          |             |      |
|                      | 14.6     | 6.7  | 4.4         | 3.2        | 2.6      | 21   | 1.8         | 1.6                                            | 1.4         | 1.3      | 1.1         | 1,1  |
| 2                    | 85.4     | 25.C | 14.6        | 10.5       | 1 8.2    | 6.7  | 5.7         | 4.9                                            | 4.4         | 3.9      | 3.5         | 3.2  |
| <u> </u>             |          | 75.0 | 29.6        | 19.4       | 14.6     | 11.8 | 9.9         | 1.5                                            | 7.5         | 6.7      | 4.0         | 5.1  |
| 4                    |          | 93.3 | 70.4        | 32.3       | 22.4     | 17.7 | 14.6        | 12.5                                           | 10.9        | 9.7      | 1 8.7       | 7.1  |
| 5                    | i        |      | 85.4        | 67.7       | 34.2     | 25.0 | 20.1        | 16.5                                           | 14.6        | 12.8     | 11.8        | 10.8 |
| 5                    | ì        |      | 95.6        | 1 80.6     | 65.6     | 35.6 | 26.9        | 22.0                                           | 18.8        | 16.5     | 14.6        | 13.2 |
| 7                    | 1        |      | l           | 49.5       | 77.4     | 64.4 | 36.6        | 28.3                                           | 23.0        | 20.4     | 18.0        | 16.1 |
| 8                    | -        |      |             | 96.8       | 85.4     | 75.0 | 63.4        | 37.5                                           | 29.8        | 25.0     | 21.8        | 10.4 |
| 9                    | 1        |      |             |            | 91.8     | 823  | 73.1        | 62.5                                           | 38.2        | 30.5     | 26.2        | 23.0 |
| 10                   | Ī        |      | i           |            | 97.4     | 88.2 | 79.9        | 71.7                                           | 61.4        | 38.8     | 31.6        | 27.  |
| *1                   | 1        | 1    |             |            |          | 93.3 | 85.4        | 78.0                                           | 70.4        | 61.2     | 30.5        | 32.  |
| '2                   | 1        |      |             | :          | 1        | 97.9 | 95.1        | 83.1                                           | 76.4        | 45.4     | 40.7        | 35.0 |
| :3                   |          |      |             | ı          | i        |      | €.3         | 87.5                                           | 81.2        | 75.0     | 64.5        | 60.  |
| 14                   |          |      |             | :          | 1        | }    | 95.2        | 91.5                                           | 85.4        | 70.6     | 73.8        | 67.  |
| 5                    | 1        |      |             |            | i .      | į    |             | 95.1                                           | 88.1        | 83.6     | 78.2        | 72.1 |
| .6                   | 1        |      |             | ī          | 1        |      | :           | 94.4                                           | 92.5        | 47.1     | 142.0       | 77.0 |
| • ?                  | 1        |      | 1           |            |          | :    | ,           | 1                                              | 95.6        | 90.3     | 85.4        | 80.  |
| 18                   | -        |      | !           |            |          | ı    | 1           | 1                                              | 94.6        | 93.3     | 144.4       | 83.  |
| · g                  | ,        |      |             | :          |          | j    | Ī           | j                                              | !           | 96.1     | 1 91.3      | 84   |
| 20                   |          | :    | ,           |            | i        |      |             | <u> </u>                                       |             | 96.7     | 94,0        | 89.  |
| 21                   | 1        |      | 1           | l          |          | ì    | :           |                                                |             | i        | 96.5        | 62   |
| 22                   | ;        | :    |             |            |          |      | <del></del> | !                                              | i           | 1        | 94.9        | 94.  |
| 73                   |          |      |             |            |          |      | 1           | <u>.                                      </u> |             | 1        | 1           | 96.  |
| 24                   | · · ·    |      | <del></del> | 1          |          |      |             |                                                | <del></del> | ,        | <del></del> | 50.  |

|     | Fraverse Points                     |
|-----|-------------------------------------|
| No. | Distance From Wall                  |
|     |                                     |
| 1.1 | 16,86+6"                            |
| 2   | 6,86 + 6"<br>12,8 + 6"<br>46.2 + 6" |
| 3   | 46.2 + 6"                           |
| 4   |                                     |
| 5   |                                     |
| 6   |                                     |
| 7   |                                     |
| 8   |                                     |
| 9   |                                     |
| 10  | į į                                 |
| 11  |                                     |
| 12  |                                     |
| 13  |                                     |
| 14  |                                     |
| 15  |                                     |
| 16  | 1                                   |
| 17  |                                     |
| 18  |                                     |
| 19  |                                     |
| 20  | 1                                   |
| 21  | i                                   |
| 22  | 1                                   |
| 23  |                                     |
| 24  |                                     |

# VELOCITY PROFILE FIELD DATA

|               | ne<br>Location                                   |                                                  |                                                  |                                                  | Samole              | Ident                | Preli                                            | miso eu                                          | Elaw                                             |
|---------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------|----------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| ate <u>ec</u> | ·18-93 (                                         | MMDDYY)                                          | Time St                                          | art <i>15</i>                                    | <u>00(</u> НН       | MM) Time             | e Finish                                         | 150                                              | (HHMI                                            |
| New Die       | ensions                                          |                                                  |                                                  | •                                                |                     | 4 or Dis             | meter                                            | /3                                               |                                                  |
| TCF           |                                                  | 0.84                                             |                                                  | _                                                | % H,O _             | <del> </del>         | -                                                |                                                  |                                                  |
| ar Press      |                                                  | 29.3                                             |                                                  | " Hg                                             | % CO _              |                      | _ % N                                            | · 2 ———                                          |                                                  |
| tatic Pre     | ss                                               | -0.5                                             |                                                  | _ ″ H₂O                                          | % CO <sub>2</sub> . | ≈ 9.0                | _ %⊦                                             | l <sub>2</sub>                                   |                                                  |
| perator       | nitials                                          | 0.T.V, J                                         | EH                                               | —<br>" Hg<br>" H <sub>2</sub> O                  | % O <sub>2</sub> _  | ₹ 7.0                | % C                                              | H <sub>4</sub>                                   |                                                  |
| <u>,</u>      | s                                                | itack Temp. *                                    | F                                                | Velo                                             | city Pressure       | • * H <sub>2</sub> O |                                                  | Other (                                          | )                                                |
| Pt.           | #1                                               | #2                                               | Ave.                                             | #1                                               | #2                  | Ave.                 | #1                                               | #2                                               | Ave.                                             |
| E · I         | 122                                              |                                                  |                                                  | 0.70                                             |                     |                      |                                                  |                                                  |                                                  |
| E-2           | 122                                              | ļ                                                |                                                  | 069                                              |                     |                      |                                                  | <u> </u>                                         |                                                  |
| E-3           | 121                                              |                                                  |                                                  | 0.61                                             |                     | <u> </u>             |                                                  |                                                  | <u> </u>                                         |
| N-1           | 121                                              |                                                  |                                                  | 0.66                                             |                     | <u> </u>             |                                                  | <del> </del>                                     | -∤                                               |
| N-2           | 122                                              |                                                  |                                                  | 0.71                                             |                     |                      |                                                  |                                                  |                                                  |
| <u>v-3</u>    | 121                                              |                                                  |                                                  | 0.59                                             |                     | ļ                    |                                                  | <u> </u>                                         |                                                  |
| W-1           | 122                                              | <u> </u>                                         |                                                  | 0.68                                             | <u> </u>            | <u> </u>             |                                                  | <del></del>                                      |                                                  |
| N-5           | 122                                              | <u> </u>                                         | <del> </del>                                     | 0.64                                             |                     | <u> </u>             |                                                  |                                                  | <del></del> -                                    |
| w-3_          | 122                                              |                                                  | <u> </u>                                         | 0.49                                             |                     | <del> </del>         |                                                  |                                                  | <del>- </del> -                                  |
| 5-1           | 12.1                                             |                                                  |                                                  | 0.64                                             |                     |                      |                                                  |                                                  |                                                  |
| <u>5-2</u>    | 122                                              | <del> </del>                                     | <del> </del>                                     | 0.67                                             | <del></del>         | <del> </del>         |                                                  | <del> </del>                                     |                                                  |
| <u> 5-3</u>   | 121                                              |                                                  | <del>                                     </del> | 0.58                                             |                     |                      | <u> </u>                                         | <del></del>                                      | <del> </del> -                                   |
| <del></del>   |                                                  | <del> </del>                                     |                                                  |                                                  |                     | -                    | <u> </u>                                         |                                                  |                                                  |
|               |                                                  |                                                  |                                                  | <u> </u>                                         |                     | <del> </del>         | ļ                                                | <del> </del>                                     | <del></del>                                      |
|               |                                                  | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     |                     | <del> </del> -       |                                                  | +                                                | +                                                |
|               | <u> </u>                                         | <del> </del>                                     | <u> </u>                                         | <b> </b>                                         |                     | <del> </del>         | <del>                                     </del> | <del>                                     </del> | +                                                |
|               | <del>                                     </del> | <del> </del>                                     | -                                                | <del>                                     </del> | _                   | <del> </del>         | <del> </del>                                     |                                                  | <del>                                     </del> |
| eather        |                                                  |                                                  |                                                  |                                                  |                     |                      |                                                  |                                                  |                                                  |
| emarks        | Po                                               | int 1 e                                          | 11 the                                           | way                                              | in.                 |                      |                                                  |                                                  | ····                                             |

# VOST FIELD DATA SHEET

| PLANT Plant Yates Station Boiler No. 1       | ASSUMED MOISTURE %   | 7.5                       |
|----------------------------------------------|----------------------|---------------------------|
| DATE 06-21-93                                | METER BOX NO.        | A167043                   |
| SAMPLING LOCATION ESPINIET                   | METER FACTOR         | 0.9910                    |
| RUN NO. 1 TEST NO. 1                         | PROBE HEATER SETTING | 7° a85                    |
| OPERATOR RJい                                 | COMMENTS SAMP        | Sample o a O.S.L. DER M.A |
| AMBIENT TEMPERATURE 80°F                     |                      | 201 Samoles               |
| BAROMETRIC PRESSURE 29.51                    |                      |                           |
| BLANK TUBE NUMBERS T: 145.28 P T/C: 145.28 6 |                      |                           |

| F                |                           | T.       |        |             | _      |             |            |              |       |        | _         |                    | _     | i                   |       | <del>-</del> |   |         |  |
|------------------|---------------------------|----------|--------|-------------|--------|-------------|------------|--------------|-------|--------|-----------|--------------------|-------|---------------------|-------|--------------|---|---------|--|
| Pump Vacuu       | Outlet Temp. Outlet Temp. | 2 0      | S C    | Š           | 8      |             | 3.0        | 3.0          | 30    | 3.0    |           | 0. p               | 0.7   | ە<br><del>د</del> ه | 4.0   |              |   |         |  |
| 2nd Condensor    | Outlet Temp.              | 59       | 59     | 35          | 28     |             | PS.        | S<br>B       | 65    | Sa     |           | 25                 | 3     | \$2.                | 53    |              |   |         |  |
| 1st Condensor    | Outlet Temp.              | \$\$     | 53     | 25          | ٤5     |             | \$5        | 54           | 5.5   | Sb     |           | \$\$               | SS    | 55                  | Se    |              |   |         |  |
| Probe            | Temp                      | 052      | 242    | 952         | 952    |             | 652        | 192          | 264   | 592    |           | 592                | 397   | 192                 | ± \$2 |              |   |         |  |
| DGM              | Temp                      | 44       | 34     | 8           | 28     |             | 28         | 88           | 83    | SS     |           | 85                 | 88    | 8s                  | 81    |              |   |         |  |
| Stack            | Temp                      | 306      | 309    | 307         | 510    |             | 310        | 318          | 520   | 3.9    |           | 300                | 301   | Sos                 | 308   |              |   |         |  |
| Meter            | Pressure                  | 1.4      | 1.5    | <b>*</b> '+ | 1.4    |             | ナー         | <b>→</b> ' l | 1.4   | 1.4    |           | 1.5                | 75    | 7.0                 | 1.4   |              |   |         |  |
| Gas Meter        | Reading                   | 03,000   | 11.85  | 16.90       | 52,13  | 21.235      | 28 000     | 33,12        | 54,89 | 43.14  | 48.150    | 50.000             | 54.84 | 24.42               | 12:50 | 70.115       |   |         |  |
| Clock            | Time                      | 1400     | 1410   | 0241        | 1430   | 077         | 1455       | 5051         | 5151  | 5251   | 1535      | 1550               | 1600  | 0/91                | 1620  | 1630         |   |         |  |
| Sampling         | (min)                     | 0        | ٥      | ٥2          | 50     | STOP        | 0          | 0,           | 02    | 50     | STOP      | 0                  | 07    | 82                  | 30    | STEP         | 0 |         |  |
| Tube N           | (Lab)                     | 1        | HSULON | 1/0         | 145408 |             | 1          | 145434       | 1/C   | 145436 |           | ⊥                  | 15548 | 1/C                 | HSFLE |              | T | <br>1/C |  |
| ik ("Hg)         | Post                      |          |        |             |        | "વાજ0       |            |              |       |        | D. 20 (7" |                    |       |                     |       | 0 वाड "      |   |         |  |
| Leak Check ("Hg) | Pre                       | "F1 @ 0  |        |             |        |             | 51000      |              |       |        |           | 0,0 lg"            |       |                     |       |              |   |         |  |
| Test             | Number                    | (STDA, R |        |             |        | <b>&gt;</b> | SIGO DELLA |              |       |        | <b>-</b>  | 300 DA 12 0,00 18" |       |                     |       | 7            |   |         |  |

# **VOST FIELD DATA SHEET**

| PLANT Plant Yates Station Boiler No. 1     | ASSUMED MOISTURE %   |
|--------------------------------------------|----------------------|
| DATE 06-22-93                              | METER BOX NO.        |
| SAMPLING LOCATION ESPIALET                 | METER FACTOR         |
| RUN NO. 2 TEST NO. 1                       | PROBE HEATER SETTING |
| OPERATOR ZJW)                              | COMMENTS             |
| AMBIENT TEMPERATURE 80 0 F                 | 4                    |
| BAROMETRIC PRESSURE 29 ↔                   |                      |
| BLANK TUBE NUMBERS T: 14519 A T/C: 14519 B |                      |

@ O.S.L PER MIN

Samples

20 5

750°F

A 164043 4.0

0.9910

| Test       | Leak Check ("Hg) | k ("Hg) | Tube N   | Sampling | Clock | Gas Meter       | Meter         | Stack | DGM  | Probe      | 1st Condensor | 1st Candensor 2nd Condensor | Pump Vacanum |
|------------|------------------|---------|----------|----------|-------|-----------------|---------------|-------|------|------------|---------------|-----------------------------|--------------|
| Number     | Pre              | Post    | (Lab)    | (min)    | Time  | Reading         | Pressure      | Temp  | Temp | Temp       | Outlet Terno  | Outlet Terms                | Pressue      |
| 1 STPALE   | 02011"           |         | ⊢        | 0        | 2440  | 71.000          | 7             | 166   | 13   | 75.1       | -             |                             |              |
|            |                  |         | 145104   | ા        | 7510  | 15.93           | ナー            | 592   | * *  | 258        | 9             | 2                           | ) a          |
|            |                  |         | 1/0      | 02       | 7080  | 80.84           | + ~           | 7.40  | 76   | 759        | 3 6           | 2.3                         | 2) =         |
|            |                  |         | 14SloB   | 30       | 2180  | 86.07           | ナー            | 742   | 8    | 852        | ŝ             | - N                         | ) c          |
| ۲.         |                  | "ऽ। ७०  |          | Trop     | 7780  | 91.045          |               |       |      | )          |               |                             | 2            |
| 240 Pail   | ZuoPaie Dalle    |         | L        | 0        | 0910  | 92.000          | <del>-</del>  | 2+2   | 8t   | 777        | ۶,5           | a<br>V                      | C.V          |
|            |                  |         | 145,34   | 0        | 0260  | 46.96           | <b>y</b> .    | 282   | 79   | 260        | 00            | 200                         | 5.5          |
|            |                  |         |          | 92       | 0930  | 10 <b>0</b> .80 | <u>ئ</u><br>- | 276   | 80   | 260        | 45            | 58                          | c's          |
|            |                  |         | 145136   | 30       | 0460  | 106.89          | 1.4           | 243   | 83   | 292        | 54            | -<br>&                      | 5.0          |
| <b>ر</b> ۔ |                  | ,जा ७०  |          | 500      | 0950  | 112.030         |               |       |      |            |               |                             |              |
| 300 AIA 02 | "SI GO           |         | <u> </u> | 0        | 1001  | 115.000         | э<br>—        | 295   | ळॅ   | 797        | 58            | 63                          | o, z         |
| ,          |                  |         | 4215H    | g        | 1011  | 41.811          | 1.4           | 205   | 96   | 292        | 53            | -2                          | 5.0          |
|            |                  |         | 1/2      | 20       | 1201  | 123.14          | 1.4           | 300   | 85   | 72         | \$\$          | 59                          | 5.0          |
|            |                  |         | म्हाम    | 33       | 1031  | 12.8.21         | 1.4           | 301   | 98   | 292        | £5            | 15                          | 0.2          |
| <b>}</b>   |                  | 0.00    |          | 300      | 1041  | 133.050         |               |       |      |            |               |                             |              |
|            |                  |         | F        | 0        |       |                 |               |       |      |            |               |                             |              |
|            |                  |         |          |          |       |                 |               |       |      | <b>†</b> - |               |                             |              |
|            |                  |         | 1/0      |          |       |                 |               |       |      |            |               |                             |              |
|            |                  |         |          |          |       |                 |               |       |      |            |               |                             |              |
|            |                  |         |          |          |       |                 |               |       |      |            |               |                             |              |
|            |                  |         |          |          |       |                 |               |       |      |            |               |                             |              |

# VOST FIELD DATA SHEET

| ASSUMED MOISTURE % + 0         | METER BOX NO. // 16 70 43 | METER FACTOR 0.9970 | PROBE HEATER SETTING ZS0°F | COMMENTS SAMPLED & D.S L PER MIN | 201 Samples         | -                   |
|--------------------------------|---------------------------|---------------------|----------------------------|----------------------------------|---------------------|---------------------|
| lo. 1                          |                           | ESP INLET           | TEST NO. 1                 | RIM                              | 75°E                | 65.62               |
| Plant Yates Station Boiler No. |                           |                     |                            |                                  | AMBIENT TEMPERATURE | BAROMETRIC PRESSURE |

| Test                  | Leak Check ("Hg) | k ('Ha)                                 | Tube N  | Sampling    | Clock | Gas Meter | Meter        | Stack | DGW              | Probe        | 1st Condensor | 2nd Condensor | 1st Condensor 2nd Condensor Fump Vacuum |
|-----------------------|------------------|-----------------------------------------|---------|-------------|-------|-----------|--------------|-------|------------------|--------------|---------------|---------------|-----------------------------------------|
| Number                | e d              | Post                                    | (Lab)   | (min)       | Time  | Reading   | Pressure     | Temp  | Temp             | Temp         | Outlet Temp.  | Outlet Temp.  | -dwer                                   |
| STOBIO                | ISTORIA DO IK"   |                                         | -       | 0           | 24 40 | 156.000   | 1.5          | 297   | Tree.            | 292          | 9             | 6/            | 50                                      |
|                       |                  |                                         | 4Spi    | 01          | 7510  | 161.07    | 1.5          | 500   | 241 48<br>241 48 | 192          | 99            | 9             | 5.0                                     |
|                       |                  |                                         | T/C     | 92          | 7080  | 166.12    | 7.1          | +62   | 48               | 263          | /9            | 29            | 5.0                                     |
|                       |                  |                                         | USD 10  | 30          | 2180  | 140.88    | <del>-</del> | 309   | 80               | 266          | 51            | 99            | 5.0                                     |
| ۲.                    |                  | 1001c"                                  |         | <b>Jals</b> | 2280  | 176.040   |              |       |                  |              |               |               |                                         |
| 2 NON Z               | "Si Ci Ci        |                                         | F       | 0           | 0840  | 177.000   | <b>ት</b> ነ   | 305   | 83               | 952          | 60            | 19            | 5.0                                     |
|                       |                  |                                         | 450KA   | 01          | 0880  | 80'28     | ナー           | 311   | Ö                | 797          | 51            | 49            | 53                                      |
|                       |                  |                                         | 1/C     |             |       | 86.48     | ١. ب         | 307   | 8%               | <b>£</b> \$2 | 29            | 20            | 5.0                                     |
|                       |                  |                                         | \$25.5± | \           | 0160  | 75.061    | 1.4          | 314   | 87               | 052          | 29            | 19            | ۷,۵                                     |
| -;                    |                  | "SI @0                                  |         | dais        | 0250  | 193.075   |              |       |                  |              |               |               |                                         |
| 200 0. 0              | 10.00            | 3333                                    | ┝       | 0           | 74 60 | 193 500   | ナー           | 315   | 88               | 197          | દ્વ           | 57            | d'o                                     |
|                       | 2                |                                         | K45374  | 9           | 2700  | th.202    | <u>خ</u> ر   | 415   | 88               | 24.5         | <u>-</u>      | 29            | ۵,۵                                     |
|                       |                  |                                         | 2/1     | }           |       | 86, 101   | 4.1          | 975   | 96               | 152          | 60            | 79            | ۲,0                                     |
|                       |                  |                                         | 14532   | 1           | 2001  | 46.212    | +1           | \$18  | ō                | 153          | 09            | 79            | ďρ                                      |
|                       |                  | )ର ଜ୍ୟ                                  |         | STOP        | 7101  | 211.58    |              | 3     |                  |              |               |               |                                         |
| CONTRACTOR CONTRACTOR |                  | 000000000000000000000000000000000000000 | ►       | 0           |       |           |              |       |                  |              |               |               |                                         |
|                       |                  |                                         |         |             |       |           |              |       |                  |              |               | :             |                                         |
|                       |                  |                                         | 1/C     |             |       |           |              |       |                  |              |               |               |                                         |
|                       |                  |                                         |         |             |       |           |              |       |                  |              |               |               |                                         |
|                       |                  |                                         |         |             |       |           |              |       |                  |              |               |               |                                         |
|                       |                  |                                         |         |             |       |           |              |       |                  |              |               |               |                                         |

(ENTEREC)

|       | FLANT          | NAME          | Plant Yates St         | ation Boiler | r No. 1                  |                                        |                |                                            |                                               |          | Page            | of                                               | <del>_</del> .   |                   |
|-------|----------------|---------------|------------------------|--------------|--------------------------|----------------------------------------|----------------|--------------------------------------------|-----------------------------------------------|----------|-----------------|--------------------------------------------------|------------------|-------------------|
|       | SAMDII         | NG LQCAT      | TION ES                | Pinlet       | 4                        |                                        | RUN NO         | . Sor                                      | ni wake                                       | 5% C     | Lanic           | S Age                                            | kl.              |                   |
|       | DATE           | 10/21/97      | TIME START             |              | 33                       | TIME FI                                | NISH/          | 875                                        | TEST DU                                       | JRATION  | - 240           | ) <del>~  </del> {                               | fin.             |                   |
|       | DUCT I         | THENEIGN      | 10 8.5                 | X 5          | 5.7<br>NO.771 E          | DIAMET                                 |                |                                            | INITIAL                                       | LEAK RA  | TE <u>0.0</u> , | 2015°c                                           | fm<br>446        |                   |
|       | PTCF<br>BAR PR | FSS 2         | DGMCF O                | 1-07         | NOZZLE                   | DIA. <u>().</u>                        | 35 0           | inches                                     | FINAL L                                       | EAR RA   | عبو ع           | 15011                                            | ****)            |                   |
|       | STATIC         | PRESS         | -6.4                   | H2O          |                          | OPERAT                                 | OR             | سال                                        |                                               |          |                 |                                                  |                  |                   |
|       |                | SHO           | 1.422                  |              |                          |                                        |                |                                            |                                               |          |                 |                                                  |                  |                   |
|       | Traverse       | Clock         | Dry gas meter          | ^ p          | ^ Н                      | Stack                                  | Dry gas m      | eter temp.                                 | Hot box                                       | Probe    | Last            | Vacuum                                           | Cond.            | i                 |
|       | Point          | Time          | reading ft3            | in H2O       | in H2O                   | Temp. F                                | Inlet          | Outlet                                     | Temp.                                         | Temp     | Impinger        | in. Hg                                           | Exit             | 1                 |
|       |                | 12551         |                        |              |                          | 217                                    | ٠              |                                            |                                               |          |                 | 4                                                | Temp. F          | KFZ               |
|       | El-1           | <del></del>   | 07/1/75                | 0 04         | 1                        | 283                                    | , 73           | 77                                         |                                               | 235      | 1               | 29                                               | 39               |                   |
|       |                | 1259          | 075475                 |              | 1.03                     | 48 <del>3</del>                        |                | 72                                         |                                               |          | 5/              | <del></del>                                      |                  | 11.47             |
|       | 2              | HZ 1300       |                        | 0.09         | P                        | 298                                    | 74             | 23                                         |                                               | 237      | 48              | 397                                              | 39               | 11.2              |
| N     | 5              | 1305          | 80.9                   | 0.06         | 0.68                     | 297                                    | 16             | 27                                         |                                               | 240      | 47              | 4                                                | 39               |                   |
| 2.54  | - 4            | 1310          | 83.1                   | 0.03         | 0.34                     | 254                                    | 75             | 76                                         |                                               | 245      | 49              | 4                                                | 39               | <u> </u>          |
| `     | 5              | 13/5          | 84.6                   | 0 05         | 0.56                     | 293                                    | 75             | 76                                         |                                               | 250      | 52              | 4                                                | 40               |                   |
|       | 0              | /320          | 86,2                   | 0.00         | 0.34                     | 299                                    | 80             | רר                                         | _                                             | 247      | 51              | 4                                                | 40               | l                 |
|       | 5top           | 1325          | 88,020                 | 5            | od lea                   | Kched                                  |                | 6"/4                                       |                                               |          |                 |                                                  |                  | Á                 |
|       |                |               |                        |              |                          |                                        | X=76           |                                            |                                               |          |                 | -2-                                              | 1/2              | ح نا              |
|       | F3-1           | 1336          | XX88.065               | 0,02_        | 0.22                     | 295                                    | 80             | 78                                         |                                               | 230      | 60              | 2                                                | 40               | /t.3 <sup>·</sup> |
|       |                | 1341          | 89.7                   | 0.02         | 0,22                     | 308                                    | 80             | 78                                         |                                               | 236      | .59             | 2,                                               | 40               | 4                 |
|       | 3              | 1346          | 910                    | 004          | 045                      | 307                                    | 80             | 78                                         |                                               | 232      | 5%              | 4                                                | 40               | 4                 |
| 2.46  | - [            | 1351          | 92.8                   | 0.08         | 0.91                     | 308                                    | 81             | 79                                         |                                               | 240      | 52              | 4                                                | 41               |                   |
| •     | 5              | 1356          | 95,3                   | 0,10         | 1.15                     | 307                                    | 83             | 80                                         | _                                             | 248      | 49              | 4                                                | 41               | •                 |
|       | 7              | 131401        | 78.0                   | 0,10         | 1,15                     | 306                                    | 85             | 81                                         | -                                             | 257      | 50              | 4                                                | 42               | 1                 |
|       | 5/00           | 1406          | 101.046                | Goo          | pel lea                  | K Che                                  | cka            | 6"1                                        | 16                                            |          |                 |                                                  |                  | •                 |
|       | ,              |               |                        |              |                          |                                        | x= 80          |                                            |                                               |          |                 |                                                  |                  | ĺ                 |
|       | E4-1           | 1415          | 101.119                | 0.02         | 0.23                     | 250                                    | 85             | 82                                         |                                               | 245      | 60              | 2                                                | 42               | •                 |
|       | 2              | 1420          | 102.7                  | 0.04         | 0.45                     | 308                                    | 85             | 82                                         |                                               | 2-(3     | 57              | 2                                                | 4/3              | 1                 |
| J     | 3              | 1425          | 104.3                  | 0.06         | 0.68                     | 308                                    | 85             | 83                                         | _                                             | 257      | 55              | 2                                                | 43               |                   |
| 5.924 | 4              | 1430          | 106.3                  | 010          | 1.11                     | 310,                                   | 85             | 82                                         |                                               | 250      | 52              | 5                                                | 42               | 11.12             |
| יכ    | 5              | 14/35         | 107.4                  | 0 18         | 2.0                      | 308                                    | 88             | 85                                         | !                                             | 243      | 53              | 7                                                | 43               | 1                 |
|       | ط              | 1440          | 1/3.8                  | 837          | 2.4                      | 309                                    | 90             | 48                                         | -                                             | 244      | 55              | 8                                                | 44               | i                 |
|       | 5/00           | 1445          | 117,043                |              | 1 /                      | check                                  |                | 14                                         |                                               |          | 77              | -                                                |                  | 1                 |
|       |                | 7773          | 171,0-13               | 13000        | 1004 6                   | MEC !                                  | ¥=83           | 1                                          |                                               |          |                 |                                                  |                  |                   |
|       | Ela            | 14-0          | 112.03                 | 0.02         | 0,23                     | 318                                    | 45             | 84                                         |                                               | 370      | 62              | 3                                                | 14               | 10.8              |
|       | _ <u>Z</u>     | 1958          | 117.278                | 3003         |                          |                                        |                | 841                                        | _                                             | 230      |                 | <del>                                     </del> | 4                | 1                 |
|       | 3              | 10/50         | 118.8                  | 206          |                          | 323                                    | 86             |                                            | -                                             | 235      | 60              | 5                                                | 45               | ł                 |
|       | 5              | 145 608       | 120.4                  | 2100         | 0.65                     | ,                                      | 85             | 84                                         | -1                                            |          |                 | <del>  3</del>                                   | <del>  7</del> 2 | 1                 |
|       | \ <u>\</u>     | 1573          |                        |              | me                       | * 1                                    | bitch          | Sh                                         | LET                                           | JW       |                 | <del> </del>                                     | <del> </del>     | 1                 |
|       | 367            | 1518          | er al issue l'estat d' | iles ibee    | tiletii.                 | 000                                    | 1, 7, 25       | ušik už veed                               | Nosas nā.                                     |          |                 |                                                  |                  | •                 |
|       | AVE.           |               |                        |              |                          | 299                                    |                | (88) 33 345                                |                                               |          |                 |                                                  |                  | 1                 |
|       | Check'd        |               | rungr sagga stallt     | I makan k    | <b>j</b> 5 ja misal bear | <u>Englishmil</u>                      | 1-2-1-2002     |                                            |                                               | 5-436    |                 | 1                                                | 1                | 3                 |
|       | CONTO          | . <del></del> |                        |              |                          | 1 0000 00 W 10 00<br>                  |                | . gygnn (1921-1938)<br>. gygnn (1921-1938) | Should Harrin Aurost<br>G. 1961 Abril 800 800 | į.       |                 |                                                  |                  |                   |
|       | CONSO          | # <u>Inst</u> | Ic                     | _            |                          | 79,40,65,45,170,303                    |                | 200000000000000000000000000000000000000    | 4.60.000                                      | <u>.</u> |                 |                                                  |                  |                   |
|       | AMRIEN         | 〃 <u> </u>    | an of                  | _            |                          | <ul> <li>188 USANOTA 20</li> </ul>     | ire<br>(DSCPM) | 5.5 1100                                   |                                               | -        |                 |                                                  |                  |                   |
|       | PRORE          | I FNGTH       | &£+                    |              |                          | and the fallence of the control of the | (%)            | Of Grand and Control for the Con-          | a a ration before decident                    | ë<br>B   |                 |                                                  |                  |                   |
|       | LINER          | MATERIA!      | 90°F<br>8ft<br>guarte  | 5/45         |                          | -SURINGE                               | (1.77) (1.21)  | <u></u>                                    | 2000 - 1765 <u>2</u>                          | ğ.       |                 |                                                  |                  |                   |
|       |                |               | 7                      | J'-"         |                          |                                        |                |                                            |                                               |          |                 |                                                  |                  |                   |

REMARKS

| PLANT     | NAME        | Plant Yates St | ation Boilei                            | r No. I        |                     |                |                                                  |                                                   |                                                  | Page     |                 |                  |
|-----------|-------------|----------------|-----------------------------------------|----------------|---------------------|----------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|----------|-----------------|------------------|
| SAMPLI    | NG ZOÇA     |                | ilet                                    | NOZZLE         |                     | RUN NO         | . <u>Seriu</u>                                   | sichle                                            | Onza                                             | nic Ph   | use (           | Run              |
| DATE _    | 0/2019      | TIME START     |                                         |                | TIME FI             | MSH            |                                                  | TEST D                                            | JRAPION                                          | ==-      | n               | ın.              |
| DUCT D    | MENSION     | ۱ <u>۶</u>     | _                                       |                | DIAMET              | ER             | <del></del>                                      | INITIAL                                           | LEAK RA                                          | \TE      | c               | fm               |
| PICF      |             | DGMCF          |                                         | NOZZLE         | DIA                 | <del></del>    | inches                                           | FINAL L                                           | EAK KA                                           | E        |                 | cím              |
| STATIC    | PRESS       | DGMCF Hg       | H2O                                     |                | OPERAT              |                |                                                  |                                                   |                                                  |          |                 |                  |
| J171110   |             |                |                                         |                |                     |                |                                                  | <del></del>                                       |                                                  |          |                 |                  |
| Traverse  | Clock       | Dry gas meter  | Ϋ́P                                     | 'nН            | Stack               | Dry gas m      | eter temp.                                       | Hot box                                           | Probe                                            | Last     | Vacuum          | Cond             |
| Point     | Time        | reading fl3    | in H2O                                  | iл <b>H</b> 2O | Temp. F             | Inlet          | Outlet                                           | Temp.                                             | Temp                                             | Impinger | in. Hg          | Exit             |
|           | i           | ļ              | ļ                                       | ļ              | ,                   |                |                                                  |                                                   | (                                                |          |                 | Temp.            |
|           | <del></del> |                |                                         |                |                     | 7-             |                                                  |                                                   |                                                  |          |                 | - /              |
| F6-1      | 1458        | 117,278        | 0.02                                    | 0.23           | 3/8                 | 85             | 84                                               |                                                   | 230                                              | 6Z       | 3               | 4/4              |
| 2         | 1503        | 1184           | 0.03                                    | 0.73           | 323                 | 16             | 84                                               |                                                   | 235                                              | 60       |                 | 4/4              |
| 3         | 1508        | 1204           | 0.06                                    | 0.65           | 320_                | 85             | 84                                               |                                                   | 241                                              | 58       | 5               | 4:               |
| 4         | 1513        |                | 0.1                                     | 1.1            | 320                 | 82             | 84                                               |                                                   | 258                                              | 5%       | 6               | 41               |
| _5        | 1518        | 125.4          | 0.16                                    | 1.7            | 2321                | 88             | 84                                               |                                                   | 244                                              | 57       | 7               | 48               |
| 6         | 1523        | 129,5          | 0.2                                     | 2.2            | 330                 | 90             | 86                                               |                                                   | 240                                              | 59       | 7               | 50               |
| 5/20      | 1528        | 132.626        |                                         |                |                     | C 01           |                                                  |                                                   |                                                  |          |                 |                  |
|           |             |                |                                         |                |                     | 2-86           |                                                  |                                                   | 1                                                |          |                 |                  |
| W2-(      | 1541        | 132.753        | 0.02                                    | 0.7            | 278                 | 87             | 86                                               |                                                   | 230                                              | -51      | 3               | 44               |
| 2         | 1546        | 134,1          | 0.04                                    |                | 300                 | <b>%</b> 7     | 85                                               |                                                   | 255                                              | 570      | 4               | 4                |
| 3         | 1551        | 135.6          | 0.05                                    | 0.56           | 243                 | 87             | 85                                               | _                                                 | 240                                              | 53       | ٠.              | 4/3              |
| ار.       | 1556        | 137.7          |                                         |                | 302                 | 88             | 86                                               | =                                                 | 245                                              | 54       | <del>-3</del> - | 4/2              |
|           |             |                | 0.03                                    |                |                     | 87             | 86                                               | <del>  =                                   </del> | 247                                              |          | 5               | <del> /-</del> - |
|           | 1601        | 139,5          | 0.06                                    | 6.67           | 300                 |                |                                                  |                                                   | <del>                                     </del> | 54       |                 | 42               |
|           | 1606        | 142,0          | 0.17                                    | 1.5            | 305                 | 51             | 47                                               | <del> </del>                                      | 246                                              | 57       | 8               | 177              |
| Stop      | 1611        | 145.331        | <del> </del> -                          | <del> </del>   | <u> </u>            | x=87           | <del> </del> -                                   | l                                                 | <del> </del>                                     |          |                 | <del> </del> -   |
|           | 1618        | 145.552        | 0.02                                    | 6.7-           | 298                 | 90             | 89                                               |                                                   | 230                                              | 59       | 3               | 44               |
| W4-1<br>2 |             | 40             | <del> </del>                            |                | 299                 | 90             | 88                                               |                                                   | 254                                              |          | 5               | 70               |
| - 4-      | 1623        | 11815          | 004                                     |                |                     | <del></del>    | <del>                                     </del> |                                                   | 1                                                | 5        |                 | 45               |
| 7         | 1628        | 148.5          | 0.07                                    | 0,78           | 298                 | 90             | 88                                               |                                                   | 253                                              | 54       | 5               | 73               |
| 7<br>7    | /633        | 150.5          | 0,12                                    | 1,3            | <del>}</del>        | 91             | 88                                               | <del></del>                                       | 255                                              | 52       | 7               |                  |
|           | 1637        | 154,2          | 0.15                                    | 1.7            | 286                 | 53             | 87                                               | <u> </u>                                          | 254                                              | 52       | 5               | 4/3              |
| (6        | 1643        | 157,7          | 0.16                                    | 1.4            | 282                 | 95             | 90                                               | l<br>                                             | 232                                              | 52       | 5               | 46               |
| 5/07      | 1648        | 160,865        |                                         |                |                     |                |                                                  | ļ <u>.</u>                                        |                                                  |          |                 |                  |
|           |             | -              |                                         |                |                     | Y=90           |                                                  |                                                   |                                                  |          | <u> </u>        | <u> </u>         |
|           |             |                | ļ                                       |                | ļ                   |                |                                                  |                                                   |                                                  |          |                 |                  |
|           |             |                |                                         |                |                     |                |                                                  |                                                   |                                                  |          |                 |                  |
|           |             |                | 500000000000000000000000000000000000000 |                |                     |                | 6.6                                              |                                                   | 4 8000000000000000000000000000000000000          |          |                 |                  |
| Avg.      |             |                |                                         |                | 303                 | 88             | 17                                               |                                                   |                                                  |          |                 |                  |
| Check'd   |             |                |                                         |                |                     |                |                                                  |                                                   | 1                                                |          |                 |                  |
| CONSOI    | F#          |                |                                         |                | Velenie             |                |                                                  |                                                   | ë<br>ë                                           |          |                 |                  |
|           |             |                |                                         |                | 12 1 1000 1000 1000 |                |                                                  | 1 39 0 9 10 10 10 10 10 10 10 10 10 10 10 10 10   |                                                  |          |                 |                  |
| AMBIFN    | T TEMP      |                | -                                       |                |                     |                |                                                  |                                                   | <del>Ž</del><br>K                                |          |                 |                  |
| PRORF     | LENGTH      |                |                                         |                | Isokimetir          | 15             |                                                  |                                                   |                                                  |          |                 |                  |
|           |             |                |                                         |                |                     | - 3.75 January | <u> </u>                                         |                                                   | <u>.</u>                                         |          |                 |                  |
| LINER N   | MATERIAL    |                |                                         |                |                     |                |                                                  |                                                   |                                                  |          |                 |                  |

| FLANT             | NAME         | Plant Yates St                       | ation Boiler        | No. 1       |             | ·····                                   | .a           |         |                     | Page     | _ of          | - ,             |
|-------------------|--------------|--------------------------------------|---------------------|-------------|-------------|-----------------------------------------|--------------|---------|---------------------|----------|---------------|-----------------|
| SAMPLI            | NG FOCK      | TION /A/LE  TIME START  NS DGMCF  Hg | 7                   | <del></del> | <del></del> | RUN NO                                  | <u> جو ک</u> | oluth   | 00                  | nc Pha   | use 1 K       | uu (            |
| DATE I            | 6/2//9.      | TIME START                           | <del></del>         |             | DIAMET      | ER                                      |              | TEST DU | JKA TIUN<br>LEAK RA | TE       |               | ius.<br>fm      |
| PTCF              |              | DGMCF                                | _ ``                | NOZZLE      | DIA.        |                                         | inches       | FINAL L | EAK RAT             | Έ        |               | cím             |
| BAR PRI<br>STATIC | PRESS        | Нд                                   | H2O                 |             | OPERAT      | OR                                      |              |         |                     |          |               |                 |
| Traverse          | Clock        | Dry gas meter                        | ^ P                 | ^H          | Stack       | Dry gas m                               | ter temp.    | Hot box | Probe               | Last     | Vacuum        | Cond.           |
| Point             | Time         | reading ft3                          | in H2O              | in H2O      | Temp. F     | Injet                                   | Outlet       | Тетр.   | Temp                | Impinger | in. Hg        | Exit<br>Temp. F |
| Wbi               | 1658         | 161.014                              | 0,01                | 0,11        | 265         | 90                                      | 89           |         | 225                 | 61       | 2             | 46              |
| 2                 | 1703         | 162.0                                | 0.02                | 0.22        |             | 90                                      | 90           | _       | 253                 | 61       | 4             | 47              |
| 3                 | 1708         |                                      |                     | 0, 22       | 280         | 90                                      | 89           | _       | 242                 | 60       | 4             | 48              |
| 4                 | 1713         | 16500                                | 0,03                |             | 241         | 90                                      | 89           | _       | 225                 | 60       | 4             | 57              |
| 5                 | 1718         | -                                    | 0.05                |             | 271         | <b>5</b> l                              | 85           | _       | 238                 | 60       | 5-            | 5/              |
| 4                 | 1723         | 168.3                                |                     | 0.57        | 273         | 91                                      | 90           |         | 249                 | 60       | 5             | 52              |
| 5/24              | 1728         | 170.421                              |                     |             |             |                                         |              |         |                     |          |               |                 |
| W4-1              | 1745         | 171.000                              | 0.06                | 0.69        | 273         | 89                                      | 89           |         | 227                 | 64       | 5-            | 56              |
| 2                 | 1750         | 1730                                 | 0 03                | ,           | 2.227       |                                         | 87           | _       | 237                 | 40       | 4             | 52              |
| 3                 | 1255         | 12412                                | 0.02                | 0.23        | 279         | 90                                      | 89           |         | 26                  | 58       | 4             | 47              |
| 4                 | 1800         | 1761                                 |                     | 0,23        |             | 90                                      | 89           |         | 253                 | 58       | c/            | 46              |
| 3                 | 1805         | 177.4                                | 0.02                |             |             | 90                                      | 89           | _       | 244                 |          | 4             | 45              |
| 5                 | 1810         | -                                    | 2.04                |             | 282         | 91                                      | 90           |         | 244                 | 56       | 5             | 45              |
| 5:00              | 1815         | 180,685                              | <u> </u>            | - 1 (-      |             | , -                                     |              |         | 27.7                |          |               |                 |
|                   |              |                                      |                     |             |             |                                         |              |         |                     |          |               |                 |
|                   |              |                                      |                     |             |             |                                         |              |         |                     |          |               |                 |
|                   |              |                                      |                     |             |             |                                         |              |         |                     |          |               |                 |
|                   |              |                                      |                     |             |             |                                         |              |         |                     |          |               |                 |
|                   |              |                                      |                     | -           |             |                                         |              |         |                     | 1        |               |                 |
|                   |              | 103.779<br>V                         | 0                   | 23965       | 4           |                                         | 67.44 V      |         |                     |          |               |                 |
| Avg.              |              | 103/17                               | ) DY                | 0:11        | 212.        | - 65≥                                   | 354          |         |                     |          |               |                 |
| Check'd           | <del>-</del> |                                      |                     |             |             |                                         |              |         | 1                   | I        |               | 1               |
| CONSO             |              |                                      |                     |             | Velocity_   |                                         |              |         |                     | 41-      | U057          | co//4           |
|                   |              |                                      | _ <del>-</del><br>- |             | % Moiso     | 000000000000000000000000000000000000000 |              |         |                     | E8-      | Alde          | hyde            |
|                   |              |                                      | <del></del>         |             | Flowrate    | (DSCFM)                                 |              |         |                     | F7-      | Alde<br>PSD C | allert          |
|                   |              |                                      |                     |             | Isokinetic  | (%)                                     |              |         |                     |          | , -, -        | ,               |
| LINER N           | MATERIAI     | L                                    |                     |             |             |                                         |              |         |                     |          | <b>به</b> ، ک | _               |

| PLANT          | NAME                                             | Plant Yates St                                   | ation Boiler                                     | r No. 1                                          |                                                                |                                                  |                  |                              |                                                  | Page_/                                           | _ of <u>_3</u>                                   | 1                                                |
|----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|------------------|------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                |                                                  |                                                  | PINLET                                           | _                                                |                                                                | RUN NO                                           | 2                | <                            | 1/26.68                                          | c Pha                                            |                                                  |                                                  |
| DATE /         | ING LOCA                                         | TIME START                                       | 0774                                             |                                                  | TIME FIL                                                       | NISH 13                                          | 41               |                              |                                                  |                                                  |                                                  |                                                  |
| DUCT I         | IMENSION                                         | vs 8'6"                                          | X                                                | ベ・デフ'                                            | DIAMET                                                         | ER N                                             | <u></u>          | INITIAL.                     | LEAK RA                                          | TE                                               | 2106                                             | fm/5 /                                           |
| PTCF<br>BAR PR | 6.84<br>ESS <u>2</u> 9                           | DGMCF O                                          | 1999                                             | NOZZLE                                           | DIA. <u>Ø,</u>                                                 | <u> </u>                                         | inches           | FINAL L                      | EAK KA                                           | E                                                | 2186                                             | cim /2                                           |
| STATIC         | PRESS                                            | الم. الم                                         | H2O                                              |                                                  | OPERAT                                                         | <u>کہ</u> OR                                     | 20m              |                              |                                                  |                                                  |                                                  |                                                  |
|                |                                                  |                                                  |                                                  |                                                  |                                                                |                                                  |                  |                              |                                                  |                                                  |                                                  |                                                  |
| Traverse       | Clock                                            | Dry gas meter                                    | ~ Р                                              | ^н                                               | Stack                                                          | Dry gas me                                       | eter temp.       | Hot box                      | Probe                                            | Last                                             | Vacuum                                           | Cond.                                            |
| Point          | Time                                             | reading ft3                                      | in H2O                                           | in H2O                                           | Temp. F                                                        | Inlet                                            | Outlet           | Temp.                        | Temp                                             | Impinger                                         | in. Hg                                           | Exit                                             |
| İ              |                                                  |                                                  | !                                                |                                                  |                                                                |                                                  |                  | ı                            |                                                  |                                                  |                                                  | Temp. I                                          |
| W8-1           | 729                                              | 187,155                                          | 0.07                                             | 0.77                                             | 270                                                            | 72                                               | 7/               |                              | 233                                              | 56                                               | 3                                                | 57                                               |
| 2              | 734                                              | 187.3                                            | 0.06                                             | 0.66                                             | 202                                                            | 73                                               | 72               | _                            | 253                                              | 54                                               | حار                                              | 53                                               |
| 3              | 739                                              | 191.3                                            | 0.03                                             | 0.33                                             | 274                                                            | 72                                               | 72               |                              | 251                                              | 57                                               | 4                                                | 56                                               |
| 1              | 724                                              | 193.0                                            | 0.02                                             | 0.22                                             |                                                                | 75                                               | 73               |                              | 2:17                                             | 56                                               | 3                                                | 53                                               |
| 5              | 7 49                                             | 194.30                                           | 0 03                                             | 0.33                                             | 271                                                            |                                                  | 73               |                              |                                                  |                                                  |                                                  | 35                                               |
|                | 754                                              |                                                  | 0,04                                             | 0.44                                             | 269                                                            | 76                                               |                  |                              | 750                                              | 57<br>57                                         | 5                                                |                                                  |
| 6              |                                                  | 195.9                                            | <del></del>                                      |                                                  | 269                                                            | 77                                               | 74               |                              | 220                                              | 3/                                               | 6                                                | 54                                               |
| Siop           | 754                                              | 197.450                                          | Good                                             | / Rinal                                          | kull (                                                         |                                                  |                  |                              |                                                  | ·                                                | }                                                | <del> </del> -                                   |
|                |                                                  |                                                  |                                                  |                                                  | 2797                                                           | WM TO                                            | <u> </u>         |                              | 224                                              |                                                  |                                                  | le.                                              |
| 6b-1           | 825                                              | 198.107                                          | (0,0)                                            | 0,34                                             | <del>23-1</del>                                                | רד                                               | 75               |                              | 279                                              | 58                                               | 2                                                | 18                                               |
| 2              | 830                                              | 199.9                                            | 001                                              | 0.45                                             | 232                                                            | רכ                                               | 75               |                              | <b>255</b>                                       | _53                                              | 3                                                | 1                                                |
| 3              | 835                                              | 201.6                                            | 0.06                                             | 0.68                                             | 279                                                            | 78                                               | 76               |                              | 248                                              | 51                                               | 4                                                | 40                                               |
| 4              | 840                                              | 207,8                                            | 0.07                                             | 0.79                                             | 280                                                            | 81                                               | 77               | _                            | 243                                              | 49                                               | 4                                                | 46                                               |
| 5              | 845                                              | 206,3                                            | OH                                               | 0.68                                             | 275                                                            | 82                                               | 78               |                              | 243                                              | 49                                               | 4                                                | 47                                               |
| 6              | 850                                              | 208.6                                            | 0,10                                             | 1.1                                              |                                                                | 85                                               | 80               |                              |                                                  | 49                                               | 5                                                | 47                                               |
| 544            | 855                                              | 211.382                                          | Good                                             | Final 1                                          | eat de                                                         | ck                                               |                  |                              |                                                  |                                                  |                                                  |                                                  |
|                |                                                  | _                                                | Groos                                            | Zuit                                             | int le                                                         | ctole                                            |                  |                              |                                                  |                                                  |                                                  |                                                  |
| w4-7           | 930                                              | 211,568                                          | 0.03                                             | 0.34                                             | 276                                                            | 80                                               | 50               | _                            | 222                                              | 53                                               | 3                                                | 46                                               |
| 2              | 935                                              | 2B.3                                             | 005                                              | 6,53                                             | 29300                                                          | 81                                               | 80               |                              | 252                                              | 55                                               | 3                                                | 47                                               |
| 3              | 940                                              | 215,3                                            | 0,07                                             | ררים                                             | 294                                                            | 82                                               | 80               | -                            | 245                                              | 53                                               | 5                                                | 45                                               |
| 3              | 945                                              | 20.7                                             | 0,12                                             | 1.3                                              | 251                                                            | 83                                               | 80               |                              | 250                                              | 54                                               | 5                                                | 48                                               |
| 5              | 950                                              | 220,7                                            | 0,15                                             | 1,7                                              | 293                                                            | 85                                               | 81               | -                            | 244                                              | 51                                               | 6                                                | 1/8                                              |
| 1-             | 955                                              | 224.3                                            | 0.17                                             |                                                  |                                                                | 88                                               | 82               |                              | 253                                              | 53                                               | 7                                                | 50                                               |
| 5/10           | 1000                                             | 227,878                                          | 0.17<br>Cost                                     | look 1                                           | Fock                                                           |                                                  |                  |                              |                                                  |                                                  |                                                  | <del>                                     </del> |
| 779            | 1                                                | 22,,-1                                           | 2700                                             |                                                  |                                                                | ·                                                |                  |                              |                                                  |                                                  |                                                  | <del> </del>                                     |
|                | <del>                                     </del> |                                                  | <del>                                     </del> | <del>                                     </del> | <del> </del>                                                   | -                                                |                  |                              |                                                  |                                                  |                                                  | <del>                                     </del> |
| ļ              | <del></del>                                      |                                                  | <del>                                     </del> | <del>                                     </del> | <del>                                     </del>               |                                                  |                  | <del></del>                  |                                                  |                                                  | <del>                                     </del> | <u> </u>                                         |
| <u> </u>       | <del>                                     </del> |                                                  | <b> </b>                                         | <del>                                     </del> |                                                                |                                                  |                  |                              | <del>                                     </del> |                                                  |                                                  | <del>                                     </del> |
|                |                                                  | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | <del> </del>                                                   | <del> </del>                                     |                  |                              | <del> </del> -                                   | <del>                                     </del> | -                                                | <del> </del>                                     |
|                | <del> </del>                                     |                                                  | <del>                                     </del> |                                                  | <del> </del>                                                   | <del>                                     </del> | <u> </u>         |                              | -                                                | -                                                | <del> </del>                                     | <del></del>                                      |
| Avg.           |                                                  |                                                  |                                                  |                                                  |                                                                | s de die fine                                    |                  |                              |                                                  |                                                  |                                                  |                                                  |
|                |                                                  |                                                  |                                                  |                                                  |                                                                |                                                  |                  |                              |                                                  |                                                  |                                                  |                                                  |
| Check'd        |                                                  | British San Taylor S. S. Capper                  | 1                                                | <u> </u>                                         | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                        | and the second                                   | and standard and | ■ 1 (20) (20) (20) (20) (20) |                                                  | Becommending                                     |                                                  | 4 (2000 2000 TOO)                                |
| Check'd        |                                                  | 1 101 -                                          |                                                  |                                                  | Velocity                                                       |                                                  |                  |                              |                                                  |                                                  |                                                  |                                                  |
|                | LE# Al                                           | <u>61365</u>                                     |                                                  |                                                  |                                                                |                                                  |                  |                              |                                                  |                                                  |                                                  |                                                  |
|                | LE# <u>#1</u>                                    | 61365                                            | _                                                |                                                  | <ul> <li>- Curvious de code de code de code de code</li> </ul> |                                                  |                  |                              |                                                  |                                                  |                                                  |                                                  |
|                | LE# <u>#</u><br>#_<br>nt TEMP.                   | 61365<br>800 F                                   | -<br><del>1</del> t                              |                                                  | % Moiste                                                       | ire<br>(DSCFM)                                   |                  |                              | •                                                |                                                  |                                                  |                                                  |
|                | LE# <u>A</u> I<br>.#<br>NT TEMP.<br>LENGTH_      | 61363<br>800 th<br>900 th                        | <u>-</u><br><del>rt</del><br>                    |                                                  | % Moiste<br>Flowrate                                           | ire                                              |                  |                              |                                                  |                                                  |                                                  |                                                  |

|          |              | Plant Yates St            | _                                       | r No. 1                                          | <u> </u>             |                                                  | _                                                      | . (i) A     |                                                  | Page 2          | = ° 3   | ,<br>      |
|----------|--------------|---------------------------|-----------------------------------------|--------------------------------------------------|----------------------|--------------------------------------------------|--------------------------------------------------------|-------------|--------------------------------------------------|-----------------|---------|------------|
|          | ING LOCA     | mon_7~                    | 0+                                      |                                                  |                      | RUN NO                                           | 0. <u>50mico</u> l                                     | atole C     | Reules                                           | phase           | , i pac |            |
| DATE     | DIMENSION    | TIME START                | _x                                      |                                                  | TIME FIL             | VISH —                                           | <del></del>                                            | TEST DU     | TRATION                                          | TE              | n       | nin.<br>Im |
| PTCF     | JIMICHSIOI   | VS<br>DGMCF* Hg           | _^                                      | NOZZLE                                           | DIA.                 |                                                  | inches                                                 | FINAL L     | EAK RAT                                          | E               |         | cím        |
|          |              |                           | ' H2O                                   |                                                  |                      |                                                  | _                                                      |             |                                                  |                 |         |            |
| STATIC   | PRESS        |                           | H2O                                     |                                                  | OPERAT               | OK                                               | Jum                                                    |             |                                                  |                 |         |            |
| Traverse | Clock        | Dry gas meter             | ^ P                                     | ^ H                                              | Stack                | Deces                                            | neter temp.                                            | Hot box     | Probe                                            | Last            | Vacuum  | Cond.      |
| Point    | Time         | reading ft3               | in H2O                                  | in H2O                                           | Temp. F              | Inlet                                            | Outlet                                                 | Temp.       | Temp                                             | Impinger        | in. Hg  | Exit       |
|          |              | _                         |                                         |                                                  | -                    |                                                  |                                                        | ·           |                                                  |                 |         | Temp. F    |
|          |              | 00000                     |                                         |                                                  | -6.5                 |                                                  |                                                        |             | - (5                                             |                 |         |            |
| 42-1     | 1003         | 227,968                   |                                         | 0.33                                             | 292                  | 87                                               | 84                                                     | _           | 247                                              | 60              | 3       | 50         |
| 1        |              | 229.7                     | 0.04                                    | 0,44                                             |                      | 88                                               | 84                                                     | _           | 247                                              | 60              | 3       | 57         |
|          | 1013         | 231.6                     | 0.05                                    | 0.55                                             | 302                  | 47                                               | 84                                                     |             | 250                                              | 54              | 4       | 47         |
| Ч        | 1018         | 237.6                     | 0.09                                    | 0,99                                             | 303                  | 88                                               | 84                                                     |             | 252                                              | 52              | 5       | 47         |
|          |              | 236.4                     | 0.12                                    | 1.3                                              | 319                  | 50                                               | 85                                                     |             | 253                                              | 50              | 6       | 46         |
| 6        |              | 239.6                     | 0.16                                    | 1.8                                              | 319                  | 91                                               | 86                                                     |             | 245                                              | 50              | 7       | 76         |
| 34p      | 1033         | 243.148                   |                                         | T                                                |                      | شر دا                                            |                                                        |             |                                                  |                 |         | ļ          |
|          | 1            |                           | 500                                     | d In                                             | hal 1                | eate                                             | hech                                                   |             |                                                  |                 |         |            |
|          | - 2mm        |                           | ļ.,                                     | ļ                                                |                      |                                                  | ļ                                                      |             |                                                  |                 |         |            |
| F212     | 1049         | 243.311                   | 0.04                                    | 0,44                                             | 325                  | 87                                               | 86                                                     |             | 229                                              | 57              | 4       | 45         |
| 27       | 1054         | 245.6                     | 0.05                                    | 0.55                                             | 328                  | 87                                               | 86                                                     |             | 249                                              | 58              | 5       | 44         |
| 3 4      | 1059         | 247,5                     | 0,08                                    | 0,87                                             | 330                  | 87                                               | 86                                                     |             | 248                                              | 55              | 5       |            |
| 45       | 1104         | 250,2                     | 0,12                                    | 1,3                                              | 337                  | 89                                               | 86                                                     |             | 254                                              | 52              | フ       | 44         |
| 56       | 1109         | 253.2                     | 0.18                                    | ٥, ر                                             | 341                  | 91                                               | 87                                                     |             | 257                                              | 52              | 8       | 4/3        |
| Stor     | 1114         | 257.3                     | 0,21                                    | 2,2                                              | 336                  | 93                                               | 88                                                     |             |                                                  | <del>ل</del> ا  | 0       | 45         |
| 5 foe    | 1119         | 261.159                   | Good                                    | France                                           | /rat                 | chek                                             | <u> </u>                                               |             |                                                  |                 |         |            |
|          |              |                           |                                         |                                                  |                      |                                                  |                                                        |             |                                                  |                 |         | <u></u>    |
| E5-1     | 1126         | 261.347                   | 0.02                                    | 0.21                                             | 3/3                  | 91                                               | 85                                                     |             | 228                                              | 61              | 3       | 5>         |
| 2        | 1136         | 262,8                     | 0.03                                    | 0.32                                             | 924                  | 91                                               | 89                                                     |             | 256                                              | 60              | 4       | 49         |
| 3        | 1126         | 244,3                     | 0.67                                    | 0.75                                             | 323                  | 92                                               | 85                                                     |             | 250                                              | 58              |         | 49         |
| 4        | 41.11        | 266.7                     | 0,/3                                    |                                                  | 327                  | 93                                               | 90                                                     |             | 250                                              | 53              | 5/      | -10        |
| 5        | 1146         | 269.8                     | 0.19                                    |                                                  | 330                  | 91                                               | 90                                                     |             | 250                                              | 55              | (0      | 49         |
| 6        | 1651         | 273,8                     | 0,20                                    | <del></del>                                      | 324                  | 96                                               | 91                                                     |             | 242                                              |                 | 11      | 50         |
| 1        | 1156         | 277.405                   | I                                       | <del>                                     </del> |                      | <del></del>                                      |                                                        |             |                                                  |                 |         |            |
|          |              | 71.303                    |                                         |                                                  |                      |                                                  |                                                        |             |                                                  |                 |         |            |
|          |              |                           |                                         |                                                  |                      |                                                  |                                                        |             |                                                  |                 |         |            |
|          |              |                           |                                         | 1                                                |                      |                                                  |                                                        |             |                                                  |                 |         |            |
|          |              |                           |                                         |                                                  |                      | <del>                                     </del> |                                                        |             |                                                  |                 |         |            |
|          | <del> </del> |                           | <del> </del>                            |                                                  |                      |                                                  | 1                                                      |             | <del>                                     </del> |                 |         | <u> </u>   |
| Avg.     | <del> </del> |                           |                                         |                                                  | Nganga               | igher wu                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                | Principal ( | 900400                                           | (Chr. 100 (C)   |         |            |
| Check'd  | <del></del>  |                           |                                         | 60,800 d. 10                                     | 7000                 |                                                  | 1 0/8                                                  |             |                                                  |                 |         |            |
| Circle d | <u>.</u>     | r. w. data and a state of | 1 11 11 11 11 11 11 11 11 11 11 11 11 1 | I                                                |                      |                                                  | <u> </u>                                               | 1           | I                                                | uma i gyenski). |         |            |
| CONSO    | LE#          |                           |                                         |                                                  | Velocity             | 147 Colle                                        |                                                        |             |                                                  |                 |         |            |
| FILTER   |              |                           |                                         |                                                  | % Moisu              | ire .                                            |                                                        |             |                                                  |                 |         |            |
|          |              |                           |                                         |                                                  | Flowrate             | (DSCFM                                           | j <b>y</b> (1), 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |             | 5                                                |                 |         |            |
|          |              |                           |                                         |                                                  | isok in <b>e</b> tic | (%)                                              |                                                        |             |                                                  |                 |         |            |
|          |              | <i></i>                   |                                         |                                                  |                      |                                                  |                                                        | · ·         |                                                  |                 |         |            |
|          |              |                           |                                         |                                                  |                      |                                                  |                                                        |             |                                                  |                 |         |            |
| REMAR    | RKS          |                           |                                         |                                                  |                      |                                                  |                                                        |             |                                                  |                 |         |            |

| SAMPLII       | NG LOCAT    | MON_LIA                | let         | NOZZLE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RUN NO                                 | . <u>Sem</u>         | iwati                                 | le the         | se (Ku                                           | りて       |             |
|---------------|-------------|------------------------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|---------------------------------------|----------------|--------------------------------------------------|----------|-------------|
| DATE _        |             | TIME START             | <del></del> |                | TIME FIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MISH                                   |                      | TEST DU                               | JRATION        | <u> </u>                                         | m        | in.         |
| DUCT D        | IMENSION    | IS                     | _ X         | NO77LE         | DIAMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EK                                     | inahaa               | INITIAL                               | LEAK KA        | TE                                               | c        | tm<br>:tm   |
| PICF          | 22:         | Ho                     | <del></del> | NUZZLE         | DIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | uncnes               | FINAL L                               | EAN RAI        | E                                                |          | ım          |
| STATIC        | PRESS       | TIME START IS DGMCF Hg | H2O         |                | OPERAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or S                                   | SW ~                 |                                       |                |                                                  |          |             |
|               |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      | <u> </u>                              |                |                                                  |          |             |
| Traverse      | Clock       | Dry gas meter          | ^ p         | ^ н            | Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dry gas m                              | eler temp.           | Hot box                               | Probe          | Last                                             | Vacuum   | Con         |
| Point         | Time        | reading ft3            | in H2O      | in H2O         | Temp. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inlet                                  | Outlet               | Temp.                                 | Temp           | Impinger                                         | in. Hg   | Exit        |
| l l           |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      | ·                                     | ·              |                                                  | اِ       | Temp.       |
|               |             | 10 5 / Do 5            |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                                       |                |                                                  |          |             |
| W3-1          | 1227        | 278.979                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88                                     | 88                   | 223                                   | 223            | 64                                               | 3        | 32          |
| 2             | 1232        | 280.4                  | 6.02        | 0.21           | 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> 77</u>                             | 87                   |                                       | 239            | 64                                               | <u>a</u> | <u> 56</u>  |
| 3             | 1237        | 281,7                  | 0.65        | 0.54           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87                                     | 87                   |                                       | 250            | 60                                               | 5        | <u>5)</u>   |
| 4             | 1242        | 283,8                  | 0.07        | 0.75           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                                     | 88                   |                                       | 250            | 58                                               | 6        | 4           |
| 5             | 1247        | 286.3                  | 0.10        | 1.1            | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91                                     | 88                   | _                                     | 235            | 56                                               | 7        | 46          |
| 6             | 1252        | 289.0                  | 0.14        | 1.5            | 315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93                                     | 89                   |                                       | 243            | 56                                               | 9        | 4           |
| 5100          | 1257        | 29236                  | 600         | 1 Fin          | 1 lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | chec                                   | K                    | Good                                  | 17:47          | <b>.</b>                                         |          |             |
| U1-1          | 1314        | Z92.700                | 0.00        | 0.96           | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91                                     | 84                   |                                       | 225            | 57                                               | 7        | 4           |
| 2             | 13.16       | _                      | 008         | 0.46           | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91                                     | 87                   |                                       | 242            | 57                                               | フ        | 49          |
| 3_            | 1321        | 298.01                 | 0.04        | 0.43           | 3//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ÿ/                                     | 89                   | _                                     | 248            | 57                                               | 5        | 50          |
| 4             | 1326        | 299, Y                 | 0.04        | 0.43           | 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91                                     | 89                   |                                       | 2-19           | 61                                               | 5        | 5           |
| 3             | 1331        | 301.7                  | 0.04        | 0.47           | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51                                     | 89                   | -                                     | 252            | 62                                               | 5        | 79          |
| 6             | 1336        | 30 3,5                 | 0.04        | 0,43           | 3/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 89                   | _                                     | 2-17           | 64                                               | 5-       | 5           |
| 56            | 1341        | 305,411                | Fi          | 1/10           | Eche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 0.01                 | (Q I                                  |                |                                                  |          |             |
|               |             | 07 100                 |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                                       | 79             |                                                  |          |             |
| <del></del> † |             | - 240                  | 0.4         | Leck           | aher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 20                                   | un                   |                                       |                |                                                  |          |             |
|               |             |                        | 8 - W C     | 1041           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                      |                                       |                |                                                  |          |             |
|               |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      | <del></del>                           |                | <u> </u>                                         |          |             |
|               |             |                        |             | <u>'</u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <del></del>          |                                       | <b>-</b>       | <del>                                     </del> |          |             |
| <del></del>   |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      | · · · · · · · · · · · · · · · · · · · |                |                                                  |          |             |
|               |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <del> </del>         |                                       | -              | <u></u>                                          |          | <del></del> |
|               |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                                       | <b> </b>       | <del> </del>                                     |          |             |
|               | i           |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <del></del>          |                                       | <del> </del> - | <del> </del>                                     |          |             |
|               |             |                        |             |                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                      |                                       |                |                                                  |          |             |
|               |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | ļ                    |                                       | <u> </u>       |                                                  | L.,      |             |
|               |             |                        |             |                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | ļ                    |                                       |                |                                                  |          | ļ           |
|               |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                                       |                |                                                  |          |             |
|               |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                                       |                |                                                  |          |             |
|               |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      | <u> </u>                              | \              |                                                  |          |             |
|               |             |                        | Jop         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ســـــــــــــــــــــــــــــــــــــ |                      | <u> </u>                              |                |                                                  |          |             |
| Avg.          |             | 115,043                | 0.24513     | 0.85125        | 303.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * 5*                                   | 74                   |                                       |                |                                                  |          |             |
| Check'd       |             | 1/TB                   |             | 1/18           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                                       |                |                                                  |          |             |
| 1             |             | 115,043<br>V 18        |             | 0.95125<br>V18 | 303.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                      | 74                   |                                       |                |                                                  |          |             |
| CONSCI        | E #         |                        |             |                | 17292 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                      |                                       |                |                                                  |          |             |
|               |             |                        |             |                | 34 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 TO 100 | ire                                    |                      |                                       | 4<br>5<br>5    |                                                  |          |             |
|               |             |                        |             |                | A 300 300 300 300 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | odelen i oden di i o |                                       | •              |                                                  |          |             |
|               |             |                        |             |                | 400000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                      | 10.00                                 |                |                                                  |          |             |
|               |             | ·                      |             |                | INDENDERIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 170                                    |                      |                                       | į.             |                                                  |          |             |
| EHIER N       | ''Y I EKIYL | ·                      |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                                       |                |                                                  |          |             |
| REMARI        | V C         |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                                       |                |                                                  |          |             |
|               |             |                        |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                      |                                       |                |                                                  |          |             |

| FILTER<br>AMBIEN<br>PROBE | NT TEMP.<br>LENGTH |                              | <u> </u>       |               | Velocity<br>% Moiste<br>Flowrate<br>Isokinetic | (DSCPM)<br>(%)     |        |                  |                    |                  |                  |                                                  |
|---------------------------|--------------------|------------------------------|----------------|---------------|------------------------------------------------|--------------------|--------|------------------|--------------------|------------------|------------------|--------------------------------------------------|
| Avg.<br>Check'd           | -                  | પદાવા                        |                |               |                                                |                    |        |                  |                    |                  |                  |                                                  |
|                           |                    |                              |                |               |                                                |                    |        |                  |                    |                  | _                |                                                  |
| Stor                      | ४५७                | 360,062                      |                |               |                                                |                    |        |                  |                    |                  |                  |                                                  |
| 5                         | 837                | 755,4                        | 0.17           | 1,9<br>2.4    | 311                                            | 93                 | 84     | -                | 250                | 71               | 7                | 49<br>57                                         |
| 4                         | <b>432</b>         | 348.5                        | 0,12           | 1.32          | 313                                            | 88                 | 83     | _                | 248                | 70               | 6                | 20                                               |
| 3                         | 827                | 346.1                        | 0.06           | 0.66          | 304                                            | 85                 | 81     | -                | 249                | 69               | د/               | 51                                               |
| 2                         | 822                | 44.3                         | 0.05           | 0,55          | 305                                            | 84                 | 80     |                  | 258                | 69               | 3.5              | 54                                               |
| E5-1                      | 817                | 342.769                      | 0.03           | 0,33          | 300                                            | 84                 | 80     |                  | 226                | 69               | 3                | 58                                               |
| Stop                      | 0810               | 342.495                      |                |               |                                                |                    |        |                  |                    |                  |                  | <del>                                     </del> |
| 6                         | 0405               | 337. 2                       | 0.16           | 1.75          | 292                                            | 86                 | 79     |                  | 257                | 69               | 7                | 50                                               |
| 5                         | 0400               | 376.0                        | 0.11           | 1.2           | 296                                            | 83                 | 70     |                  | 255                | 68               | 5-               | 49                                               |
| -4                        | 0755               | 333.4                        | 0.0%           | 0.57          | 297                                            | 42                 | 77     |                  | 252                | 68               | 4.5              | 51                                               |
| -3                        | 0750               | 331.4                        | 6,05           | 0.55          | 297                                            | 80                 | 76     |                  | 247                | <b>7</b> 0       | 40               | 55                                               |
| <del>-2</del>             | 0745               | 329.9                        | 0.03           | 0.22          | 298                                            | 79                 | 75     |                  | 241                | 65               | 3.0              | 58                                               |
| 51 <u>00</u><br>E3 -1     | 0740               | 328,35                       | Beach          |               | Check                                          | 78                 | ~+4    |                  | 240                | 62               | 2,0              | 56                                               |
|                           | 0732<br>0737       | 328.105                      | 0.00           | 0.65          | 287                                            | 78                 | 73     |                  | 244                | <i>5</i> 2       | 4.0              | 42                                               |
| 5^                        | 0727               | 323,8                        | 0.06           | 0.63          | 292                                            | 76                 | 72     |                  | 242                | 423              |                  | 44                                               |
|                           | 0722               | 321.8                        | 0.05           | 0.54          | 293                                            | 75                 | 2/_    | -                | 258                | 53               | 3_               | 44                                               |
| 3                         | 0717               | 319.5                        | 0.07           | 0.76          | 293                                            | 74                 | 70     |                  | 250                | 52               | 4                | 4/3                                              |
| 2                         | 0712               | 317.0                        | 0.08           | 0,87          | 290                                            | 71                 | 69     | -                | 256                | 57               | 4                | 42                                               |
| E1-1                      | 0707               | 34.121                       | 0.1            | 1.1           | 290                                            | 69                 | 68     |                  | 230                | 51               | 3,5              | 40                                               |
| Traverse<br>Point         | Clock<br>Time      | Dry gas meter<br>reading ft3 | P<br>in H2O    | ^ H<br>in H2O | Stack<br>Temp. F                               | Dry gas m<br>Inlet | Outlet | Hot box<br>Temp. | Probe<br>Temp      | Last<br>Impinger | Vacuum<br>in. Hg | Cond.<br>Exit<br>Temp. F                         |
| STATIC                    | PRESS              | -6.0                         | H2O            |               | OPERAT                                         |                    | Jwm    |                  | <del>.</del>       |                  |                  |                                                  |
| PTCF                      | 0.84<br>FSS 7.     | DGMCF Hg                     | <del>799</del> | NOZZLE        | DIA. 👝                                         | 358                | inches | FINAL L          | EAK RAT            | E_O              | 0146             | eim 1147                                         |
| DUCT C                    | MENSION            | TIME START                   | <u>X</u>       |               | TIME FIN                                       | ER                 | 250    | INITIAL          | JRATION<br>LEAK RA | TE               | 2006             | min.                                             |
| SAMPLI                    | NG LOGA            | TION IN                      |                |               | TO AC CO                                       | RUN NO             |        | Phase            |                    | .n3 ,            | 21 <b>a</b>      | •                                                |
|                           |                    |                              | ation Boiler   | <u> </u>      |                                                |                    | $\sim$ | Δì               | , A                |                  | _ of <u>3</u>    | _                                                |

| PLANT                                                 | NAME        | Plant Yates St                                   | ation Boiler                                     |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Page 2    | _ of <u>_3</u> | <del>-</del> |
|-------------------------------------------------------|-------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|----------------|--------------|
| DATE                                                  |             | TION IN                                          |                                                  |                                            | TIME FI                                   | RUN NO                                  | . <u>Sen</u>                                  | TEST DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mase T<br>TRATION<br>LEAK RA | -Run      | <u> </u>       | in.          |
| DUCT I                                                | MENSION     | VSTHg                                            | _ x                                              | NOZZLE                                     | DIAMET                                    | ER                                      | inghas                                        | INITIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEAK RA                      | TE        | с              | lm<br>- (    |
| D + D D D                                             | ESS         | "Hg                                              |                                                  | NOZZLE                                     | DIA                                       |                                         | niches                                        | rinal L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LAK KA I                     | <u> </u>  |                | :lm          |
| STATIC                                                | PRESS       |                                                  | ' H2O                                            |                                            | OPERAT                                    | <u>ت _</u> OR                           | eu~                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
|                                                       |             |                                                  |                                                  |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
| Traverse                                              | Clock       | Dry gas meter                                    | ^P                                               | ^ H                                        | Stack                                     | Dry gas m                               | eter temp.                                    | Hot box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe                        | Lası      | Vacuum         | Cond.        |
| Point                                                 | Time        | reading ft3                                      | in H2O                                           | in H2O                                     | Temp. F                                   | Inlet                                   | Outlet                                        | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp                         | Impinger  | in. Hg         | Exit         |
|                                                       |             |                                                  |                                                  |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | j         | -              | Temp. F      |
| <u></u>                                               | 11          | 74- 17-                                          | 0.02                                             | 2 22                                       | <b>-</b>                                  | -                                       | 87                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | > - <b>-</b>                 |           |                |              |
| E) !                                                  | 851         | 360.172-                                         |                                                  |                                            | 316                                       | 91                                      | 87                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 227                          | 458       | 543            | 54           |
|                                                       | \$52        | 361.8                                            | 0.03                                             | 0.33                                       | 320                                       | 92                                      | 88                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 257                          | <u>5</u>  | 3              | 52           |
| 3                                                     | 4901        | 363.7                                            | 0.05                                             | 0.53                                       | 326                                       | 92                                      | 88                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 247                          | 56        | ٠, ٧           | 53           |
| 4                                                     | 906         | 365.8                                            | 0.09                                             | 1.0                                        | 327                                       | 92                                      | हुन                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 252                          | 53        | 5              | 57           |
| 5                                                     | 911         | 368 5                                            | 0.15                                             | 1.7                                        | 332                                       | 94                                      | 89                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24/254                       | 52        | 7              | 48           |
| 7                                                     | 9/6         | 372.1                                            | 0.21                                             | 2, 3                                       | 330                                       | 56                                      | 91                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 246                          | 52        | 9.5            | 50           |
|                                                       | 921         | 376.091                                          | Grac                                             |                                            | - Clar                                    | KM                                      | u!                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
| <del>&gt;                                      </del> |             |                                                  | Guo                                              | 11118                                      | Ch                                        |                                         | 2670                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
| W-2-1                                                 | 946         | 376.420                                          |                                                  | 0.33                                       | 218                                       | 90                                      | 89                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 219                          | 65        | 3              | 57           |
| <i>W-J-1</i><br>2                                     |             |                                                  |                                                  |                                            | -                                         |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
|                                                       |             | 77×.2                                            | 0.03                                             | 0.33                                       | 300                                       | 51                                      | 85                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 258                          | 60        | 3.5            | 52           |
|                                                       | 958         | 379.9                                            | 0.04                                             | 0.44                                       | 304                                       | 91                                      | 89                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250                          | 59        | 7              | 53           |
| 7                                                     | 1001        | 381.8                                            | 0.07                                             | 0.78                                       | 307                                       | 51                                      | 37                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 248                          | 58        | 5              | _53_         |
| 5                                                     | 1006        | 384.2                                            | 8112                                             | 1.3                                        | 297                                       | 93                                      | 90                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 248                          | _52_      | 7              | 54           |
| 6                                                     | 1011        | 387.4                                            | 0.15                                             | 1.7_                                       | 307                                       | 96                                      | 91                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250                          | 57        | 8              | 55           |
| 5/20                                                  | 1016        | 390.767                                          | Goz                                              | of Fire                                    | · Tloa                                    |                                         | ich                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
|                                                       |             |                                                  |                                                  |                                            |                                           | <u> </u>                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
| W4-1                                                  | 1022        | 390,980                                          | 002                                              | 0.22                                       | 290                                       | 94                                      | 92                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 216                          | 67        | 3              | 59           |
| >                                                     | 1027        | 392,5                                            | 0.02                                             | 0.22                                       | 298                                       |                                         | 93                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                          | 64        | 3              | 53-          |
| <u> </u>                                              |             |                                                  |                                                  |                                            |                                           | 95                                      |                                               | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                            |           |                |              |
|                                                       | 1032        | 3 73.8                                           | 0.05                                             | 0.73                                       |                                           | 55                                      | 93                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 245                          | 58        | 5-             | 53           |
| ¥                                                     | <i>[037</i> | 396.0                                            | 0.1                                              | Le (                                       | 307                                       | 96_                                     | 93                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                          | 52/       |                | 49           |
|                                                       |             | 398.8                                            |                                                  |                                            |                                           | 97                                      | 93                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 244                          | <u>52</u> | 8              | 49           |
| 6                                                     | 1047        | 402,0                                            | 0.14                                             | 1.6                                        | 299                                       | 99                                      | 94                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 245                          | 52        | 8.5            | 49           |
| Stop                                                  | 1052        | 405.540                                          | Gare                                             | 1 6'~                                      | 1 120                                     | k Che                                   | ck                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
| 1 -                                                   |             |                                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
|                                                       |             |                                                  |                                                  |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
|                                                       |             |                                                  |                                                  |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
|                                                       |             |                                                  |                                                  |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           | <b></b>        |              |
|                                                       |             | <del>                                     </del> |                                                  |                                            |                                           |                                         | <del> </del>                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |           |                |              |
|                                                       |             | <del> </del>                                     | <del>                                     </del> | <del></del>                                | <del></del>                               | -                                       |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                 |           |                |              |
|                                                       |             | \$*21718/415/8/                                  | Y 2,222 35 544                                   | ()<br>()()()()()()()()()()()()()()()()()() | Signa Toward                              | (N.20% (S. 22)                          | Millione and the                              | 1000 Billion 1899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |           |                |              |
| Avg.                                                  | <del></del> | 44.426                                           |                                                  |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
| Check'd                                               |             |                                                  |                                                  |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
|                                                       |             | _ <del>_</del>                                   |                                                  |                                            |                                           | 1863418888188811444                     | 0 <b>000000000000</b> 00000000000000000000000 | 5,733933883384444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del> ;                | <u></u>   |                |              |
|                                                       |             |                                                  |                                                  |                                            | 1 9 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / | 355040000400000000000000000000000000000 |                                               | 09022392999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |           |                |              |
| FILTER                                                |             |                                                  |                                                  |                                            | - 35 (6000) (6000)                        | All the second second second second     |                                               | CONTRACTOR AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P |                              |           |                |              |
| AMBIEN                                                | NT TEMP.    |                                                  |                                                  |                                            | Flowrate                                  | (DSCFM)                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
|                                                       |             |                                                  |                                                  |                                            | Isokinetic                                | (%)                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
| LINER                                                 | MATERIAL    | <i>,</i>                                         |                                                  |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |              |
| DEMAD                                                 | vc          |                                                  |                                                  |                                            |                                           |                                         |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                | •            |

| DI ANIT       | MAME                                             | Diant Vates St         | etion Boile | - No. 1           |              |                                                  |               |              |                                                  | Page 3                                           | of 1        | <b>?</b>                                         |
|---------------|--------------------------------------------------|------------------------|-------------|-------------------|--------------|--------------------------------------------------|---------------|--------------|--------------------------------------------------|--------------------------------------------------|-------------|--------------------------------------------------|
|               |                                                  | Plant Yates St         | 0 + - S     | eniula            | 6/0          |                                                  | Pho           | so / 1       | Qual                                             | 7                                                | _ 01        | -                                                |
| SAMPL<br>DATE | ING LOCA                                         | TION                   | ي اع        |                   | LINIT LI     | NISH                                             |               | 1556 129     | IKALIUN                                          |                                                  | rr          | nin.                                             |
| DUCT          | IMENSIO                                          | TIME START NS DGMCF Hg | _ x         |                   | DIAMET       | ER                                               |               | INITIAL      | LEAK RA                                          | TE                                               | c           | fm .                                             |
| PICF BAR PR   | ESS                                              | DGMCF Hg               |             | NOZZLE            |              |                                                  |               | FINAL L      | EAK KA                                           | TE                                               | <del></del> | cina                                             |
| STATIC        | PRESS                                            |                        | ' H2O       |                   | OPERAT       | OR _ <i></i>                                     | wm            |              |                                                  |                                                  |             |                                                  |
|               |                                                  |                        |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |
| Traverse      | Clock                                            | Dry gas meter          | ^ P         | H                 |              |                                                  | eter temp.    | Hot box      | Probe                                            | Last                                             | Vacuum      | Cond.                                            |
| Point         | Time                                             | reading ft3            | in H2O      | in H2O            | Temp. F      | Inlet                                            | Outlet        | Temp.        | Temp                                             | Impinger                                         | in. Hg      | Exit<br>Temp. F                                  |
|               |                                                  |                        | -           | }                 |              |                                                  |               |              |                                                  | ļ '                                              |             | reup. r                                          |
| U6 (          | 1111                                             | 405.659                | 0.01        | 0.11              | 249          | 94                                               | 93            |              | 215                                              | 69                                               | 3           | 56                                               |
| 2             | 1116                                             | 406.8                  | 1           | 0,22              | 302          | 93                                               | 93            | <del>-</del> | 234                                              | 65                                               | 3           | 53                                               |
| 3             | 1121                                             | 408.2                  | 0.03        | 0.34              | 299          | 94                                               | 93            |              | 247                                              | 62                                               | 4           | 53                                               |
| 4             | 1126                                             | 4094                   | 0.03        | 0.34              | 289          | 94                                               | 93            | ~            | 248                                              | 60                                               | 4           | 53                                               |
| 5             | 1130                                             | 411.6                  | 0.04        | 0.45              | 291          | 95                                               | 94            | _            | 248                                              | 60                                               | 5-          | 54                                               |
| 6             | 1136                                             |                        |             | 0.78              | 281          | 97                                               | 95            |              | 218                                              | 60                                               | ی           | 53                                               |
| 2/00          | 1141                                             | 416,100                |             |                   | (            |                                                  |               |              |                                                  |                                                  | l           |                                                  |
| ,             |                                                  | •                      |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |
| 458 1         | 1220                                             | 416.178                | 0.04        | 0.45              | 289          | 91                                               | 90            | ~            | 226                                              | 63                                               | 4           | 55                                               |
| Z             |                                                  | 4187                   |             | 0.34              | 290          | 91                                               | 71            |              | 244                                              | 61                                               | 4           | 53                                               |
| 3             | 1230                                             | 420,4                  |             |                   | 281          | 92                                               | 91            |              | 247                                              | 62                                               | 4           | 574                                              |
| 4             | 1235                                             | 421.8                  | 6.01        | 0,11              | 7            | 93                                               | 91            |              | 745                                              | 65                                               | 2.5         | 57                                               |
| 5             | - 1                                              | 423.0                  |             | 0.44              | 293          | 94                                               | 9/            | _            | 247                                              | 65                                               | 4           | 52                                               |
| 6             | 1245                                             | 424.7                  |             | 0.33              | 291          | 95                                               | 73            | _            | 245                                              | 62                                               | 4           | 54                                               |
| Ston          | 1250                                             | 426,397                |             |                   |              |                                                  | 1             |              |                                                  |                                                  | ,           |                                                  |
| 121212        | 1                                                |                        | leak c      | hock              | 0.0          | 140                                              | 1104          | ·            |                                                  |                                                  |             |                                                  |
|               |                                                  | 7.33=7.7               |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |
|               |                                                  |                        |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |
|               |                                                  |                        |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |
|               |                                                  |                        |             |                   | <u> </u>     |                                                  |               |              |                                                  |                                                  |             |                                                  |
|               |                                                  |                        |             |                   | <u> </u>     |                                                  |               |              |                                                  |                                                  |             |                                                  |
|               |                                                  |                        |             |                   | _            |                                                  |               |              |                                                  |                                                  |             |                                                  |
|               |                                                  |                        | <u> </u>    |                   | <del></del>  | <del> </del>                                     |               |              | <del> </del>                                     | <del> </del>                                     |             |                                                  |
|               |                                                  |                        | -           |                   | <del> </del> | <del>                                     </del> | <b>†</b>      |              |                                                  |                                                  |             |                                                  |
|               |                                                  |                        |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |
|               |                                                  | <del> </del>           |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |
| <b></b>       |                                                  | <u> </u>               |             |                   |              |                                                  |               |              | <del>                                     </del> |                                                  |             | <del> </del>                                     |
| ļ             | <del> </del>                                     | 1                      |             |                   | <del></del>  | <del>                                     </del> |               |              |                                                  | <del> </del>                                     | [           | <del>                                     </del> |
|               | <del> </del>                                     | τB                     | VΔP         | <del> </del>      | _            | <del>                                     </del> | /             |              | <del> </del>                                     | <del>                                     </del> |             | <del>                                     </del> |
| <b></b>       | <del> </del>                                     | 712-1246               |             | 128               | 30≤          | 0                                                | 7.1           |              |                                                  |                                                  |             |                                                  |
| Avg.          | <del>                                     </del> |                        | 78/         | 2100              | 300.5        |                                                  | /TR           |              |                                                  |                                                  |             | <b></b>                                          |
| Check'd       |                                                  | (Head)                 | Ind. Ch.    | <b>F</b> AST A ST | ودري د ا     | 1                                                | V ID          | rtu Synd iik | A Section (Section)                              | <b>.</b>                                         |             | <u></u>                                          |
| CONSO         | LE#                                              |                        |             |                   | Velocity     |                                                  |               |              | )<br>}                                           |                                                  |             |                                                  |
|               |                                                  |                        |             |                   | % Moisu      | 110                                              |               | 4.77.58.88   | 8<br>5<br>6                                      |                                                  |             |                                                  |
|               |                                                  |                        |             |                   | Flowrate     | (DSCFM                                           | ) jakanjarija |              | <del>.</del>                                     |                                                  |             |                                                  |
|               |                                                  |                        |             |                   | lsokineti    | : (%)                                            | gi Sirki      |              | n<br>Ž                                           |                                                  |             |                                                  |
|               | _                                                |                        |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |
|               |                                                  |                        |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |
| REMAR         | UKS .                                            |                        |             |                   |              |                                                  |               |              |                                                  |                                                  |             |                                                  |

| AMDIT            | NG LOCA       | TION ESP                                            | INIP          | T              |                  | RUN NO       | . <i>E</i>           | , RI-                                        | x /           | Sea. : 1.3.      | _ of             |               |
|------------------|---------------|-----------------------------------------------------|---------------|----------------|------------------|--------------|----------------------|----------------------------------------------|---------------|------------------|------------------|---------------|
| AMPLI<br>ATE (   | 120/43        | TIME START                                          | 11300         | <u> </u>       | TIME FI          | NISH         | · <u></u>            | TEST DI                                      | RATION        |                  | <u>''</u> "      | in.           |
| UCT D            | MENSIO        | NS 8,5                                              | _ X <i>4</i>  | 3 ?<br>NO321 E | DIAMET           | ER           | :                    | INITIAL                                      | LEAK RA       | TE               | c                | fm<br>        |
| AR PRI           | ESS 7         | Hg "Hg                                              |               | NUZZLE         | DIA              | <del>-</del> | niches               | FINAL L                                      | EAR RAI       | L                |                  | 1111          |
| TATIC            | PRESS         | TION ESP<br>TIME START<br>NS 8,5<br>DGMCF<br>156 Hg | H2O           |                | OPERAT           | OR _J        | <u>س</u>             |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              | <u> </u>      |                  |                  |               |
| raverse<br>Point | Clock<br>Time | Dry gas meter<br>reading ft3                        | ^ P<br>in H2O | ^ H<br>in H2O  | Stack<br>Temp. F | Dry gas m    | eter temp.<br>Outlet | Hotbox<br>Temp.                              | Probe<br>Temp | Last<br>Impinger | Vacuum<br>in. Hg | Cond.<br>Exit |
| ronn             | 111120        | 1020113                                             |               | un 1320        | Tunp. 1          | <b>unc</b> t | Odnet                | remp.                                        |               |                  |                  | Temp. F       |
|                  |               | 061.325                                             |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               | 064.965                                             |               | <del></del>    |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               | ·              |                  | <del></del>  |                      | <u> </u>                                     | <del></del>   |                  |                  |               |
|                  | <del></del>   |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               | <u> </u>                                            |               | ·              |                  |              |                      |                                              |               |                  |                  |               |
| -                |               |                                                     |               |                |                  |              | ·                    |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              | i                    |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              | _                    |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     | <u> </u>      | <del></del>    |                  |              | <u></u>              |                                              |               |                  |                  |               |
|                  |               | <del>                                     </del>    | -             |                |                  | <u>"</u>     |                      |                                              |               |                  | -                |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
| -                |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  | L             |                                                     |               |                |                  |              | <br>                 | <u></u>                                      |               | <u> </u>         |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               | <del></del>    |                  | <u> </u>     |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                |                  |              |                      |                                              |               |                  |                  |               |
| Avg.             | _             |                                                     |               |                |                  | 2000 V       |                      |                                              |               |                  |                  |               |
| Check'd          |               |                                                     |               |                |                  |              | Panija sija          |                                              |               |                  |                  |               |
| CONSOL           | LE# A         | 61393                                               | _             |                |                  |              |                      |                                              |               |                  |                  |               |
| ILTER            | #             |                                                     | _             |                |                  | ine          |                      |                                              |               |                  |                  |               |
|                  |               | 90                                                  |               |                |                  |              |                      |                                              |               |                  |                  |               |
|                  |               |                                                     |               |                | -DVA HPCAIL      |              | <u> </u>             | . 19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10 |               |                  |                  |               |
|                  |               |                                                     | <del></del>   |                |                  |              |                      |                                              |               |                  |                  |               |

Page \_\_\_\_ of \_\_\_

| Plant l   | Name                                             | Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yates St   | tation Bo         | iler No.        | 1                                          |                                                |                                                  |              |            |            |       |     |
|-----------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|-----------------|--------------------------------------------|------------------------------------------------|--------------------------------------------------|--------------|------------|------------|-------|-----|
| Samplin   | g Location                                       | INLET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •          |                   | Train           |                                            | —<br>Aldehyde                                  | ×                                                | Rui          | ı No.      | <i> </i> . |       | •   |
| Dato      | -7/.93                                           | Time Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3//        | · · · · · · · · · | Time Fin        | ish / 3 4                                  | 15                                             | Test Dur                                         | ation 3      | <u>ح</u> ج | min.       |       | 1   |
| Duct Di   | mensions                                         | 8/1/x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 451        |                   | Diameter        |                                            | ft                                             | Initial Le                                       | ak Rate 🕖    | 00801      | 5 40       |       |     |
| PTCF _    | .84                                              | DGMCF /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 009        | Nozzle D          | ia. <u> 2 ;</u> | 75 incl                                    | hes                                            | Final Lea                                        | k Rate 0     | 1007 a     | elm        |       |     |
| Bar Pres  | ss <u> </u>                                      | <del>?_5/_</del> " Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                   |                 |                                            |                                                |                                                  |              | 10         | 4          |       |     |
| Static Pr | ress                                             | Plant INLET Time Start X DGMCF S Hg Hg H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )          |                   | Operator        | MLO                                        | 7                                              | _                                                |              |            |            |       |     |
| Travers   | Clock                                            | Dry gas meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ^ P        | ^H                | Stack           | Dry gas m                                  | eter temp.                                     | Hot box                                          | Probe        | Last       | Vacuum     |       | 1.  |
| Point     | Time                                             | reading ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in H2O     | in H2O            | Temp. F         |                                            | Outlet                                         | _                                                | Temp         | Impinger   | 1          | 3.86  | '   |
| N/A       | 1214                                             | 58273X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                   |                 |                                            |                                                |                                                  |              |            |            |       |     |
| 777       | 12/5                                             | 50//13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/         | 41                | 3/4             | 77                                         | 77                                             | 11/4                                             | 75-1         | 17         | 4.0        | e (i) |     |
|           | VZ 2 0                                           | COX 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/         | 47                | 3/4             | 10                                         | 17/                                            | <b>/</b> ////                                    | 0115         | 13         | 40         | 7.87  |     |
|           | 1225                                             | 100 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/         |                   | 5/              | 10                                         | 46                                             | <del>                                     </del> | 200          | 00         | 20         | 3,8,0 |     |
|           | 1226                                             | CO 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10         | .38               | 3/5             | 13                                         | 70                                             | <del>                                     </del> | 7-           | 64         | 110        | 3.71  | · C |
|           | 1230                                             | 9/1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0/()       | 138               | 3/0             | BZ                                         | 137                                            |                                                  | 4.5/         | 63         | 4,0        | 3.74  | _   |
|           | 17111                                            | 50201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>a/Q</i> |                   | 3/4             | 84                                         | 21                                             |                                                  | 20           | 67         | 3,5        | 3.76  |     |
| ļ         | 1215                                             | 572.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -//0       | .38               | 3/4             | 09                                         | _                                              |                                                  | 4            | Ce/        | 410        | 3.76  |     |
|           | Y 24)                                            | 594.5 <i>[5</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .70        | , 35              | 2/7             | 85                                         | 2/                                             | <u> </u>                                         | 677          | 0/         | 4.0        | 3.16  |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            | <u> </u>                                       |                                                  | <del> </del> |            |            |       |     |
|           | <u> </u>                                         | 17 701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                   |                 |                                            |                                                | <del> </del>                                     | ļ.——         |            |            |       |     |
|           | <u> </u>                                         | 12.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                   |                 |                                            | ļ                                              | <del></del>                                      | <u> </u>     | ļ          | <b></b>    |       | ŀ   |
|           | ļ                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ <u>.</u> |                   |                 |                                            |                                                | <u> </u>                                         | <u> </u>     |            |            |       |     |
|           | <del>                                     </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   | ļ               | <del> </del>                               |                                                | ļ                                                |              | ļ          | <u> </u>   |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   | ļ               |                                            |                                                |                                                  |              |            |            |       |     |
|           | ļ                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            | ļ                                              |                                                  |              | ļ          |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   | <u> </u>        |                                            |                                                | <u> </u>                                         | <u> </u>     |            |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            |                                                |                                                  |              |            |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            | <u> </u>                                       |                                                  |              |            |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            | <u> </u>                                       |                                                  |              |            |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            |                                                |                                                  |              |            |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            |                                                |                                                  | ł            |            |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            |                                                |                                                  |              |            |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            |                                                |                                                  |              |            |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            |                                                |                                                  |              |            |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            |                                                |                                                  |              |            |            |       |     |
|           |                                                  | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 1                 |                 |                                            | ,                                              |                                                  |              | 1          |            | -     |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            |                                                |                                                  |              | <u> </u>   |            |       |     |
|           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VSP        |                   |                 |                                            |                                                |                                                  | 1            |            |            |       |     |
| Avg.      | _                                                | 12.29(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.323      | A 10              | 315             | 21                                         | 19                                             |                                                  | 252          |            |            |       |     |
| Check'd   |                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | 1                 |                 |                                            | 1/7                                            | 100000000000000000000000000000000000000          |              |            |            |       |     |
| S         | <u> </u>                                         | Control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |            |                   |                 | 183 64 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                                                |                                                  |              | •          | 6 6556     |       | 8   |
| CONSO     | LE #                                             | 80°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                   |                 | Velocity_                                  | 100 gan as kin 2000 fi<br>160 Paris sa 1600 sa |                                                  |              |            |            |       |     |
| FILTER    | * Na                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -                 |                 |                                            | re                                             |                                                  |              |            |            |       |     |
| AMBIE     | NT TEMP.                                         | _00°F_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                   |                 |                                            | (DSCFM)_                                       |                                                  |              |            |            |       |     |
| PROBE     | LENGTH                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>   |                   |                 | Isokinetic                                 | (%)                                            |                                                  |              |            | *<br>*     |       |     |
| LINER     | MATERIAI                                         | glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                   |                 |                                            |                                                |                                                  |              |            |            |       |     |
|           |                                                  | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                   |                 |                                            |                                                |                                                  |              |            |            |       |     |
| REMAR     | CKS                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                   |                 |                                            |                                                |                                                  |              |            | _          |       |     |

Page \_\_\_\_ of \_\_\_\_

| Plant !                            | Name                                             | Plant                                            | Yates St | ation Bo                              | iler No.     | 1                                                  |               |                                                  |                 | _                                                | _              |            |
|------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|---------------------------------------|--------------|----------------------------------------------------|---------------|--------------------------------------------------|-----------------|--------------------------------------------------|----------------|------------|
| Samplin                            | z Location                                       | ESP INL                                          | et .     |                                       | Train        | A                                                  | Aldehyde      | s                                                | Rur             | 1 No. 🚄                                          | <del>-</del> _ |            |
| Date 6                             | <i>-Z2-</i> 93                                   | Time Start X                                     | 0735     | ·                                     | Time Fini    | ish 080                                            |               | Test Dura                                        | ition           | 30                                               | <br>min.       |            |
| Duct Di                            | nensions_                                        | 8'6" X_                                          | 45       | <u>57</u> '                           | Diameter     | -21                                                | <u>5</u> n    | Initial Lea                                      | ık Rate 🛭       | 0.008                                            | Acim 5         | W .        |
| PTCF _                             | 84                                               | DGMCF _(, _/, _/, _/, _/, _/, _/, _/, _/, _/, _/ | 09       | Nozzle D                              | ia           | inch                                               | es            | Final Lea                                        | k Rate <u>C</u> | 006                                              | cfm            |            |
|                                    |                                                  |                                                  |          |                                       |              |                                                    |               |                                                  |                 | at 1                                             | o //           |            |
| Static Pr                          | ess <u> </u>                                     | <i>_4</i>                                        | )        |                                       | Operator     | MKO                                                | <del></del>   |                                                  |                 |                                                  | Part           | €-9        |
| Travers                            | Clock                                            | Dry gas meter                                    | ^ P      | ^ H                                   | Stack        | Dry gas m                                          | eter temp.    | Hot box                                          | Probe           | Last                                             | Vacuum         |            |
| Point                              |                                                  | reading ft3                                      |          |                                       | Temp. F      | Inlet                                              | Outlet        | Temp.                                            | Temp            | Impinger                                         | in. Hg         | K:3.       |
| 4/10                               | 1776                                             | 1003,780                                         |          |                                       |              |                                                    |               | NIA                                              |                 |                                                  |                |            |
| <i>PV /#</i> _                     | 0746                                             |                                                  | 111      | .53                                   | 300          | 78                                                 | 16            | N / 1                                            | 2.66            | 67                                               | 4,0            |            |
| <del></del>                        | - 740                                            | 604.12                                           | 1/2      | 1,6                                   | 3//          | 1207                                               | 75            | <del>                                     </del> | 7/0             | 55                                               | 4.0            |            |
|                                    | 077                                              | 1006,10                                          | 13       | 4/01                                  | 3//          | 25                                                 | 2/            |                                                  | 700             | <del></del>                                      |                |            |
| <u> </u>                           | 0/50                                             | 608 17                                           |          | 4 /                                   |              | -0                                                 | 76            | <del> </del>                                     | 470             | 76                                               | 400            | · · ·      |
| <b> </b>                           | 0.7>2                                            | 6/0.60                                           | 13       | .49                                   | 3//          | 78.                                                | 76            | <del>  -</del>                                   | 652             | 57                                               | 4.0            |            |
| <u></u>                            | 0860                                             | 617 30                                           | 1/5      | .49                                   | 3//          | 78                                                 | 76            | <del> </del>                                     | 713             | 158                                              | 4.0            |            |
| ļ                                  | 0300                                             | 614375                                           | 0//      | .41                                   | 3/1          | 79                                                 | 76            |                                                  | 249             | 78                                               | 40             |            |
|                                    |                                                  |                                                  |          |                                       |              |                                                    |               | <u> </u>                                         |                 |                                                  |                |            |
|                                    |                                                  |                                                  |          |                                       |              |                                                    |               |                                                  |                 |                                                  |                |            |
|                                    | <u> </u>                                         |                                                  |          |                                       |              |                                                    |               | <u> </u>                                         |                 |                                                  |                |            |
|                                    |                                                  |                                                  |          |                                       |              |                                                    |               |                                                  |                 | <u> </u>                                         |                |            |
|                                    |                                                  |                                                  |          |                                       |              |                                                    |               |                                                  |                 |                                                  |                |            |
|                                    |                                                  |                                                  |          |                                       |              |                                                    |               |                                                  |                 |                                                  |                |            |
|                                    |                                                  |                                                  |          |                                       |              |                                                    |               |                                                  |                 |                                                  |                |            |
|                                    |                                                  |                                                  |          | ,                                     |              |                                                    |               | 1                                                | <u> </u>        |                                                  |                |            |
|                                    | <del>                                     </del> | <del>                                     </del> |          |                                       |              | <del> </del>                                       |               | <del> </del>                                     |                 | <del> </del>                                     |                |            |
|                                    |                                                  |                                                  |          |                                       |              | -                                                  |               | <del>                                     </del> |                 | <del>                                     </del> |                |            |
|                                    | <del> </del>                                     | <b></b>                                          |          |                                       | <del> </del> | <del></del>                                        |               | <del> </del>                                     |                 | <del> </del> -                                   |                |            |
| <b></b>                            | <del></del>                                      |                                                  |          |                                       | <del></del>  | · · · · · · · · · · · · · · · · · · ·              | !<br>         |                                                  | <u> </u>        | <del></del>                                      |                |            |
|                                    | <del> </del>                                     | <del> </del>                                     |          |                                       |              |                                                    |               | <del>                                     </del> | ļ               | <del>                                     </del> | <del> </del>   |            |
|                                    |                                                  |                                                  | <u> </u> |                                       | <del> </del> | <del> </del>                                       | <u> </u>      | 1                                                | 1               | <b></b>                                          |                |            |
| <del></del>                        |                                                  |                                                  |          |                                       |              |                                                    |               |                                                  | ļ               |                                                  | ļ              |            |
|                                    | <u> </u>                                         |                                                  |          |                                       |              |                                                    | <u></u>       |                                                  |                 | <u> </u>                                         |                |            |
|                                    | ļ                                                |                                                  |          |                                       | <u> </u>     |                                                    | <u> </u>      | <u> </u>                                         |                 | <u> </u>                                         |                | ļ <u> </u> |
|                                    | 1                                                |                                                  |          |                                       | <u> </u>     |                                                    |               |                                                  |                 | <u> </u>                                         |                |            |
|                                    |                                                  |                                                  | <u> </u> |                                       |              |                                                    |               |                                                  |                 |                                                  |                |            |
|                                    |                                                  |                                                  |          |                                       | ]            |                                                    |               |                                                  |                 |                                                  |                |            |
|                                    |                                                  |                                                  |          | -                                     |              |                                                    |               |                                                  |                 |                                                  |                |            |
| -                                  |                                                  | <u> </u>                                         |          |                                       |              |                                                    |               |                                                  |                 |                                                  |                |            |
| Avg.                               |                                                  | 10.395                                           | 0.352    | n 102                                 | 311          | 76:                                                |               |                                                  |                 |                                                  |                |            |
| Check'd                            |                                                  | 7                                                | 11       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1            | anca T                                             |               |                                                  |                 |                                                  |                |            |
| CONSO<br>FILTER<br>AMBIEI<br>PROBE | LE# A<br>#<br>NT TEMP.<br>LENGTH                 | 16/402<br>- 74<br>- 10'<br>- 9/015               |          |                                       |              | Velocity_<br>% Moistur<br>Flowrate (<br>Isokinetic | ne<br>DSCFM)_ |                                                  |                 | ටය් වියද වියද වියද වියද වියද වියද වියද වියද      |                |            |
| REMAR                              | eks                                              |                                                  |          | ·                                     |              | · · · · · · · · · · · · · · · · · · ·              |               |                                                  |                 |                                                  | -              |            |

Page \_\_\_\_ of \_\_\_

| Plant N                             | Name                                          | Plant                 | Yates St | ation Bo                                         | iler No.                                        | 1                       |              |                                                  | _                                                | 1              |           |                                        |
|-------------------------------------|-----------------------------------------------|-----------------------|----------|--------------------------------------------------|-------------------------------------------------|-------------------------|--------------|--------------------------------------------------|--------------------------------------------------|----------------|-----------|----------------------------------------|
| Sampling                            | Location                                      | Time Start            | (017)    |                                                  | Train _                                         | <i>P</i>                | ldehyde      | <u>s</u>                                         | _ Rur                                            | 1 No. <u>3</u> |           |                                        |
| Date '2'                            | -2343                                         | Time Start            | 112      | <del>-</del> ,                                   | Time Fini                                       | ish <u>// 75</u>        | 6            | Test Dura                                        | tion                                             | 50             | min.      | 1/                                     |
| Duct Din                            | nensions_                                     | <u> </u>              | 100 01   | <u>57</u> ′                                      | Diameter                                        |                         | ft           | Initial Lea                                      | ak Rate <u>/</u>                                 | 1009           | Conferm 2 | -                                      |
| PTCF _                              | 184                                           | DGMCF                 | 7 ~      | Nozzle D                                         | ia. <u>"                                   </u> | inch                    | cs           | Final Lea                                        | k Rate <u>U</u>                                  | ,00/0          | ofm cfm   |                                        |
| Bar Press                           | s <u>27.3</u>                                 | 7 Hg                  |          |                                                  | 0                                               | ML                      |              |                                                  |                                                  | / (            | 5 '       |                                        |
| Static Pro                          | -88 <u>- (</u> -                              | <i></i> " H2C         | ,        |                                                  | Operator                                        | <u>"40</u>              |              |                                                  |                                                  |                |           |                                        |
| Travers                             | Clock                                         | Dry gas meter         | ^ P      | ^н                                               | Stack                                           | Dry gas m               | eter temp.   | Hot box                                          | Probe                                            | Last           | Vacuum    | 6                                      |
| Point                               | Time                                          | reading ft3           | in H2O   | in H2O                                           | Temp. F                                         | Inlet                   | Outlet       | Temp.                                            | Temp                                             | Impinger       | in. Hg    | K-38                                   |
| 11/0                                | 1720                                          | 627,675               | Ø        |                                                  |                                                 |                         |              | 11/#                                             |                                                  |                |           |                                        |
| 7//                                 | 0125                                          | 624.42                | //       | 41                                               | 3//                                             | 76                      | 15           | <del> -<i>1</i> /// </del>                       | 262                                              | 62             | 315       |                                        |
|                                     | 0730                                          | 626.16                | . / ()   | 30                                               | 310                                             | 76                      | 75           |                                                  | 156                                              | 55             | 25        |                                        |
|                                     | 0735                                          | 12201                 | # / · ·  | 38                                               | 3/6                                             | 76                      | 75           |                                                  | 150                                              | 2              | 2.5       |                                        |
|                                     | 200                                           | 1000                  | 1/0      | 30                                               | 317                                             | 177                     | 76           | <del> </del>                                     | 7/0                                              | 30             | 7 5       |                                        |
|                                     | 0745                                          | 19116                 | 00       | 38                                               | 318                                             | 83                      | 79           |                                                  | 261                                              | 17             | 7 -       |                                        |
|                                     | 075                                           | 1720                  | 10       | 138                                              | 3/3                                             |                         | (4)          | <del>                                     </del> | 1.6/                                             | 63             | 3.5       |                                        |
|                                     | 0750                                          | 0>/10                 | 9/0      | 120                                              | 7/7                                             | 24                      | 80           | <u> </u>                                         | 1005                                             | 60             | 7         |                                        |
|                                     |                                               | <u> </u>              | <u> </u> | ļ                                                |                                                 |                         |              | <u> </u>                                         | <u> </u>                                         |                |           |                                        |
|                                     |                                               | <br>                  |          |                                                  |                                                 |                         | <del></del>  |                                                  |                                                  |                | ·         |                                        |
|                                     |                                               |                       |          | ·                                                |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              | ļ                                                |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         | -            |                                                  |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              | <del></del>                                      |                                                  | <u> </u>       |           |                                        |
|                                     |                                               | -                     |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
|                                     |                                               | <u> </u>              |          |                                                  |                                                 |                         |              | <del> </del>                                     |                                                  |                |           |                                        |
|                                     | l                                             |                       |          | <del>                                     </del> |                                                 | <u> </u>                |              | <del> </del>                                     | <del> </del>                                     |                |           |                                        |
|                                     |                                               | <del> </del>          |          | <del> </del>                                     |                                                 |                         |              | 1                                                |                                                  | -              |           |                                        |
|                                     | <u> </u>                                      | <del> </del>          | -        | <del>                                     </del> |                                                 |                         |              |                                                  |                                                  | ļ              |           |                                        |
| <u> </u>                            | <u> </u>                                      |                       | ļ        |                                                  |                                                 | <del> </del> -          | 1            |                                                  | <del> </del>                                     |                |           |                                        |
| -                                   | <u> </u>                                      |                       | <b></b>  | -                                                |                                                 | <u> </u>                |              | 1 -                                              | <del>                                     </del> | -              |           |                                        |
| j<br>                               |                                               |                       |          |                                                  | 1                                               | ļ                       |              | <del> </del>                                     | <u> </u>                                         |                |           |                                        |
|                                     |                                               |                       |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           | ************************************** |
| Avg.                                |                                               | 10.275                | 0.3132   | 0.37                                             | 314                                             | 1777                    |              |                                                  |                                                  |                |           |                                        |
| Check'd                             |                                               | A DAN                 |          |                                                  |                                                 |                         |              |                                                  |                                                  |                |           |                                        |
| CONSOI<br>FILTER<br>AMBIEN<br>PROBE | LE#_A<br>#<br>NT TEMP.<br>LENGTH_<br>MATERIAL | 16/402<br>72°F<br>10' |          | •                                                |                                                 | % Moistan<br>Flowrate ( | E<br>DSCFM)_ |                                                  |                                                  |                |           |                                        |
| REMAR                               |                                               | ,                     |          | ·                                                | · · ·                                           |                         | <u> </u>     |                                                  | · · · · · · · · · · · · · · · · · · ·            |                | -         |                                        |

Plant Name Plant Yates Station Boiler No. 1 Sampling Location FSP INLET Train Aldehydes Run No. FB

Date 6/21/93 Time Start 1306 Time Finish Test Duration min.

Duct Dimensions X Diameter ft Initial Leak Rate cfm PTCF DGMCF Nozzle Dia. inches Final Leak Rate cfm Bar Press 24.58 "Hg Static Press \_\_\_ -6. \( \sqrt{} \) " H2O Operator \_\_ Twm Travers | Clock | Dry gas meter | ^ P ^ H Stack Dry gas meter temp. Hot box Probe Last Vacuum Point Time reading ft3 in H2O in H2O Temp. F Inlet Outlet Temp. Temp Impinger in Hg 319,212 1306 319.440 Avg. Check'd Velocity CONSOLE # \_\_\_\_ % Mousture\_\_\_\_ FILTER # \_\_\_\_\_ Flowrate (DSCFM) AMBIENT TEMP. PROBE LENGTH \_\_\_\_\_ Isokinetic (%)\_\_\_\_ LINER MATERIAL REMARKS

REMARKS

| Sampling     | Location     | Plant              |        |                                   | Train    | F                                                 | PSD           | _            | Run N     | io           |                                                  | <b>*</b>                                         |
|--------------|--------------|--------------------|--------|-----------------------------------|----------|---------------------------------------------------|---------------|--------------|-----------|--------------|--------------------------------------------------|--------------------------------------------------|
| Date (       | /            | Time Start         | i555,  |                                   | Time Fin | inh 1741                                          |               | Tast Daw     | tion i    | loc -        | min.                                             | 2                                                |
| Duct Dim     | ensione      | X / X              | 465    | 7 07/                             | Diameter |                                                   | ft            | Initial Lea  | ak Rate 🛭 | .00E         | <u>((</u>                                        |                                                  |
| PTCF _       | 84_          | DGMCF 96           | 80     | Nozzle D                          | ia. 🏒 🕏  | inch                                              | cs            | Final Lea    | k Rate    | <del>.</del> | cfm                                              |                                                  |
|              |              | <u></u>            |        |                                   | . 7      | .15<br>n16.                                       | $\overline{}$ |              |           |              | Part                                             | 67                                               |
| Static Pre   | ss           | * H2C              | )      |                                   | Operator | MK                                                |               |              |           | /            | 17                                               | E - 1                                            |
| Travers      | Clock        | Dry gas meter      | ^ P    | ^ H                               | Stack    | Dry gas m                                         | eter temp.    | Hot box      | Probe     | Last         | Vacuum                                           |                                                  |
| Point        | Time         | reading ft3        | in H2O | in H2O                            | Temp. F  | Inlet                                             | Outlet        | Temp.        | Temp      | Impinger     | in. Hg                                           | K= 30                                            |
| N/A          | ICET         | 10002              | 7      |                                   |          |                                                   |               |              |           |              |                                                  |                                                  |
| ~//          | (201)        | 11/2 1/3           | 167    | .27                               | 3/5      | 90                                                | 79            | 11/1         | 262       | -61          | 3,0                                              |                                                  |
| <b>_</b>     | 1605         | 99 32              | 407    | 7-1                               | 3/1      | 2                                                 | 77            | 77.1         |           |              | 2.0                                              |                                                  |
|              | 16.10        | 613 29             | .07    | 77                                | 3/3      | (C)                                               | 10            |              | 2 - /     | 57           | 310                                              |                                                  |
|              | <u>610</u>   | (1411              | 61     | 11                                | 219      | <del>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </del> | 79            |              | 27/4      | 50           | 300                                              |                                                  |
| <del> </del> | 122          | 11/16              | . 17   | 100                               | 2/2      | \$/                                               | 80            |              | 15-1      | 58           | 2.5                                              | 1                                                |
|              | 11-1         | 4610               | 101    | 11/                               | 211      | 92                                                | 80            | <del> </del> | 200       | 1 0          |                                                  | -                                                |
|              | 675          | 61157              | e () / | 27                                | 3/6      | <del></del>                                       | 20            | <del> </del> | 2/1       | 60           | 2.9                                              | <del> </del>                                     |
|              | 630          | 67.04              | 101    | 127                               | 13/8     | 82                                                | 25            |              | <u> </u>  | 57           | 3,0                                              | <del>                                     </del> |
|              | 1635         | 670.62             | 6-1    | 17                                | 3/8      | 58                                                | 00            | ļ            | 255       | 5/           | 3.0                                              | <del>                                     </del> |
|              | 1640         | 621.8              | .07    | 21                                | 320      | 87                                                | 83            | ļ <u>.</u>   | 257       | 57           | 3.0                                              |                                                  |
|              | 1645         | 623.33             | 01     | 127                               | 322      | 88                                                | 84            |              | 255       | 58           | 3.0                                              |                                                  |
| /            | 650          | 624.15             | 107    | .27                               | 321      | 80                                                | 84            |              | 234       | 58           | 3.0                                              |                                                  |
|              | 1655         | 626.25             | 101    | ,21                               | 3/9      | 89                                                | 85            |              | 248       | 59           | 310                                              |                                                  |
|              | 700          | 627,75             | 10%    | ,21                               | 220      | 89                                                | 86            |              | Z50       | 59           | 3.1                                              |                                                  |
| 7            | 705          | 629 14             | .07    | .71                               | 3/9      | 89                                                | 86            |              | 241       | 6/           | 310                                              |                                                  |
|              | 716          | 63057              | .07    | 127                               | 310      | 90                                                | 86            |              | 145       | 9            | 3.0                                              |                                                  |
|              | 17, 6        | 13724              | 07     | 17                                | 219      | 90                                                | 26            |              | 709       | 60           | 3/                                               |                                                  |
|              | 1700         | 633,75             | 10-1   |                                   | 219      | 90                                                | 26            |              | 251       | 61           | 3.5                                              |                                                  |
| 1            | 125          | 634,93             | .07    | 127                               | 219      | 98                                                | 86            |              | 251       | 62           | 33                                               | 1                                                |
|              | 1750         | 2                  | ,07    | 27                                | 20       | 91                                                | 97            |              | 251       | 11           | 3.0                                              | <del> </del>                                     |
|              |              | 03651              |        |                                   | 3/8      | 4                                                 | (i) -         |              | 750       |              | <del></del>                                      | <del> </del>                                     |
|              | 1777         | 638.00             | 101    | ,27                               | 39       | 7/                                                | 0-7           | <del> </del> |           | 0/           | 3-0                                              | <del> </del>                                     |
|              | 140          | 639,650            | 207    | 27                                | 321)     | 7/                                                | 9/            | <del> </del> | 75/       | 6 <u>Z</u>   | 150/                                             |                                                  |
|              |              |                    |        |                                   | <u> </u> | <u>'</u>                                          | <u> </u>      |              |           |              | <del>                                     </del> | ļ                                                |
|              |              |                    |        |                                   | <u> </u> | ļ                                                 | ļ             | ļ            | ļ         |              | ļ                                                | ļ                                                |
|              |              |                    |        |                                   | ļ        | <u> </u>                                          |               |              | <u> </u>  | <u> </u>     | <u> </u>                                         | ļ                                                |
|              |              |                    |        |                                   | 1        |                                                   |               |              | ļ         |              |                                                  |                                                  |
|              |              |                    |        |                                   |          |                                                   |               |              |           |              |                                                  |                                                  |
|              |              |                    |        |                                   |          |                                                   |               |              |           |              |                                                  |                                                  |
| Avg.         |              | 30.730             | ,265   |                                   | 318      | 84.8                                              |               |              |           |              |                                                  |                                                  |
| Check'd      |              | V                  |        | 3.5 (****                         | 1        |                                                   |               |              |           |              |                                                  |                                                  |
|              | ſ.           | 11 0               |        | <del>hanga da da da da gara</del> |          |                                                   |               |              |           |              |                                                  |                                                  |
| CONSOL       | .E# <u>-</u> | 16/397<br>ble #131 | 7      |                                   |          | Velocity_                                         |               |              |           |              |                                                  |                                                  |
| FILTER       | This         | ble # 131          | 4      | ,                                 |          | % Moistu                                          | <b>P</b>      | 10. <u>F</u> |           |              | S<br><del>Š</del>                                |                                                  |
| AMBIEN       | T TEMP.      | _77                |        |                                   |          | Flowrate (                                        | DSCFM)_       | 246          | ,52/      |              | ¥<br>8                                           |                                                  |
| PROBE I      | ENGTH        | 10'                |        |                                   |          | Isokinetic                                        | (%)           | 104          |           |              | Í                                                |                                                  |
| LINER N      | (ATERIA)     | L G/AS5            |        |                                   |          |                                                   |               |              |           |              |                                                  |                                                  |

Single point sample collection From port ES E7 Jum

Page \_\_\_ of \_\_\_\_

|               | <b>Vame</b>                                      | Plant                                            | Yates Su | ation Bo    | <u>oiler No.</u>                                 | 1                                                |                    |                                                  |                                        |                                                  |              |                |
|---------------|--------------------------------------------------|--------------------------------------------------|----------|-------------|--------------------------------------------------|--------------------------------------------------|--------------------|--------------------------------------------------|----------------------------------------|--------------------------------------------------|--------------|----------------|
| Sampling      | Location                                         | INLE-                                            | <u> </u> |             | Train                                            | F                                                | SD                 |                                                  | Run N                                  | io. <u>2</u>                                     |              |                |
| Date 6        | -22-93                                           | Time Start                                       | 925      |             | Time Fini                                        | sh                                               | 15                 | Test Dura                                        |                                        | 40                                               |              |                |
| Duct Dir.     | Densions                                         | 8.6" X                                           | 57 '     |             | Diameter                                         |                                                  |                    | Initial Lea                                      | ak Rate_c                              | 0.068                                            | of circle    | 11             |
| rfef Z        | 400                                              | Time Start                                       | 980      | Nozzle D    | ia. <u>,27</u>                                   | 5_inch                                           | CS .               | Final Lea                                        | k Rate                                 | NA                                               | cîm          |                |
| Bar Pres      | s <u>29.</u>                                     | 4 <u>0    </u> " Hg                              |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  |              | 40             |
| Static Pr     | ess6                                             | . <del>4</del> " H20                             | )        |             | Operator                                         | MEO                                              |                    | <del></del>                                      |                                        |                                                  | E.           | - <b>\$</b> 8  |
| Travers       | Clock                                            | Dry gas meter                                    | ^ P      | ^ H         | Stack                                            | Dry gas m                                        | eter temp.         | Hot box                                          | Probe                                  | Last                                             | Vacuum       | <i>j.</i>      |
| Point         | Time                                             | reading ft3                                      | in H2O   | in H2O      | Temp. F                                          |                                                  | Outlet             | Temp.                                            | Temp                                   | Impinger                                         | in. Hg       | K=39           |
| 1116          | 0025                                             | 652.063                                          |          | =           |                                                  |                                                  |                    |                                                  |                                        |                                                  |              |                |
| VIII          | 016                                              | 100000                                           |          | 2/          | 219                                              | 82                                               | 80                 | 1./4                                             | 1 < 3                                  | 102                                              | 35           |                |
|               | 0745                                             | 658.90                                           | .08      | <u> </u>    | 3/7                                              | 02                                               | CD .               | 10//                                             | 01/2                                   | 05                                               | 2.7          |                |
| <del></del> - | 1205                                             | 064,40                                           | 108      | <u>-\$/</u> | 3/9/                                             | 90                                               | 00                 | <del>                                     </del> | 1242                                   | <u>کیک</u>                                       | 2.5          |                |
|               | 1075                                             | 670,33                                           | 100      | <u> </u>    | 37/                                              | 27                                               | 80_                |                                                  | 253                                    | 63                                               | 3,5          |                |
|               | 1045                                             | 676 de 0                                         | 100      | .3/_        | 320                                              | 26                                               | 23                 | <del> </del>                                     | 242                                    | 60                                               | 3.5          |                |
|               | 1605                                             | 68784                                            | 108      | -3/         | 22/                                              | 70                                               | 25                 | <u> </u>                                         | 246                                    | 60                                               | 3.2          |                |
|               | 1/25                                             | 68823                                            | 06       | 13/         | 3/1                                              | 96                                               | P.6                | <u> </u>                                         | 941                                    | 61                                               | 3.>          | <u> </u>       |
|               | 145                                              | 695525                                           | OR       | 31          | 321                                              | 9/                                               | 38                 |                                                  | 250                                    | 62                                               | 3.5          | L              |
|               |                                                  |                                                  |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  |              |                |
|               |                                                  |                                                  |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  |              |                |
|               |                                                  | <u> </u>                                         |          |             | 1                                                |                                                  |                    |                                                  | <u> </u>                               | -                                                |              |                |
|               |                                                  |                                                  |          | <del></del> |                                                  |                                                  |                    |                                                  | <del> </del>                           |                                                  |              |                |
|               | <u> </u>                                         | <del>                                     </del> |          |             | <del> </del>                                     |                                                  |                    | }                                                | }                                      |                                                  | -            | <del> </del>   |
|               |                                                  |                                                  |          | <u> </u>    | <del> </del>                                     | <u> </u>                                         |                    | <del></del>                                      | -                                      |                                                  |              | <del> </del> - |
|               | <del> </del>                                     | <del> </del>                                     |          |             | <u> </u>                                         | <del>                                     </del> |                    |                                                  | <del> </del>                           | <u> </u>                                         | <u> </u>     | <b> </b>       |
|               |                                                  |                                                  |          |             |                                                  |                                                  |                    | <del> </del>                                     | ļ                                      | ļ                                                |              | 1              |
|               |                                                  |                                                  |          |             | <u> </u>                                         | <u> </u>                                         | <b> </b>           |                                                  | <u> </u>                               | <u> </u>                                         |              | <b>}</b> _     |
|               |                                                  |                                                  |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  | <u> </u>     |                |
|               |                                                  | <b>`</b>                                         |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  |              |                |
|               |                                                  |                                                  |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  |              |                |
|               |                                                  |                                                  |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  |              |                |
|               |                                                  |                                                  |          | · · · · · · |                                                  | <u> </u>                                         |                    |                                                  | <u> </u>                               |                                                  | <u> </u>     |                |
|               |                                                  |                                                  |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  | 1            | <del></del>    |
|               | <del> </del>                                     | <del> </del>                                     |          |             | <del>                                     </del> |                                                  |                    | <del> </del>                                     | ├──                                    | <del> </del>                                     | <del> </del> | <del> </del> - |
|               | <del>                                     </del> |                                                  |          |             | }                                                | <del></del>                                      | <del> </del>       | <del></del>                                      | <del>}</del>                           | <del>                                     </del> | <b>├</b> ──  |                |
|               | <del> </del>                                     | <del> </del>                                     |          |             | <del> </del> -                                   | <del> </del>                                     |                    | +                                                | <del> </del>                           | <del> </del>                                     | <del> </del> | <del> </del>   |
|               | <u> </u>                                         | <del> </del>                                     |          |             | <del> </del>                                     |                                                  | -                  | <del>                                     </del> | <del>}</del>                           | <del> </del>                                     | <u> </u>     | }              |
|               |                                                  | <u> </u>                                         |          |             |                                                  | ļ <u> </u>                                       |                    | <del> </del>                                     | ļ <u></u>                              | <u> </u>                                         | <del> </del> | <u> </u>       |
|               |                                                  | <u> </u>                                         |          |             | <u> </u>                                         | <b></b>                                          | 1                  | <u> </u>                                         | <u> </u>                               |                                                  |              | <u> </u>       |
|               |                                                  |                                                  |          |             |                                                  | \                                                | <u> </u>           |                                                  | <u> </u>                               |                                                  |              |                |
| Avg.          |                                                  | 43.462                                           | 0.2812   |             | 320                                              | 85                                               |                    |                                                  |                                        |                                                  |              |                |
| Check'd       |                                                  |                                                  |          |             | V                                                |                                                  |                    |                                                  |                                        |                                                  |              |                |
|               |                                                  | 0 11                                             | 7        |             |                                                  |                                                  |                    | Microscope Control                               |                                        | 001000000000000000000000000000000000000          |              |                |
| CONSO         | LE #                                             | 76°F                                             | <u>/</u> |             |                                                  | Velocity_                                        |                    |                                                  |                                        |                                                  |              |                |
| FILTER        | <b>#</b>                                         |                                                  |          |             |                                                  | - 5 90000 0000 0000 0000 0000 0000 0000          |                    |                                                  | 10000000000000000000000000000000000000 | <b>996</b> 060000000000 <b>00000</b> 000         |              |                |
| AMBIE         | NT TEMP.                                         | 76 4                                             |          |             |                                                  | ~v.0000010000000000000000000000000000000         | 894 896 NG NG 1178 |                                                  | 0000000000000000000000                 | ######################################           |              |                |
| PROBE         | LENGTH                                           |                                                  |          |             |                                                  | Isokinctic                                       | (%)                |                                                  |                                        |                                                  |              |                |
| LINER I       | MATERIA                                          | 10                                               |          |             |                                                  |                                                  |                    |                                                  |                                        | •                                                |              |                |
|               | _                                                | •                                                |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  |              |                |
| REMAR         | KZS                                              |                                                  |          |             |                                                  |                                                  |                    |                                                  |                                        |                                                  |              |                |

C-176 Single point sample collection From port E-8

Page \_\_\_\_ of \_\_\_\_

| Plant N    | Name     | Piant         | Yates St                                         | ation Bo                   | iler No <u>.</u>                             | 1                                       |                      |                           |              |                                                  |                |          |   |
|------------|----------|---------------|--------------------------------------------------|----------------------------|----------------------------------------------|-----------------------------------------|----------------------|---------------------------|--------------|--------------------------------------------------|----------------|----------|---|
| Sampling   | Location | 3Time Start X |                                                  |                            | Train                                        | F                                       | PSD                  |                           | Run N        | io. 3                                            |                |          |   |
| Date 6     | -23-9    | 3Time Start 6 | 935                                              |                            | Time Fini                                    | sh // 3                                 | 30                   | Test Dura                 | ıtion        | 115                                              | min.           |          |   |
| Duct Din   | nensions | $\frac{2}{x}$ | 455                                              | 7' 03"                     | Diameter                                     |                                         | ft                   | Initial Lea               | ak Rate _    | 0,016                                            | cim a          | 115      |   |
| PTCF       | .84      | DGMCF _ 7     | 88.O                                             | Nozzie Di                  | ia27                                         | <u>'</u> inch                           | es                   | Final Len                 | k Rate       |                                                  | cfm            | , -      |   |
| Bar Pres   | s 29     | ,36 " Hg      |                                                  |                            |                                              |                                         |                      |                           |              |                                                  | <del></del>    |          |   |
| Static Pro | ess — C  | 6 H20         | )                                                |                            | Operator                                     | med                                     |                      |                           |              |                                                  |                |          |   |
| Travers    | Clock    | <del></del>   | ,                                                | ^ H                        | Stack                                        | Dry gas m                               | eter temp            | Hot box                   | Probe        | Last                                             | Vacuum         |          |   |
| Point      | Time     | reading ft3   | in H2O                                           | F I                        | Temp. F                                      |                                         | Outlet               | Temp.                     |              |                                                  |                |          |   |
| k )        | Tune     | TOZOBIG ILD   | B1 1120                                          |                            | Temp. 1                                      | milet                                   | - Cunct              | remp.                     | Temp         | mpuiger                                          | 11g            |          | _ |
| NIX        | 0935     | 702-172       |                                                  |                            |                                              |                                         |                      |                           |              |                                                  |                | KZ       | 2 |
|            | 0955     | 708.40        | 108                                              | 13/                        | 3/1                                          | 90                                      | 87                   | NA                        | 295          | 68                                               | 3.0            |          |   |
|            | 1015     | 7/4.5/        | 6.98                                             | .3/                        | 3/7                                          | 93                                      | 39                   | 1                         | 256          | 57                                               | 3/2            |          | 1 |
|            | 1035     | 7-20,7/       | 009                                              | _3/                        | 317                                          | 94                                      | 20                   |                           | 250          | 57                                               | 3.0            |          |   |
|            | 1055     | 72693         | .09                                              | 3/                         | 3/9                                          | 99                                      | 94                   |                           | 249          | 60                                               | 3,0            |          |   |
|            | 1100.    | 733,22        | 00                                               | 31                         | 38                                           | 99                                      | 95                   |                           | 241          | 61                                               | 3,0            |          |   |
|            | 1170     | 739.50        | 09                                               | 3/                         | 3/5                                          | 99                                      | 95                   |                           | 24%          | 61                                               | 30             |          |   |
| 112        | 45       | 2612 875      | 18                                               | 21                         | 319                                          | 100                                     | 95                   | <b>†</b>                  | 7 45         |                                                  | 3.0            |          | ' |
| 1/2.2      |          | C. Classic    | 00                                               | -4                         | /-/                                          | 7.07                                    | 77                   | †                         | (-1)         | 6/                                               | 1              |          | i |
|            | -        |               |                                                  |                            |                                              |                                         |                      | <del> </del>              |              |                                                  | <del> </del> - |          |   |
|            | ļ        |               |                                                  |                            |                                              |                                         |                      |                           | <del></del>  |                                                  | <b></b>        |          |   |
| ļ          |          |               |                                                  |                            |                                              |                                         |                      |                           | ļ <u> </u>   |                                                  |                | <u> </u> |   |
| ļ          |          |               |                                                  |                            | <u> </u>                                     |                                         |                      | <u></u>                   | ļ            | l                                                |                |          |   |
| ļ.——       |          |               |                                                  | +                          |                                              | ļ                                       |                      | <u> </u>                  |              |                                                  |                |          |   |
|            |          |               |                                                  |                            |                                              |                                         |                      |                           |              | <u> </u>                                         |                |          | l |
|            |          |               |                                                  |                            |                                              |                                         |                      |                           |              |                                                  |                |          |   |
|            |          |               |                                                  |                            | l                                            |                                         | <u> </u>             |                           |              | <u> </u>                                         |                | <u> </u> |   |
|            | 1        |               |                                                  |                            |                                              | ]                                       |                      | 1                         |              |                                                  |                |          | 1 |
|            |          |               |                                                  |                            |                                              |                                         |                      |                           |              |                                                  |                |          | 1 |
|            |          |               |                                                  |                            |                                              |                                         |                      |                           |              |                                                  | ļ              |          | 1 |
|            |          | <u> </u>      |                                                  |                            | <u>.                                    </u> |                                         |                      |                           | <del> </del> | <del>                                     </del> | <del> </del>   |          | 1 |
|            |          |               |                                                  |                            | <u> </u>                                     |                                         | <u> </u>             | <del> </del>              | <del> </del> |                                                  |                | -        | i |
|            |          |               | <del>                                     </del> |                            | <u> </u>                                     |                                         | <del> </del>         | <del> </del>              | <del> </del> | -                                                | <u> </u>       |          | 1 |
|            |          |               |                                                  |                            | · · · · · · · · · · · · · · · · · · ·        |                                         |                      |                           |              | ļ                                                | ļ              | ļ        | ł |
| <b></b>    |          |               |                                                  |                            |                                              |                                         |                      | <u> </u>                  | <b></b> _    | ļ                                                | ļ              |          |   |
|            |          |               |                                                  |                            |                                              |                                         |                      |                           |              |                                                  |                |          | 1 |
|            |          |               |                                                  |                            |                                              |                                         |                      |                           |              | <u> </u>                                         |                |          | 1 |
| L          |          |               | L                                                |                            |                                              |                                         |                      |                           |              |                                                  |                |          |   |
|            |          |               |                                                  | 1                          |                                              |                                         |                      |                           |              |                                                  |                |          |   |
|            |          |               | 1                                                |                            |                                              |                                         |                      | Ī                         | 1            |                                                  | 1              |          | 1 |
| Avg.       |          | 40.653        | 0195                                             | al                         | 319                                          | 94                                      |                      |                           |              |                                                  |                |          | 1 |
|            | 1        |               |                                                  |                            |                                              | 7                                       | 40 00000 A           |                           |              |                                                  |                |          | 1 |
| Check'd    | <u> </u> |               |                                                  | <b>₽</b> 1555 \$ 158 \$ 15 | Mikratik (1995)                              | rawatiik <b>y</b> 10 10                 | grane (pari), 1 %.   | 1                         | 1            |                                                  | 1              | •        | 1 |
| CONSO      | LE#      | 416139        | ラフ                                               |                            |                                              | Velocity                                |                      |                           |              |                                                  |                |          |   |
| CII TED    | 4        |               |                                                  |                            |                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                      | 0000000000000000000000000 |              |                                                  |                |          |   |
| AMBIEN     | NT TEMP  | 78            |                                                  | •                          |                                              |                                         | DSCFM)               |                           |              |                                                  |                |          |   |
| PROBE      | LENGTH   | 10'           |                                                  |                            |                                              | - 1-1-10-100000000000000000000000000000 | (%)                  |                           |              | STINDEROCKIDATION CONTRACT                       |                |          |   |
| LINER      | MATERIA  | 10'<br>L 644  | > 55                                             |                            |                                              | resident More.                          | vasta <u>ili.i i</u> |                           |              |                                                  | <del>-</del>   |          |   |
|            |          |               | <del></del>                                      |                            |                                              |                                         |                      |                           |              |                                                  |                |          |   |
| REMAR      | RKS      |               |                                                  |                            |                                              |                                         |                      |                           |              |                                                  |                |          |   |

Page 1 of 2

|                         |            | lame         |               |               |             | iler No.       | 1                         |                    |                                 |                                         |          | 101                                     | 2       |
|-------------------------|------------|--------------|---------------|---------------|-------------|----------------|---------------------------|--------------------|---------------------------------|-----------------------------------------|----------|-----------------------------------------|---------|
|                         | Sampling   | Location_    | ESPI          | Wet           |             | Train _        | Partic                    | culate / M         | <b>letals</b>                   | _ Rui                                   | n No. 🖊  | [ f/ks                                  | 26      |
|                         | Date 6/    | 25/93        | Time Start    | 0800          | <del></del> | Time Fini      |                           |                    |                                 |                                         |          |                                         |         |
|                         | Duct Din   | nensions     | 3 'C" X       | 45 5          | التحا       | Diameter       |                           | ft                 | Initial Lea                     | k Rate 🗸                                | 2,017    | cim €                                   | (2),8/1 |
|                         | PTCF _     | 0.84         | DGMCF         | <del>00</del> | NOZZLE      | DIA. <u>D.</u> | 357 i                     | nches              | Final Leal                      | k Rate                                  | 0,014    | cfm 🕢                                   | 24 1/1  |
|                         |            |              | 53 Hg O       |               |             |                |                           |                    |                                 |                                         |          |                                         |         |
|                         | Static Pre | :ss <u>5</u> | * H20         | )             |             | Operator       | Swi                       | <u> </u>           | <del>-</del>                    |                                         |          |                                         |         |
|                         | Travers    | Clock        | Dry gas meter | , b           | ^ H         | Stack          | Dry gas m                 | eter temp.         | Hot box                         | Probe                                   | Last     | Vacuum                                  |         |
|                         | Point      | Time         | reading ft3   | in H2O        | in H2O      |                | Inlet                     | Outlet             | Temp.                           | Temp                                    | Impinger |                                         |         |
|                         | W8-1       | 0800         | 46,205        | 0.06          | 611         | 277            | 74                        | 73                 | 237                             | 226                                     | 49       | 7                                       |         |
|                         | 2          | 805          | 4486          | 0.04          | 0.66        |                | 77                        | 72                 | <b>70</b> 7                     | 24%                                     | 43       |                                         |         |
| 1037                    | 7          | 810          | 450,5         | 0.03          | 0.33        | 284            | 74                        | 73                 | _                               | 247                                     | 43       | 4.5                                     |         |
| ر آن                    |            |              | \$ 42.0       |               |             |                | 77                        | 73                 |                                 | 246                                     | 45       | 3                                       |         |
|                         | 5          | 815          | 4530          | 0.02          | 0.22        |                | 75                        | 73                 |                                 | 227                                     | 48       | 3                                       |         |
|                         | 6          | 820          | 454,6         | 0.06          | 0.66        | <del></del>    |                           |                    |                                 |                                         | 46       |                                         |         |
|                         |            | 825          |               |               |             |                | 76                        | 73                 |                                 | 252                                     | 160      | <b></b> -                               |         |
|                         | 500        | 830          | 456,576       |               |             | check          | -                         |                    | <del> </del>                    |                                         | ./6      | 4                                       |         |
|                         | 461        | 836          | 456 677       |               |             |                | 7)                        | 75                 |                                 | 225                                     | 49       | 4                                       |         |
| 1                       | 2          | 841          | 458.6         | 0.03          |             | 275            | 75_                       | 76                 |                                 | 253                                     | 50       | <del></del>                             |         |
| 200                     | 3          | 846          | 461.2         | 0.04          |             |                | _75                       | 77                 |                                 | 246                                     |          | 5                                       |         |
| 2.508                   | 4          | 45 P         |               | 0.07          | 0.77        | 284            | 82                        | 75                 | مد                              | 232,                                    | 47       | 7.5                                     |         |
|                         | <b></b> -  | 856          | 464.5         | 0,06          |             |                | 84                        | 79                 |                                 | 2:44                                    | 48       | 2                                       |         |
|                         | 6          | 701          | 4 66 6        | 6,09          | 0.58        |                | 86                        | 81                 |                                 | 249                                     | 48       | 9                                       |         |
|                         | 5/00       | 906          | 469.185       |               |             | chec           |                           |                    |                                 |                                         |          | <b> </b>                                |         |
|                         | -          | 922-         | 469.800       | 0.03          | 0.33        | 250            | 83_                       | 82                 |                                 | 22/                                     | 54       | 5                                       |         |
| ارخا                    | <u> </u>   | 927          | 471.6         | 0,04          | 0.44        |                | 83                        | 81                 |                                 | 235                                     | 53       | 5                                       |         |
| ر<br>مر <sup>و</sup> طا |            | 932          | 473.4         | 0.07          | 0.77        | 306            | 83                        | 82_                |                                 | 244                                     | 49       | 7.5                                     |         |
| ( )                     | 4          | 937          | 4760          | 0.01          | 1.1         | 292            | 85                        | 82                 | <u> </u>                        | 248                                     | 49       | 11                                      |         |
|                         |            | 942          | 478.7         | 0.15          | 43-         | 292            | 88                        | 83                 |                                 | 243                                     | 49       | 18                                      | ]       |
|                         | 6          | 947          | 482.2         | 0.15          | 1.7         | 285            | 90                        | 84                 | <u> </u>                        | 242                                     | 83       | 19                                      |         |
|                         | SEE        | 952          | 485.871       | <u> </u>      |             |                |                           |                    |                                 |                                         |          |                                         |         |
|                         | WZ-1       |              | 486,100       | i .           | 0,37        | 291            | 83                        | 82                 |                                 | 272                                     | 54       | 5                                       |         |
| a                       | ک          | 1025         | 488.3         |               | 0.44        |                | 83                        | 72                 |                                 | 256                                     | 52       | 5                                       |         |
| ر م                     | 3          | 1030         | 439.8         |               | 0.53        |                | 84                        | 83                 |                                 | 2-13                                    | 50       | 6                                       |         |
| 3                       | 4          | 1835         | 492.0         |               | 0.88        |                | 86                        | 84                 | _                               | 247                                     | 49       | 9                                       |         |
|                         | َد         | 1040         | 494,2         | 0,14          |             | 299            | 88                        | 89                 |                                 | 2/6                                     | 48       | 17                                      |         |
|                         | 6          | 1045         | 497.6         | 2.41          | 1.55        | 3∞             | 90                        | 85                 |                                 | 243                                     | 57       | 77                                      |         |
|                         | 5700       | 1050         | 501,030       |               |             |                |                           |                    |                                 |                                         |          |                                         |         |
|                         | Avg.       |              | 111.213       | 7403          | 7/25        | 301            |                           | 84                 |                                 |                                         |          |                                         |         |
|                         | Check'd    |              | 111.          |               |             |                | 286 à 1718 S              |                    |                                 |                                         |          |                                         |         |
|                         | <u> </u>   |              |               |               |             |                |                           |                    |                                 |                                         |          | *************************************** |         |
|                         | CONSO      | LE#          | 61363<br>52   |               |             |                | Velocity_                 |                    |                                 |                                         |          | 1                                       |         |
|                         |            |              |               |               |             |                | S Moistui                 | e francisco e como |                                 |                                         |          |                                         |         |
|                         |            |              |               |               |             |                | 144 a 2019/9844, 2046/066 | DSCFM)_            | <b>987975050607000000000000</b> | 000000000000000000000000000000000000000 |          |                                         |         |
|                         |            | _            |               |               |             |                | lsokinetic                | (%)                |                                 |                                         |          | <i>;</i><br>2                           |         |
|                         | LINER N    | MATERIAL     |               |               |             |                |                           |                    |                                 |                                         |          |                                         |         |
|                         | 051440     | ve           | Good (        | of tat is     | lonk        | - choc         | ik                        |                    |                                 |                                         |          |                                         |         |
|                         | REMAR      | <i>v</i> 2   | - Ciuc        | , · · · · ·   | , ται       | -76,           |                           |                    |                                 |                                         |          | -                                       |         |

Page \_2\_of \_2

|            | icocation_ | Plant  Lalet  Time Start |        |        | Train _       | Partic             | ulate / N       | 1etals_     | Rur             | 1 No/                                           |                                         | 45C           |
|------------|------------|--------------------------|--------|--------|---------------|--------------------|-----------------|-------------|-----------------|-------------------------------------------------|-----------------------------------------|---------------|
|            |            | Time Start               |        |        | Time Fini     | sh                 |                 | Test Dura   | ition           |                                                 | min.                                    |               |
| Duct Din   | nensions   | x_                       |        |        | Diameter      |                    | <u></u> ft      | Initial Lea | ak Rate _       |                                                 | cfm                                     |               |
|            |            | DGMCF                    |        | NOZZLE | DIA.          | )                  | nches           | Final Lea   | k Rate          |                                                 | cfm                                     |               |
| Bar Press  | ·          | Нд                       | _      |        | _             |                    |                 |             |                 |                                                 |                                         |               |
| Static Pre | :S\$       | H2C                      | )      |        | Operator      | _JW                | Mr.             | _           | <u> </u>        |                                                 |                                         |               |
| Travers    | Clock      | Dry gas meter            | ^ P    | ^ H    | Stack         | Dry gas me         | ter temp.       | Hot box     | Probe           | Last                                            | Vacuum                                  |               |
| Point      | Time       | reading ft3              | in H2O | in H2O | Temp. F       | Inlet              | Outlet          | Temp.       | Temp            | Impinger                                        | in. Hg                                  |               |
| E2-1       | 1058       | 501.500                  | 0.03   | 0.33   | 316,          | 88                 | 86              |             | <i>2</i> 23     | മ                                               | 5                                       | <del></del> - |
| 2          |            | 503.2                    | 004    | 0.44   | 324           | 87                 | 86              | -           | 253             | 53                                              | 6                                       |               |
| 3          | 1108       | 505.0                    |        | 0.66   | 327           | 88                 | 85              | _           | 250             | 53                                              | 8                                       |               |
|            | ///3       | 50 7.3                   | 40/    | n (. 1 | 332           | 88                 | 86              | _           | 24              |                                                 | 13                                      |               |
| 25 5       | 1118       | 5/0.2                    | 0.15   | 1.6    | 336           | 9/                 | 87              | _           | 2-17            | 53                                              | 22                                      |               |
| - 6        | 1123       |                          | 0.18   |        | 336           | 93                 | 88              | -           | 247             | 52                                              | 22                                      | ,             |
| Stap       | 1128       | 516.925                  | Le     | K Clec | × 0,0         | 0/10               | 231/16          | - Che       | nred            | Silie                                           | u Ge                                    | INP           |
|            | •          |                          |        | ·      | 1             | ilica A            |                 |             |                 | 170                                             |                                         |               |
| E5-1       | 1211       | 5-18,040                 |        | _      |               | 82                 | 82              | -           | 223             | 1 "                                             | 5                                       | <del>-</del>  |
|            | 1216       |                          | 0.04   |        | _             | 82                 | 82              |             | 249             | 54                                              | 6.5                                     |               |
|            | 1221       | 521.6                    |        |        | 315           | 83                 | 82              | _           | 248             | 52                                              | 9.0                                     |               |
| 4 4        |            |                          | 0.11   | 1,2    | 315           | 85                 | 83              | -           | 245             | 51                                              | 14.0                                    |               |
|            | 1231       | 527.0                    | 0.16   | 1,75   | 316           | 48                 | 84              | _           | 253             | 53                                              | 22                                      |               |
| 1          | 1236       | 530,4                    | 0.22   |        | 315           | 90                 | 83-             | _           | 2-16            |                                                 | 22                                      |               |
| Stoe       | 1241       | 534,089                  | Good   |        |               |                    | 4               |             |                 |                                                 |                                         |               |
| E3-1       |            | 534,268                  |        |        |               | 87                 | 85              | _           | 236             | 62                                              | 5                                       |               |
| 7          | 121300     |                          |        | 0.22   | 305           | 86                 | 85              | _           | 224             | 58                                              | ~                                       |               |
| 7          | 1305       | C323                     | 0.04   | 0.4    | 3//           | 86                 | 85              |             | 241             | 51                                              | 7                                       |               |
| 7          | 1310       | 5,37,2                   | 0.07   |        |               |                    | 85              | _           | 253             | 49                                              | 10                                      |               |
| 5          | /315       | 541.6                    | 0.1.   |        | 3//           | 89                 | 86              | _           | 243             | 48                                              | 15                                      |               |
| 6          | /320       | 544.4                    | 8:16   |        | 308           | 92                 | 87              | _           | 249             | 49                                              | 22                                      |               |
| Stop       | /325       | 547.172                  | Jein   | Jene   |               |                    |                 |             |                 | '                                               |                                         |               |
| 1          | 1335       | 548.300                  | 0.09   | 1.0    | 306           | 90                 | 87              |             | 209             | 49                                              | 17                                      |               |
| 2          | 1340       | -                        |        | 0.76   | 307           | 90                 | 87              |             | 243             | 49                                              | 12                                      |               |
| 3          | 1345       | 553.2                    | 0.05   | 054    | 307           | 90                 | 87              | _           | 242             |                                                 | 9                                       |               |
| 7          | /350       | 533, 3                   | 0,03   | 0.33   | 305           | 90                 | 88              |             | 252             |                                                 | っ                                       |               |
| 5          | /355       | 557.0                    | 0.03   | 0.33   | 304           | 91                 | 88              | )           | 253             | 57                                              | 7                                       |               |
| 6          | 4731400    |                          | 0.04   | 0.44   | 284           | 91                 | 88              | _           | 246             | 53                                              | 9                                       |               |
|            | 1705       | SWEY                     |        |        |               |                    |                 |             |                 |                                                 |                                         |               |
| AVE        |            |                          |        |        | 20. 10. 10.11 | tuderki kar istori | 58.08 (2.52.39) |             | a Charles and a | <b>2</b> - 1000 100 100 100 100 100 100 100 100 | 800000000000000000000000000000000000000 |               |

REMARKS

Could not pul the proper rate through the Silica gel impinger.
The impinger mass was determined and then the silica gel C-179
Impinier was re-charged with fresh silica gel.

Page \_\_\_\_of \_\_\_\_\_

|            | Plant N    | lame         | Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yates St             | ation Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iler No.                | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               | 10                    | , –           |
|------------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------------------|---------------|
|            | Sampling   | Location_    | Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Train _                 | Partie                                  | culate / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fetals                                                                                                         | Rur           | 1 No. 2       | _//n                  | 25e C         |
|            | Date 6     | 126/93       | Time Start(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Fini               | <i>رون  </i> sh                         | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Dura                                                                                                      | لخت tion      | <u> 40</u>    | min.                  |               |
|            | Duct Din   | nensions     | X_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diameter                |                                         | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial Lea                                                                                                    | k Rate _      | <u>0:00</u>   | <b>6</b> cſm <b>€</b> | 23"           |
|            |            |              | DGMCF O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> 199</u>          | NOZZLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DIA. 💋                  | <u>, 358</u> i                          | nches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Final Leal                                                                                                     | k Rate        | 0.01          | z cím 🥃               | 52414         |
|            | Bar Press  | 29           | 56 Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       | •             |
|            | Static Pro | :ss <u> </u> | 2. <b>≤8</b> " H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operator                | _JWI                                    | Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                              |               | DHO           | =/.                   | 822           |
|            | Travers    | Clock        | Dry gas meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ^ P                  | ^ H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stack                   | Dry gas m                               | eter temn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hot box                                                                                                        | Probe         | Last          | Vacuum                | والتسابط      |
|            | Point      | Time         | reading ft3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in H2O               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       |                                         | Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp.                                                                                                          | Temp          | Impinger      |                       | Ector         |
|            | <u> </u>   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       | <del>  </del> |
|            | E1-/       | 935          | 579.944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1                  | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 289                     | 72                                      | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                              | 222           |               | 10                    | 10.8          |
| 18         | 2          | 940          | 582.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 008                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 294                     | 73                                      | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | 262           | 45            | 8                     | <b>  </b>     |
| 239        | 3_         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                 | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 253                     | 75                                      | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | 244           | 49            | 4                     |               |
| 1          | 4          | 950          | 587.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                 | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 295                     | 76                                      | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 246           | <i>5</i> 3    | _5_                   |               |
|            | 5          | 9 53~        | 387.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                 | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 296                     | לל                                      | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | 257           | 54            | 5                     | 105           |
|            | 6_         | 1000         | 570.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                 | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 287                     | 78                                      | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>~</b>                                                                                                       | 244           | 53            | 5                     |               |
|            | Stor       | 1005         | 392,536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Boo                  | d leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cleak                   | @ Z3"                                   | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |               |               |                       |               |
|            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       |               |
|            | E3-1       | 1011         | 572.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                 | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 290                     | 78                                      | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 219           | 54            | 5                     |               |
| بر.<br>آب  | 2          | 1016         | 574.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                 | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 305                     | 75                                      | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 244           | 52            | 4                     |               |
| بري        | 3          |              | 546.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 306                     | 80                                      | 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 257           | 48            | 6                     |               |
| ۲.         | 4          |              | 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 82                                      | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 2-17          | 46            | 9                     |               |
|            | 5          | 1026         | 600.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11                 | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 304                     | 84                                      | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 257           | 47            | 125                   |               |
|            |            | 1031         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 87                                      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              |               | 47            |                       | <del>  </del> |
|            | 6          |              | 603.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,15                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                     |                                         | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                | 243           | _//           | 18                    | -             |
|            | Stop       | 1041         | 607.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (700                 | leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Check                   | 024"/4                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |               |               |                       |               |
|            | <u> </u>   |              | (2) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300                     |                                         | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |               | -7            | 4                     |               |
| إير        | F24        | 1113         | 607,821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 298                     | <b>6</b> 2                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 212           | 32            | 5                     |               |
| ام<br>مارئ | 2          | 1/18         | 609.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 307                     | 82                                      | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                              | 227           | 52/           | 4                     | <u> </u>      |
| ί-         |            | 1/23         | 611.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 0,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/2                     | 83                                      | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 257           | 52            | 8                     |               |
|            | 4          | 1128         | 613.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,14                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/3                     | 87                                      | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                                                                                                              | 24/2          | 44            | 18                    |               |
|            |            | 1133         | 6/6/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.14                 | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/3                     | 85                                      | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 247           | 53            | 19                    |               |
|            |            |              | 615.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.19                 | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 310                     | 90                                      | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                              | 243           | 33            | 22                    | <u> </u>      |
|            | 500        | 1143         | 623582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                    | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LEAK                    | 102                                     | 3" Hc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |               |               |                       |               |
|            | 7-         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       |               |
|            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       |               |
|            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       |               |
|            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                | ļ             |               |                       |               |
|            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       | † · · · ·     |
|            | Avg.       | _ {a         | 110.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12490                | 7700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ചരാ                     |                                         | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |               |               |                       |               |
|            | Check'd    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T test               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       |               |
|            |            | L            | I was a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | pa gerintrovitto (g) | ** Transfer Selection (Control of Control of | grupu os estelli siliki | E 10 00 1000 00 00 00                   | · The second section of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | F-000-000-000-000-000-000-000-000-000-0                                                                        |               |               |                       | •             |
|            | CONSO      | LE# /        | 61363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | Velocity                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       |               |
|            | FILTER     | # 125        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 74000000000000000000000000000000000000  | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |               |               |                       |               |
|            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | - N-96.80 (00080 000 N-60 N             | DSCFM)_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000000000000000000000000000000000000000                                                                        |               |               |                       |               |
|            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 11998803000000000000                    | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carlo de la companya de la companya de la companya de la companya de la companya de la companya de la companya |               |               |                       |               |
|            |            |              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =:                                                                                                             | - <del></del> |               | -                     |               |
|            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               |                       |               |
|            | REMAR      | KS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |               |               | _                     |               |
|            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | _             | · <del></del> |                       |               |

Page \_\_\_\_\_\_3

| 26/47<br>ensions                                                                   | Plant Tn(c) Time Start X DGMCF "Hg "H20 Dry gas meter reading ft3 23.800 b25.9 632.6 639.164 639.164                                             | 1 P in H20 10.03 10.04 10.07 10.14 10.14 10.12                                                                                | ^ H in H20  D. 33  D. 44  D. 37  L. 1  6 1.5  6 1.5                                                                                    | Time Fini Diameter DIA.  Operator  Stack Temp. F  321  323  328  338  338  340  350  350  350  350  350  350  350                                                | Dry gas miniet  86 90 90 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eter temp. Outlet 85 86 87                                                                                                                                                                                                                                                                     | Test Dura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ak Rate<br>k Rate                                                                                                                                                                                                                                                                                                                                    | Last Impinger SS SS SS SS SS SS SS SS SS SS SS SS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mincfmcfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clock Time  53 1153 1158 1703 1708 1713 1718                                       | X_DGMCF*Hg*H20 Dry gas meter reading ft3 \$\inc 23.8\infty \$\inc 25.9\$ \$\inc 25.9\$ \$\inc 25.9\$ \$\inc 32.6\$ \$\inc 35.9\$ \$\inc 39.164\$ | 0.03<br>0.04<br>0.07<br>0.14<br>0.12<br>60                                                                                    | 1.1<br>1.1<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                 | Operator Stack Temp. F 321 323 328 332 335 Kdcc                                                                                                                  | Dry gas m<br>Inlet<br>86<br>98<br>90<br>91<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eter temp. Outlet 85 86 87                                                                                                                                                                                                                                                                     | Hot box Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Probe Temp  Z48  Z50  Z51  Z47                                                                                                                                                                                                                                                                                                                       | Last Impinger SS SS SS SS SS SS SS SS SS SS SS SS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vacuum in. Hg 6.0 6.0 9.0 12.0 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Clock Time  5-1148 1153 1158 1703 1708 1713 1718 1718                              | DGMCF * Hg * H20 Dry gas meter reading ft3 \$23.800 \$25.9 \$29.9 \$32.6 \$32.6 \$39.164                                                         | 0.03<br>0.04<br>0.07<br>0.14<br>0.12<br>6.03                                                                                  | ^ H in H20 0.33 0.44 0.37                                                                                                              | Operator  Stack Temp. F  321  323  328  332  335  Kdcc                                                                                                           | Dry gas miniet  86  98  90  91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eter temp. Outlet 85 86 87                                                                                                                                                                                                                                                                     | Hot box Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Probe Temp  248  250  251  244                                                                                                                                                                                                                                                                                                                       | Last Impinger SS SS SS SS SS SS SS SS SS SS SS SS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vacuum in. Hg 6.0 6.0 7.0 7.0 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Clock Time  1153 1158 1703 1708 1713 1718                                          | Hg "H20"  Dry gas meter reading ft3  123.800  125.9  130.6  130.6  130.6  130.6  130.6  130.6  130.6  130.6  130.6  130.6                        | 0.03<br>0.04<br>0.07<br>0.14<br>0.14<br>0.12                                                                                  | 1.1<br>0.33<br>0.44<br>0.37<br>1.1<br>81.5<br>81.5                                                                                     | Operator  Stack Temp. F  321  323  328  332  335  Kolce                                                                                                          | Dry gas m<br>Inlet<br>86<br>98<br>90<br>91<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eter temp. Outlet 85 86 86 87                                                                                                                                                                                                                                                                  | Hot box<br>Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Probe Temp  Z48  Z50  Z51  Z41  Z44                                                                                                                                                                                                                                                                                                                  | Last Impinger SS SS SS SS SS SS SS SS SS SS SS SS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vacuum in. Hg 6.0 6.0 6.0 7.0 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Clock Time  Clock Time  L153  L153  L158  L703  L708  L703  L708  L713  L713  L714 | "H20 Dry gas meter reading ft3 L23.800 b25.9 L37.6 829.9 637.6 639.164                                                                           | 1 P in H20 10.03 10.04 10.07 10.14 10.12 10.03                                                                                | 1 H in H20  0.33  0.44  0.37  1.1  1.5  1.5  1.5  1.6  0.33                                                                            | Stack Temp. F 321 321 323 328 332 335 Kolce                                                                                                                      | Dry gas me Inlet  BL  BB  GO  GO  GO  GO  GO  GO  GO  GO  GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Outlet<br>85<br>86<br>86<br>87                                                                                                                                                                                                                                                                 | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 748<br>750<br>751<br>749<br>744                                                                                                                                                                                                                                                                                                                      | Impinger SS SS SS SS SS SS SS SS SS SS SS SS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in. Hg 6.0 6.0 6.0 7.0 7.0 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Clock Time  5-1148  1153  1158  1703  1708  1713  1718                             | Dry gas meter reading ft3 i 23.800 b 25.9 b 37.6 b 32.6 b 35.9 b 39.164                                                                          | 1 P in H20 10.03 10.04 10.07 10.14 10.12 10.03                                                                                | 1 H in H20  0.33  0.44  0.37  1.1  1.5  1.5  1.5  1.6  0.33                                                                            | Stack Temp. F 321 321 323 328 332 335 Kolce                                                                                                                      | Dry gas me Inlet  86  98  90  91  93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Outlet<br>85<br>86<br>86<br>87                                                                                                                                                                                                                                                                 | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 748<br>750<br>751<br>749<br>744                                                                                                                                                                                                                                                                                                                      | Impinger SS SS SS SS SS SS SS SS SS SS SS SS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in. Hg 6.0 6.0 6.0 7.0 7.0 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Time  53 1148 1153 1158 1703 1708 1713 1713 1718 1734 1734                         | reading A3  123.800  125.9  129.6  129.9  132.6  132.6  139.164  1639.840                                                                        | 0.03<br>0.04<br>0.07<br>0.14<br>0.12<br>60                                                                                    | in H20 D. 33 D. 44 D. 31 L. 1 S. 1.5 S. 1.5 L. 1 L. 1 L. 1 L. 1 L. 1 L. 1 L. 1 L. 1                                                    | 321<br>321<br>323<br>328<br>332<br>332<br>4444                                                                                                                   | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Outlet 85 86 86 87 81                                                                                                                                                                                                                                                                          | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 748<br>750<br>751<br>749<br>744                                                                                                                                                                                                                                                                                                                      | Impinger SS SS SS SS SS SS SS SS SS SS SS SS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in. Hg 6.0 6.0 6.0 7.0 7.0 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1153<br>1158<br>1203<br>1203<br>1203<br>1213<br>1218<br>1334<br>1341               | 639.840                                                                                                                                          | 0.03<br>0.04<br>0.07<br>0.14<br>0.12<br>60                                                                                    | 0.33<br>0.44<br>0.37<br>41.5<br>81.5<br>                                                                                               | 321<br>321<br>323<br>328<br>332<br>335<br>Kolc                                                                                                                   | 86<br>90<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85<br>86<br>87<br>81                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 248<br>250<br>251<br>249<br>247                                                                                                                                                                                                                                                                                                                      | 22<br>22<br>23<br>24<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.0<br>6.0<br>9.0<br>12.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1153<br>1158<br>1703<br>1708<br>1713<br>1718<br>1718<br>1734<br>174<br>174         | 639.840                                                                                                                                          | 0.04<br>0.07<br>0.14<br>0.12<br>Go                                                                                            | 0.44<br>0.77<br>1.1<br>81.5<br>81.5<br>                                                                                                | 321<br>323<br>328<br>332<br>335<br>Kalic                                                                                                                         | क्षेत्र च क के<br>अव च क के<br>अव                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85<br>86<br>87<br>81                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250<br>251<br>249<br>247                                                                                                                                                                                                                                                                                                                             | 22<br>24<br>25<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.0<br>9.0<br>12.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1153<br>1158<br>1703<br>1708<br>1713<br>1718<br>1718<br>1734<br>174<br>174         | 639.840                                                                                                                                          | 0.04<br>0.07<br>0.14<br>0.12<br>Go                                                                                            | 0.44<br>0.77<br>1.1<br>81.5<br>81.5<br>                                                                                                | 321<br>323<br>328<br>332<br>335<br>Kalic                                                                                                                         | क्षेत्र च क के<br>अव च क के<br>अव                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85<br>86<br>87<br>81                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250<br>251<br>249<br>247                                                                                                                                                                                                                                                                                                                             | 22<br>24<br>25<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.0<br>9.0<br>12.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 158<br>1203<br>1208<br>1213<br>1218<br>134<br>134<br>134                           | 639.840                                                                                                                                          | 0.14<br>0.12<br>Go                                                                                                            | 0.77<br>1.1<br>81.5<br>81.5<br>w/ea                                                                                                    | 323<br>328<br>332<br>335<br>Kolic                                                                                                                                | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86<br>87<br>81                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 251<br>249<br>247                                                                                                                                                                                                                                                                                                                                    | 55<br>54<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0<br>12.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1703<br>1708<br>1713<br>1718<br>1718<br>1734<br>174<br>174                         | 629.9<br>632.6<br>635.9<br>639.164                                                                                                               | 0.14<br>0.12<br>Go                                                                                                            | 1.1<br>81.5<br>81.5<br>                                                                                                                | 328<br>332<br>335<br>Kalic                                                                                                                                       | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86<br>87<br>81                                                                                                                                                                                                                                                                                 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 249                                                                                                                                                                                                                                                                                                                                                  | 53<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.0<br>20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1208<br>1213<br>1218<br>1334<br>1341<br>1346                                       | 632.6<br>635.9<br>639.164<br>639.840                                                                                                             | 0.14<br>0.12<br>Go                                                                                                            | 81.5<br>81.5<br>/ea                                                                                                                    | 332<br>335<br>Kduc                                                                                                                                               | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87<br>81                                                                                                                                                                                                                                                                                       | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 217                                                                                                                                                                                                                                                                                                                                                  | \$3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1213<br>1218<br>1334<br>1341<br>1346                                               | 639.164<br>639.840                                                                                                                               | 0.12<br>Go                                                                                                                    | 451.5<br>/ea                                                                                                                           | 335<br>Kalic                                                                                                                                                     | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 133/<br>134/<br>134/6                                                              | 639.164<br>639.840                                                                                                                               | G.03                                                                                                                          | o.33                                                                                                                                   | Kohec                                                                                                                                                            | ke 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3"45                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 013                                                                                                                                                                                                                                                                                                                                                  | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 133/<br>1341<br>1346                                                               | 639.840                                                                                                                                          | 0.03                                                                                                                          | 0.33                                                                                                                                   |                                                                                                                                                                  | ~ e ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 7                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1341<br>1346                                                                       |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        | 274                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 13Ý1<br>1346                                                                       |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        | 274                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1346                                                                               | 643.3                                                                                                                                            | 0.04                                                                                                                          |                                                                                                                                        |                                                                                                                                                                  | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 232                                                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    | L43.3                                                                                                                                            |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 246                                                                                                                                                                                                                                                                                                                                                  | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ノフィサート                                                                             |                                                                                                                                                  | 0.04                                                                                                                          |                                                                                                                                        | ,                                                                                                                                                                | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 241                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| /357                                                                               |                                                                                                                                                  | 0.08                                                                                                                          | 0.88                                                                                                                                   | 295                                                                                                                                                              | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 253                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1352                                                                               | 647.7                                                                                                                                            |                                                                                                                               | 1.3                                                                                                                                    | 296                                                                                                                                                              | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 249                                                                                                                                                                                                                                                                                                                                                  | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1401                                                                               | 651.0                                                                                                                                            |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 244                                                                                                                                                                                                                                                                                                                                                  | <i>5</i> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1406                                                                               | 654.580                                                                                                                                          | 6                                                                                                                             | 200 4                                                                                                                                  | BYV                                                                                                                                                              | @ Z4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | He                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    | _                                                                                                                                                |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4/22                                                                               | 654.791                                                                                                                                          | 0.03                                                                                                                          | 0,33                                                                                                                                   | 288                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 217                                                                                                                                                                                                                                                                                                                                                  | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               | _                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ——————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               | 7                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    | 1173                                                                                                                                             |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                                                                                                                                                                                                                                                                                    | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                    | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>UTS</b>                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1702                                                                               | D+0.100                                                                                                                                          | 6                                                                                                                             | DOD L                                                                                                                                  | CAKV                                                                                                                                                             | 20 /5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77-                                                                                                                                                                                                                                                                                            | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    | <u>, , , , , , , , , , , , , , , , , , , </u>                                                                                                    |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  | ļ- <u>-</u>                                                                                                                   |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del> </del>                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  | ļ                                                                                                                             | <b></b>                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                      | <u>ļ                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               | 300000                                                                                                                                 | Kapar XII                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | all to this                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <del></del>                                                                        |                                                                                                                                                  | <u> </u>                                                                                                                      |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                | ~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  | . 2.4 4650 (0.0000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The results of the control of the                                                                                                                                                                                                                                                              | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  | Isokinetie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (%)                                                                                                                                                                                                                                                                                            | 2,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ATERIAL                                                                            |                                                                                                                                                  |                                                                                                                               |                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                    | 40/<br>406<br>422<br>427<br>432<br>437<br>442<br>447)<br>1482<br>TEMP.                                                                           | 1401 651.0<br>406 654.580<br>1427 656.6<br>1432 656.6<br>1432 656.6<br>1437 661.0<br>1442 661.0<br>1447 661.3<br>1452 670.100 | 1401 651.0 0.15 406 654.580 6 422 654.79 0.03 427 656.6 0.05 432 658.6 0.06 437 661.0 0.11 442 641.1 0.15 447 667.3 0.11 452 670.100 6 | 1401 657.0 0.15 1.5 406 654.580 6000 W 422 654.79 0.03 0.3) 427 656.6 0.05 0.55 432 658.6 0.06 0.06 437 661.0 0.11 1.2 447 667.3 0.11 1.2 4482 678.6 0.06 6000 W | 401 657.0 0.15 1.5 295 406 654.580 6000 LAKK 422 654.79 0.03 0.33 288 427 656.6 0.05 0.05 298 432 658.6 0.06 0.00 296 437 661.0 0.11 1.2 300 447 667.3 0.11 1.2 7.80 4452 670.100 600 LAKK  4482 670.100 600 LAKK  4482 670.100 600 LAKK  4482 670.100 600 LAKK  4482 670.100 600 LAKK  4482 670.100 600 LAKK  4482 670.100 600 LAKK  4482 670.100 600 LAKK  4482 670.100 600 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 LAKK  4482 670 | 140/ 65/.0 0.15 1.5 295 9/ 406 654.580 6000 (28.6.4.2.2.2.2.6.5.4.7.9) 0.03 0.33 288 87 4/27 656.6 0.05 0.05 298 87 4/32 65.6 0.06 0.66 296 88 4/37 661.0 0.11 1.2 300 9/ 4/47 661.3 0.11 1.2 280 95 4/47 661.3 0.11 1.2 280 95 4/47 661.3 0.10 6000 (28.6.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | 140/ 657.0 0.15 1.5 295 9/ 85  406 654.580 6000 LEVEL D 26 46  2/22 654.79/ 0.03 0.33 288 87 85  4/27 656.6 0.05 0.55 298 87 85  4/32 658.6 0.06 0.06 296 88 85  4/37 661.0 0.1/ 1.2 300 9/ 86  4/42 6(H// 0.15 1.65 293 93 87)  4/47 661.3 0.11 1.2 280 95 91  4/52 670.100 6000 1 5000 25 46  6000 1 5000 25 46  Noisture  Flowrate (DSCFM)  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  Incorrect Control  I | 1401 657.0 0.05 1.5 295 91 85 -  406 654.580 6000 LERKY D 21.445  1422 654.79 0.03 0.33 288 80 85 -  1420 656.6 0.05 0.55 298 80 85 -  1432 658.6 0.06 0.06 296 88 85 -  1437 661.0 0.11 1.2 300 91 86 -  1442 641.1 0.15 1.65 293 93 80 -  1449 667.3 0.11 1.2 280 95 91 -  1452 676.100 6000 LERKY D 25 "H5  TEMP. Flowrite (DSCFM) Isokinetic (%) | Yelocity   St.   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yel | Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity   Yelocity | Yeloeity   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   South   S |

Page 3 of 3

| Plant N          | iame      | Plant         | Yates St | ation Bo     | oiler No.      | 1            |                                                    |                                                  |                                                  |                                                  | / 01     | .2                                               |
|------------------|-----------|---------------|----------|--------------|----------------|--------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------|
| Sampling         | Location  | Plant Inde    | $Y_{-}$  |              | Train          | Partic       | <br>:ulate / N                                     | <b>Aetals</b>                                    | Rui                                              | n No. Z                                          | -/ Pho   | isc                                              |
| Date 1           | 126 45    | Time Start    |          |              | Time Fini      | ish          |                                                    | Test Dura                                        | ation                                            |                                                  | min.     |                                                  |
|                  |           | x             |          |              |                |              |                                                    |                                                  |                                                  |                                                  | cfm      |                                                  |
| PTCF _           |           | DGMCF         |          | NOZZLE       | DIA            |              | nches                                              | Final Lea                                        | k Rate                                           |                                                  | cfm      |                                                  |
| Bar Press        | ·         | " Hg          |          |              |                |              |                                                    |                                                  |                                                  |                                                  |          |                                                  |
| Static Pre       | :\$5      | * H2C         | )        |              | Operator       | <u> </u>     | <u></u>                                            | _                                                |                                                  |                                                  |          |                                                  |
| Travers          | Clock     | Dry gas meter | ^ P      | ^ н          | Stack          | Dry gas m    | eter temp                                          | Hot box                                          | Probe                                            | Last                                             | Vacuum   | -                                                |
| Point            |           | , · ·         | in H2O   |              | Temp. F        |              | Outlet                                             | Temp                                             | 1                                                | Impinger                                         |          |                                                  |
|                  |           |               |          |              | <del>  ,</del> | <b></b> _    |                                                    | 1 cmp.                                           | <u> </u>                                         |                                                  |          |                                                  |
| Wol              | 1457      | 640.485       | 0.03     | 0.30         | 285            | 93           | 85                                                 |                                                  | 217                                              | 56                                               | 6        | 11                                               |
| 2                | 141502    | 672.1         | 0.03     | 0.33         |                |              | 89                                                 |                                                  | 238                                              | 52                                               | _ フ      | L                                                |
| 3                | 1507      | 673 8         | 0.03     | 0.33         | 298            | 92           | 87                                                 |                                                  | 243                                              | 52                                               | 7_       |                                                  |
| 4                | 1512      | 675.3         | 0.04     | 0.44         | 299            | 53           | 90                                                 |                                                  | 244                                              | 5%                                               | 8        |                                                  |
| _ 5              | 1517      | 677.3         | 0.06     | 0.66         | 295            | 95           | 91                                                 |                                                  | 253                                              | 54                                               | 10       |                                                  |
| 6                |           |               |          |              | 283            |              | 93                                                 |                                                  | 257                                              |                                                  | H        |                                                  |
|                  | 1527      |               |          |              |                | @ 22"        |                                                    | <del></del>                                      |                                                  |                                                  |          |                                                  |
| 2.2              | 150       | 0 60.000      |          | 1000         | -              |              | 3                                                  | <del> </del>                                     |                                                  |                                                  | <u> </u> | <del>                                     </del> |
| 181              | KUI       | 682.477       | 0.03     | A 22         | 175            | 92           | 91                                                 |                                                  | 2/2                                              | /3                                               | 7        | <del> </del>                                     |
|                  |           |               |          |              |                |              | <del></del>                                        | <del></del>                                      | 2/7                                              | 62                                               |          | <del> </del> -                                   |
|                  |           |               | 0.05     |              |                | 92           | 91                                                 | -                                                | 239                                              | 526                                              | 5_       | <del> </del>                                     |
| 3                | 1551      | 686.2         |          |              |                | 93           | 9,                                                 | ļ                                                | 257                                              | 57                                               | 6        | <b> </b> -                                       |
|                  | 1556      | 64),65        |          |              |                | 93           | 92                                                 | <u> </u>                                         | 235                                              | 58                                               |          | <u> </u>                                         |
| 5                | 1601      | 689.4         |          |              | 281            | 74           | 52                                                 |                                                  | 245                                              | 35                                               | 6        |                                                  |
| 6                | 1606      | 691.0         |          | 0.33         | 282            | 94           | 92                                                 | <u> </u>                                         | 242                                              | 60                                               | 2_       |                                                  |
| Stop             | 1611      | 692 478       |          |              | <u> </u>       |              |                                                    |                                                  |                                                  |                                                  |          |                                                  |
|                  |           |               |          |              |                |              |                                                    |                                                  |                                                  |                                                  |          | l                                                |
|                  |           |               |          |              |                |              |                                                    |                                                  |                                                  |                                                  |          |                                                  |
|                  | ,         |               |          |              | i -            |              |                                                    |                                                  | $\supset$                                        |                                                  |          |                                                  |
|                  |           |               |          |              |                |              |                                                    | -                                                |                                                  |                                                  |          |                                                  |
|                  |           |               |          |              |                |              |                                                    | <del>                                     </del> |                                                  |                                                  |          |                                                  |
|                  |           |               |          |              |                |              |                                                    | <del>                                     </del> |                                                  |                                                  |          | -                                                |
|                  |           |               |          |              |                |              | <br>                                               | <del> </del>                                     |                                                  |                                                  |          | <del> </del>                                     |
|                  |           | \             |          | <del>}</del> | -              |              |                                                    | <del> </del>                                     | <del>                                     </del> |                                                  |          | -                                                |
|                  |           |               |          | <del> </del> | <del> </del>   | <del> </del> | <del></del>                                        | <del> </del> -                                   | <del> </del>                                     |                                                  |          | <u> </u>                                         |
| <b> </b>         |           | <del></del>   |          |              | <del> </del>   |              | [                                                  | ┼─                                               | <del> </del>                                     | <del>                                     </del> | <u> </u> | ├                                                |
| <b>_</b>         |           |               |          | ļ            | <del> </del>   |              | <u> </u>                                           | <del> </del>                                     | <u> </u>                                         | <b></b>                                          | <u> </u> | <del> </del>                                     |
| <b></b>          |           |               |          |              | /              |              | <b> </b>                                           | ļ                                                | <b></b> _                                        |                                                  |          | <u> </u>                                         |
| <b> </b>         |           |               |          |              | /              |              |                                                    | ļ                                                | <u> </u>                                         |                                                  |          | <u> </u>                                         |
|                  |           |               | Jor      |              |                | <u> </u>     |                                                    |                                                  |                                                  |                                                  |          |                                                  |
| Avg.             |           | 107.55        | 0,246    |              |                |              |                                                    |                                                  |                                                  |                                                  |          |                                                  |
| Check'd          |           |               |          |              |                |              |                                                    |                                                  |                                                  |                                                  |          |                                                  |
| FILTER<br>AMBIEN | #IT TEMP. |               |          |              |                | % Moistur    | DSCFM)_                                            |                                                  |                                                  |                                                  |          |                                                  |
|                  |           | ·             |          |              |                |              | **************************************             | <u> </u>                                         | <u></u>                                          |                                                  | į        |                                                  |
| REMAR            |           |               |          |              |                |              | · · <u>_</u> · · · · · · · · · · · · · · · · · · · |                                                  | ·····                                            |                                                  | _        |                                                  |

| Plant N       | Name        | Plant             | Yates St | ation Bo    | iler No.      | 1                                        |                                                  |              |           | _                      | 10                                      | 1 1                                     |
|---------------|-------------|-------------------|----------|-------------|---------------|------------------------------------------|--------------------------------------------------|--------------|-----------|------------------------|-----------------------------------------|-----------------------------------------|
| Sampling      | [cocation_  | INLET             |          | <del></del> | Train _       | Partic                                   | culate / M                                       | 1etals_      | Ru        | n No. 🤇                | SIM                                     | 25e2                                    |
|               |             | Time Start        | 848      |             | Time Fini     | sh 140                                   | 25                                               | Test Dura    | ition     | 240                    | Zmin.                                   | 12414                                   |
| Duct Dir      | nensions    | <u>8'6" x</u>     |          |             | Diameter      |                                          | <u> </u>                                         | Initial Le   | ik Rate _ | 0.017                  | cfm <i>&amp;</i>                        | 124 45                                  |
|               |             | DGMCF_O           | .997     | NOZZLE      | DIA. <u>O</u> | ,35Y                                     | inches                                           | Final Lea    | k Rate    | 0.010                  | c(m <b>&amp;</b>                        | 23174                                   |
| Bar Pres      | s <u> </u>  | . <del>7</del> Hg |          |             | •             | JUM                                      |                                                  |              |           |                        |                                         |                                         |
| Static Pro    | ess         | 2.5 5.7 H20       | )        |             | Operator      | 300                                      |                                                  |              |           |                        |                                         |                                         |
| Travers       | Clock       | Dry gas meter     | ^ P      | ^ H         | Stack         | Dry gas m                                | eter temp.                                       | Hot box      | Probe     | Last                   | Vacuum                                  | Fresh                                   |
| Point         | Time        | reading ft3       | in H2O   | in H2O      | Temp. F       | Inlet                                    | Outlet                                           | Temp.        | Temp      | Impinger               | in. Hg                                  | buch                                    |
| W8-1          | 848         | 72.943            | 0.04     | 0,44        | 281           | 75                                       | 74                                               |              | 226       | 54                     | 6                                       | 11.0                                    |
| 2             | T           | 714.8             | 0.05     | 0.35        | 28/           | 75                                       | 74                                               |              | 235       | 50                     | 6                                       |                                         |
| 2 3           | 858         | 716.7             | 0.04     | 0.44        | 278           | 7)                                       | 75                                               |              | 220       | 49                     | 3                                       |                                         |
| 4             | 903         | 7/8.6             | 0.02     | 0.22        | 276           | 78                                       | 76                                               |              | 242       | 50                     | 4                                       |                                         |
| 5             | 908         | 720.0             | 0.02     | 0.22        | 279           | 79                                       | 76                                               | -            | 215       | うおが                    | . 4                                     |                                         |
| 6             | 7/3         | 721.3             | 0,05     | 0,55        | 276           | 80                                       | 77                                               | -            | 242       | 52                     | 6                                       |                                         |
| Stop          | 918         | 723,56            | C        | and le      | at che        | ck Q 2                                   | 2"14                                             |              |           |                        |                                         |                                         |
|               |             |                   |          |             |               |                                          |                                                  |              |           |                        |                                         |                                         |
| LX-1          | 939         | 723.840           | 0.02     | 0.22        | 284           | 80                                       | 77,                                              | _            | 225       | 55                     | 4                                       |                                         |
| 2             | 944         | 725.5             | 007      | 0.33        | 286           | 80                                       | 78                                               | _            | 23 Z      | 53                     | 5                                       |                                         |
| 3             | 949         | 727.0             | 0.05     | 0.55        | 288           | 81                                       | 78                                               | _            | 236       | 52                     | 6                                       |                                         |
| 4             | 954         | 728.3             | 0.04     | 0.44        | 287           | 82                                       | 79                                               | -            | 232       | 52                     | 3                                       |                                         |
| 5             | 959         | 730.9             |          | רר,ט        | 278           | 93                                       | 80                                               | _            | 245       | 48                     | 7                                       |                                         |
|               | 1004        | 733.6             | 0.08     | 0.90        | 284           | 85                                       | 80                                               |              | 250       | 48                     | 5                                       |                                         |
| sto           |             | 735.654           |          | Herec       | beck a        |                                          | 7                                                | LOOKO        |           | 22.14                  |                                         |                                         |
| -             |             |                   |          |             |               | <del> </del>                             |                                                  |              |           |                        |                                         |                                         |
| 4-1           | 1015        | 735,999           | 0.02     | 0.22        | 275           | 83                                       | 81                                               | _            | 205       | 57                     | 4                                       |                                         |
| 0 2           | ,           | 737.5             | 0.04     | 0.46        | 2.89          | 84                                       | 82                                               | -            | 240       | 54                     | 6                                       |                                         |
| 3             | 1025        | 737.4             | 0.08     | 0.50        | 253           | 85                                       | 82                                               | -            | 24        | 50                     | 9                                       |                                         |
| 4             | 10 30       | 742.5             | 0.11     | 1.25        | 295           | 87                                       | 83                                               | -            | 248       | 45                     | 14                                      |                                         |
| 5             | <del></del> |                   | 0.14     | 1.6         | 291           | 88                                       | 83                                               | _            | 240       | 4                      | 19                                      |                                         |
| 6             | 1040        | 748.9             | 0.16     | 1.8         | 292           |                                          | 84                                               | -            | 244       |                        | 21.5                                    |                                         |
| Stop          | 1045        | 752,419           |          |             | Check         | @ 25"                                    | 1/01                                             | }            |           |                        |                                         |                                         |
|               |             |                   |          | - 7. 3.3    |               |                                          | 3                                                |              |           |                        |                                         |                                         |
|               |             |                   |          |             |               |                                          |                                                  |              |           |                        |                                         |                                         |
| <del></del> _ |             |                   |          |             |               |                                          |                                                  |              |           |                        |                                         |                                         |
|               |             |                   |          |             |               |                                          | <del>                                     </del> | <u> </u>     |           |                        |                                         |                                         |
|               |             |                   |          |             |               |                                          |                                                  | <del> </del> | l         |                        |                                         |                                         |
| wg.           |             | 111.690           | 72524    | 7205        | 303           |                                          | 90                                               |              |           |                        |                                         |                                         |
| 'heck'd       |             |                   |          |             |               |                                          |                                                  |              |           |                        |                                         |                                         |
|               |             | 144747            |          |             |               |                                          |                                                  |              |           | · Common of the common | 500000000000000000000000000000000000000 | *************************************** |
|               |             | 1/6/363           |          |             |               | Velocity                                 |                                                  |              |           |                        |                                         |                                         |
|               | #916,       | / thimble         | ·<br>    |             |               | % Moistur                                | 300cccommontoccc                                 |              |           |                        |                                         |                                         |
|               | T TEMP!     | <u>80</u>         |          |             |               | -2000 000 000 000 000 000 000 000 000 00 | DSCFM()_                                         |              |           |                        |                                         |                                         |
|               | LENGTH      | 8FH               |          |             |               | Isokinetic                               | (5)                                              |              |           |                        |                                         |                                         |
| NEKA          | MATERIAL    | <u>- 9kiss</u>    |          |             |               |                                          |                                                  |              |           |                        |                                         |                                         |

MARKS Good Leak check of pitot tube fline (all Phase 2 pitots & lines were leak checked where applicable.)

AT FAID OF RUAL - Thimble became dis lodged from 1. - 12.

Page Z of 3

|           | Location_   | Plant Lu      | 10-4        |              | Train           | Partic                       | culate / N             | letals                                 | Rui                                     | n No. 3      | Pha             | se Z         |            |
|-----------|-------------|---------------|-------------|--------------|-----------------|------------------------------|------------------------|----------------------------------------|-----------------------------------------|--------------|-----------------|--------------|------------|
|           |             | Time Start    | <del></del> |              | Time Fini       | sh                           |                        | Test Dura                              | tion                                    |              | min.            |              |            |
|           |             | x             |             |              |                 |                              |                        |                                        |                                         |              | cfm             |              |            |
|           |             | DGMCF         |             |              |                 |                              |                        |                                        |                                         | -            |                 |              |            |
| ar Press  |             | * Hg          |             |              |                 |                              |                        |                                        |                                         |              |                 |              |            |
| tatic Pre | :33         | * H2C         | *           |              | Operator        | ্রী ১                        | <u> </u>               | <del>_</del>                           |                                         |              |                 |              |            |
| ravers    | Clock       | Dry gas meter | ^ P         | ^ H          | Stack           | Dry gas m                    | cter temp.             | Hot box                                | Probe                                   | Last         | Vacuum          | K            | ]          |
| Point     | Time        | reading ft3   | in H2O      |              | Temp. F         |                              | Outlet                 | Temp.                                  | Temp                                    | Impinger     |                 | factor       |            |
|           | 1.16        | 752.612       | 4 02        | 6 7 3        | 785             |                              | 84                     |                                        | 204                                     |              | 4               |              | ł          |
|           | 1049        |               |             |              | 298             | 87                           |                        |                                        | 221                                     | 60           | 5-              |              |            |
|           | 1054        | 757.1         | 0.03        | 0.33         |                 | 80                           | 84                     | -                                      |                                         | 33           |                 | <del> </del> | Ì          |
|           | 1059        | 7537,7        |             | 0.44         | 307             | 88                           | 85                     | <b> </b>                               | 243                                     | 53           | 6               | 11.00        |            |
|           | 1104        | 757,7         |             | 0.99         | 299             | 89_                          | 86                     |                                        | 257                                     | 49           | 11              | 11.06        |            |
|           | 1109        | 760.2         |             |              | 302             | 51,                          | 87                     |                                        | 241                                     | 47           | 19              |              | Į.         |
|           | Billia      |               | 0.13        |              | Je/_            | 94                           | 88                     |                                        |                                         | 58           |                 |              | <b>,</b>   |
| 5/2/      | 1117        | 767,291       | <u> </u>    | od ot        | 22 "            | y leak                       | chek                   | 1600                                   | dinin.                                  | al leak      | CHICK           | 251          | <b>7</b> . |
|           |             |               |             |              |                 |                              |                        | /                                      |                                         |              |                 | ļ            | [,         |
| 2-4       | 1148        | 768 450       | 0.03        | 0.33         | 317             | 89                           | 87                     |                                        | 216                                     | 65           | 6               | 41.12        | 1/0. ¥     |
| 2         | 1153        | 770.2         | 0.04        | 0,44         | 322             | 89                           | 87                     | _                                      | 240                                     | 22_          | 7               |              | }          |
| 3         | 1158        | 772.0         | 0.06        | 0.66         | 328             | 90                           | 87                     | _                                      | 242                                     | 52           | 8               |              | 1          |
| 4         | 403         | 774.3         | 0.09        | 1.0          | 330             | 91                           | 88                     | ~                                      | 244                                     | 57           | 12              |              |            |
|           | 1208        | 777.0         | 6.18        | 1.6          | 333             | 93                           | 89                     | -                                      | 242                                     | 54           | 22              | }            | ]          |
|           | 1213        | 780.6         | 0.19        | 1.6          | 336             | 95                           | 90                     | -                                      | 249                                     | 57           | 22              |              | ]          |
|           | 1218        | 783.812       |             |              |                 | k 02                         | sell 1                 | 0.01                                   | V A3/                                   | 1:1          |                 |              | 1          |
| -1-4-     |             |               |             |              |                 |                              | 77                     |                                        |                                         | 7            |                 |              | 1          |
| 3-1       | 1225        | 784.027       | 0.02        | 0.22         | 316             | 92                           | 90                     | -                                      | 222                                     | 67           | 5               |              | 1          |
|           | /230        |               |             | 0,45         |                 | 92                           | 89                     | _                                      | 247                                     | 60           | 7               |              | 1          |
|           |             | 787.4         | 0.07        |              | 321             | 92                           | 90                     |                                        |                                         | 57           | 11              | 1            | 1          |
|           | 1240        | 790.0         |             | 1.25         |                 | <del></del>                  | 91                     |                                        | 250                                     |              | 18              | <del> </del> | 1          |
|           | 1245        | 392.5         |             | 1.55         |                 |                              | 92                     | <del> </del>                           | 251                                     |              | 21              | <del> </del> | 1          |
| - 2       | 1250        | 796.6         |             | 1.4          | 322             |                              | 92                     | <del> </del>                           | 245                                     |              | 22              | <del> </del> | ł          |
| 4         |             |               | 0-16        |              |                 | 7.5                          | 100                    | <del> </del>                           | 013                                     | 1.02         | المالية المالية | <del> </del> | ł          |
| 799       | 1255        | 799.342       |             | <del> </del> | <del></del>     |                              | <del>}</del>           | <del>}</del>                           | <del> </del>                            | <del>}</del> | <del> </del>    | <del> </del> | ł          |
|           |             |               |             |              | F               |                              |                        |                                        |                                         | 5            | <del>}</del>    | <del> </del> | 1          |
|           |             |               |             | }            | <del> </del>    | <del> </del>                 | <u> </u>               | <u> </u>                               |                                         | <del></del>  | <del> </del>    | <del>{</del> | ł          |
|           | <del></del> |               |             |              |                 |                              |                        | <del> </del>                           | <del> </del>                            | <del> </del> |                 | <del>}</del> | ł          |
|           |             |               |             |              |                 |                              | <b></b>                | <del> </del>                           | <del></del>                             | <del> </del> | <del> </del>    | <del>}</del> | ł          |
|           |             |               | 50°         |              | 0.000000.114244 |                              |                        |                                        | 500000000000000000000000000000000000000 |              |                 |              | 1          |
|           |             | 11.690        | 0.254       | <u> </u>     |                 |                              |                        | <b>.</b>                               |                                         |              |                 |              | 1          |
| :k'd      |             |               |             |              |                 |                              | I                      |                                        |                                         |              |                 |              | j          |
| 100.      | F 4         |               |             |              | . —             | **                           |                        |                                        | . /                                     |              | ĕ               |              |            |
|           |             |               |             |              |                 | Velocity_                    | 8499499000000000000000 |                                        |                                         |              |                 |              | j          |
| EK        | #           |               |             |              |                 | 10001000010001000100         | P                      | 2 <b>9025007005000000000000</b> 00     |                                         |              |                 |              |            |
| IEN.      | i iemp.     |               |             |              |                 | - 1700 (800) (800) (800-100) | DSCFM                  | ###################################### | 96469999999999999                       |              |                 |              |            |
|           | LENUIN      |               |             |              |                 | TRUETICIE                    | (%)                    |                                        |                                         |              | 8               |              |            |
|           |             | ·             |             |              |                 |                              |                        |                                        |                                         |              | ,               |              | *          |

Page 3 of 3

| Plant N    | Vame      | Plant                                        | Yates St      | ation Bo       | iler No.         | 1             |             |              |                | -              | 100           | -               |
|------------|-----------|----------------------------------------------|---------------|----------------|------------------|---------------|-------------|--------------|----------------|----------------|---------------|-----------------|
| Sampling   | Location_ | Inle                                         | <u>+</u>      |                | Train_           | Partic        | culate / N  | letals       | Ru             | n No. <u>ع</u> | 1 Pha         | 5e 6            |
| Jane       | 14/171    | I RUE SOUTH                                  |               |                | fillie trut      | ə <i>11</i>   |             | I CSL Duia   | mou            |                | mın.          |                 |
| Duct Din   | nensions  | x_                                           |               |                | Diameter         | <del></del>   | ft          | Initial Les  | ak Rate _      | <del></del>    | cfm           |                 |
|            |           | DGMCF                                        | ·             | NOZZLE         | DIA              |               | nches       | Final Lea    | k Rate         |                | ctm           |                 |
|            |           | " Hg                                         |               |                | •                | <b>5</b> 1.   |             |              |                |                |               |                 |
| itatic Pro | ESS       | H20                                          | <i>-</i>      |                | Operator         | <u>، لمال</u> | <u> </u>    | <del></del>  |                |                |               |                 |
| ravers     | Clock     | Dry gas meter                                | ^ P           | ^ H            | Stack            | Dry gas m     | eter temp.  | Hot box      | Probe          | Last           | Vacuum        |                 |
| Point      | Time      | reading ft3                                  | in H2O        | in H2O         | Temp. F          | lnlet         | Outlet      | Temp.        | Temp           | Impinger       | in. Hg        |                 |
| F3-1       | 1259      | 799.545                                      | 002           | 0.22           | 307              | 94            | 92          |              | 206            | 66             | 4             |                 |
| ح ت        |           | 801.1                                        | 0,03          | 0.33           | 315              | 74            | 92          |              | 226            | 65             | 7             |                 |
| 3          | 1309      | 8027                                         |               | 0.33           | 318              | 95            | 92          |              | 247            | 65             | <del></del> - |                 |
| 4          |           | 804.8                                        |               | 034            |                  | 96            | 83          |              | 24             | 55             | 10            |                 |
|            | ·         |                                              |               | 1.3.11         | 316              |               | 94          |              |                |                | 0             |                 |
|            | 1319      | 807.7                                        |               | 1,3            | 314              | 99            | <del></del> |              | 245            | 54             | 20            |                 |
| 6          |           | 8 10.5                                       |               |                |                  | 99            | 54          |              | 242            | 52             | 22            |                 |
| Stop       | 1329      | 813,735                                      | (70           | po wa          | - Char           | K62           | 2"/43       | <u></u>      | <del> </del>   |                |               |                 |
| E ( /      |           | <b>6</b>                                     | 5             | A 33           | 2.5              | 62            | 6.1         |              |                | CE             | /3            |                 |
|            | /3.75     | 814.000                                      |               | 0.77           | 309              | 97            | 94          |              | 205            |                | /3            |                 |
|            |           | 816.5                                        | 0.09          |                | 314              | 7             | 94          |              | 239            |                | 12            |                 |
| <u>)</u>   | 1345      | 819.4                                        | 0.04          |                | 3/2              | 97            | 93          |              | 241            | 54             | 11            |                 |
|            | /338      | 821.5                                        | 0.03          | 033            | 310              | 98            | 94          |              | 260            | 52             | 7             |                 |
|            |           | 823.3                                        | 0.04          |                | 309              | 57            | 74          | _            | 252            | 57-            | 10            |                 |
| 6          | H6605-    | 825.2                                        | 0.05          | 0.33           | 303              | 9)            | 44          | ~            | 257            | 57             | 11            |                 |
| top        | 1105      | 877778                                       |               |                |                  |               |             |              | -              | \              |               |                 |
|            | , ,       |                                              |               |                |                  |               |             |              |                |                |               |                 |
|            |           |                                              |               |                |                  |               |             |              |                |                |               |                 |
|            |           |                                              |               |                |                  |               |             |              |                |                | <del></del>   |                 |
|            |           |                                              |               | <del> </del>   |                  |               |             |              |                | <u> </u>       |               |                 |
|            |           |                                              |               | <del> </del>   |                  |               |             | <del> </del> | <del> </del>   | <del> </del>   |               |                 |
|            |           |                                              | <del> </del>  | <del> </del>   | <u></u>          |               |             |              | <del> </del>   |                |               |                 |
|            |           |                                              | }             | <del> </del>   |                  |               | <u> </u>    | <del> </del> | }              | <del> </del>   |               |                 |
|            |           | <u>                                     </u> |               | <b> </b> -     |                  |               | <del></del> |              |                | <b> </b> -     |               |                 |
|            |           |                                              | <del></del> - | <del>}</del> - |                  |               |             |              | <del> </del> - | <b></b>        | <del> </del>  |                 |
|            | <u> </u>  |                                              | ļ             | ļ              |                  |               |             |              | ļ              | ļ              | Ĺ <u> </u>    | <u> </u>        |
|            | ļ         |                                              | L             |                |                  | ļ             |             |              | <b></b>        | L              |               |                 |
|            | <u> </u>  |                                              |               | <b></b>        | <b></b>          |               |             | <u></u>      |                |                |               |                 |
| i          |           |                                              |               |                |                  | <u> </u>      |             |              | <u></u>        |                |               |                 |
|            |           |                                              |               |                |                  |               |             |              |                |                |               |                 |
| Avg.       |           |                                              |               |                |                  |               |             |              |                |                |               |                 |
| Theck'd    |           |                                              |               |                |                  |               |             |              |                |                |               |                 |
|            | <u> </u>  |                                              |               |                | ي سيستن خدين بنا | Velocity      |             |              |                |                |               | 1 5000040000000 |
|            |           |                                              |               |                |                  |               | •           |              |                |                |               |                 |
| MBIEN      | T TEMP    |                                              | <del></del>   | •              |                  |               | DSCFM)      |              |                |                |               |                 |
|            |           |                                              |               |                |                  |               | (%)         |              |                |                |               |                 |
|            |           | ·                                            |               |                |                  |               |             |              |                |                | ŧ             |                 |
| ,          |           |                                              |               |                |                  |               |             |              |                |                |               |                 |

Page \_\_\_\_ of \_\_\_

| Plant N    | iame          | Plant  Inle- Time Start  X  DGMCF | Yates St     | ation Bo                                         | iler No.                                         | 1                                       |                   |                                                  |             | 6                                                | ) 0/           | (m)  |
|------------|---------------|-----------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|-------------------|--------------------------------------------------|-------------|--------------------------------------------------|----------------|------|
| Sampling   | Location_     | Inter                             | <u> </u>     |                                                  | Train _                                          | Partic                                  | <u>:uiate / N</u> | <u> 1etals</u>                                   | Rui         | n No. 🎵                                          | resed (        |      |
| Date 2     | 4 Jun 9       | Time Start                        | 1206         |                                                  | Time Fin                                         | ish                                     | <del></del>       | Test Dura                                        | tion        |                                                  | min.*          |      |
| Duct Din   | nensions_     | x_                                |              |                                                  | Diameter                                         |                                         | ft                | Initial Lea                                      | k Rate      | 0.01                                             | 2_cfm <b>€</b> | 1514 |
| PTCF _     |               | DGMCF                             |              | NOZZLE                                           | DIA.                                             | 1358 i                                  | nches             | Final Leal                                       | k Rate _    |                                                  | cfm            | _    |
| Bar Press  | 3             | " Hg                              | <del></del>  |                                                  | <del></del>                                      |                                         |                   |                                                  |             |                                                  |                |      |
| Static Pre |               | H2C                               | )            |                                                  | Operator                                         | JW                                      | ~                 |                                                  |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
| Travers    |               | Dry gas meter                     | ^P           |                                                  | 1                                                | Dry gas m                               | eter temp.        | Hot box                                          | Probe       | Last                                             | Vacuum         |      |
| Point      | Time          | reading ft3                       | in H2O       | in H2O                                           | Temp. F                                          | Inlet                                   | Outlet            | Temp.                                            | Temp        | Impinger                                         | in. Hg         |      |
|            | DO.           | 426, 95                           |              |                                                  |                                                  |                                         |                   | <del>                                     </del> |             | <del>                                     </del> |                |      |
|            | 211           |                                   |              |                                                  | <del></del>                                      |                                         | <u> </u>          | <del> </del> -                                   |             |                                                  |                |      |
|            | 120           | 426.845                           | <u> </u>     |                                                  | <del> </del>                                     | <u> </u>                                |                   | ļ                                                |             |                                                  | _              |      |
|            |               |                                   |              |                                                  |                                                  | ļ                                       |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  | <u> </u>                                |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              | 1                                                |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               | <b>†</b>                          |              | -                                                |                                                  |                                         |                   | <del> </del>                                     |             | <del> </del>                                     |                |      |
|            |               | <del> </del>                      | <del> </del> | <u> </u>                                         | <del> </del> -                                   |                                         |                   | <del>                                     </del> |             | <del> </del> -                                   |                |      |
|            |               |                                   | <u> </u>     | ļ                                                |                                                  | <u> </u>                                |                   | <del> </del>                                     |             | <del> </del>                                     |                |      |
|            |               |                                   | <u></u>      |                                                  |                                                  |                                         |                   |                                                  |             | <u></u>                                          |                |      |
|            |               |                                   |              |                                                  | l                                                |                                         |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              | <del></del> -                                    | <u> </u>                                         |                                         |                   | <u> </u>                                         | <del></del> |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   | <del> </del>                                     |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   | ļ                                                |             | <del> </del>                                     |                |      |
|            |               |                                   | <u> </u>     |                                                  |                                                  |                                         |                   | <u> </u>                                         |             |                                                  | ,<br>          |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               | <del>\</del>                      |              |                                                  |                                                  |                                         |                   | ···                                              |             |                                                  |                |      |
|            |               |                                   |              | -                                                | <del> </del>                                     |                                         |                   | <u> </u>                                         |             |                                                  | <u> </u>       |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              | <u> </u>                                         |                                                  |                                         |                   | ļ                                                |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               |                                   | · ·          |                                                  |                                                  | •                                       |                   | 1                                                |             |                                                  |                |      |
|            |               |                                   |              | <del> </del>                                     | <del>                                     </del> |                                         | l.— <u> </u>      |                                                  |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  | -                                       |                   | <del> </del>                                     |             |                                                  |                |      |
|            |               | -                                 | <del> </del> | <del></del>                                      | ļ                                                |                                         |                   | ļ                                                |             | <del></del>                                      |                |      |
|            |               | ļ                                 |              | L                                                |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  | 1                                       |                   |                                                  |             |                                                  |                |      |
|            |               |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
|            |               | T                                 |              | <del>                                     </del> | <del> </del>                                     |                                         |                   | <del> </del>                                     |             |                                                  | <del> </del>   |      |
|            | <del></del> - |                                   |              |                                                  |                                                  |                                         |                   |                                                  |             |                                                  |                |      |
| Avg.       |               |                                   |              |                                                  |                                                  |                                         |                   | l .                                              |             |                                                  |                |      |
| Check'd    | <u> </u>      |                                   |              |                                                  |                                                  |                                         |                   | 1                                                |             |                                                  |                |      |
| FILTER     | # 125         | Quart 2/                          | 416136       | 63                                               |                                                  | Velocity<br>% Moistus                   | T.                |                                                  |             |                                                  |                |      |
| AMBIEN     | IT TEMP.      | 85                                |              | -                                                |                                                  | Flowrate (                              | DSCFM)            |                                                  |             |                                                  |                |      |
| PROBE I    | LENGTH        | *                                 |              |                                                  |                                                  | -00000000000000000000000000000000000000 | (%)               | ***************************************          |             |                                                  |                |      |
| LINER N    | ATERIA        | 1 Quartz                          |              |                                                  |                                                  |                                         | ****              |                                                  |             |                                                  | ė.             |      |
| REMAR      | KS            | <del></del>                       |              |                                                  |                                                  |                                         |                   |                                                  |             | <del></del>                                      | -              |      |

# Flue-Gas Sampling Log

| 3,000                                    | September 1                     |                    |            | 2,500    | 43            |
|------------------------------------------|---------------------------------|--------------------|------------|----------|---------------|
|                                          |                                 |                    |            |          | ****          |
| 387                                      |                                 |                    |            |          |               |
|                                          | 3                               |                    |            |          |               |
|                                          | 8                               | 313A<br>31         |            |          |               |
| ¥,                                       | (8), T                          |                    |            |          |               |
|                                          |                                 |                    |            | 15,7     |               |
|                                          | ्र ५७ म                         | १८ यहर             |            |          |               |
| 94.                                      | Δ                               | 0                  |            |          |               |
| 34                                       | ੍ਹਾ                             | <u> </u>           | 7.         | 3        | 7             |
|                                          |                                 | - \$3.5<br>- 3.5   | Box * 1    | N        | 17            |
|                                          | ▔                               | 2                  |            |          |               |
| 1.00                                     | u 1                             |                    | -          |          | 27.           |
| 1 11 A                                   |                                 |                    |            |          | 30            |
|                                          | ¥                               |                    |            |          |               |
|                                          | $\frac{3}{2}$                   |                    |            |          | · ·           |
|                                          | #                               | #                  |            |          |               |
| 2.                                       | Ţ                               | =                  |            |          |               |
| #                                        | Ľ                               | 0                  |            |          | "             |
| Ξ                                        | L                               | ç                  |            |          |               |
| 3                                        | Ø,                              | æ                  |            | "        |               |
| $\simeq$                                 | Ξ                               | U                  |            | er (     | $\ddot{\sim}$ |
| 0                                        | 1                               | ਰ                  | #          | #        |               |
| D                                        | 310                             | 3                  | Ω,         | 9        | <u></u>       |
| Z                                        | -                               | 0                  |            | <u> </u> | 12            |
|                                          | _                               |                    |            |          |               |
| ar                                       | 90                              | 6                  | 'n         | 7.       | =             |
| Sar                                      | So                              | Toc                | Pump#:     | Probe#:  | Filter ID:    |
| 💌 🛮 Sar                                  | Soc                             | loc                | Pu         | Pro      | Fil           |
| RE   Sar                                 | Soc                             | loc                | Pu         | Pro      | File          |
| LER I Sar                                | So:                             | loc                | Pu         | Pro      | H             |
| boiler   Sar                             | . Soc                           | loc                | n.I.       | Pro      | Fil           |
| Boiler Sar                               | 905                             | 100                | n <u>d</u> | Pro      | Fil           |
| IN Boiler I Sal                          | <u> </u>                        | 01                 |            | Pro      |               |
| FIGH BOILER # 1 Sal                      | Soc                             | 301                |            | Pre      |               |
| MATION BOILER * 1 SAI                    | stet So                         | . 4.5.             |            |          |               |
| STATION BOILER * 1 Sal                   | INLET                           | 3.43               |            |          |               |
| STATION BOILER " 1 SAI                   | S INLET                         | 25-45              |            |          |               |
| ES STATION BOILER # 1   SAI              | SP INLET                        | 25-45 loc          |            |          | [F1]          |
| OTES STATION BOYLER * 1   SAI            | ESP INLET                       | 00                 |            |          |               |
| INTES STATION BOILER !   Sal             | ESP INLET Soda-Lime Trap#:      | 00  Sh-52 nd       |            |          |               |
| T YATES STATION BOILER # 1 Sal           | ESP NUCT SO                     | oo]                |            |          |               |
| WIT MATES STATION BOILER # 1 SAI         | 1: ESP INLET SO                 | 26-52-43           |            |          |               |
| LANT VATES STATION BOILER "   SAI        | on: ESP INLET   Soi             | 00] Sb-52*90       |            |          |               |
| PLANT MATES STATION BOILER !   SAI       | tion: ESP 12Let Soc             | 00] Sb-52-90       | J POJ      |          |               |
| : Plant Intes Station Boiler   Sal       | cation: ESP incet Soc           | 001 Sp-25-40       | J POJ      |          |               |
| 15 PLANT MATES STATION BOILER !   SAI    | ocation: ESP INLET Soc          | 00] Sb-52,90       | J POJ      |          |               |
| SOUTH PLANT YATES STATION BOILER !   SAI | Location: ESP inlet   Soc       |                    | J POJ      |          |               |
| MSOK: PLANT YATES STATION BOLLER !   SAI | nt Location: ESP in Let   Soc   |                    | J POJ      |          |               |
| Sponson Plant Intes Station Boiler   Sar | lant Location: ESP in Let   Soc | )ate: 06.25-45 100 |            |          |               |

|                 | start           |                 |                 | stop            |                 | elapsed       | mean                | mean            |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|---------------------|-----------------|
| time<br>(hh:mm) | zero<br>(1/min) | flow<br>(1/min) | time<br>(hh:mm) | zero<br>(1/min) | flow<br>(1/min) | time<br>(min) | zero<br>(1/min)     | flow<br>(1/min) |
| 0 <b>10</b> 5   | 9               | 0.500           | 1100            | -0.005 0.213    |                 | 552,947       | 59880 58000-552 347 | 0.3865          |
|                 |                 |                 |                 |                 |                 |               |                     |                 |
|                 |                 |                 |                 |                 |                 |               |                     |                 |
|                 |                 |                 |                 |                 |                 |               |                     |                 |
|                 |                 |                 |                 |                 |                 |               |                     |                 |
|                 |                 |                 |                 |                 |                 |               |                     |                 |
|                 |                 |                 |                 |                 | TOTALS:         | \$82          | -0.0085 D 3865      | 2865            |

| Integrator Volume (I): | Volume (1): 100.0            | COMIN    |
|------------------------|------------------------------|----------|
| Offset Correction (1): |                              | STARTS   |
| Total Integ            | Total Integrator Volume:     | 5 to p 3 |
| CO <sub>2</sub> Mass F | CO2 Mass Flow Correction:    |          |
| Actual (dry            | Actual (dry STP) volume (1): | H        |
| % <b>0</b> 2:          | Q of                         |          |
| % CO <sub>2</sub> :    | 0,01                         |          |
| % H <sub>2</sub> O:    | ۲.۵                          |          |
| ppm SO <sub>2</sub> :  | 1500 To 2000                 |          |

| START: LEAK V @ METER -> -0.012  STOP: KEAK V @ METER -> -0.005  HEAT SHEATHED PROBG TEMP  105 °C TO 115 °C |
|-------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------|

# Flue-Gas Sampling Log

|                                    | 14.7            | Late :           | ī              | . 2007                      | samer.       |
|------------------------------------|-----------------|------------------|----------------|-----------------------------|--------------|
| 130                                | 100             | 1000             | 1. 88          | 1000                        | <b>19</b> 00 |
|                                    |                 |                  | 100            |                             | <b>1000</b>  |
| 1.00                               |                 | 13000            | 1              |                             |              |
| - 3                                | 100             | 14.5             | <b>1</b>       | <b>K</b> 💥                  |              |
| - 185                              | 120             | [23]             | 1 · · ·        | 500                         | 380          |
|                                    | 100             |                  | 1              |                             |              |
| 4/30                               | 1000            | <b>1</b> ( ) ( ) | 1              | 200                         | 33°          |
| 4.5                                | 13.5            | 7.9%             | 1              |                             | <b>38</b> %  |
| 1.7                                |                 | ेवर.             | 1              | 77.5                        | 3330         |
|                                    |                 |                  | 1              | 100.00                      |              |
| ٠.                                 | 1.80            |                  | ł              | 10.00                       |              |
| 1.0                                | 3.44            |                  | - ·            | 10.88                       |              |
| 1.77                               | 50-42           | 1.00             | 1              |                             |              |
| . 05                               | . 🐳             |                  | 1.1            | Works.                      |              |
| 40                                 | N               | N.               | ~              |                             | 200          |
| 1500                               |                 |                  | 10             |                             | 190 E        |
|                                    |                 |                  | . 96           |                             |              |
|                                    |                 | (W. 10)          | :: <b>\</b>    | 143                         |              |
| 1000                               |                 | ∴ 🛊              | ି <b>ପ୍</b>    |                             | 鄉洋           |
| 5,5                                |                 |                  |                |                             |              |
|                                    | 100             | 90               |                | 13.77                       | 100 X        |
|                                    | 113             |                  | . 300          |                             | 334          |
| 11.00                              | 6.85            | Z Á              |                |                             | 8.4          |
|                                    | 18.9            | 200              |                |                             | 340          |
|                                    |                 | 9                | (              | - 20                        | 300          |
| . :                                | **              |                  | 2.0            | 1 ASS                       | 9000C        |
|                                    | <b>T</b> .      | #                |                | 1,30%                       | 3.3          |
|                                    |                 |                  | . 15           | 1000                        | 200          |
|                                    | i ra            | Π.               |                | 1.70                        |              |
| =                                  | -               | 0                |                | 100                         | 200          |
| <u> </u>                           |                 | 20               |                | 药的                          |              |
|                                    |                 | $\sim$           |                | 201                         | 1897         |
| <b>-</b>                           | ារ              | -                | 11.5           |                             | (\$* ···)    |
| - M                                | =               | 6                |                |                             | (2) · · ·    |
| $\sim$                             |                 | $\mathbf{U}$     |                | <i>0.</i> 100 €             | -            |
| 41                                 | •               |                  | 4 >            |                             |              |
|                                    |                 | 9                | #              | <b>*=</b>                   | _            |
| `C.                                | 00.1%           |                  | Ω.             | ٠                           | -            |
|                                    | ্ব              | -                |                | <u> </u>                    | ~            |
| Ξ                                  | U               | 7                | []             |                             | - L          |
| _                                  |                 |                  |                |                             |              |
| -                                  | 1 A             |                  | _              | 9                           | -            |
| ğ                                  | Q               | ŏ                | 'n             | Ľ                           | =            |
| Sa                                 | $\mathbf{So}$   | Iodated Carbon # | Pump#:         | Probe#                      | Filter II    |
| Sa                                 | Soda-Lime Trap# | Ιος              | Lu             | Pro                         | Ē            |
| Sa                                 | S0              | loα              | L'u            | Pro                         | Ē            |
| Sa                                 | 200             | loc              | Pu             | Pro                         | E            |
| 1   Sample Run #:                  | 200             | Ιοι              | Pu             | Pro                         | Ē            |
| Sa                                 | 200             | Ιοι              | Pu             | Pro                         | E            |
| * C Sa                             | 200             | Ιοι              | Pu             | Pro                         |              |
| z*   Sa                            | 200             | 100              | Ln             | Pro                         | Ē            |
| set   Sa                           | 200             | 100              | n/l            | Pro                         | H            |
| 16r 1   Sa                         | 200             | ) <b>(10</b> 0   | n/l            | Pro                         | Ē            |
| oiler   Sa                         | 200             | ) <b>(10</b> 0   | n <sub>d</sub> | Pro                         | E            |
| 30.161 Sa                          | 200             | 01               | n <sub>d</sub> | Pro                         | E            |
| Boiler 1 Sa                        | 200             |                  |                | Pro                         | E            |
| 1 Boller 1   Sa                    |                 |                  |                | Pro                         | 選            |
| Doulge 1 Sa                        |                 |                  |                | Pro                         | E            |
| on Contact 1 Sa                    |                 |                  |                | Pro                         | H            |
| LON Coiler 1 Sa                    |                 |                  |                | Pro                         | H            |
| TION Coiler 1 Sa                   |                 |                  |                | sp. Pro                     | H            |
| ATION Collect 1 Sa                 |                 |                  |                | ze Pro                      | Fil          |
| TATION Coulse 1   Sa               |                 |                  |                | ESP Pro                     | J.           |
| STATION BOILER ! Sa                |                 |                  |                | ESP Pro                     | 1)           |
| STATION Coller + 1 Sa              | 200             |                  |                | Pro                         | L/L/         |
| STATION BOILER + 1 Sa              |                 |                  |                | ESP Pro                     | K. Fil       |
| ES STATION BOILER !   Sa           |                 |                  |                | : Esp Pro                   | LO-1         |
| TES STATION Coller + 1 Sa          |                 |                  |                | l: <b>ESP</b> Pro           | W.           |
| BITES STATION CO. 16RE " 1 Sa      |                 |                  |                | ol: 📂 Pro                   | · Let        |
| MATES STATION BOILER !   Sa        |                 |                  |                | rol: RP Pro                 | E 10-1       |
| YATES STATION BOILER + 1 SA        |                 |                  |                | itrol: 86                   | nt 10-1      |
| MATES STATION DOUGHE !   Sa        |                 |                  |                | ntrol: <b>EP</b>            | int          |
| MATES STATION BOILER + 1 SA        |                 |                  |                | ontrol: <b>EP</b>           | int          |
| MATES STATION BOILER !   Sa        |                 |                  |                | Control: Esp Pro            | int          |
| YATES STATION BOILER               |                 |                  |                | Control: Esp Pro            | int          |
| YATES STATION BOILER               |                 |                  |                | n Control: RP Pro           | g Point 10-1 |
| YATES STATION BOILER               |                 |                  |                | on Control: Rp Pro          | ints         |
| YATES STATION BOILER               |                 |                  |                | ion Control: <b>ESP</b> Pro | ints         |
| YATES STATION BOILER               |                 |                  |                | tion Control: RP Pro        | int          |
| YATES STATION BOILER               |                 | 6-26-15          |                | ution Control; Esp   Pro    | int          |
| YATES STATION BOILER               |                 | 6-26-15          |                | lution Control: BBP         | int          |
| YATES STATION BOILER               |                 | 6-26-15          |                | ollution Control: RP Pro    | int          |
| Sponsor: YATES STATION Couler 1 Sa |                 |                  |                | ollution Control; Esp   Pro | int          |

| _       |      |         | 17                    | _ | , |  | <br> |         |
|---------|------|---------|-----------------------|---|---|--|------|---------|
| mean    | flow | (1/min) |                       |   |   |  |      |         |
| mean    | zero | (1/min) |                       |   |   |  |      |         |
| elapsed |      | (min)   |                       |   |   |  |      |         |
|         | flow | (1/min) | 2420                  |   |   |  |      | TOTALS: |
| stop    | zero | (1/min) | 2r20 2000 - 12151 2XE |   |   |  |      |         |
|         | time | (hh:mm) | 215124                |   |   |  |      |         |
|         | flow | (1/min) | 0.500                 |   |   |  |      |         |
| start   | zero | (1/min) | - 0.003               |   |   |  |      |         |
|         | time | (hh:mm) | 1045                  |   |   |  |      |         |

| Integrator Vo            | lume (1):        | 100.00 | COMMENTS:                   |
|--------------------------|------------------|--------|-----------------------------|
| Offset Correct           | tion (1):        |        | STATE! FOX / O METER -0 001 |
| Total Integra            | ator Volume:     |        | 9m0   Fak / 2 meres - 1 cos |
| CO <sub>2</sub> Mass Flo | ow Correction:   |        |                             |
| Actual (dry S7           | STP) volume (I): |        | HEDT SHILDTURD DODAL        |
| % 0 <sub>2</sub> :       | 8.0              |        | 10 21 12 01                 |
| % CO <sub>2</sub> :      | 10.0             |        |                             |
| % H <sub>2</sub> O:      | 7,0              |        |                             |
| ppm SO <sub>2</sub> :    | 1500 70 7000     | 00     |                             |

| STRATELENKY OF METER TO.OOK<br>STRATELENKY OF METER TO.OOK | HEAT SHEATHED PROSE TEMP<br>105 0c TO 115 0c |  |  |
|------------------------------------------------------------|----------------------------------------------|--|--|
|------------------------------------------------------------|----------------------------------------------|--|--|

Flue-Gas Sampling Log

| - 180                                 | 3.333                         | No.              | 8                     | 9.63            |                            |
|---------------------------------------|-------------------------------|------------------|-----------------------|-----------------|----------------------------|
|                                       |                               |                  | · •                   |                 |                            |
| . 8                                   |                               | ŵ.               | - 2                   |                 |                            |
|                                       | <i>.</i>                      |                  |                       |                 |                            |
| 040<br>3                              |                               | 78               |                       |                 | * 1                        |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                               | . j. j.          |                       |                 | - 1500<br>- 1500<br>- 1500 |
| Á                                     | 7 (ii.                        |                  |                       |                 |                            |
| Ţ.                                    |                               |                  |                       | 200             |                            |
| ġ.                                    |                               | $\sim$           |                       |                 |                            |
|                                       | 3                             | •                | 4                     |                 |                            |
|                                       | 7                             | 3                | Ŧ                     |                 |                            |
|                                       | J                             |                  | * *                   |                 |                            |
| 11.7                                  | ).<br>}                       | 7                | Ŏ                     | 7               |                            |
| 100                                   |                               |                  | - 1                   |                 |                            |
|                                       |                               | 300              |                       |                 | 935° }<br>935°             |
| 1                                     | #                             | #                |                       | 1 - 480°        |                            |
| 4 -                                   | Ē                             |                  |                       |                 | 8.1                        |
| #                                     | E                             | ō                |                       |                 | 33<br>43                   |
| =                                     | T                             | Q                | A                     |                 | $\mathcal{Z}$              |
| 3                                     | Ģ                             | 7                |                       |                 | 2.9                        |
| K                                     | Ξ.                            | )                | - 5                   |                 |                            |
| 2                                     |                               | Ŋ                | #                     | #=              |                            |
| 3                                     | 10                            | 1                | <u>_</u>              | 9               | 7                          |
| I 🛱                                   |                               |                  |                       |                 |                            |
| , <b></b>                             |                               | ס                | 5                     | 0               | =                          |
| Sai                                   | 300                           | poj              | m<br>J                | Pro             | Filt                       |
| Sai                                   | Soda-Lime Trap#;              | Iod              | Pump#:                | $ \Gamma$ ro    | Filter ID:                 |
| *   Sar                               | Soc                           | Iodated Carbon # | Pun                   | Probe#:         | Filt                       |
| 4   Sal                               | Soc                           | Iod              | Pun                   | $ \Gamma r_0 $  | Filk                       |
| iled"   Sai                           | Soc                           | lod              | T L                   | $ \Gamma$ ro    | HIE                        |
| Soile Ct   Sal                        | 200                           | Pol              | m d                   | Pro             | )<br>                      |
| Boiled 1 Sal                          | 205                           |                  | m d                   | Pro             | H.H.                       |
| A Boileit   Sal                       | • <u>+</u>                    |                  | L L m                 | Pro             | HEI                        |
| PON BOILEIT   Sal                     | 30C                           |                  | Tm.                   |                 | Aliei                      |
| MTPON Boile (2"   Sal                 | NIET SOC                      |                  | Tem   Fun             |                 | HIH                        |
| STATION BOILEILE 1 Sal                | - 10kg                        |                  | m <sub>d</sub>        |                 | Hilk                       |
| STATION Doller   Sample Run #:        | SP NET SOC                    |                  | Dun   Pun             | oza  dsa        | Hill                       |
| STATION BOILER 1 Sal                  | ESP INGT                      | bol 29.45.45     | Coat                  |                 | . Filk                     |
| MES STATION Bolleit   Sal             | ESPINGT SOC                   |                  | Coat Pun              |                 |                            |
| MATES STATION BONEICH SAI             | ESPINGT Soc                   |                  | Coat   Pun            | d <b>s</b> 3 ij |                            |
| MATES STATION BOILER 1 Sal            | Soc                           |                  | Coat   Pun            | d <b>s</b> 3 ij |                            |
| MATES STATION BOILER 1 SAI            | m: ESPINGT Soc                |                  | m   Con L             | d <b>s</b> 3 ij |                            |
| YATES STATION BOILEIT SAI             | in: Espinat                   |                  | Low Cow Pun           | d <b>s</b> 3 ij |                            |
| MATES STATION Boileit   Sai           | in: Espinat                   |                  | e Coal Pun            | d <b>s</b> 3 ij |                            |
| MATES STATION BOILER                  | in: Espinat                   |                  | oe: Coat              | d <b>s</b> 3 ij |                            |
| MATES STATION BOILER                  | in: Espinat                   |                  | oe: Coat              | d <b>s</b> 3 ij |                            |
| MATES STATION BOILER                  | in: Espinat                   | \$6-£2-90        | oe: Coat              | d <b>s</b> 3 ij |                            |
| MATES STATION BOILER                  | in: Espinat                   | \$6-£2-90        | oe: Coat              |                 |                            |
| Sponson: Yares STATION Polle (# 1 Sal | Plant Location: ESP 1 NGT Soc |                  | Fuel Type: Coac   Pun | d <b>s</b> 3 ij | Sampling Point: W. I       |

|         | start    |         |         | stop    |         | elapsed | mean      | mean            |
|---------|----------|---------|---------|---------|---------|---------|-----------|-----------------|
| time    | zero     | flow    | time    | zero    | flow    | time    | zero      | flow            |
| (hh:mm) | (1/min)  | (1/min) | (hh:mm) | (l/min) | (1/min) | (min)   | (1/min)   | (l/min)         |
| SIta    | - O.B.sk | 0.500   | 5511    | 0.265   | 592.0   | 047     | 00.36.000 | 0.38.000 0.3825 |
|         |          |         |         | 200     |         |         | RUM       |                 |
|         |          |         |         |         |         |         |           |                 |
|         |          |         |         |         |         |         |           |                 |
|         |          |         |         |         |         |         |           |                 |
|         |          |         |         |         |         |         |           |                 |
|         |          |         |         |         |         |         |           |                 |
|         |          |         |         |         | TOTALS: |         |           |                 |
|         |          |         |         |         |         |         |           |                 |

| ne:<br>tion:<br>ne (1):                           | Integrator Volume (I): 100.0          | COMME    |
|---------------------------------------------------|---------------------------------------|----------|
| ss Flow Correction: dry STP) volume (1): 8,0 10.0 | Offset Correction (1):                | STARTLEY |
| dry STP) volume (1):  8.0  10.0  7.0              | Total Integrator Volume:              | STOP L   |
| dry STP)                                          | CO <sub>2</sub> Mass Flow Correction: | •        |
|                                                   | Actual (dry STP) volume (1):          | H        |
|                                                   | !                                     |          |
|                                                   |                                       |          |
|                                                   |                                       |          |
|                                                   | ppm SO <sub>2</sub> : 1500 10 2000    |          |

Flue-Gas Sampling Log

| (W) (4)       | 130,81           | 204               |        |                        | 480,000          |
|---------------|------------------|-------------------|--------|------------------------|------------------|
| 2003          | 200              | \$ C              | . 86   | 92.8                   | -00              |
| - 53.95       | 33.0             |                   | : J    |                        |                  |
| -35           | 300              |                   |        |                        | A33              |
| 3.78          |                  | 337               | 9.1    |                        | 333.             |
| 400           | 3 X &            | 87                |        | 1000                   | 33.0             |
| 18360         |                  | 3.38              |        | 17.00                  |                  |
| 2.3           | 2005             | 870               |        |                        |                  |
|               | 1.5              |                   |        | .233                   |                  |
|               | 10.000           | नी इंद            | - 6    |                        |                  |
| -7            | 14.2             | 0.24              |        | 100.00                 | 100              |
|               | 0.865            |                   |        |                        |                  |
| <u> </u>      |                  | 773               |        | 200                    | 30               |
|               |                  |                   |        | 4.33                   |                  |
|               | 1.00             | 300               | 355    |                        |                  |
| ,             |                  | ា                 |        |                        |                  |
|               |                  |                   |        |                        |                  |
| O             | <b>40</b> 6      |                   | -      | N                      |                  |
| 1.00          | 0.42             | <b>3</b>          | 0.00   | 2                      |                  |
|               | 50 N             |                   |        |                        |                  |
| . (3)         | 2003             |                   |        | 18.2                   | : *****          |
| 10.7          | X                |                   | -:85∹  | 1.4.94                 | 32.7             |
| 13            | 1,3807           |                   | Sex #  |                        | 38374            |
| FIGLD BLANK   | 15000            | 284               | . 40   |                        | .:W              |
|               |                  | <i>#</i> >        | 100    |                        | (3) <sub>0</sub> |
| 1.50          |                  |                   | - 30   |                        |                  |
| ٠.            | <b>I</b>         | <b>→</b>          |        | . (4)                  |                  |
| ' '           | <u>□</u> -       | ابن               |        |                        |                  |
|               | ्त               |                   | 199    | 100                    | Sec.             |
| #             | [ <del>]</del> ⊢ | 2                 |        | 136                    |                  |
| F 💯           |                  |                   | 1101   | 794                    |                  |
| . •••         | · • *            | -                 | 1.33   | $\mathcal{H}^{\times}$ | (i)              |
| <b>3</b>      | ים               |                   |        |                        |                  |
| ~~            |                  | IO I              |        | 5,335                  | •                |
|               |                  |                   | X      |                        |                  |
| (1)           | 7.3              | 70                | 3.     |                        |                  |
|               |                  | 1 may 1 1         | 7      | 77.                    | 38.00            |
| preside       |                  |                   |        |                        |                  |
| p             | 100              | ĭ                 |        | ×                      | 7                |
| npl           | 132              | ate               | dμ     | ā                      | ē                |
| ldmi          | -ep:             | date              | nm     | ope                    | ter              |
| ample         | oda-             | odate             | dum,   | qo.                    | ilter            |
| Sample        | Soda-Lime Trap#: | Iodated Carbon #: | Pump   | Probe                  | Filter           |
| Sample Run #: | Soda-            | Iodate            | Pump#: | Probe#:                | Filter           |
| Sample        | Soda             | Iodate            | Pump   | Probe                  | Filter           |
| Sample        | Soda             | Iodate            | Pump   | Probe                  | Filter           |
| Sample        | Soda-            | Iodate            | Pump   | Probe                  | Filter           |
| Sample        | Soda-            | Iodate            | Pump   | Probe                  | Filter           |
| Sample        | Soda-            | Iodate            | Pump   | Probe                  | Filter           |
| Sample        | Soda-            | Iodate            | Pump   | Probe                  | Filter           |
| Sample        | Soda-            | Iodate            | Pump   | Probe                  | Filter           |
| Sample        | Soda-            | Iodate            | Pump   | Probe                  | Filter           |
| Sample        |                  |                   | Pump   | Probe                  | Filter           |
| Sample        |                  |                   |        | Probe                  | Filter           |
| Sample        |                  |                   |        | Probe                  | Filter           |
| Sample        |                  |                   |        |                        |                  |
| Sample        |                  |                   |        | Esp                    |                  |
| Sample        |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
| ) Samble      | Lein             |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |
|               |                  |                   |        |                        |                  |

|                 | start           |                 |                 | stop            |                 | elapsed       | mean            | mean            |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|-----------------|-----------------|
| time<br>(hh:mm) | zero<br>(1/min) | flow<br>(1/min) | time<br>(hh:mm) | zero<br>(1/min) | flow<br>(1/min) | time<br>(min) | zero<br>(1/min) | flow<br>(1/min) |
| 0021            | -0.011          | 0.50            | 0121            | . 0.01          | ł I             |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 |                 |               |                 |                 |
|                 |                 |                 |                 |                 | TOTALS.         |               |                 |                 |

| Integrator Volume (I):    | olume (I): O                          | COMMENT |
|---------------------------|---------------------------------------|---------|
| Offset Correction (I):    | ction (I):                            |         |
| Total Integra             | Total Integrator Volume:              |         |
| CO <sub>2</sub> Mass Flc  | CO <sub>2</sub> Mass Flow Correction: |         |
| Actual (dry S             | Actual (dry STP) volume (1):          |         |
| % <b>0</b> <sub>2</sub> : | 8.0                                   |         |
| % CO <sub>2</sub> :       | 0.01                                  |         |
| % H <sub>2</sub> O:       | 7.0                                   |         |
| ppm SO <sub>2</sub> :     | 0002 ~ 0051                           |         |

| COMMENTS:                |
|--------------------------|
| LERK / @ MITER > -0.011  |
|                          |
| HEAT SHEATHED DROBE TEMP |
| 2° 801                   |
|                          |
|                          |
|                          |
|                          |

Page \_\_\_\_ of \_\_\_\_

| Plant N   | Name            | ∨ Plant           | Yates S                                          | tation Be    | oiler No.                             | 1                                                |                                 |                                                    |                                                                                                                | 1                     |                                                  |                                                  |
|-----------|-----------------|-------------------|--------------------------------------------------|--------------|---------------------------------------|--------------------------------------------------|---------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|--------------------------------------------------|
| Sampling  | Location_       | culot             |                                                  |              | Train_                                |                                                  | Anions                          |                                                    | Run N                                                                                                          | o.                    |                                                  |                                                  |
| Date 6    | -7 <i>C</i> ~9- | 不ime Start /      | 225                                              |              | Time Fin                              | ish / 404                                        | 5                               | Test Dur                                           | ation A                                                                                                        |                       | / min.                                           |                                                  |
| Duct Dir  | nensions_       | 864 X             | 45                                               |              | Diameter                              |                                                  | ft                              | Initial Le                                         | ak Rate _                                                                                                      | 2.00                  | reen .                                           | 0.010                                            |
| PTCF _    | 81              | 8 64 X<br>DGMCF 1 | 002                                              | Nozzle D     | ia. <u>- 3</u>                        | 15_inch                                          | ies                             | Final Lea                                          | k Rate                                                                                                         | 2.00                  | 400                                              | 0.01@                                            |
| Bar Pres  | s <u>79,5</u>   | , <u>5</u> " Hg   |                                                  |              | _                                     | ///                                              | _                               |                                                    | Dad L                                                                                                          | w-3                   | ,                                                | _                                                |
| Static Pr | ess <u>– 5</u>  | .55* H20          | 0                                                |              | Operator                              | MR                                               | <u> </u>                        | _ /                                                |                                                                                                                | W-3                   |                                                  |                                                  |
| Travers   | Clock           | Dry gas meter     | ^ P                                              | ^ H          | Stack                                 | Dry gas m                                        | eter temp                       | Hot box                                            | Probe                                                                                                          | Last                  | Vacuum                                           |                                                  |
| Point     | Time            | reading ft3       | in H2O                                           | in H2O       | Temp. F                               | Inlet                                            | Outlet                          | Temp.                                              | Temp                                                                                                           | Impinger              | in. Hg                                           | F/3                                              |
| If        | 1715            | 385,887           | 7                                                |              |                                       |                                                  |                                 | 1                                                  |                                                                                                                |                       |                                                  |                                                  |
|           | 1245            | 397,46            | 11/                                              | 1.49         | 290                                   | 79                                               | 78                              |                                                    | 25                                                                                                             | (1                    | 3.0                                              |                                                  |
|           | 1305            | 410.73            | 10                                               | 136          | 190                                   | BA                                               | 8/                              |                                                    | 1/3                                                                                                            | 57                    | 3.0                                              |                                                  |
|           | 1325            | 423.28            | 10                                               | 136          | 1911                                  | 87                                               | 0,                              | 1-1-                                               | 160                                                                                                            | 65                    | 3.5                                              |                                                  |
|           | 12/10           | 435.90            | 09                                               | 1.11         | 790                                   | 43                                               | 27                              | +-+                                                | 150                                                                                                            | 52                    | 22                                               | 1                                                |
| l         | 160             | 41071             | 2 //                                             | 1,36         | 700                                   | 43                                               | 27                              | +                                                  | 200                                                                                                            | -7-                   | 5.0                                              |                                                  |
| <b></b>   | THO )           | 140.11            | 1.10                                             | 1120         | 270                                   | 175                                              | 01                              | +                                                  | u                                                                                                              | 30                    | 3.0                                              |                                                  |
|           |                 |                   |                                                  |              | -                                     |                                                  |                                 | <del>  -   -   -   -   -   -   -   -   -   -</del> |                                                                                                                | <del> </del>          | <del>                                     </del> |                                                  |
| <u> </u>  |                 |                   | <del> </del>                                     | <del> </del> | <u></u>                               | <del> </del>                                     |                                 | <del> </del>                                       | <del> </del>                                                                                                   |                       |                                                  | <del>                                     </del> |
|           |                 |                   |                                                  |              |                                       |                                                  | <br>                            | +                                                  | <del> </del>                                                                                                   | ļ                     |                                                  |                                                  |
|           |                 |                   |                                                  | <del> </del> |                                       | ļ                                                |                                 |                                                    |                                                                                                                |                       |                                                  | <b></b> _                                        |
| <u> </u>  |                 |                   |                                                  | ļ            |                                       |                                                  |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |
|           |                 |                   |                                                  |              |                                       |                                                  |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |
|           |                 |                   |                                                  |              |                                       | <u> -</u>                                        |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |
|           |                 |                   |                                                  |              |                                       |                                                  |                                 |                                                    |                                                                                                                | ·                     |                                                  |                                                  |
|           |                 |                   |                                                  |              |                                       |                                                  |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |
|           |                 |                   |                                                  |              |                                       | <u> </u>                                         |                                 | 1-1-                                               |                                                                                                                |                       |                                                  |                                                  |
|           |                 |                   |                                                  |              |                                       |                                                  |                                 | + +                                                |                                                                                                                | <del> </del>          |                                                  |                                                  |
|           |                 |                   | 1                                                |              | <del></del>                           | <del> </del>                                     |                                 |                                                    |                                                                                                                |                       |                                                  | <del>                                     </del> |
|           |                 | İ                 | <del> </del>                                     | <del> </del> |                                       | <del> </del>                                     |                                 | -                                                  |                                                                                                                |                       |                                                  | <del>                                     </del> |
|           |                 |                   | <u> </u>                                         | <del> </del> | ļ                                     |                                                  |                                 |                                                    |                                                                                                                |                       | <u> </u>                                         | <b>├</b>                                         |
|           | <u> </u>        |                   | ļ                                                | <del> </del> |                                       | ļ                                                |                                 | <del> </del>                                       |                                                                                                                |                       |                                                  |                                                  |
|           |                 | <u>t</u>          |                                                  |              |                                       |                                                  |                                 |                                                    |                                                                                                                | <u> </u>              |                                                  |                                                  |
|           |                 |                   |                                                  | ļ. <u></u>   |                                       |                                                  |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |
|           | i               |                   |                                                  |              |                                       |                                                  |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |
|           |                 |                   |                                                  |              |                                       |                                                  |                                 | ,                                                  |                                                                                                                |                       | L                                                |                                                  |
|           |                 |                   |                                                  |              |                                       |                                                  |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |
| 1         |                 |                   |                                                  |              |                                       |                                                  |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |
|           |                 |                   |                                                  |              |                                       |                                                  |                                 |                                                    | 1                                                                                                              |                       | <u> </u>                                         | <del>                                     </del> |
|           |                 |                   | <del>                                     </del> | 1            |                                       | <del>                                     </del> |                                 |                                                    |                                                                                                                | <del> </del>          | <del>                                     </del> | +                                                |
| Ava       |                 | 111 011           | -                                                | 125-         | 20-                                   | Magazini sala                                    | 85                              | . Ograniskám                                       |                                                                                                                | . 15/8- 30:0866       |                                                  |                                                  |
| Avg.      |                 | 64,816            | 162161                                           | 1.3380       | #7U                                   | The transmit                                     | 0-/                             |                                                    |                                                                                                                |                       |                                                  |                                                  |
| Check'd   |                 |                   |                                                  |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                  |                                 | 1                                                  |                                                                                                                |                       |                                                  |                                                  |
| CONSO     | LE# A           | 76140             | 24                                               |              |                                       | Velocity_                                        | Grander                         | 25988888                                           |                                                                                                                |                       |                                                  |                                                  |
| FILTER    | , 12            | 29                |                                                  |              |                                       |                                                  | e e                             |                                                    |                                                                                                                |                       |                                                  |                                                  |
| AMBIEN    | NT TEMP         | 78                |                                                  | -            |                                       | Flowrate (                                       | DSCFM                           |                                                    |                                                                                                                |                       | ;                                                |                                                  |
| PROBE     | LENGTH          | 18                |                                                  |              |                                       | Isokinetie                                       | Fig. 9 1 N. Nov. Of J. 50501.77 | 200000000000000000000000000000000000000            | documentament and a second and a second and a second and a second and a second and a second and a second and a |                       | <u> </u>                                         |                                                  |
| LINER     | MATERIAI        | 5/45              |                                                  | •            |                                       |                                                  |                                 | <u></u>                                            | <u></u>                                                                                                        | o. 64.066137313188888 | :                                                |                                                  |
|           |                 |                   |                                                  |              |                                       |                                                  |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |
| REMAR     | KS              |                   |                                                  |              |                                       |                                                  |                                 |                                                    |                                                                                                                |                       |                                                  |                                                  |

ESP INLET Plant Name Plant Yates Station Boiler No. 1 ANIFAS Sampling Location Molet Train Bulk-Particulate Radiomedides Run No. 1/
Date 6-2693 Time Start 1/08 Time Finish 12/2 Test Duration 65 min. 2 Duct Dimensions 8 6 X 95 57 Diameter ft Initial Leak Rate 0.00 4 con 10" PTCF 84 DGMCF 1,003 Nozzle Dia. 1375 inches Final Leak Rate 0,009 cfm Bar Press 29:50 "Hg at 84 Operator Mko Static Press 58 " H2O Probe Clock Dry gas meter Stack Dry gas meter temp. Hot box Impinger in Hg Point Time reading ft3 in H2O in H2O Temp. F Inlet Outlet Temp. Temp 44.245 0.3201 1.405 281.5 88.0 CONSOLE # 4/6/40/ THIMBLE # # 1232 Velocity % Moisture AMBIENT TEMP. 74 Flowrate (DSCFM) Isokinetie (%) PROBE LENGTH \_\_\_/ O LINER MATERIAL 5/45 REMARKS

C-192

Page \_\_\_\_ of \_\_\_\_

| Plant N                                          | Name                                             | Plant                  | Yates St                                         | ation Bo     | iler No.                        | 1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           | _                                               |                |                                                  |
|--------------------------------------------------|--------------------------------------------------|------------------------|--------------------------------------------------|--------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|----------------|--------------------------------------------------|
| Sampling                                         | Location_                                        | Time Start             | 27                                               |              | Train _                         | Ą                                                | nions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | Run No                                                    | <u>. 3</u>                                      |                |                                                  |
| Date 6                                           | -27-9                                            | Fine Start             | 3715                                             |              | Time Fini                       | ish <u>08</u>                                    | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test Dura                                        | ition                                                     | 321                                             | min.           | 1 . 11                                           |
| Duct Dir                                         | nensions                                         | 86" ×                  | 45'                                              |              | Diameter                        |                                                  | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial Lea                                      | ık Rate 🏒                                                 | 1.009                                           | cfm 🔗          | 1/2                                              |
| PTCF_                                            | . 84                                             | DGMCF / O              | 03                                               | Nuzzle D     | ia. <u>~37</u>                  | 5inch                                            | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Final Lea                                        | k Rate                                                    | 1006                                            | cfm            | ,                                                |
| Bar Pres                                         | s <u>29.5</u>                                    | Hg                     |                                                  |              | •                               | 11/-                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                |                                                           | سے ہ                                            | arg c          | /                                                |
| Static Pr                                        | ess                                              | H20                    | )<br>                                            |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ /'0                                            | (7- 6                                                     | 7                                               |                | ,                                                |
| Travers                                          | *                                                | Dry gas meter          |                                                  | ^ Н          | 7                               | Dry gas me                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hot box                                          | t :                                                       | Last                                            | Vacuum         | F-19                                             |
| Point                                            | Time                                             | reading ft3            | in H2O                                           | in H2O       | Temp. F                         | Inlet                                            | Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Temp.                                            | Temp                                                      | Impinger                                        | in. Hg         | K=12                                             |
| 1/1                                              | 0715                                             | 655.883                |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
|                                                  | 0735                                             | 666.72                 | .08                                              | 1.02         | 310                             | 72                                               | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | 256                                                       | 58                                              | 20             |                                                  |
|                                                  | 0755                                             | 67817                  | .08                                              | 1.02         | 308                             | 73                                               | 7/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | 768                                                       | 53                                              | 2,5            |                                                  |
| [                                                | 0815                                             | 68930                  | 08                                               | 1537         | 310                             | 83                                               | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | 761                                                       | 56                                              | 2,5            |                                                  |
|                                                  | 0835                                             | 701.025                | .07                                              | 1.59         | 3//                             | 84                                               | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | 258                                                       | 56                                              | 25             |                                                  |
|                                                  |                                                  |                        |                                                  |              | ]                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
|                                                  |                                                  |                        |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                |                                                           |                                                 |                |                                                  |
|                                                  |                                                  |                        |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
|                                                  |                                                  |                        |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
|                                                  |                                                  |                        |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
|                                                  |                                                  |                        |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
|                                                  |                                                  |                        |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                         |                                                           |                                                 |                |                                                  |
|                                                  |                                                  |                        | <u> </u>                                         |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
|                                                  |                                                  | <del></del>            |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u> </u>                                                  | ·                                               |                |                                                  |
|                                                  | 1                                                |                        | <u> </u>                                         |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
|                                                  |                                                  | <del></del>            |                                                  |              | <b></b>                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u> </u>                                                  |                                                 |                |                                                  |
|                                                  |                                                  |                        |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u> </u>                                                  |                                                 |                |                                                  |
| <b>-</b>                                         |                                                  |                        |                                                  |              | <u> </u>                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 | <del> </del>   | <u> </u>                                         |
|                                                  |                                                  |                        | <del>                                     </del> |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                | <del></del>                                      |
|                                                  |                                                  |                        |                                                  | -            |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del>                                     |                                                           |                                                 |                |                                                  |
| <del> </del>                                     | <del>                                     </del> |                        |                                                  |              |                                 | <u> </u>                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del>                                     </del> |                                                           |                                                 |                |                                                  |
| $\vdash$                                         |                                                  |                        |                                                  |              | <del> </del>                    | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                | <del>                                     </del>          | <del> </del>                                    |                | <del> </del>                                     |
| <del> </del>                                     |                                                  |                        |                                                  | <del> </del> |                                 |                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                         | <del>                                     </del>          |                                                 |                | <del>                                     </del> |
|                                                  | <del> </del>                                     |                        | <del>  -</del> -                                 |              |                                 |                                                  | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>                                     </del> | <del> </del>                                              | <u> </u>                                        |                | -                                                |
|                                                  | -                                                |                        | <del> </del>                                     |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> | <del> </del>                                              | <del></del> -                                   | <del> </del>   | <del>                                     </del> |
|                                                  | <del>                                     </del> |                        | <del> </del>                                     |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <del>                                     </del>          | -                                               |                |                                                  |
| <del> </del>                                     | <del> </del>                                     |                        | <del></del>                                      |              |                                 | -                                                | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del> </del>                                     | <del> </del>                                              | <del></del>                                     | <del> </del>   | <del>├</del> -[                                  |
|                                                  | <del> </del>                                     |                        | <del> </del>                                     | <del> </del> |                                 | <del>                                     </del> | <del> </del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                                                | <del> </del>                                              | <del> </del>                                    | <del> </del> - | 1                                                |
| <del>                                     </del> | -                                                | 110                    |                                                  | 2            | <u> </u><br>\$5.5 <u>2</u> 3≥50 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | ]<br>                                                     |                                                 |                |                                                  |
| Avg.                                             | <del> </del> -                                   | 45,140                 | 12765                                            | 7875         | 310                             |                                                  | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                           |                                                 |                |                                                  |
| Check'd                                          | <u> </u>                                         |                        |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
| CONSO                                            | LE#                                              | A16140                 | /                                                |              |                                 | Velocity                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
| FILTER                                           |                                                  |                        | <del></del>                                      |              |                                 | 30.334000 <del>0000</del>                        | E10.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 ( |                                                  |                                                           |                                                 |                |                                                  |
| AMBIE                                            | NT TEMP.                                         | <u> </u>               |                                                  | -            |                                 | 100000000000000000000000000000000000000          | Milanconormous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | 00000000000000000000                                      | 000000000000000000000000000000000000000         |                |                                                  |
| PROBE                                            | LENGTH                                           | 10'                    |                                                  |              |                                 | 1,469,696,696,696,666,66                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u> Contabbookaanaanaanaanaanaanaanaanaanaanaanaanaan</u> | MANAGER AND AND AND AND AND AND AND AND AND AND | **             |                                                  |
| LINER                                            | MATERIA                                          | 10'<br>L <u>5/45</u> , | 5                                                |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           | ·                                               |                |                                                  |
|                                                  |                                                  | <i>J</i> -             |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |
| REMAR                                            | RKS                                              |                        |                                                  |              |                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                           |                                                 |                |                                                  |

Page \_\_\_\_\_ of \_\_\_\_

| Bar Press Static Press Cloc Point Time     | Plant  Ationy /NLeT  PTime Start  X  DGMCF  "Hg  "H20  Ock Dry gas meter reading ft3 | O P in H2O                                       | Nozzle D     | Operator                                         | inch                                  | es                                               | Initial Lead Final Lead Hot box Temp. | Rate                | Last Impinger | cfm<br>Vacuum                                    |   |
|--------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------|---------------------|---------------|--------------------------------------------------|---|
| Sar Press  Static Press  Cloc  Point  Time | " Hg " H20 ock Dry gas meter me reading ft3                                          | ^ P<br>in H2O                                    | ^н           | Operator<br>Stack                                | Dry gas m                             | eter temp.                                       | Hot box                               | Probe               | Last          | Vacuum                                           |   |
| Travers Cloc                               | " H20 ock Dry gas meter me reading ft3                                               | ^ P<br>in H2O                                    | ^н           | Stack                                            | Dry gas m                             | eter temp.                                       | 1                                     |                     |               |                                                  |   |
| Point Time                                 | ock Dry gas meter<br>me reading ft3                                                  | ^ P<br>in H2O                                    | ^н           | Stack                                            | Dry gas m                             | eter temp.                                       | 1                                     |                     |               |                                                  |   |
| Point Time                                 | me reading ft3                                                                       | in H2O                                           |              |                                                  |                                       |                                                  | 1                                     |                     |               |                                                  |   |
| Point Time                                 | me reading ft3                                                                       | in H2O                                           |              |                                                  |                                       |                                                  | 1                                     |                     |               |                                                  |   |
| 1410                                       | 10 636696<br>12 637.163                                                              |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            | 72-637.163                                                                           |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       | i                   |               |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  | . 1                                   |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              | _                                                |                                       |                                                  |                                       |                     |               | _                                                |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              | ļ                                                | <del></del>                           |                                                  |                                       | <del></del>         |               |                                                  |   |
|                                            |                                                                                      |                                                  |              | <del></del>                                      |                                       |                                                  |                                       |                     | ļ             |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            | l                                                                                    |                                                  | 7            |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      | 1                                                |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              | <del> </del>                                     | -                                     |                                                  |                                       |                     |               | <del>                                     </del> |   |
|                                            |                                                                                      | <del> </del> -                                   | <del> </del> |                                                  |                                       |                                                  |                                       |                     |               | <del></del>                                      |   |
|                                            |                                                                                      | <del> </del>                                     | <del> </del> |                                                  |                                       |                                                  |                                       | <del></del>         |               | <del></del>                                      |   |
|                                            |                                                                                      | <del> </del>                                     | <b>_</b>     |                                                  |                                       | <del></del>                                      |                                       |                     |               |                                                  |   |
|                                            |                                                                                      | ļ                                                |              |                                                  |                                       |                                                  |                                       |                     |               | <b></b>                                          |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            | <u> </u>                                                                             | ļ                                                |              |                                                  |                                       |                                                  |                                       |                     |               | L                                                |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  | · · · · · · · · · · · · · · · · · · · |                                                  |                                       |                     |               |                                                  |   |
|                                            | <del></del>                                                                          | <del>                                     </del> | <u> </u>     |                                                  | \                                     |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      | <del>                                     </del> |              | <u> </u>                                         | <u> </u>                              |                                                  | <del> </del>                          |                     |               | <del> </del>                                     |   |
|                                            |                                                                                      | <del> </del>                                     | <b>_</b>     | <del> </del>                                     |                                       |                                                  | <b> </b>                              | ļ                   | ļ             |                                                  |   |
|                                            |                                                                                      | ļ                                                |              | <b></b>                                          |                                       |                                                  |                                       |                     | ļ. <u> </u>   |                                                  |   |
|                                            |                                                                                      | <u> </u>                                         |              | <u> </u>                                         |                                       |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      | <u> </u>                                         |              | <u> </u>                                         |                                       |                                                  |                                       |                     | <u> </u>      |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       | }                                                | <b></b>                               |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               | [                                                |   |
|                                            |                                                                                      | <del>                                     </del> |              | <del>                                     </del> |                                       | <del>                                     </del> | <del> </del>                          |                     |               |                                                  | - |
| 110                                        |                                                                                      |                                                  |              | Ó Garles esca                                    | kahidahat kac                         |                                                  | S-88 85 888                           | .:200               |               |                                                  |   |
| Avg. —                                     |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       | 35.000              |               |                                                  |   |
| Check'd                                    |                                                                                      |                                                  |              |                                                  |                                       |                                                  |                                       |                     |               |                                                  |   |
| CONSOLE #                                  |                                                                                      |                                                  |              |                                                  | Velocity                              |                                                  |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  |                                       | ę.                                               |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  | •            |                                                  |                                       | DSCFM)_                                          |                                       |                     |               |                                                  |   |
|                                            |                                                                                      |                                                  |              |                                                  | lsokinetic                            |                                                  |                                       |                     |               |                                                  |   |
| INER MATER                                 |                                                                                      |                                                  |              |                                                  | TRUEINCLIC                            | KAR2                                             | s-sent stide dit                      | er er grandstable b |               | į                                                |   |

| Plant N    | Name                                             | Plan                                           | t Yates S                                       | tation Bo                                        | oiler No.                                         | . 1                       |                              |                                                  |                                                  |                                                  |              |                                                  |     |
|------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------|------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|-----|
| Sampling   | g Location_                                      | SFTE                                           | SP IN                                           | <u>slet</u>                                      | Train _                                           | Ammor                     | iia/Hydro                    | ogen Cya                                         | nide                                             | Run No                                           | · <u> </u>   | **                                               |     |
| Date 6     | -25-9                                            | Time Start                                     | <u>1456                                    </u> |                                                  | Time Fin                                          | ish /651                  | 2                            | Test Dur                                         | ation                                            | 70_                                              | nin,         | 11                                               |     |
| Duct Dir   | mensions/                                        | <i>5 6''</i> x                                 | <u> 45</u>                                      |                                                  | Diameter                                          |                           | ft                           | Initial Le                                       | ak Rate _                                        | 0010                                             | O Coffee     | 1.                                               |     |
| PTCF       | . 84                                             | DGMCF                                          | 003                                             | Nozzle D                                         | ia. <u>. 3</u>                                    | 7 <u>5</u> inct           | nes                          | Final Lea                                        | k Rate <u>(</u>                                  | 0,009                                            | 1 ciml 2     | 9                                                |     |
| Bar Pres   | s <b>Z</b> 9-                                    | 55" Hg                                         |                                                 |                                                  |                                                   | 1                         |                              |                                                  | 1 6                                              |                                                  |              |                                                  |     |
| Static Pro | css                                              | <u>5.8                                    </u> | 20                                              |                                                  | Operator                                          | M                         | <u>-()</u>                   |                                                  | Part                                             | W                                                | -3           |                                                  |     |
| Travers    | Clock                                            | Dry gas met                                    | er ^P                                           | ^ н                                              | <del></del>                                       |                           |                              | Hot box                                          | Probe                                            | Last                                             | Vacuum       |                                                  | l   |
| Point      | Time                                             | reading ft3                                    |                                                 |                                                  | Temp. F                                           |                           | Outlet                       | Temp.                                            | Temp                                             | 1                                                |              | ļ ļ                                              | l   |
|            | 7,000                                            | 40                                             |                                                 |                                                  | 10000                                             |                           | -                            | i viiipi                                         |                                                  | puigei                                           | ш. т.В       |                                                  |     |
|            | 1450                                             | 451, P                                         |                                                 | <del></del>                                      | <u> </u>                                          | <u> </u>                  |                              |                                                  | <u> </u>                                         | <b></b>                                          |              |                                                  |     |
| WII        | 1450                                             | 450-13                                         |                                                 |                                                  |                                                   | 100                       |                              |                                                  |                                                  |                                                  | <u> </u>     |                                                  | 1   |
| 7 1        | 1515                                             | 46416                                          | 2010                                            | 1.36                                             | 2.85                                              | 08                        | 26                           |                                                  | 750                                              | 61                                               | 3            | 636                                              | 13. |
|            | 1530                                             | 4114                                           | 13.10                                           | 1.36                                             | 791                                               | 138                       | 186                          |                                                  | 757                                              | 63                                               | 3            |                                                  |     |
|            | STOP                                             | lect                                           | e check                                         | 0.6                                              | 60                                                | 124                       |                              |                                                  |                                                  |                                                  |              |                                                  |     |
|            | 7                                                | Out                                            | Buckle                                          | Das                                              | tirela                                            | P. Is.                    | Le no                        |                                                  |                                                  |                                                  | <del></del>  |                                                  | ļ   |
|            |                                                  | heco                                           | 100 76                                          | 1441                                             | au /                                              | CW 1                      | va 1                         | The same                                         | 1ans                                             | 19 0                                             | en metic     | 1.X.                                             |     |
| Char       | of                                               | 10                                             | FPAX                                            | Lei                                              | due                                               | A.                        | 71                           |                                                  | 106/1                                            | Take                                             | 777          | 750                                              | ,   |
| HIL        | 0                                                | 100                                            | 0.0                                             | 122                                              |                                                   | 1                         | 11                           | MA                                               |                                                  | rove                                             |              | <del> </del>                                     |     |
|            | <del>                                     </del> | fue                                            | t of the                                        | 707 - 7                                          | 722                                               | ance.                     | · · · · · ·                  | <del>' </del>                                    | ╄                                                | <del>                                     </del> |              | <del>                                     </del> |     |
| ļ          | <del>                                     </del> | 1 1                                            | 11.11                                           | 4                                                | 200                                               | 1                         | //                           | ļ                                                | <del> </del>                                     | ļ                                                |              |                                                  |     |
| ļ          | 1/2                                              | LUK                                            | wir.                                            | 0.0                                              | 27 0                                              | 19 12                     |                              | <del></del>                                      | <u> </u>                                         | ļ                                                |              |                                                  |     |
| <u> </u>   | 1620                                             | 477.8                                          | 70 —                                            |                                                  |                                                   | -                         | 247                          |                                                  | 4                                                |                                                  |              |                                                  |     |
| 164        | (1652)                                           | 4903                                           | 4.01                                            | 172                                              | <del>                                      </del> | 37                        | 06                           | ļ <u>.</u>                                       | 253                                              | 67                                               | 2.5          |                                                  |     |
| L/         | 156                                              | 497.19                                         | 4.10                                            | 1, 36                                            | 291                                               | 1000                      | 2391                         | <u> </u>                                         | 252                                              | 58                                               | 4,5          |                                                  | İ   |
|            |                                                  |                                                |                                                 |                                                  |                                                   |                           |                              |                                                  |                                                  |                                                  |              |                                                  | l   |
|            |                                                  |                                                |                                                 |                                                  |                                                   |                           |                              |                                                  |                                                  |                                                  |              |                                                  |     |
|            |                                                  |                                                |                                                 |                                                  |                                                   |                           |                              |                                                  |                                                  |                                                  |              |                                                  |     |
|            |                                                  |                                                |                                                 | 1                                                |                                                   |                           |                              |                                                  |                                                  |                                                  |              |                                                  |     |
| l          |                                                  |                                                |                                                 |                                                  |                                                   |                           |                              | <del>                                     </del> | <del></del>                                      | <del> </del>                                     |              |                                                  |     |
| }          |                                                  |                                                |                                                 | <del> </del>                                     | 1                                                 |                           | <u> </u>                     | <del>                                     </del> | <del>                                     </del> | 1                                                |              |                                                  |     |
| ·          | <del> </del>                                     | <u> </u>                                       |                                                 | <del>                                     </del> | <del> </del>                                      |                           | <del> </del>                 | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     | <del> </del> | ╆──                                              |     |
| <u> </u>   | <del> </del>                                     |                                                |                                                 |                                                  | <del> </del>                                      | -                         | <del> </del>                 | <del> </del> -                                   | +                                                | <del>}</del>                                     | <del> </del> | ┼──                                              | ł   |
|            |                                                  | 1                                              |                                                 | ļ                                                | <u> </u>                                          | ļ                         | <del> </del> -               | <del> </del>                                     | <del>                                     </del> | <u> </u>                                         | 1            | <del> </del> -                                   | Į   |
|            |                                                  |                                                |                                                 | <u> </u>                                         | ļ                                                 |                           | <u> </u>                     | <b>↓</b>                                         | <u> </u>                                         | ļ                                                | <b></b>      | ļ                                                | ĺ   |
|            |                                                  |                                                |                                                 |                                                  |                                                   |                           |                              |                                                  | <u> </u>                                         |                                                  |              | <u> </u>                                         |     |
|            |                                                  | <u> </u>                                       |                                                 |                                                  |                                                   | <u> </u>                  |                              | <u> </u>                                         |                                                  |                                                  |              |                                                  |     |
|            |                                                  |                                                |                                                 |                                                  | <u></u>                                           |                           |                              | <u> </u>                                         |                                                  | <u> </u>                                         |              |                                                  |     |
|            |                                                  |                                                |                                                 |                                                  |                                                   |                           |                              |                                                  |                                                  |                                                  |              |                                                  | ſ   |
|            |                                                  | 44.663                                         | € <del>~</del>                                  |                                                  |                                                   |                           |                              |                                                  |                                                  | 1                                                | Ī            |                                                  | 1   |
| Avg.       |                                                  | 0/ 1.13                                        | /3/22                                           | 1379                                             | 289                                               | - Nation                  | 88                           |                                                  |                                                  |                                                  |              |                                                  | 1   |
| Check'd    |                                                  |                                                |                                                 |                                                  |                                                   |                           |                              |                                                  |                                                  |                                                  |              |                                                  |     |
| بسسست      | *****                                            |                                                | - est tastas segui-                             |                                                  | Aller Bayers                                      |                           | <b>I</b> design a la calacte |                                                  | s                                                |                                                  |              | •                                                | 1   |
| CONSO      | LE# A                                            | 41614                                          | 0/                                              |                                                  |                                                   | Velocity                  |                              | 41.00                                            |                                                  |                                                  | Ì            |                                                  | _   |
| FILTER     | , -                                              | 41614                                          |                                                 | •                                                |                                                   | . 1 (1) A (2) Y (2) Y (2) | re                           | 928                                              |                                                  |                                                  |              |                                                  | •   |
| AMBIE      | NT TEMP.                                         |                                                |                                                 | _                                                |                                                   |                           | (DSCFM)_                     |                                                  |                                                  |                                                  |              |                                                  |     |
|            | LENGTH                                           |                                                | 455                                             | •                                                |                                                   | lsokinetic                | (%)                          |                                                  |                                                  |                                                  |              |                                                  |     |
|            | MATERIA                                          | 6/4                                            | 5                                               | -                                                |                                                   | nnawa -                   |                              |                                                  |                                                  |                                                  | <b>=</b>     |                                                  |     |
|            |                                                  | <del></del>                                    |                                                 | •                                                |                                                   |                           |                              |                                                  |                                                  |                                                  |              |                                                  |     |
| REMAR      | RKS                                              |                                                |                                                 |                                                  |                                                   |                           |                              |                                                  |                                                  |                                                  |              |                                                  |     |
|            | _                                                |                                                |                                                 | <del></del>                                      | <del></del>                                       |                           | ············                 | <del> </del>                                     |                                                  | <del></del>                                      | -            |                                                  |     |

Page \_\_\_\_\_ of \_\_\_\_

| Sampling Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Plant I                                          | Name                           | Plant                                             | Yates S        | tation Be                                        | oiler No.                                        | . 1                                              |               |                                              |                |                                                  |                                                  |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|---------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------|----------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|-------------|
| Travers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling                                         | Location                       | INLET                                             |                |                                                  | Train                                            | Ammor                                            | nia/Hydro     | ogen Cya                                     | ınide          | Run No                                           | . Q                                              |             |
| Travers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date 6                                           | 71.93                          | Time Start                                        | 6930           | ·                                                | Time Fin                                         | ish <u>103</u>                                   | 5             | Test Dur                                     | ation1         | \$ 65                                            | min.                                             | _           |
| Travers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Duct Dir                                         | nensions                       | 86 x                                              | 451            |                                                  | Diameter                                         | <u> </u>                                         |               | Initial Le                                   | ak Rate _      | 0,009                                            | cfm a                                            | x10/        |
| Travers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PTCF_                                            | <u>84</u>                      | DGMCF /                                           | 003            | Nozzle D                                         | ia. <u>23</u> 2                                  | 7 <u>5</u> incl                                  | nes           | Final Lea                                    | k Rate         | 2.006                                            | cim_                                             | 011         |
| Travers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bar Pres<br>Static Pr                            | s <u>29.5</u><br>css <u>-5</u> | <u>(</u> "Hg<br>" # H20                           | 0              |                                                  | Operator                                         | M                                                | 20            |                                              | PE             | 4 u                                              | 1-4                                              | 0''         |
| Point Time reading #3 in H2O in H2O Temp. F Inlet Outlet Temp. Temp Impinger in Hg (3.8 - 1.95) 572, 672 10 1,38 180 75 74 125 52 4/5 10 1,38 180 77 125 52 4/5 10 1,38 180 77 125 52 4/5 10 1,38 180 77 125 52 4/5 10 1,38 180 77 125 52 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 77 125 54 4/5 10 1,38 180 180 180 180 180 180 180 180 180 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Travers                                          |                                |                                                   |                |                                                  |                                                  | _                                                |               |                                              |                |                                                  | _                                                |             |
| G98   S07   S62   10   138   188   15   74   1260   67   75     G950   S20   G2   10   138   188   13   77   153   54   45     1035   546   65   10   138   285   295   77   153   54   45     1635   S41   18   09   124   195   8   8   1   134   54   4.5     1635   S41   18   19   124   195   8   8   1   134   54   4.5     1635   S41   18   19   19   19   19   19     1664   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Point                                            | I .                            | 1                                                 |                | 1                                                | L                                                |                                                  |               | 7                                            | Ì              | 1                                                |                                                  |             |
| 1036 53465   10   138 128 32 77   153 54 45   1638 544 55   10   138 128 32 77   153 54 45   1638 544 4.5   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544   1638 544      |                                                  | 0938                           | 507.563                                           |                |                                                  |                                                  |                                                  |               | <del> </del>                                 |                |                                                  |                                                  |             |
| 10.00   534.65   10   138   285   32   77   153   145   1638   544.65   10   138   128   32   77   153   145   1638   145   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   1638   16   |                                                  | 15950                          | 520.62                                            | .10            | 1.30                                             | 280                                              | 15                                               | 74            |                                              | 260            | 6-1                                              | 4,5                                              |             |
| 1038 546 65   10   138 263 95   77   258 54 4.5   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | 1010                           | 533,67                                            | 10             |                                                  |                                                  | 83                                               | 77            |                                              | 255            | 52                                               | 42-                                              |             |
| Vec. — 4/622 /3122 /5/283 80  Console / A (6/40)  Filter / Washing  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority  Majority |                                                  | 1030                           | 546.65                                            | 10             |                                                  | 195                                              | 90                                               | 77            |                                              | 158            | 54                                               | 45                                               |             |
| Vec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                                |                                                   |                |                                                  | 195                                              | 88                                               |               |                                              | 154            | 54                                               | 4.5                                              |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ FILTER # — SMOISTURE  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | 77                             |                                                   |                | 7                                                |                                                  |                                                  | 07            |                                              |                |                                                  | //-                                              |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ FILTER # — SMOISTURE  AMBIENT TEMP. 70 FROBE LENGTH 10  LINER MATERIAL 9/477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>                                     </del> |                                |                                                   | <del> </del>   | <del>                                     </del> | <del>-</del>                                     | <del>                                     </del> | <del> </del>  | <del>  </del>                                | <del> </del>   |                                                  | -                                                |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | <del> </del>                                      |                | <del>                                     </del> | <u> </u>                                         | <del> </del>                                     | <u> </u>      | <del>  </del>                                | <del></del>    | <del>                                     </del> | <del>                                     </del> |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | ļ                              | <u> </u>                                          | <del> </del> - |                                                  | <del> </del>                                     | <del> </del> -                                   | <u> </u>      | <del></del>                                  | ļ              | <b></b>                                          | <u> </u>                                         |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | <u> </u>                                          |                | <del> </del>                                     |                                                  | <del> </del>                                     |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | <del> </del>                                      |                |                                                  |                                                  | <b></b>                                          |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | ļ <u></u>                                         | ļ              |                                                  |                                                  |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   |                |                                                  |                                                  |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   | _              |                                                  |                                                  |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   |                |                                                  |                                                  |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   |                |                                                  |                                                  |                                                  |               |                                              | <del></del>    |                                                  |                                                  | -           |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   |                |                                                  |                                                  | <del>                                     </del> |               |                                              | <del> </del> - |                                                  | <u>.                                    </u>     |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   |                | <del>                                     </del> |                                                  |                                                  |               |                                              | <del> </del>   | <del> </del> -                                   |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | <del> </del>                                      | <u> </u>       | <del> </del>                                     | <del> </del>                                     |                                                  |               | <del> </del>                                 | <del></del>    |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | <del>                                      </del> |                | <del> </del>                                     |                                                  |                                                  |               | ļ                                            |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | <del> </del>                                      |                |                                                  | -                                                |                                                  |               | <u>                                     </u> |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | <u></u>                                           |                |                                                  | <u> </u>                                         | \                                                |               |                                              | ļ              | -                                                |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | <u> </u>                                          |                | <u> </u>                                         |                                                  |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   |                |                                                  |                                                  |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                |                                | 1                                                 |                |                                                  |                                                  |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   |                |                                                  |                                                  |                                                  |               | -                                            |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   |                |                                                  | _                                                |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   |                |                                                  | <del></del>                                      |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                |                                                   | <del></del>    | ·                                                |                                                  |                                                  |               | -                                            |                |                                                  | <u> </u>                                         |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                | <u> </u>                                          |                | <del></del>                                      | <del>                                     </del> | -                                                | <del></del>   | <del> </del>                                 | <del> </del>   | <del> </del>                                     |                                                  |             |
| CONSOLE # A 16/40/ CONSOLE # A 16/40/ CILTER # — S Moisture  AMBIENT TEMP. 10 Flowrate (DSCFM)  PROBE LENGTH 10 Isokinetic (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ava                                              |                                | 0/ / 2-2-                                         |                |                                                  | 002                                              |                                                  |               |                                              |                |                                                  |                                                  |             |
| CONSOLE # 416/40/  FILTER #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                | n. GLL                                            | 1.5122 ·       | 1.31                                             | -c83                                             |                                                  | 80            |                                              |                |                                                  |                                                  |             |
| **Moisture  AMBIENT TEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cneck'd                                          |                                | <u> </u>                                          |                | 1                                                |                                                  |                                                  |               | 1                                            |                |                                                  |                                                  |             |
| **Moisture  AMBIENT TEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONSO                                            |                                | 4161401                                           |                |                                                  |                                                  |                                                  |               |                                              |                | - <del></del> -                                  | <del></del>                                      | <del></del> |
| AMBIENT TEMP. 10 Flowrate (DSCFM) PROBE LENGTH 10 Isokinetic (%) LINER MATERIAL 9/477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                |                                                   |                |                                                  |                                                  | 100000000000000000000000000000000000000          |               |                                              |                |                                                  |                                                  |             |
| PROBE LENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VMBIEN                                           | T TELLO                        | 10                                                | <u> </u>       | •                                                |                                                  |                                                  |               |                                              |                |                                                  |                                                  |             |
| INER MATERIAL 9/472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DBUDE i<br>Vandield                              | ENCTU                          | 10                                                |                |                                                  |                                                  |                                                  |               |                                              |                |                                                  | ;                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                |                                                   |                |                                                  |                                                  | ISOKINETIC                                       | (7¢) <u> </u> |                                              |                |                                                  |                                                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ER N                                             |                                | 11000                                             | <del></del>    |                                                  |                                                  |                                                  |               | -                                            |                |                                                  |                                                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REMARI                                           | KS                             |                                                   |                |                                                  |                                                  |                                                  |               |                                              |                | · · · · · · · · · · · · · · · · · · ·            | •                                                |             |

|                   |                      |                                                    | SOURC    | E SAM       | PLING            | FIELD            | DATA S    | HEET                                             |                                                  | 1                                                |                                                  |                                                  |
|-------------------|----------------------|----------------------------------------------------|----------|-------------|------------------|------------------|-----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                   |                      |                                                    |          |             |                  | /                | ore !     | ayn                                              | 7.                                               | Page                                             | _ of                                             |                                                  |
|                   |                      | <b>20.</b> .                                       | <b>.</b> | 50          | •• •7-           | . ラ              | ore:      | K                                                | in 4                                             | IN                                               |                                                  |                                                  |
| Plant I           | Name                 | Plant                                              | Yates St | ation Bo    | Trois            | Ammon            | <i>()</i> | つ '                                              | nido.                                            | Dun No                                           | . 2                                              |                                                  |
| Sampung<br>Date 4 | g Location_<br>/~/// | Time Start /                                       | (421)    |             | Time Fini        | sh 15 2          | im/Hydru  | Test Duca                                        | tion /-                                          |                                                  | nin.                                             | -                                                |
| Duct Di           | mensions S           | 5/61/ X                                            | 45       | <del></del> | Diameter         |                  | ft        | Initial Lea                                      | ak Rate                                          | 2.00                                             | <u> </u>                                         | 110                                              |
| PTCF_             | .84                  | DGMCF                                              | 003      | Nozzie D    | ia. <u>. 3 7</u> | inch             | es        | Final Lea                                        | k Rate 💋                                         | ,006                                             | cfm                                              | 11                                               |
| Bar Pres          | 18 <u>29</u>         | Plant  /N LOT  Time Start  / G'/ X  DGMCF  Hg  H20 |          |             |                  | MLX              |           | Pa                                               | At U                                             | 1-1                                              | 412                                              | - / -                                            |
|                   |                      |                                                    |          |             |                  |                  |           |                                                  | 4                                                | , - /                                            |                                                  | _                                                |
| Travers           | Clock                | 1 -                                                |          | ^ H         |                  | Dry gas m        |           | Ī                                                | Probe                                            | Last                                             | Vacuum                                           | ] ]                                              |
| Point             | Time                 | reading ft3                                        | in H2O   | in H2O      | Temp. F          | Inlet            | Outlet    | Temp.                                            | Temp                                             | Impinger                                         | in. Hg                                           | 13,5                                             |
| Nft               | 1410                 | 595310                                             |          |             |                  | 76 /             | 2 4       |                                                  |                                                  |                                                  |                                                  |                                                  |
|                   | 1440                 | 6/0/3                                              | 1//      | 1,40        | 18/              | 96               | 93        |                                                  | 266                                              | 08                                               | 5.0                                              | igspace                                          |
| <u></u>           | 1500                 | 676.95                                             | 09       | 1.21        | 707              | 75               | 72        | <del>                                     </del> | 7.00                                             | 23                                               | 5.5                                              |                                                  |
| ļ                 | 1520                 | 656 44                                             | 00       | 1.33        | 796              | 7.5              | 72        |                                                  | 7.05                                             | 6Z                                               | 5.5                                              | <del> </del>                                     |
| <b> </b>          | <del> </del>         |                                                    |          |             |                  |                  | <u> </u>  |                                                  |                                                  |                                                  | <del> </del>                                     | <del>                                     </del> |
| ļ                 | -                    | ļ                                                  |          |             |                  |                  |           | <del></del>                                      |                                                  | <u> </u>                                         | <del>                                     </del> |                                                  |
| ·····             |                      |                                                    |          |             |                  | <del></del>      |           | <del>-   -</del>                                 |                                                  | <del></del>                                      |                                                  |                                                  |
| <b> </b>          | <del> </del>         |                                                    |          | <u>-</u>    |                  |                  |           |                                                  |                                                  | <u> </u>                                         |                                                  |                                                  |
|                   | 1                    |                                                    |          |             |                  |                  |           |                                                  |                                                  |                                                  |                                                  |                                                  |
|                   |                      |                                                    |          |             |                  |                  |           |                                                  |                                                  |                                                  |                                                  |                                                  |
|                   |                      |                                                    |          |             |                  |                  |           |                                                  |                                                  |                                                  |                                                  |                                                  |
|                   |                      |                                                    |          |             |                  |                  |           |                                                  |                                                  |                                                  |                                                  |                                                  |
|                   |                      |                                                    |          |             |                  |                  |           |                                                  |                                                  | ļ. <u>.                                   </u>   |                                                  |                                                  |
| Ì                 |                      |                                                    |          |             |                  |                  |           |                                                  | <del>                                     </del> |                                                  |                                                  |                                                  |
| <u> </u>          | <del> </del>         |                                                    |          |             | <u> </u>         |                  |           |                                                  | ļ                                                |                                                  |                                                  | <del> </del>                                     |
| <b> </b>          |                      |                                                    |          |             |                  | _                |           | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     | <del> </del>                                     | -                                                |
| <b> </b>          | <del> </del>         | -                                                  |          |             | <del> </del>     |                  |           |                                                  |                                                  |                                                  | <del> </del>                                     | ┼                                                |
| <b></b>           | <u> </u>             | <u></u>                                            | <u> </u> |             |                  |                  |           | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> |
|                   | <u> </u>             |                                                    |          |             |                  |                  |           | <del></del>                                      |                                                  | <del>                                     </del> | <del>                                     </del> | †                                                |
|                   |                      | <del> </del>                                       |          |             |                  |                  |           |                                                  |                                                  |                                                  | <u> </u>                                         |                                                  |
|                   |                      |                                                    |          |             |                  |                  |           |                                                  |                                                  | <u> </u>                                         | <b>†</b>                                         |                                                  |
|                   |                      |                                                    |          |             |                  |                  |           |                                                  |                                                  |                                                  |                                                  |                                                  |
|                   |                      |                                                    |          |             |                  |                  |           |                                                  |                                                  |                                                  |                                                  |                                                  |
| <u> </u>          |                      |                                                    |          | <u> </u>    | ļ                |                  | <u> </u>  |                                                  |                                                  |                                                  | <u> </u>                                         | <b></b>                                          |
|                   | <u> </u>             | <b></b>                                            | <b></b>  |             | <u> </u>         |                  | <b></b>   | <u> </u>                                         |                                                  |                                                  | <del></del>                                      |                                                  |
| <b></b>           |                      |                                                    |          |             | - material       | je i glendské se | 200.00    |                                                  |                                                  |                                                  |                                                  |                                                  |
| Avg.              | <del>  -</del>       | 41.654                                             | 13077    | 1.34        | 284              |                  | 94        |                                                  |                                                  |                                                  |                                                  |                                                  |
| Check'd           |                      |                                                    |          |             |                  |                  |           | 1                                                |                                                  | <u>i                                     </u>    | 1                                                |                                                  |
| CONSO             | LE #                 | A1614                                              | 0/       |             |                  | Velocity_        |           |                                                  |                                                  |                                                  | \$                                               |                                                  |
| FILTER            | · *                  |                                                    |          |             |                  | % Moistui        | re        |                                                  |                                                  |                                                  |                                                  |                                                  |
| AMBIE             | NT TEMP.             | 70                                                 |          |             |                  |                  | DSCFM)_   |                                                  |                                                  |                                                  |                                                  |                                                  |
| PROBE             | LENGTH               | 78                                                 | 35       |             |                  | lsokinetic       | (%)       |                                                  |                                                  |                                                  | Ĕ                                                |                                                  |
| LINEK             | MATERIA              | L                                                  |          |             |                  |                  |           |                                                  |                                                  |                                                  |                                                  |                                                  |
| REMAR             | SKS                  |                                                    |          |             |                  |                  |           |                                                  |                                                  |                                                  |                                                  |                                                  |

Page \_\_\_\_ of \_\_\_\_

| Plant N    | lame               | Plant                                            | Yates St                                         | ation Bo       | iler No.                                         | 1                                                |                                                  |                                                  |              |                                                  |                                                 |                                                  |
|------------|--------------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------|
| Sampling   | Location_          | INLET                                            |                                                  |                | Train _                                          | Ammon                                            | ia/Hydro                                         | gen Cya                                          | nide         | Run No                                           | . <u> 4                                    </u> |                                                  |
| Date _     | -219               | Time Start                                       | 1920                                             | <u>-</u>       | Time Fin                                         | ish <u>104</u>                                   | <u> </u>                                         | Test Dura                                        | ation        | 80                                               | min. 🚈                                          |                                                  |
| Duct Din   | nensions_          | 81/ 1/ X_                                        | 450                                              |                | Diameter                                         |                                                  | ft                                               | Initial Le                                       | ak Rate _    | B. 10                                            | a start                                         | 12/                                              |
| PTCF       | , E <sup>4</sup> _ | DGMCF /10                                        | <u> </u>                                         | Nozzie D       | ia. <u>37</u>                                    | inch                                             | C\$                                              | Final Lea                                        | k Rate 💋     | 1004                                             | cfm_/                                           | F811                                             |
| Bar Press  | 29.5               | <u>∠⊘</u> " Hg                                   |                                                  |                | •                                                | 111                                              | _                                                |                                                  | ر م          | Del                                              | +                                               |                                                  |
| Static Pro | <u> </u>           | ######################################           | )                                                |                | Operator                                         | N/ K-1.                                          | <u>/</u>                                         | _ (                                              |              |                                                  | 1                                               |                                                  |
| Travers    |                    | Dry gas meter                                    |                                                  | ^ H            |                                                  | Dry gas m                                        |                                                  | Hot box                                          |              | Last                                             | Vacuum                                          |                                                  |
| Point      | Time               | reading ft3                                      | in H2O                                           | in H2O         | Temp. F                                          | $\overline{}$                                    | Outlet                                           | Temp.                                            | Temp         | Impinger                                         | in. Hg                                          | K=/2                                             |
| · /r       | 1000               | 70141                                            | 7                                                |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
| D. Fris    | 597()              |                                                  | 100                                              | 1 00           | 7.4                                              | Q 7                                              | 01                                               |                                                  | 2/00         |                                                  |                                                 |                                                  |
|            | 1940               | 7/3-02                                           | 109                                              | 1.07           | 7/7                                              | 83                                               | 81<br>82                                         |                                                  | 200          |                                                  | 50                                              |                                                  |
|            |                    | 725.17                                           |                                                  | (1/5           | 315                                              | 85                                               | 73-                                              |                                                  | 7.57         | 2,5                                              | 3.0                                             |                                                  |
| _          | 102/               | 736,62                                           |                                                  |                |                                                  | 2/                                               | 2                                                | <del>                                     </del> | 13           | 60                                               | 5.0                                             |                                                  |
|            | 1040               | 140,000                                          | .08                                              | 1.62-          | 5/6                                              | 86                                               | 87.                                              | <b></b>                                          | 157          | 61                                               | 50                                              |                                                  |
|            |                    | <u> </u>                                         |                                                  |                |                                                  |                                                  | ļ                                                | <b></b>                                          | <u> </u>     |                                                  |                                                 |                                                  |
|            |                    |                                                  | <b></b> _                                        |                |                                                  |                                                  |                                                  | }                                                |              |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
|            |                    |                                                  | ]                                                |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  |                |                                                  | <del> </del>                                     |                                                  |                                                  |              |                                                  |                                                 |                                                  |
|            |                    |                                                  | <del> </del>                                     |                |                                                  | <u> </u>                                         |                                                  |                                                  |              | <u> </u>                                         |                                                 |                                                  |
|            | <del></del>        |                                                  | <del></del>                                      |                | <del>                                     </del> | <del> </del> -                                   |                                                  |                                                  | <del> </del> |                                                  |                                                 |                                                  |
|            |                    | <del></del> -                                    | <del>                                     </del> | <del> </del> - |                                                  | <del> </del>                                     | <br>                                             | <del> </del>                                     | <del> </del> |                                                  |                                                 |                                                  |
|            |                    | ļ                                                | <del> </del>                                     |                |                                                  | <del> </del>                                     | <u> </u>                                         |                                                  |              |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  | <del> </del> - |                                                  |                                                  | <u> </u>                                         | <del> </del>                                     |              |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  |                | <del> </del>                                     | 1                                                |                                                  |                                                  | <del> </del> | <u> </u>                                         |                                                 |                                                  |
|            |                    |                                                  | ļ                                                | ļ              |                                                  |                                                  | ļ                                                |                                                  | ļ            | <b> </b>                                         |                                                 |                                                  |
|            |                    |                                                  |                                                  |                |                                                  |                                                  |                                                  |                                                  | ļ            |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  |                |                                                  |                                                  |                                                  | <u> </u>                                         | <u> </u>     |                                                  |                                                 |                                                  |
|            |                    |                                                  | ļ                                                |                |                                                  |                                                  |                                                  | <u> </u>                                         | <u> </u>     | ļ                                                | ļ                                               | lI                                               |
|            |                    |                                                  |                                                  |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  | [              | <u> </u>                                         | ]                                                |                                                  |                                                  |              | <u>                                     </u>     |                                                 |                                                  |
|            |                    |                                                  |                                                  |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
|            |                    |                                                  |                                                  | <u> </u>       |                                                  |                                                  |                                                  |                                                  | 1            |                                                  | <del></del>                                     |                                                  |
|            |                    |                                                  |                                                  |                | <del> </del>                                     |                                                  | <del>                                     </del> | <del>                                     </del> | <del> </del> | <del>                                     </del> |                                                 |                                                  |
| -          | ·                  | <del>                                     </del> | <del>                                     </del> | -              | <del>                                     </del> | <del>                                     </del> | <del>}</del>                                     | <del>}</del>                                     | 1            |                                                  | <u> </u>                                        | <del>                                     </del> |
| A          |                    | W 25C                                            |                                                  |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
| Avg.       |                    | 44.835                                           | 14 11                                            | 40850          | 315                                              |                                                  | 83                                               |                                                  |              |                                                  |                                                 |                                                  |
| Check'd    |                    |                                                  |                                                  |                | J. Stranger                                      | 1                                                | l .                                              |                                                  | ı            |                                                  |                                                 |                                                  |
| CONSO      | .E#                | A16140                                           |                                                  |                |                                                  | Velocity_                                        |                                                  |                                                  |              | ***                                              |                                                 |                                                  |
| FILTER     |                    |                                                  |                                                  |                |                                                  | % Moistu                                         |                                                  |                                                  |              |                                                  | }                                               |                                                  |
| AMRIEN     | "                  | 4/6/401<br>-76<br>10                             |                                                  | •              |                                                  |                                                  | DSCFM)                                           |                                                  |              |                                                  |                                                 |                                                  |
| PRORE      | LENGTH             | 10                                               | <del></del> ·                                    |                |                                                  | 100000000000000000000000000000000000000          | (%)<br>(%)                                       |                                                  |              |                                                  |                                                 |                                                  |
| LINER      | MATERIAL           | 9/455                                            |                                                  |                |                                                  |                                                  | NAV <u>A</u>                                     |                                                  |              |                                                  | •                                               |                                                  |
|            | well U             |                                                  |                                                  |                |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                 |                                                  |
| REMAR      | KS                 |                                                  |                                                  |                |                                                  | <del>,</del>                                     |                                                  | ·                                                |              |                                                  | _                                               |                                                  |

Page \_\_\_\_\_ of \_\_\_\_

| Cama-1: *    |         | Plant                  | 7        | ation Bo | Train     | Ammon      | —<br>is/Hydra         | gen Cun      | nide  | Run No           | Kinal  | もしゃ |
|--------------|---------|------------------------|----------|----------|-----------|------------|-----------------------|--------------|-------|------------------|--------|-----|
| Date (a      | -///C-3 | Plant In/e- Time Start | 1257     |          | Time Fini | th /-/2    | <u>الارتارة:</u><br>2 | Test Dues    | tion  | Kuii 110         | · Min  | 7   |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
| PTCF         |         | DGMCF_                 |          | Nozzle D | ia.       | inch       | <br>cs                | Final Leal   | Rate  |                  | cfm    |     |
|              |         | * Hg                   |          |          |           |            |                       |              |       |                  |        |     |
|              |         | H20                    |          |          | Operator  | JW         | 1                     |              |       |                  |        |     |
|              |         | 11.7                   |          |          |           |            |                       |              | 5 .   |                  | ,, T   |     |
| Travers      |         | Dry gas meter          |          | ^ H      | Temp. F   | Dry gas me |                       | Hot box      | Probe | Last<br>Impinger | Vacuum |     |
| Point        | Time    | reading ft3            | IN H2O   | In H2O   | remp. r   | Iniet      | Outlet                | Temp.        | Temp  | imparger         | in. Hg |     |
|              | 1352    | 633053                 |          |          |           |            |                       |              |       |                  |        |     |
|              | ~/03    | 636.681                |          |          |           |            |                       |              |       |                  |        |     |
|              |         | ,                      |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        | l        |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
| -            |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              | ~       |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            | <del></del>           | <del> </del> |       |                  |        |     |
| -            |         |                        | <u> </u> |          | <u> </u>  |            |                       |              |       |                  | -      |     |
|              |         |                        |          |          | l         |            |                       |              |       | -                |        |     |
| <del> </del> |         |                        |          |          |           |            |                       |              |       |                  |        |     |
| -            |         |                        | <u> </u> | <u> </u> | <br>      |            |                       |              |       | <u> </u>         |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            | ·                     |              |       |                  |        |     |
|              |         |                        |          |          |           | <u>-</u>   | <del></del>           |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       | <b> </b>         |        |     |
|              |         |                        |          |          |           |            |                       |              |       | ļ                |        |     |
|              |         |                        |          |          |           |            |                       |              |       | ļ                |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       | <u> </u>         |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       | <b>T</b>         |        |     |
|              |         |                        |          |          |           |            | <u> </u>              |              |       |                  |        |     |
| 1            | -       |                        |          |          |           |            |                       |              |       |                  |        |     |
| Avg.         |         |                        |          |          |           |            |                       |              |       |                  |        |     |
|              |         |                        |          |          |           |            |                       |              |       |                  |        |     |

**ESP INLET** Page of Plant Yates Station Boiler No. 1 Plant Name Sampling Location vilot \_\_ Train Bulk Particulate-Radionuclides Run No. / Date 6-15-93 Time Start 0745

Duct Dimensions 8 6 X 45

Diameter ft Initial Leak Rate 0.009 of PTCF 84 DGMCF 1.009 Nozzle Dia. 375 inches

Final Leak Rate 0.006 Diameter ft Initial Leak Rate 0.009 of my 2// Bar Press 29/65 \_ " Hg Operator MKC Static Press \_\_\_ + /\_ 4 H2O ^ H Stack Dry gas meter temp. Clock Dry gas meter Travers Hot box Probe Last Vacuum | reading fl3 in H2O in H2O Temp. F Inlet Temp Impinger in Hg Point Time Outlet Temp. 608 300 18 3.0 310

| 7                   | 82         |          |                                         |                                                                      |                                         | 2000 |
|---------------------|------------|----------|-----------------------------------------|----------------------------------------------------------------------|-----------------------------------------|------|
|                     | ♣ > 1      | - A 🕻 🖔  | % x2 }                                  |                                                                      |                                         |      |
| loistun<br>/rate (l | e <u> </u> |          |                                         |                                                                      |                                         |      |
|                     |            |          | _                                       |                                                                      | · · ·                                   |      |
|                     |            | etic (%) | 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12 1 201 1-2 1 1 1 1 1 0 1 0 1 1 5 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12 1 20 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 |      |

53,

SOURCE SAMPLING FIELD DATA SHEET ESP INLET Page \_\_\_\_ of \_\_\_\_ Plant Yates Station Boiler No. 1 Plant Name \_\_ Sampling Location

Sampling Location

Date 6-269 Time Start

1546 Time Finish 1700

Test Duration

Duct Dimensions

Diameter

Diameter

PTCF 84 DGMCF 1009 Nozzle Dia. -375 inches

Final Leak Rate 0.000 cfm Bar Press 29.56 "Hg Operator M/CO Part E-7 E-7 Port Static Press \_" H2O Clock Dry gas meter P Travers <sup>^</sup>H Stack Dry was meter temp. Hot box Vacuum Last Probe in H2O | in H2O | Temp. F | Inlet Point Time reading ft3 Outlet Temp. Temp Impinger in. Hg C T PF

|                                                     |                        |          |                                                | 388 88       |     |                      |                |          |      |       |
|-----------------------------------------------------|------------------------|----------|------------------------------------------------|--------------|-----|----------------------|----------------|----------|------|-------|
| Avg.<br>Check'd                                     | (/(                    | 45.950   | 2905                                           | 1.1          | 317 |                      | 97             |          |      | 9 800 |
| CONSOLI<br>THIMBLI<br>AMBIEN'<br>PROBE L<br>LINER M | E#<br>TTEMP.<br>ENGTH_ | <u> </u> | 52                                             | <del>-</del> |     | % Moistu<br>Flowrate | re<br>(DSCFM)_ |          |      |       |
| REMARK                                              | <b>S</b>               |          | <u>-, , , , -, -, -, , , , , , , , , , , ,</u> |              |     |                      | <u></u>        | <u> </u> | <br> | C-2   |

| me                   |                                       |                                                                                   | D                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    | <del></del>                      |                                                                                                                                                                                                                      |
|----------------------|---------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | - Plant                               | rates Si                                                                          | ation Bo                                                                                           | Her No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rulle 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>Doctionlo                                                      | to Dadia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | muelida                                   | e D                                                                                | lun No                           | 2                                                                                                                                                                                                                    |
| $7.5^{\circ}$        | Time Start                            | 170                                                                               |                                                                                                    | Time Siei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oh 1-7 6 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                  | Test Dues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lion                                      | <u> </u>                                                                           |                                  | J                                                                                                                                                                                                                    |
| (-1-)                | 1 tine Start/                         | 45                                                                                |                                                                                                    | Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sii <u>/ U -/(</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | Test Dura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | illiUli                                   | 10 17 18                                                                           |                                  | 011                                                                                                                                                                                                                  |
| nsionsc              | DCMCE // 2                            | 72                                                                                | Alemba D                                                                                           | Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n                                                                  | Final Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k Pate                                    |                                                                                    | Jem /                            | £-1, 1                                                                                                                                                                                                               |
| 70                   | <b>DUMCP</b> <u>7.77</u><br>∴ ″ • □ = | <u> </u>                                                                          | MOZZIE DI                                                                                          | 7 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>cs</b><br><b>^</b> .                                            | Littat Cea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K Kale —                                  | 0,00                                                                               | /_cinec                          | 1 20                                                                                                                                                                                                                 |
| ر) <sup>در ب</sup> ر | ng                                    |                                                                                   |                                                                                                    | 0,57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                         | ر لا،                                                                              |                                  |                                                                                                                                                                                                                      |
| <u> </u>             |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                       | Λ' (-·                                                                             | <u> </u>                         |                                                                                                                                                                                                                      |
| Clock                | Dry gas meter                         | ^ P                                                                               | ј ^н ∣                                                                                             | Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dry gas inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eter temp.                                                         | Hot box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Probe                                     | Last                                                                               | Vacuum                           | 12-                                                                                                                                                                                                                  |
| Time                 | reading ft3                           | in H2O                                                                            | in H2O                                                                                             | Temp. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Outlet                                                             | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp                                      | Impinger                                                                           | in. Hg                           | <u> </u>                                                                                                                                                                                                             |
| 11-1                 | 149696                                |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      | 7/000                                 |                                                                                   | 1 50                                                                                               | 7,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 7/                                        | 75                                                                                 | 25                               |                                                                                                                                                                                                                      |
| 742                  | 100,77                                | 100                                                                               | 00                                                                                                 | 24/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | 72-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 450                                       | 2                                                                                  | 71/2                             |                                                                                                                                                                                                                      |
| $\frac{Z}{2}$        | -3-1                                  | 0 /                                                                               | 27                                                                                                 | 7 / 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C-/                                       | 2/                                                                                 | 20                               |                                                                                                                                                                                                                      |
| 1-11                 |                                       | 1                                                                                 | 1. 1                                                                                               | 3/3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 255                                       | 260                                                                                | 75-                              |                                                                                                                                                                                                                      |
| 240                  | 77.779                                | -07                                                                               | 87                                                                                                 | 3/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-/2                                      | 57                                                                                 | 4.0                              |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   | <del> </del>                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  | -                                                                                                                                                                                                                    |
|                      |                                       | <u> </u>                                                                          | <del> </del>                                                                                       | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | <u> </u>                                                                           |                                  | <u> </u>                                                                                                                                                                                                             |
|                      |                                       |                                                                                   | <u> </u>                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    | <u> </u>                         | <u> </u>                                                                                                                                                                                                             |
|                      |                                       |                                                                                   | ļ                                                                                                  | ļ <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | <u> </u>                                                                           | ļ <u> </u>                       | <u> </u>                                                                                                                                                                                                             |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       | <u> </u>                                                                          |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    | <u></u>                          |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                         |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    | <u> </u>                         |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   | -                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    | <del> </del>                     |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   | <del> </del>                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    | <del> </del>                     |                                                                                                                                                                                                                      |
|                      |                                       |                                                                                   | <del> </del>                                                                                       | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                         |                                                                                    | <del> </del>                     | <del>}</del>                                                                                                                                                                                                         |
|                      |                                       | <u> </u>                                                                          | <del></del>                                                                                        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | <u> </u>                                                                           |                                  |                                                                                                                                                                                                                      |
|                      | ······                                |                                                                                   | <b></b>                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                  |                                                                                    |                                  | <u> </u>                                                                                                                                                                                                             |
|                      |                                       |                                                                                   | <u> </u>                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                                                    | <u> </u>                         |                                                                                                                                                                                                                      |
|                      |                                       | <u> </u>                                                                          |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | <u> </u>                                                                           |                                  |                                                                                                                                                                                                                      |
|                      | <u> </u>                              |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |                                                                                    |                                  | <u> </u>                                                                                                                                                                                                             |
|                      |                                       |                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      | 45 094                                | 2737                                                                              | 955                                                                                                | 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A Section Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of | શ્ક                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                    |                                  |                                                                                                                                                                                                                      |
|                      | Signature (1)                         |                                                                                   |                                                                                                    | W15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 124115-0-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Aug                                                              | 2.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 - 1050000000000000000000000000000000000 | Language proposed finds                                                            | - A 1744 CONTRACTOR (CONTRACTOR) | <ul><li>**********************************</li></ul>                                                                                                                                                                 |
|                      | Clock                                 | Clock Dry gas meter reading ft3 (720 148.685) 200 750,859 200 770,790 240 772,790 | Clock Dry gas meter reading ft3 in H2O  (120 148.68 - 08  140 760.5 08  121 783.4 08  140 79279 07 | Clock Dry gas meter reading ft3 in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2O in H2 | Clock Dry gas meter P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Clock Dry gas meter reading ft3 in H2O in H2O Temp. F Inlet    120 | Clock Dry gas meter reading ft3 in H2O in H2O Temp. F Inlet Outlet    148.695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clock   Dry gas meter   P                 | Clock Trime reading ft3 in H2O in H2O in H2O Temp. F Inlet Outlet Temp. Temp.    1 | Clock   Dry gas meter   P        | Time reading #3 in H20 in H20 Temp. F Inlet Outlet Temp. Temp Impinger in. Hg  120 148 695  149 760 55, 68 167 37 47 89 56 57 756 65 3.5  221 78344 88 132 315, 92 37 55 56 35  240 79379 07 89 374 97 73 277 57 9.0 |

|              |              |                      |          |                                                  |                                        |              |                                                  |                                                  |                                                  | Page            | of                                               |                                                  |
|--------------|--------------|----------------------|----------|--------------------------------------------------|----------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------|--------------------------------------------------|--------------------------------------------------|
| Plant N      | Name         | Plant                | Yates St | ation Bo                                         | iler No.                               | . 1          | <del></del>                                      |                                                  | _                                                | _               | ,                                                |                                                  |
| Sampling     | Location_    | Time Start           | 0/-      |                                                  | Train                                  | Bulk         | Particula                                        | ate-Ex. M                                        | letals_                                          | _ Run !         | ۷o. <u>/</u>                                     | _                                                |
| Date         | 6-6-9        | Fime Start           | 445      | <del></del>                                      | Time Fin                               | ish _/04     | <del></del>                                      | Test Dura                                        | ition                                            | 2001            | min.                                             | A 1                                              |
| Duct Din     | nensions_0   | DOMCE A              | 73       | Marria D                                         | Diameter<br>:- Z                       | 75 inch      | I                                                | Final Lea                                        | ik Kale <u>/</u>                                 | 2001            | cim                                              | /12//                                            |
| PICF_6       | 296          | 5 * Hg               | 70.7     |                                                  |                                        |              |                                                  | Linai Dem                                        | K Nate                                           | rw <del>y</del> |                                                  | 1011                                             |
| Static Pro   | ess          | # H2C                | )        |                                                  | Operator                               | MX           | 0                                                | _                                                |                                                  |                 | 6-                                               | 4                                                |
| Travers      | Clock        | Dry gas meter        | ^ P      | ^ H                                              | Stack                                  | Dry gas in   | eter temp.                                       | Hot box                                          | Probe                                            | Last            | Vacuum                                           | 12                                               |
| Point        | Time         | reading ft3          | in H2O   | in H2O                                           | Temp. F                                | Inlet        | Outlet                                           | Temp.                                            | Temp                                             | Impinger        | in. Hg                                           | 12.5                                             |
| NA           | 094          | 711.42               | ;        |                                                  |                                        |              |                                                  |                                                  |                                                  |                 |                                                  |                                                  |
| ,,,          |              | 725 85               | ./3      | 1.15                                             | 294                                    | 86           | 84                                               | 17                                               | 252                                              | 59              | 3.0                                              |                                                  |
|              | 1025         | 741.00               | 12       |                                                  | 295                                    | 86           | 44                                               |                                                  | 25/                                              | 49              | كرج                                              |                                                  |
|              | 1145         | 754.84               | 113      | 1,75                                             | 798                                    | 26           | 8                                                |                                                  | 257                                              | 50              | 4.0                                              |                                                  |
|              |              |                      |          | 1                                                | 1272                                   |              |                                                  | 1                                                | 2,00                                             |                 |                                                  |                                                  |
|              |              |                      |          |                                                  |                                        |              |                                                  |                                                  |                                                  |                 | · · · · · · · · · · · · · · · · · · ·            |                                                  |
|              |              |                      |          |                                                  |                                        |              |                                                  | 1                                                |                                                  |                 |                                                  |                                                  |
|              |              |                      |          |                                                  |                                        |              |                                                  | 1                                                |                                                  |                 |                                                  |                                                  |
|              |              |                      |          |                                                  |                                        |              |                                                  |                                                  |                                                  |                 |                                                  |                                                  |
|              |              |                      |          |                                                  |                                        |              |                                                  |                                                  |                                                  |                 |                                                  |                                                  |
|              |              |                      |          |                                                  |                                        |              |                                                  | 1                                                |                                                  |                 |                                                  |                                                  |
|              |              |                      |          |                                                  |                                        | <u> </u>     |                                                  | <b>†</b>                                         |                                                  |                 |                                                  |                                                  |
|              |              |                      |          |                                                  |                                        |              |                                                  | †                                                |                                                  | _               |                                                  |                                                  |
|              |              |                      | ļ.<br>   |                                                  |                                        |              |                                                  | 1                                                |                                                  |                 |                                                  |                                                  |
|              |              |                      |          |                                                  |                                        |              |                                                  |                                                  |                                                  |                 |                                                  |                                                  |
|              |              |                      |          |                                                  |                                        |              |                                                  | 1                                                |                                                  |                 |                                                  |                                                  |
| l            |              |                      |          | -                                                |                                        |              | <del> </del>                                     | 1                                                |                                                  |                 |                                                  |                                                  |
|              | <u> </u>     |                      |          | <del>                                     </del> |                                        | <del> </del> |                                                  |                                                  |                                                  | <u> </u>        |                                                  |                                                  |
| <del> </del> |              | <u> </u>             |          | <b>†</b>                                         | —————————————————————————————————————— |              |                                                  |                                                  |                                                  | <del></del>     |                                                  |                                                  |
| <b> </b>     |              |                      |          |                                                  |                                        | <del> </del> |                                                  | †                                                |                                                  |                 | <del></del>                                      |                                                  |
|              |              |                      |          | <del>                                     </del> |                                        |              |                                                  | <del>                                     </del> |                                                  |                 | <u> </u>                                         |                                                  |
| <b>!</b>     |              |                      |          | <u> </u>                                         |                                        | <del>†</del> |                                                  | <del>                                     </del> |                                                  |                 |                                                  |                                                  |
|              |              | <del> </del>         |          |                                                  |                                        |              |                                                  | <u> </u>                                         | <del>                                     </del> |                 |                                                  |                                                  |
|              |              | <del> </del>         |          | <del> </del>                                     | 1                                      | 1            |                                                  | <del>                                     </del> | <del>                                     </del> | <del> </del>    |                                                  | <del>                                     </del> |
| _            | -            | <del> </del>         |          |                                                  |                                        | 1            |                                                  | <del></del>                                      |                                                  |                 | <del>                                     </del> | $\vdash$                                         |
|              |              |                      |          | <del> </del>                                     |                                        | 1            |                                                  |                                                  |                                                  |                 | <del>                                     </del> | <del> </del>                                     |
| <del></del>  | <del> </del> |                      |          | <del>                                     </del> | <del> </del>                           | <del> </del> | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | <del> </del>    | <del></del>                                      | <del>                                     </del> |
|              |              |                      |          | <u> </u>                                         |                                        | +            |                                                  | -                                                | <del>  _</del>                                   | <u> </u>        | <del> </del>                                     | <del>                                     </del> |
| Ava          | -            | H3 420               |          | سے وہدا ہے                                       | 201                                    |              | 85                                               | 1 / (Mary 1994)                                  | 2000                                             |                 |                                                  |                                                  |
| Avg.         |              |                      | 113606   | 14.75                                            | 276                                    |              | 02                                               |                                                  |                                                  |                 |                                                  |                                                  |
| Check'd      | ·            |                      |          |                                                  |                                        |              |                                                  |                                                  |                                                  |                 |                                                  |                                                  |
| CONSO        | LE #         | 78<br>10/c/a<br>2/16 |          |                                                  |                                        | Velocity_    |                                                  |                                                  |                                                  |                 |                                                  |                                                  |
| FILTER       | #            | Thu                  | oble)    | -                                                |                                        | % Moistu     | re                                               |                                                  |                                                  |                 | 2                                                |                                                  |
| AMBIEN       | NT TEMP.     | 178                  |          |                                                  |                                        | Flowrate     | DSCFM)_                                          |                                                  |                                                  |                 |                                                  |                                                  |
| PROBE        | LENGTH       | 10 c/a               | 55       |                                                  |                                        | Isokinetic   | (%)                                              |                                                  | An Tab                                           |                 | \$<br><b>~</b>                                   |                                                  |
| LINER!       | MATERIA      | L <u>4/195</u>       |          |                                                  |                                        |              |                                                  |                                                  |                                                  |                 |                                                  |                                                  |
| REMAR        | .KS          |                      |          | <del></del> -                                    |                                        | ····         |                                                  |                                                  |                                                  |                 | _                                                |                                                  |

|                                             | _            | ( <b>T</b> )         |             |             |           |                         |                 |             |                | Page        | of           |          |
|---------------------------------------------|--------------|----------------------|-------------|-------------|-----------|-------------------------|-----------------|-------------|----------------|-------------|--------------|----------|
| Plant N                                     | vame         | / Plant              | Yates St    | ation Bo    | Train     | Rulk                    | —–<br>Portioulo | ta Ev N     | fatale         | D           | 10 T         |          |
| Sampling                                    | Location_    | Carly S              | 345         |             | Time Fini | eh CTA                  | Carricus        | Test Dues   | ietais_        | i¥nııı      | ۷٥. <u> </u> | _        |
| Date <u>(@</u>                              | neneione     | Y // X               | 45          | <del></del> | Diameter  | ره الم                  | 7               | Initial Lea | uon<br>kRate ( | 1.01        | mm.          |          |
| PTCF 4                                      | 84           | Time Start  DGMCF  J | 103         | Nozzle D    | a 37.     | inch                    | es              | Final Lea   | k Rate         | 0.007       | cfm          |          |
| Bar Pres                                    | 27           | 56 " Hg              |             |             |           |                         |                 | -           |                | <del></del> |              |          |
| Static Pro                                  | ess <u> </u> | ,56 " Hg<br>" H20    | )           |             | Operator  | _ []                    | <u> </u>        |             |                |             |              |          |
| Travers                                     | Clock        | Dry gas meter        | ^ P         | ^ н         | Stack     | Dry gas me              | ter temp.       | Hot box     | Probe          | Last        | Vacuum       |          |
| Point                                       | Time         | reading ft3          | in H2O      | in H2O      | Teinp. F  |                         | Outlet          | Temp.       | Temp           | Impinger    | in. Hg       | KEL      |
| E-7                                         | 1345         | 827565               | 0.08        | 1.1         | 322       | 87                      | 86              |             | 225            | 56          | 4.0          |          |
|                                             | 1400         |                      |             | 0.97        | 323       | 92                      | 88              |             | 238            | 57          | 4.0          |          |
|                                             | 1415         | B39.15               | 0.07        | 0.92        | 323       | 96                      | OP              |             | 241            | 58          | 40           |          |
|                                             | 1430         | 847.04               | 0.87        | 0.92        | 323       | 96                      | 90              | -           | 245            | 60          | 4.0          |          |
|                                             | 1445         | 855.00               | 0.02        | 0.92        | 323       | 100                     | 94              | -           | 247            | 60          | 4.0          |          |
|                                             | 1500         | 8L3.00               | 0.07        | 0.92        | 373       | 101                     | 95              |             | 238            | 62          | 4.0          |          |
| STOP                                        | 1505         | 865,845              |             |             |           |                         |                 |             |                | ļ<br>       |              |          |
|                                             |              |                      |             |             |           |                         |                 | <u> </u>    |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                | <u></u>     |              |          |
|                                             |              |                      |             | ļ           |           |                         |                 | <u> </u>    |                |             |              |          |
|                                             |              |                      |             |             | _         | ·                       |                 | ļ           |                |             |              |          |
|                                             |              |                      |             | <u> </u>    |           |                         |                 | 1           |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             | <u> </u>       |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         | _               |             |                |             |              |          |
|                                             | <u> </u>     |                      |             |             |           |                         |                 |             | <u> </u>       | <u> </u>    |              |          |
| _                                           |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 | <u> </u>    |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              | <u> </u> |
|                                             |              |                      |             |             |           |                         |                 |             |                |             |              |          |
| Avg.                                        |              | 43,280               | 0.2676      | 0.9583      | 322.8     | 92                      | 20              |             |                |             |              |          |
| Check'd                                     |              |                      | 51850 (Free | 187. A-803. |           | in the second           |                 |             |                |             |              |          |
| CONSO<br>FILTER<br>AMBIEN<br>PROBE<br>LINER | LE #         | A 1614<br>78<br>10'  | o/<br>nbie  | -           |           | % Moistur<br>Flowrate ( | DSCFM)          |             |                |             | •            |          |
| REMAR                                       | ks           |                      |             |             |           |                         |                 |             |                |             | _            |          |

|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | Page /                                           | of                                               |          |
|------------|------------|--------------------------------------------------|----------------------|---------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------|--------------------------------------------------|----------|
|            | Name       |                                                  | Yates S              | tation Bo                             | iler No.                                         | 1 - ::                                           | <del></del> .                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                        |                                                  | 1                                                |          |
| Sampling   | Location_  | inle F                                           |                      |                                       | Train _                                          | Bulk                                             | Particula                                        | te-Ex. N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | letals                   | _ Run!                                           | ۷o. <u> ح</u>                                    | _        |
| Date 6     | - 27.5     | Time Start 1  G 6 X  DGMCF / C                   | <u> </u>             | <del></del>                           | Time Fin                                         | ish                                              | 2                                                | Test Dura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion                     | 70                                               | min.                                             | +101     |
| Duct Dir   | nensions_  | <u> </u>                                         | 43                   |                                       | Diameter                                         | 7                                                | A                                                | Initial Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ik Rate _                | 2.009                                            | cfm *                                            |          |
| PTCF _     | 24         | DGMCF // C                                       | 03                   | Nozzle D                              | ia.                                              | inel                                             | ies                                              | Final Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k Rate _                 | 000                                              | clm c                                            | 410      |
| Bar Pres   | s <u> </u> | (16) " Hg                                        |                      |                                       | 0.37                                             | m/c                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | F-                                               | <                                                |          |
| Static Pro |            | . <u>/</u> . Н2С                                 |                      | · · · · · · · · · · · · · · · · · · · |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
| Travers    | Clock      | Dry gas meter                                    | ^ P                  | ^ H                                   | Stack                                            | Dry gas in                                       | eter temp.                                       | Hot box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Probe                    | Last                                             | Vacuum                                           |          |
| Point      | Time       | reading ft3                                      | in H2O               | in H2O                                | Temp. F                                          | Inlet                                            | Outlet                                           | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temp                     | Impinger                                         | in. Hg                                           | 12.8     |
| MA         | 13/1/2     | 79343                                            |                      |                                       |                                                  |                                                  |                                                  | - <del>/</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                  |                                                  |          |
| 1          | 12 2 11    | 80603                                            | 19                   | 115                                   | 211                                              | 94                                               | 92                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110                      | 66                                               | 75                                               |          |
|            | 17 111     | 2018                                             | 1                    | 115                                   | 210                                              | an                                               | 42                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 167                      | 22                                               | 4/1                                              |          |
|            | 7-19-7     | 0105                                             | 107                  | 11.7                                  | 710                                              | 78                                               | 7.7                                              | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47/                      | 7/                                               | TIV                                              |          |
|            | 145!       | 8 3/15/                                          | 0/1                  | 1.78                                  | 7//                                              | 76                                               | 9-7                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 263                      | 7                                                | 4.7                                              |          |
|            | 1410       | 837.60                                           |                      | 1.18                                  | 318                                              | 97                                               | 93                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (60)                     | 58                                               | 7                                                |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                  | Ĺ                                                |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                  |                                                  |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                  |                                                  |          |
|            |            |                                                  |                      |                                       | <u>.                                    </u>     |                                                  | <u> </u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            |            |                                                  |                      |                                       |                                                  | -                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | <del> </del>                                     | <del> </del>                                     |          |
|            |            |                                                  |                      | ļ                                     |                                                  | <del> </del>                                     | ļ                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | <u> </u>                                         |                                                  |          |
|            | -          |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            |            |                                                  | İ                    |                                       | <del></del>                                      |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
| 4          |            |                                                  | <u></u>              |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  | •                                                |          |
|            |            |                                                  | ļ. ————              |                                       |                                                  |                                                  | <u> </u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            |            | <del>                                     </del> |                      |                                       | <u> </u>                                         | <del> </del>                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | <del> </del>                                     |                                                  |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                  | ļ                                                |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                  |                                                  |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            | <u> </u>   |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>              | <del>                                     </del> | <del>                                     </del> |          |
| ···        |            | <del> </del>                                     |                      |                                       | ļ                                                |                                                  | <del> </del>                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u></u>                  | <del> </del>                                     | <del> </del>                                     |          |
|            |            |                                                  |                      | <del> </del>                          | <del>                                     </del> | <del>                                     </del> |                                                  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ļ                        | <u> </u>                                         | -                                                |          |
|            |            | ļ <u>.</u>                                       | ļ                    | ļ                                     | -                                                | ļ                                                | <del>                                     </del> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b></b>                  | <del> </del>                                     |                                                  |          |
|            |            |                                                  | ļ                    | ļ                                     | ļ                                                |                                                  | <b></b>                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | <u> </u>                                         |                                                  | <u> </u> |
|            |            |                                                  |                      | <u> </u>                              |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  |          |
|            | <u> </u>   |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ţ                        | T                                                |                                                  |          |
| Avg.       |            | 44.144                                           | Peno.                | 3016                                  | 316                                              | Jack Com                                         | 94                                               | L va sous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                  |                                                  |          |
|            | <b></b>    |                                                  | , <del>, , , ,</del> | <i>1,64</i> 3                         | 2888                                             |                                                  |                                                  | radio de la composição<br>La composição de la composição de la composição de la composição de la composição de la composição de la composição<br>La composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la composição de la |                          |                                                  | 1                                                |          |
| Check'd    | <u> </u>   |                                                  | 1 28                 | 10.8                                  |                                                  |                                                  | I                                                | * service and a service as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                        | 1                                                | 4.0000000000000000000000000000000000000          |          |
| CONSO      | 18 # 4/    | 16144                                            |                      |                                       |                                                  | Valinaite                                        | gritaria ganta na a                              | 1,0525549993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                                  | ţ.                                               |          |
| COMPO      | # 100      |                                                  | nble                 |                                       |                                                  | e training                                       |                                                  | n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de<br>La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  | 6<br>0<br>0                                      |          |
| ALADIES    | NT TEMP.   |                                                  | nuie)                | -                                     |                                                  | A MIOISU                                         | Decret                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | entro <b>s</b> entro especial.                   | •                                                |          |
|            |            | · - /                                            | <del></del>          |                                       |                                                  | Clowlate (                                       | DSCFM)_                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ogu stá 1689)<br>Zi nagy |                                                  |                                                  |          |
|            | LENGTH     | 70                                               | = .                  |                                       |                                                  | Isokinetie                                       | (%)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 - 1                    |                                                  | Ê                                                |          |
| LINER      | MATERIA    | - 5/A5ª                                          |                      |                                       | 1 1                                              | 1/2 -                                            | -41                                              | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 1                                                | 1.1                                              | A.       |
|            | _          | Sillon                                           | ( 50                 | MR                                    | 19 W                                             | K                                                | 47/                                              | 4117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | of "                                             | mu                                               | y re     |
| REMAR      | KS -       | 9/150                                            |                      | 7.                                    | <i>a 1</i>                                       | <del>/ /-</del>                                  |                                                  | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                  | _                                                | U        |
|            |            |                                                  | 7124                 | n W                                   | 0/                                               | 01/2                                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  | C-205    |
|            |            |                                                  |                      |                                       |                                                  |                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                  |                                                  | U-2UJ    |

ESP INLET Page \_\_\_ of \_\_ Plant Name Plant Yates Station Boiler No. 1 Sampling Location with Train Size Fract. Particulate Run No. Date 6-25-93 Time Start 8800 Time Finish 1020 Test Duration 160 min.

Duct Dimensions 6 X 45 Diameter ft Initial Leak Rate 6,009 cfm4444

PTCF 05 DGMCF 9886 Nozzle Dia. 375 inches Final Leak Rate cfm Bar Press 29.55 " Hg Static Press -6,4 H2O Operator MKC ^ H Stack Dry gas meter temp. Hot box Probe ^ P Travers Clock Dry gas meter Last Vacuum Temp Impinger in Hg 4=3.9 in H2O Temp. F Inlet in H2O Point Time reading ft3 Outlet Temp. N/A 0800 341.86 2.0 360.87 201 \$1000 379.80 41.161 [2826.31 288 81 Avg. Check'd CONSOLE # A16/40/ Velocity FILTER # #/308 % Moisture Flowrate (DSCFM) AMBIENT TEMP. Isokinetic (%)\_\_\_ PROBE LENGTH LINER MATERIAL REMARKS

C-206

|                       |                                                  |                                                  |                                               |                                                  |                                                  |                                                  |                                                  |            |                                                  | Page         | of <u>/</u>                                      |                                                  |
|-----------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|
| Plant !               | Name                                             | Plant                                            | Yates St                                      | ation Be                                         | oiler No.                                        | 1                                                | <del></del>                                      |            |                                                  | _            |                                                  |                                                  |
| Sampling              | g Location_                                      | Time Start X DGMCF 1.00                          | <b>S</b> 2/3/                                 |                                                  | Train _                                          | Size Fra                                         | act. Part                                        | iculate    | Run                                              | No. 2        | <del>_</del>                                     |                                                  |
| Date 6                | <u> 2643</u>                                     | Time Start                                       | 3071                                          |                                                  | Time Fin                                         | ish                                              | )                                                | Test Dura  | ation                                            | 20           | min.                                             | , //                                             |
| Duct Di               | mensions                                         | 8' (11 X _                                       | 451                                           | <del></del>                                      | Diameter                                         |                                                  | ftft                                             | Initial Le | ik Rate _                                        | 0.017        | cfm_o(                                           | T10                                              |
| PTCF _                | . 84                                             | DGMCF /- O                                       | 07                                            | Nozzie D                                         | 1a. <u></u>                                      | inct                                             | ies                                              | Final Lea  | k Rate                                           | NA_          | cfm                                              |                                                  |
| Bar Pres<br>Static Pr | 18 <u>79</u><br>1938 <u></u>                     | <u>. 5 (</u> " Hg<br>5 - 分 _ " H20               | )                                             |                                                  | Operator                                         | MKO                                              | )                                                | ·          | 10                                               | ont c        | -8                                               |                                                  |
| Travers               | Clock                                            | Dry gas meter                                    | ^ P                                           | ΛH                                               | Stack                                            | Dry gas m                                        | eter temp.                                       | Hot box    | Probe                                            | Last         | Vacuum                                           |                                                  |
| Point                 | Time                                             | reading 63                                       | -in H2O                                       | in H2O                                           | Temp. F                                          |                                                  | Outlet                                           | Temp.      | Temp                                             | Impinger     | in. Hg                                           | K= 38                                            |
| MA                    | 1915                                             | 769.69                                           |                                               |                                                  |                                                  |                                                  |                                                  | NA         |                                                  |              |                                                  |                                                  |
| <b>y</b> //           | 0935                                             | 777.03                                           | .//                                           | .42                                              | 3//                                              | 81                                               | 79                                               |            | 248                                              | 62           | 3.0                                              |                                                  |
|                       | 0955                                             | 783.87                                           | 10                                            | .38                                              | 3/1                                              | 82                                               | 80                                               |            | 246                                              | 61           | 3.0                                              |                                                  |
|                       | 18/5                                             | 790,78                                           | 10                                            | .38                                              | 3//                                              | 86                                               | 84                                               |            | 244                                              | 60           | 3,0                                              |                                                  |
|                       | 1045                                             | 798 24                                           | 2/2                                           |                                                  | 3/0                                              | 85                                               | 87                                               |            | 242                                              | 6/           | 3,0                                              |                                                  |
| - 1                   | 1105                                             | 805.16                                           | 0/2                                           | .46                                              | 3//                                              | 88                                               | 134                                              |            | 201                                              | 60           | 3.7                                              |                                                  |
|                       | 1145                                             | \$1370                                           | 10                                            | 38                                               | 3/1                                              | 89                                               | 86                                               |            | 1.52                                             | 59           | 3,5                                              |                                                  |
|                       | 1 2 -                                            | 1 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2          |                                               | 7                                                | 77.                                              | -                                                |                                                  |            | 1                                                | //           |                                                  |                                                  |
| ·                     |                                                  |                                                  |                                               | <del>                                     </del> |                                                  | <u> </u>                                         |                                                  |            |                                                  |              |                                                  |                                                  |
|                       | †                                                |                                                  |                                               |                                                  |                                                  | <del> </del>                                     | <del> </del>                                     |            |                                                  |              |                                                  |                                                  |
|                       | <del> </del>                                     |                                                  |                                               |                                                  | -                                                | ļ <u></u>                                        | <del> </del>                                     |            | <del> </del>                                     |              | <del>                                     </del> | <del>                                     </del> |
|                       |                                                  |                                                  |                                               |                                                  |                                                  | <del>                                     </del> | <del>                                     </del> |            |                                                  | <del> </del> | <del> </del>                                     |                                                  |
|                       |                                                  |                                                  | i                                             |                                                  |                                                  |                                                  | <del> </del>                                     |            | <b> </b>                                         | <del> </del> |                                                  |                                                  |
| <u> </u>              | 1                                                |                                                  |                                               |                                                  | ļ                                                |                                                  |                                                  |            | ļ                                                |              |                                                  | <del> </del>                                     |
|                       | <u> </u>                                         |                                                  | <u>,                                     </u> |                                                  |                                                  |                                                  |                                                  | +-         | <u> </u>                                         | ļ            |                                                  |                                                  |
|                       | ļ                                                |                                                  |                                               |                                                  |                                                  |                                                  |                                                  | 1 2        |                                                  |              |                                                  |                                                  |
|                       |                                                  |                                                  | ,                                             |                                                  |                                                  |                                                  |                                                  |            |                                                  |              |                                                  |                                                  |
|                       | 1                                                |                                                  |                                               | <u> </u>                                         |                                                  |                                                  | \                                                | <u> </u>   |                                                  |              |                                                  |                                                  |
|                       |                                                  |                                                  |                                               |                                                  |                                                  |                                                  |                                                  |            |                                                  |              |                                                  |                                                  |
|                       |                                                  |                                                  |                                               |                                                  |                                                  |                                                  |                                                  |            |                                                  |              |                                                  |                                                  |
|                       |                                                  |                                                  | }                                             |                                                  |                                                  |                                                  |                                                  |            |                                                  |              |                                                  |                                                  |
|                       |                                                  |                                                  |                                               |                                                  |                                                  | † — — —                                          | † · · · · ·                                      |            |                                                  | 1            |                                                  |                                                  |
|                       | 1                                                | <del>                                     </del> |                                               | 1                                                | <u> </u>                                         |                                                  |                                                  | <u> </u>   |                                                  | <del> </del> | <del>                                     </del> |                                                  |
|                       | 1                                                |                                                  |                                               | <del>                                     </del> | <del>                                     </del> | <u> </u>                                         | <del>                                     </del> |            |                                                  | <del> </del> |                                                  | <del>                                     </del> |
|                       |                                                  |                                                  |                                               |                                                  | <u> </u>                                         | <del> </del>                                     |                                                  |            |                                                  | <del> </del> | <u> </u>                                         |                                                  |
|                       | <del> </del>                                     |                                                  |                                               |                                                  |                                                  | <u> </u>                                         |                                                  |            | <del> </del>                                     |              | ļ<br>1                                           | +                                                |
|                       |                                                  |                                                  |                                               | <u> </u>                                         | -                                                |                                                  | <del> </del>                                     | +          | <u> </u>                                         | +            |                                                  |                                                  |
|                       | <del>                                     </del> |                                                  |                                               | -                                                | <u> </u>                                         | 1                                                | 1                                                |            | <del>                                     </del> | 1            |                                                  | <del>  </del>                                    |
| L                     | 1                                                |                                                  |                                               |                                                  |                                                  |                                                  | <u> </u>                                         | <u> </u>   | <del> </del>                                     |              | 1                                                | <b>↓</b>                                         |
|                       | <del> </del>                                     |                                                  | 222 231 232 2                                 |                                                  |                                                  | ļ                                                |                                                  |            | ļ                                                |              |                                                  |                                                  |
| Avg.                  | <u> </u>                                         | 43, 9150                                         | 0.3287                                        | 0.913                                            | 310 8                                            | ₽3.                                              |                                                  |            |                                                  |              |                                                  |                                                  |
| Check'd               | ı                                                |                                                  |                                               | 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)       |                                                  |                                                  |                                                  |            |                                                  |              |                                                  |                                                  |
|                       |                                                  | 161402                                           | mm-)_                                         |                                                  |                                                  | % Moistu                                         | re .                                             |            |                                                  |              |                                                  |                                                  |
| AMBIE                 | NT TEMP.                                         | 76                                               |                                               |                                                  |                                                  |                                                  |                                                  |            |                                                  |              |                                                  |                                                  |
|                       | LENGTH                                           |                                                  |                                               |                                                  |                                                  | lsokinetic                                       | (%)                                              |            |                                                  |              |                                                  |                                                  |
| LINER                 | MATERIA                                          | 1 glass                                          |                                               |                                                  |                                                  |                                                  |                                                  |            |                                                  |              |                                                  |                                                  |
| REMAR                 | RKS                                              |                                                  |                                               |                                                  |                                                  |                                                  |                                                  |            | <del></del>                                      |              | _                                                |                                                  |

|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   | Page _                        | of _         |                                                  |
|-------------|--------------|---------------------------------------|--------------------------------------------------|----------|--------------|--------------------------------------------------|------------|-----------------------------------------|---------------------------------------------------|-------------------------------|--------------|--------------------------------------------------|
| Plant N     | Vame         | Plant                                 |                                                  |          | oiler No.    |                                                  |            |                                         |                                                   |                               | •            |                                                  |
| Sampling    | Location_    | met                                   |                                                  |          | Train _      | Size Fra                                         | ict. Parti | <u>culate</u>                           | Run I                                             | No. 3                         | <del>.</del> |                                                  |
| Date 6      | -27-73       | Time Start                            | 7740                                             |          | Time Fini    | ish <u>048</u>                                   | 55         | Test Dura                               | tion                                              | 35                            | min.         | 1                                                |
| Duct Dir    | nensions_2   | Time Start                            | <del>45</del>                                    |          | Diameter     | 1200                                             | ft         | Initial Lea                             | ik Rate _                                         | 0,01                          | Leim a       | 410                                              |
| PTCF_       | <u> 24</u>   | DGMCF <u>7. 8</u>                     | 784                                              | Nozzie D | 1a. <u> </u> | inch                                             | es         | rinai Lea                               | K Kate                                            | <u>va</u>                     | ctm          |                                                  |
| Static Pr   | ess <u> </u> | 7 " Hg<br>" H20                       | )                                                |          | Operator     | PVI                                              | J          | _                                       |                                                   |                               |              |                                                  |
| Travers     | Clock        | Dry gas meter                         | ^ P                                              | ^н       | Stack        | Dry gas m                                        | eter temp. | Hot box                                 | Probe                                             | Last                          | Vacuum       |                                                  |
| Point       | Time         | reading ft3                           | in H2O                                           | in H2O   | Temp. F      | Inlet                                            | Outlet     | Temp.                                   | Тетр                                              | Impinger                      | in. Hg       | 10:3                                             |
| <i>E</i> -8 | 0740         | 938.170                               | 0.08                                             | 0.31     | 310          | 74                                               | 73         |                                         | 240                                               | 63                            | 2.3          |                                                  |
|             | 0755         |                                       |                                                  | 0.34     |              | 78                                               | 75         |                                         | 238                                               | 62                            | 20           |                                                  |
|             | 0810         |                                       | 0.08                                             | 0.31     |              | 81                                               | 78         |                                         | 237                                               |                               | 20           |                                                  |
|             | 0825         | 952.28                                | 209                                              | 0.34     |              | 82                                               | 79         | _                                       | 238                                               |                               | 7.0          |                                                  |
|             | 0840         | · · · · · · · · · · · · · · · · · · · | 0.08                                             | D. 31    | 314          | 84                                               | 80         | _                                       | 247                                               |                               | 2,0          |                                                  |
|             | 0855         | 962.12                                | 0.08                                             | 0.31     | 3:4          | 86                                               | 82         | -                                       | 249                                               | 63                            | 2.0          |                                                  |
|             |              | 966.85                                | 0.08                                             | 1        | 314          | 87                                               | 84         | _                                       | 246                                               | 64                            | 20           |                                                  |
|             | 0925         | 971.45                                | 0.08                                             | 0.31     | 315          | 87                                               | 84         | _                                       | 241                                               | 65                            | z, 0         |                                                  |
|             | 0940         | 975.93                                | 0.08                                             | 0.31     | 314          | 89                                               | 87         | _                                       | Z43                                               | 62                            | 2.0          |                                                  |
| STOP        | 0955         | 980.847                               |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   | <u> </u>                      |              |                                                  |
|             |              |                                       |                                                  |          | 1            |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               | ļ——          |                                                  |
|             |              |                                       | -                                                | 1        |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       | <del>                                     </del> |          |              |                                                  |            | <del> </del> -                          | <del>                                     </del>  |                               |              | <del>                                     </del> |
|             | <u> </u>     |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              | †                                     |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       |                                                  |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
|             |              |                                       | J.2871                                           |          | <u> </u>     | <del>                                     </del> |            |                                         |                                                   |                               |              |                                                  |
| Avg.        |              | 42 677                                |                                                  | .32.00   | 313          |                                                  | 82         |                                         |                                                   |                               |              |                                                  |
| Check'd     | r            |                                       |                                                  | 60010-00 |              | <b>100 (10)</b>                                  |            |                                         |                                                   |                               |              |                                                  |
|             | <del> </del> | 4                                     | <u> </u>                                         |          |              |                                                  |            |                                         | • 3 3 4 2 3 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | go toota na sa sa sa sa sa sa |              |                                                  |
|             |              | H6140Z                                |                                                  |          |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1            |            |                                         |                                                   |                               |              |                                                  |
| FILTER      |              | (47)                                  | mm)                                              | -        |              | 0.0000000000000000000000000000000000000          | <u> </u>   |                                         |                                                   | •                             |              |                                                  |
|             |              | 17                                    |                                                  |          |              | 100 100/00000 1 1/1 /                            | DSCFM)_    |                                         | Photograph and a second second                    |                               |              |                                                  |
|             | LENGTH       | 10'                                   |                                                  |          |              | Isokinetie                                       | (%)        | ~ # # # # # # # # # # # # # # # # # # # |                                                   |                               | <u> </u>     |                                                  |
| LINEK !     | ma i ekiai   | <u> </u>                              | <del></del>                                      |          |              |                                                  |            |                                         |                                                   |                               |              |                                                  |
| REMAR       | ıks          |                                       |                                                  |          |              |                                                  | ·          |                                         | ·                                                 |                               | _            |                                                  |

| Plant       | _Plant Yates St | ation Boiler N   | o. I   | <del>-</del>      | Comments _  | <u> </u>    |           |  |  |  |  |
|-------------|-----------------|------------------|--------|-------------------|-------------|-------------|-----------|--|--|--|--|
| _ocation    | ESP IN          |                  |        |                   |             |             |           |  |  |  |  |
| Run No      | /               |                  | ·      |                   |             |             |           |  |  |  |  |
|             |                 |                  |        |                   | Operator    | JWM         |           |  |  |  |  |
| Sorbing Rea | gents:          | (CO2)            | (O2)   | (CO               | )           |             |           |  |  |  |  |
| Replicate   | Original        | (CO2)            | (CO2)  | (O2)              | (O2)        | (co)        | (CO)      |  |  |  |  |
| Number      | Volume          | Reading 2        | Volume | Reading 3         | Volume      | Reading 4   | Volume    |  |  |  |  |
|             | Reading         | (ml)             | (2-1)  | (ml)              | (3-2)       | (ml)        | (4-3)     |  |  |  |  |
|             |                 |                  | (ml)   | ,                 | (ml)        |             | (ml)      |  |  |  |  |
| /           | 0.0             | 0.8              | 18.0   | 17.2)             |             |             | ( /       |  |  |  |  |
|             |                 |                  |        |                   |             |             |           |  |  |  |  |
|             |                 | BAD B            | Sag /  | emp/E             |             |             |           |  |  |  |  |
|             |                 |                  |        | // -              |             |             |           |  |  |  |  |
|             |                 |                  |        |                   |             |             |           |  |  |  |  |
|             |                 |                  |        |                   |             |             |           |  |  |  |  |
|             |                 |                  |        |                   |             |             |           |  |  |  |  |
|             |                 |                  |        |                   |             |             |           |  |  |  |  |
| Averaged Re | wasults:        | % CO2            | SUME ( | Oz = 8<br>% 02_   | . 5         | Nz = 81<br> |           |  |  |  |  |
| Dry Molecu  | lar Weight, M\  | <i>W</i> (dry) = |        |                   | Ą           |             |           |  |  |  |  |
|             | -0.44           | +0.32            | ±0     | 28                |             |             |           |  |  |  |  |
|             |                 |                  |        |                   | <del></del> |             |           |  |  |  |  |
|             | =               | _+               | •      |                   | Y-(         | 097<br>L    | ESP I     |  |  |  |  |
|             |                 |                  | Run    | #Train            | 0120        | <u> </u>    | ESP Ou    |  |  |  |  |
|             |                 |                  |        | nponent <u>bo</u> |             |             |           |  |  |  |  |
|             |                 |                  |        | e <b>6-21-9</b>   | 7 Time      | 1930 Sm     | plr TWM   |  |  |  |  |
|             |                 |                  | Lab    | on site           | _Analysis _ | (02 Oz      |           |  |  |  |  |
|             |                 |                  | Tar    | e Wt. 12a         | Fir         | nal Wt. Na  | <br>C-209 |  |  |  |  |
|             |                 |                  |        |                   |             |             | C-209     |  |  |  |  |

|             | 1/2 - 10                                         | 3                                                |                                        |                                |                             | Thomas      | 1+00   |
|-------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------|--------------------------------|-----------------------------|-------------|--------|
| Date        | 6/22/9                                           | <u> </u>                                         | <del></del>                            |                                | Operator                    | Thm /       | Trap   |
| Sorbing Rea | gents:                                           | (CO2)                                            | (O2)_                                  | (CC                            | <b>)</b> )                  |             |        |
|             |                                                  |                                                  |                                        |                                |                             |             |        |
|             |                                                  | T                                                |                                        |                                |                             | 1 1         |        |
| Replicate   | Original                                         | (CO2)                                            | (CO2)                                  | (O2)                           | (O2)                        | (CO)        | (CO)   |
| Number      | Volume                                           | Reading 2                                        | Volume                                 | Reading 3                      | Volume                      | Reading 4   | Volume |
|             | Reading                                          | (ml)                                             | (2-1)                                  | (ml)                           | (3-2)                       | (ml)        | (4-3)  |
|             |                                                  | ļ                                                | (ml)                                   | <u> </u>                       | (ml)                        |             | (ml)   |
| <u> </u>    | 0.0                                              | 10.2                                             | 10.2                                   | 18.0                           | 7.8                         | ļ           |        |
| 2           | 0.0                                              | 10.0                                             | 10,0                                   | 18.6                           | 8.6                         |             |        |
| <b>3</b>    | 0,0                                              | 10.0                                             | 10.0                                   | 1816                           | 816                         |             |        |
| _           |                                                  |                                                  |                                        |                                |                             |             |        |
|             |                                                  |                                                  |                                        |                                |                             |             |        |
|             |                                                  |                                                  |                                        |                                |                             |             |        |
|             | -                                                |                                                  | <del> </del>                           | <del> </del>                   |                             |             | *****  |
|             | <del>                                     </del> | <del>                                     </del> |                                        | <del> </del>                   | <del> </del>                |             |        |
|             |                                                  |                                                  |                                        |                                |                             |             |        |
| Averaged Re | esuits:                                          | % CO2/                                           | 0.2                                    | % O2_                          | 8.6                         |             |        |
| Averaged Re | esuits:                                          | % CO2/                                           | 0,2                                    | % O2_<br>% N2_                 | 8.6<br>Bl.2                 |             |        |
| -           | esults:<br>lar Weight, M                         |                                                  | 0,2                                    | % O2<br>% N2                   | 8.6<br>Bl.2                 | <del></del> |        |
| -           | lar Weight, M                                    |                                                  |                                        |                                | 8.6<br>Bl.2                 |             |        |
| -           | lar Weight, M                                    | W (dry) =+0.32_                                  |                                        | ).28                           | 8.6<br>Bl.2                 |             |        |
| -           | e0.44                                            | W (dry) =+0.32_                                  | +(<br>O2) (%(                          | ).28                           | 8.6<br>81.2<br>Y-25         |             |        |
| Averaged Re | e0.44                                            | W (dry) =+0.32_ CO2) (%0                         | +(%)                                   | ).28                           | Y-25                        | 5 <b>1</b>  | ESP O  |
| -           | e0.44                                            | W (dry) =+0.32_ CO2) (%0                         | —————————————————————————————————————— | 0.28<br>CO + % N2)<br>Z Train_ | Y-25<br>Of Sat              | 5 <b>1</b>  | ESP O  |
| -           | e0.44                                            | W (dry) =+0.32_ CO2) (%0                         | +(<br>O2) (%)<br>+ _<br>Run i          | 0.28                           | Y-25<br>Of Sa               | 51<br>E     |        |
| -           | e0.44                                            | W (dry) =+0.32_ CO2) (%0                         | Pate                                   | 0.28<br>CO + % N2)<br>Z Train_ | Y-25<br>Of Sa<br>3<br>Time_ | 51<br>Smpl: | ESP O  |

| Plant                                 | _Plant Yates S     | Station Boiler N  | ∛o. 1           | <u></u>           | Comments _    |                   |                |
|---------------------------------------|--------------------|-------------------|-----------------|-------------------|---------------|-------------------|----------------|
| Location_E                            | SP Inlet           | L                 |                 |                   |               | <del></del>       |                |
| Run No 3                              |                    |                   |                 |                   |               |                   |                |
| Date 6/2                              | 23/45              |                   |                 |                   | Operator      | TMP               |                |
|                                       |                    | /                 | /               |                   |               |                   |                |
| Sorbing Rea                           | gents:             | (CO2)             | (O2)_           | (CC               | <b>)</b> )    |                   |                |
|                                       |                    |                   |                 |                   |               |                   |                |
| D - 1: - 4-                           | 0-1-1-1            | (000)             | (CO2)           | (00)              | (02)          | (60)              | (CO)           |
| Replicate<br>Number                   | Original<br>Volume | (CO2)             | (CO2)<br>Volume | (O2)              | (O2)          | (CO)<br>Reading 4 | (CO)<br>Volume |
| Number                                | 1                  | Reading 2<br>(ml) | (2-1)           | Reading 3         | Volume        | 1 - 1             | (4-3)          |
|                                       | Reading            | (1111)            | (ml)            | (ml)              | (3-2)<br>(ml) | (ml)              | (mi)           |
| /                                     | 0.0                | 10.8              |                 | 19.0              | 8.Z           |                   | (1111)         |
|                                       | 0.0                |                   | 10.8            | 19.4              | 8.5           |                   | •              |
| 2                                     |                    | 10.9              | 10.9            |                   |               |                   |                |
| 3                                     | 0.0                | 10.8              | 10.8            | 19.0              | 8.2           |                   |                |
|                                       | <del> </del>       |                   |                 |                   | <del> </del>  |                   |                |
|                                       |                    |                   |                 |                   |               |                   |                |
|                                       |                    |                   |                 |                   |               |                   |                |
| · · · · · · · · · · · · · · · · · · · | <u></u>            |                   |                 |                   |               |                   |                |
|                                       |                    |                   |                 |                   | <u> </u>      | <u> </u>          |                |
| Averaged Re                           | esults:            | % CO2             | 10.8            | % O2_<br>% N2_    | 8.3<br>80.9   |                   |                |
|                                       |                    |                   |                 |                   |               |                   |                |
| Dry Molecu                            | lar Weight, M      | W (dry) =         |                 |                   |               |                   |                |
|                                       | =0.44              | +0.32             | +               | 0.28              |               |                   |                |
|                                       | <del></del>        |                   |                 | CO + % N2)        |               |                   |                |
|                                       | _                  | 1                 | +               |                   | v             | 256               |                |
|                                       |                    | +                 | T               |                   | 1             | -256              | ESP 1          |
|                                       |                    |                   | R               | tun # <u>3</u> Tr | ain OSS       | <u>t</u>          | ESP Ou         |
|                                       |                    |                   |                 | Component D       |               |                   | ٥              |
|                                       |                    |                   | _               |                   | -935 Tin      | 2. 90             | mplr JWM       |
|                                       |                    |                   |                 | Date 6-23.        |               |                   |                |
|                                       |                    |                   |                 | Lab on Si         |               |                   | <del></del>    |
|                                       |                    |                   | 7               | Tare Wt           | F             | inal Wt           | C-211          |

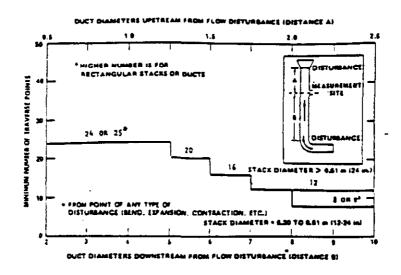
| Plant         | Plant Yates S | Station Boiler N                                 | lo. 1    | _                  | Comments _ |                |                 |
|---------------|---------------|--------------------------------------------------|----------|--------------------|------------|----------------|-----------------|
| Location      | Ly In         | Ruart                                            |          | <del></del>        |            |                |                 |
| Run No.       | Metals        | Rusin                                            | 2-1      |                    | _          |                |                 |
| Date $6/2$    | 25/93         |                                                  |          |                    | Operator   | TMP            |                 |
| Sorbing Read  | pents:        | (CO2)                                            | (02)     | (CO                | ))         |                |                 |
| 2010128 21006 |               | (000)                                            |          |                    | ,          |                |                 |
|               |               |                                                  |          |                    |            |                | ·               |
| Replicate     | Original      | (CO2)                                            | (CO2)    | (O2)               | (O2)       | (CO)           | (CO)            |
| Number        | Volume        | Reading 2                                        | Volume   | Reading 3          | Volume     | Reading 4      | Volum           |
|               | Reading       | (ml)                                             | (2-1)    | (ml)               | (3-2)      | (ml)           | (4-3)           |
| <del></del>   | <u> </u>      | <del>                                     </del> | (ml)     | <u> </u>           | (ml)       | <u> </u>       | (ml)            |
| /             | 0.0           | 10,2                                             | 10.2     | 19.0               | 8.8        | <u> </u>       |                 |
| 2             | 0.0           | 10.0                                             | 10,0     | 19.0               | 9.0        | <u> </u>       |                 |
|               | <u> </u>      |                                                  |          |                    |            |                |                 |
|               |               |                                                  |          |                    |            |                |                 |
|               |               |                                                  |          |                    |            |                |                 |
|               |               |                                                  |          |                    |            |                |                 |
| <del></del>   | <u> </u>      | T                                                |          |                    |            |                |                 |
|               |               |                                                  |          |                    |            |                |                 |
| Averaged Re   | esults:       | % CO2                                            | 10,1     | % O2               | 9.9        |                |                 |
|               |               | % CO                                             |          | % N2               |            |                |                 |
|               |               | <del></del> ···                                  |          |                    |            |                |                 |
| Dry Molecul   | lar Weight, M | W (dry) =                                        |          |                    |            |                |                 |
|               |               |                                                  |          |                    |            |                |                 |
|               | =0.44         | +0.32_                                           |          | 0.28<br>CO + % N2) | <u> </u>   |                |                 |
|               | (%)           | CO2) (%6                                         | (J2) 19h | ::7* 76 N/.I       |            |                |                 |
|               | =             | _ +                                              | _ +      |                    | Y-33       | 7              |                 |
|               |               |                                                  | Run #    | Train              | ) (SCI)    | t              | ESP C           |
|               |               |                                                  |          | onent has          | - DL       | ^^=            |                 |
|               |               |                                                  | Date &   | ×24.               | _          | all Two        |                 |
|               |               |                                                  | /-       |                    |            | 30 Smplr       | <del>J</del> WM |
| _             |               |                                                  |          | on site            |            | - <del>-</del> |                 |
| 2             |               |                                                  | i are V  | /T(g)              | Fina       | ıl Wt(g)       |                 |

| CO2   CO2   CO2   CO2   CO2   CO2   CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Operator                                         | (CO) Reading 4 (ml) |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|---------------|
| Run No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (O2)<br>Volume<br>(3-2)                          | (CO)<br>Reading 4   | (CO)          |
| CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2   CO2 | (O2)<br>Volume<br>(3-2)                          | (CO)<br>Reading 4   | (CO)          |
| Number         Volume         Reading 2 (ml)         Volume (2-1) (ml)         Reading 3 (ml)           1         0.0         11.8         18.8         7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (O2)<br>Volume<br>(3-2)                          | Reading 4           |               |
| Number         Volume         Reading 2         Volume         Reading 3           Reading         (ml)         (2-1)         (ml)           I         0.0         11.8         18.8         7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Volume<br>(3-2)                                  | Reading 4           |               |
| Number         Volume         Reading 2 (ml)         Volume (2-1) (ml)         Reading 3 (ml)           1         0.0         11.8         18.8         7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume<br>(3-2)                                  | Reading 4           |               |
| Number         Volume         Reading 2 (ml)         Volume (2-1) (ml)         Reading 3 (ml)           1         0.0         11.8         18.8         7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volume<br>(3-2)                                  | Reading 4           |               |
| Reading (ml) (2-1) (ml) (ml) 1 0.0 11.8 18.8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3-2)                                            | 1 - i               | AOIRTIDE      |
| 1 0.0 11.8 18.8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | (1111)              | (4-3)         |
| 1 0.0 11.8 18.8 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (m)                                              | 1                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>  -</del> -                                 | <del> </del>        | <u>(ml)</u>   |
| 2 0.0 //.8 / 6.0 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>-</del>                                     | +                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | <del>  </del>       | <del></del> - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>                                     </del> |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                                         |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                     |               |
| Averaged Results: % CO2 / 1 · 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                     |               |
| Dry Molecular Weight, MW (dry) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                     |               |
| =0.44 +0.32 +0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·            |                     |               |
| (%CO2) (%O2) (%CO + % N2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                     |               |
| =++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Y</b>                                         | 7-454               |               |
| Run #2-3Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in ORSA                                          | H                   | E.            |
| Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                     |               |
| Date 6/27/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | 1/40- 5-            | mair T        |
| Lab On Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                     |               |
| Tare WI(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                     | 1/2           |

#### TRAVERSE FIELD DATA SHEET

Plant Name Plant Yates Station Boiler Nol

Operator RVW/DJV/JWM


Stack Diameter 8'L" x 45'

Sample Port Diameter 4"

Sample Port Depth /4"

Distance Upstream

Distance downstream



| raverse Point Number |                                                  |          |          | Nurr        | iber Tra    | IVO/B0 | Powney       | On A D       | <b>1277410</b> 1 | ,    |        |            |
|----------------------|--------------------------------------------------|----------|----------|-------------|-------------|--------|--------------|--------------|------------------|------|--------|------------|
|                      | 2                                                | 4        | 6        |             | 10          | 12     | 14           | 16           | 18               | 20   | 22     | 24         |
|                      |                                                  |          |          |             |             |        |              |              |                  |      |        |            |
| •                    | 14.5                                             | 6.7      | 4.4      | 3.2         | 2.6         | 2,1    | 1.4          | 1.6          | 1.4              | 1.3  | 1.1    | 1.1        |
| 2                    | 85.4                                             | 25.0     | 14.0     | 10.5        | 1 4.2       | 6.7    | 5.7          | 4.9          | 4.4              | 3.9  | 3.5    | 3.7        |
| •                    | i                                                | 75.0     | 29.6     | 19.4        | 14,6        | 11.8   | 9.8          | 8.5          | 7.5              | 6.7  | 6.0    | 5.4        |
| 4                    |                                                  | 93.3     | 70.4     | 32.3        | 22.6        | 17.7   | 14.6         | 12.5         | 10.9             | 8.7  | 1.7    | 7.5        |
| S                    | j                                                |          | 85.4     | 67.7        | 34.2        | 25.0   | 20.1         | 16.9         | 14.8             | 12.9 | 11.6   | 10.4       |
| 6                    | )                                                |          | 95.6     | 80.6        | 65.8        | 35.6   | 26.5         | 72.0         | 18.5             | 16.5 | 14,6   | 13.2       |
| 7                    | 1                                                | 1        | ,        | 89.5        | 77.4        | 64.4   | 36.6         | 25.3         | 23.6             | 20.4 | 18.0   | 16.        |
| 8                    | 1                                                |          | 1        | 96.8        | 85.4        | 75.0   | 63.4         | 37.5         | 29.6             | 25.0 | 21.8   | 19.4       |
| 0                    | 1                                                | 1        | ;        |             | 91.8        | 82.3   | 73.1         | 62.5         | 30.2             | 30.6 | 26.2   | 23.1       |
| 10                   |                                                  |          | 1        | -           | 97.4        | 84.2   | 78.9         | 71.7         | 61.6             | 34.1 | 31.5   | 27.        |
| 11                   |                                                  | !        | )        | Ī           | Ī           | 93.3   | 1 85.4       | 78.0         | 70.4             | 61.2 | 39.3   | 32         |
| 12                   | Ī                                                |          | ,        | 1           |             | 97.9   | 90.1         | 83.1         | 78.4             | 69.4 | 80.7   | 39.        |
| 13                   |                                                  |          | )        | 1           | 1           |        | 94.3         | 47.5         | 81.2             | 75.0 | 64.5   | <b>60.</b> |
| 14                   | :                                                |          | Ī        | !           | 1           |        | 94.2         | 81,5         | 85.4             | 79.6 | 73.8   | 67.        |
| 15                   | 1                                                | :        | ī        | ,           | <del></del> |        |              | 95.1         | 89.1             | 83.5 | 78.2   | 72         |
| 15                   |                                                  |          |          | 1           | Ī           |        |              | 94.4         | 82.5             | 87.1 | 82.0   | 77.        |
| :7                   |                                                  |          |          | 1           | :           | ;      |              | 1            | 95.6             | 90.3 | 15.4   | 80.        |
| 15                   | 1                                                |          | :        | :           | <del></del> | i      |              | 1            | 98.6             | 93.3 | 84.4   | 1 83.      |
| 19                   | ī                                                |          | <u> </u> |             |             |        | 1            | i i          |                  |      | 1 01.3 | •          |
| 20                   | 1                                                | _        | 1        |             |             |        | 1            | :<br>        |                  | 84.7 | 94.6   | 1 85.      |
| 21                   | <u> </u>                                         | <u>:</u> | 1        | i .         |             |        | -            | <del>!</del> | ·<br>!           |      | 96.5   |            |
| 722                  |                                                  |          |          | <del></del> |             | i      | <del></del>  |              | <del>;</del>     |      | 94.5   | _          |
| ත                    | <u> </u>                                         |          |          | -           | :           | 1      | 1            |              |                  |      | 1      | 94.        |
| 24                   | <del>-                                    </del> | ,        |          | <u> </u>    | -           | -      | <del>-</del> | ·            |                  |      | :      | 1 86.      |

|      | Traverse Points          |  |  |  |  |  |  |  |  |  |  |
|------|--------------------------|--|--|--|--|--|--|--|--|--|--|
| No.  | Distance From Wall       |  |  |  |  |  |  |  |  |  |  |
|      | PORT DEPTH INCUME        |  |  |  |  |  |  |  |  |  |  |
| 1    | 22,5<br>  39.5<br>  56.5 |  |  |  |  |  |  |  |  |  |  |
| 2 7  | 139.5                    |  |  |  |  |  |  |  |  |  |  |
| 3    | 56.5                     |  |  |  |  |  |  |  |  |  |  |
| 4    | 1 + 2.5                  |  |  |  |  |  |  |  |  |  |  |
| 5    | 90.5                     |  |  |  |  |  |  |  |  |  |  |
| 5    | 107.5                    |  |  |  |  |  |  |  |  |  |  |
| 7    |                          |  |  |  |  |  |  |  |  |  |  |
| 8    | 1                        |  |  |  |  |  |  |  |  |  |  |
| 9    |                          |  |  |  |  |  |  |  |  |  |  |
| . 10 |                          |  |  |  |  |  |  |  |  |  |  |
| 11   |                          |  |  |  |  |  |  |  |  |  |  |
| 12   |                          |  |  |  |  |  |  |  |  |  |  |
| 13   |                          |  |  |  |  |  |  |  |  |  |  |
| 14   |                          |  |  |  |  |  |  |  |  |  |  |
| 15   |                          |  |  |  |  |  |  |  |  |  |  |
| 16   |                          |  |  |  |  |  |  |  |  |  |  |
| 17   |                          |  |  |  |  |  |  |  |  |  |  |
| 18   | <u> </u>                 |  |  |  |  |  |  |  |  |  |  |
| 19   |                          |  |  |  |  |  |  |  |  |  |  |
| 20   | 1                        |  |  |  |  |  |  |  |  |  |  |
| 21   |                          |  |  |  |  |  |  |  |  |  |  |
| 22   | <u> </u>                 |  |  |  |  |  |  |  |  |  |  |
| 23   |                          |  |  |  |  |  |  |  |  |  |  |
| 24   | <u> </u>                 |  |  |  |  |  |  |  |  |  |  |

|            |             |               | VELO          | CITY PROI                                          | FILE FIELD    | DATA        |                |                                                  |                                                  |
|------------|-------------|---------------|---------------|----------------------------------------------------|---------------|-------------|----------------|--------------------------------------------------|--------------------------------------------------|
| Plant Nat  | no In       | let Pr        | elimi         | nary v                                             | relain        | , trav      | erse (         | 75 M                                             | W Packock is                                     |
| Sampling   | Location    | Inle          | 1             |                                                    | Sample        | ldent.      |                |                                                  |                                                  |
| _ /        | 116/63      |               |               |                                                    |               |             |                |                                                  |                                                  |
| Duct Dim   | ensions     | 8, <i>5</i>   | ,,,,,,        | 4.                                                 | <u> </u>      | ft or Dia   | meter          |                                                  | P(HHMM)ft.                                       |
| PTOF       | 0.84        |               | <del></del>   | `                                                  | % H O 3       | E 7.0       |                |                                                  |                                                  |
| Bar Press  |             | 19.58         |               | —<br>" Ha                                          | % CO          |             | -<br>%ot       | N_                                               |                                                  |
| Static Pre | SS,         | -6.5          |               | " H_O                                              | % CO.         | 9.0         | -<br>- %-⊦     | '2 ———<br>I.                                     |                                                  |
| Operator   | nitials     | A 0           | 5V. Jω:       | <u>м</u>                                           | % O           | 7.4         | %              | 2 ————<br>H                                      |                                                  |
|            |             |               |               | <del></del>                                        | 2             |             |                | · · ·                                            | <del></del>                                      |
| 1 all fe   | e vay i.    |               |               | <del>,                                      </del> |               |             |                |                                                  |                                                  |
|            | <del></del> | tack Temp. *F |               | <del> </del>                                       | city Pressure |             |                | Other (                                          | )                                                |
| Pt.        | #1          | #2            | Ave           | #1                                                 | 112           | Ave.        | #1             | #2                                               | Ave.                                             |
|            |             | 284           |               |                                                    | 0.06          |             |                | <del> </del>                                     |                                                  |
| 2          | 205         | 283           |               | 7                                                  | 0.06          |             |                | <del>                                     </del> |                                                  |
| 3          | 285         | 287           |               |                                                    | a035          | <u> </u>    | <del>-</del> - | <del> </del>                                     | <del>   </del>                                   |
| 4          | 284         | 285           |               |                                                    | 0.02          |             |                | <del> </del>                                     |                                                  |
| - 5        | 283         | 283           |               | 0025                                               |               | <del></del> |                | <del> </del>                                     |                                                  |
|            | 269         | 269           | _             | 0.00                                               |               |             |                | <del></del>                                      | <del> </del>                                     |
| E2-1       |             | 282           |               | 0.02                                               |               |             |                | <del> </del>                                     |                                                  |
| 2          | 282         | 283           |               | T                                                  | 0,015         |             |                | <del></del>                                      | <del></del>                                      |
| 3          | 284         | 284           |               | Y'                                                 | 0,02          |             |                |                                                  | <del>                                     </del> |
| 4          | 282         | 282           |               |                                                    | 002           |             |                |                                                  |                                                  |
| 5          | 274         | 275           |               | 0.04                                               |               |             |                | <del></del>                                      |                                                  |
|            | 7           | 263           |               | 0,04                                               |               |             |                |                                                  |                                                  |
| F3-1       |             |               | <del>-</del>  | 0.02                                               |               |             |                |                                                  |                                                  |
|            | 295         |               |               | 0.02,                                              |               |             |                |                                                  |                                                  |
| 3          |             |               |               | 0.04                                               |               |             |                |                                                  |                                                  |
| <u> </u>   | 256         |               |               | 0.08                                               | <b>}</b>      | <u> </u>    |                | <del></del>                                      |                                                  |
| 5          | 294         | <u> </u>      |               | 0.09                                               |               |             |                |                                                  | 1                                                |
| 6          | 270         | <u> </u>      |               | 0.13                                               |               |             | <u> </u>       |                                                  |                                                  |
| Weather    | 4           | ve VAP        | <u> 0.25</u>  | າ                                                  |               |             | <del></del>    |                                                  |                                                  |
|            |             | Stock Tomp    | - 283         | °F                                                 |               |             |                |                                                  |                                                  |
| Remarks    | -           | Vel           | : <i>17.1</i> | 2 fps                                              |               |             |                |                                                  |                                                  |
|            |             | ACEM          | : 292         | 904                                                |               |             |                |                                                  |                                                  |

mas

DSCFM

| Plant Nam   | 10 <u> </u> | -                                       |             |                    | · · · · · · · · · · · · · · · · · · ·                 |                         |          |                |             |  |  |  |
|-------------|-------------|-----------------------------------------|-------------|--------------------|-------------------------------------------------------|-------------------------|----------|----------------|-------------|--|--|--|
| Sampling    | Location .  |                                         |             |                    | Sample                                                | Ident                   |          |                | <del></del> |  |  |  |
| Date        |             | (MMDDYY)                                | Time Sta    | art                | (HH                                                   | I <mark>MM</mark> ) Tim | e Finish | <del></del> -  | (HHMM)      |  |  |  |
| Duct Dime   | ensions .   |                                         | د           | ·                  |                                                       | _ft. or Di              | ameter _ |                | ft.         |  |  |  |
| PTCF        |             |                                         |             | _                  | % H,O _                                               | <u>.</u> .              | -        |                |             |  |  |  |
| Bar Press.  |             |                                         |             | " Hg               | % CO _                                                |                         | _ % N    |                |             |  |  |  |
| Static Pres | is          | <del></del>                             |             | " H <sub>2</sub> O | " H <sub>2</sub> O % CO <sub>2</sub> % H <sub>2</sub> |                         |          |                |             |  |  |  |
| Operator Is | nitials     |                                         |             | _                  | % O₂ ¯ _                                              |                         | %0       | H <sub>4</sub> | <del></del> |  |  |  |
|             |             |                                         |             |                    |                                                       |                         |          |                |             |  |  |  |
|             |             | Stack Temp. *1                          | <del></del> | Veld               | city Pressur                                          | • " H <sub>2</sub> O    | T        | Other (        | )           |  |  |  |
| Pt.         | #1          | #2                                      | Ave.        | #1                 | #2                                                    | Ave.                    | #1       | #2             | Ave.        |  |  |  |
| F-1-1       | 290         |                                         | 6706°       | 0.02               |                                                       |                         |          |                |             |  |  |  |
| 2           | 293         | 000                                     | A. 05       | 0.05               |                                                       |                         |          |                |             |  |  |  |
| 3           | 298         |                                         |             | 0.06               |                                                       |                         |          |                |             |  |  |  |
| 4           | 299         |                                         |             | 0.14               |                                                       |                         |          |                |             |  |  |  |
| 5           | 259         |                                         |             | 0.16               |                                                       |                         |          |                |             |  |  |  |
| 6           | 290         |                                         |             | 0.19               |                                                       |                         |          |                |             |  |  |  |
| F5-1        | 250         |                                         |             | 0,03               |                                                       |                         |          |                |             |  |  |  |
| ٢           | 292         |                                         |             | 0.03               |                                                       |                         |          |                |             |  |  |  |
| 3           | 295         |                                         |             | 000                |                                                       |                         |          |                |             |  |  |  |
| 4           | 299         |                                         |             | 0.12               |                                                       |                         |          |                |             |  |  |  |
| 5           | 300         |                                         |             | 0.15               |                                                       |                         |          |                |             |  |  |  |
| 6           | 296         |                                         |             | 0.20               |                                                       |                         |          |                |             |  |  |  |
| E6-1        | 295         |                                         |             | 0.03               |                                                       |                         |          |                |             |  |  |  |
| 2           | 296         |                                         |             | 0,04               |                                                       |                         |          |                |             |  |  |  |
| 3,          | 302         |                                         |             | 0.07               |                                                       |                         |          |                |             |  |  |  |
| 7           | 305         |                                         |             | 0,14               | J.,                                                   | <u></u>                 | <u> </u> |                |             |  |  |  |
| 3           | 367         |                                         |             | 0.17               |                                                       |                         | <u> </u> |                |             |  |  |  |
| 6           | 308         |                                         |             | 0.18               |                                                       |                         |          |                |             |  |  |  |
| Weather     |             |                                         |             |                    |                                                       | _                       |          |                |             |  |  |  |
| Remarks     |             | *************************************** |             |                    |                                                       |                         |          |                |             |  |  |  |

| Sampling             | Location _   |             |                                                  |                      | Sample                | Ident              | <u> </u>                                         | <u>-</u>      |                                                  |
|----------------------|--------------|-------------|--------------------------------------------------|----------------------|-----------------------|--------------------|--------------------------------------------------|---------------|--------------------------------------------------|
| Date(MMDDYY) Time St |              |             |                                                  |                      | urt(HHMM) Time Finish |                    |                                                  |               |                                                  |
|                      |              |             |                                                  | ¥                    |                       | ft or Di           | ameter                                           |               | +                                                |
| PTCF                 |              |             |                                                  | (                    | % H <sub>2</sub> O _  |                    |                                                  | <del></del> - |                                                  |
| Bar Press.           | ·            |             | <del></del>                                      | " Hg                 | «cό                   |                    | _ % N                                            | , ——          |                                                  |
| Static Pres          | 15. <u> </u> | ito 6       | ,4                                               | " H <sub>2</sub> O " | % CO,                 |                    | % н                                              | · ———         | <del></del>                                      |
| Operator I           | nitials      |             |                                                  | `                    | % O, ¯ _              |                    | % Ci                                             |               | <del></del>                                      |
|                      |              |             |                                                  | ,                    | -                     |                    |                                                  | •             |                                                  |
|                      | St           | ack Temp. * | F                                                | Velo                 | ity Pressuri          | * H <sub>2</sub> O | <u></u>                                          | Other (       | 1                                                |
| Pt.                  | #1           | #2          | Ave.                                             | #1                   | #2                    | Ave.               | #1                                               | #2            | Ave.                                             |
| E7-1                 | 309          |             |                                                  | 0.03                 |                       |                    |                                                  |               |                                                  |
| 2                    | 309          |             |                                                  | 0.04                 |                       |                    |                                                  |               |                                                  |
| 3                    | 311          |             |                                                  | 0.09                 |                       |                    |                                                  |               |                                                  |
| 4                    | 311          |             |                                                  | 0.12                 |                       |                    |                                                  |               |                                                  |
| 5                    | 3,4,         | <del></del> |                                                  | 0.19                 |                       |                    |                                                  |               |                                                  |
|                      | 314          |             |                                                  | 0.20                 |                       |                    |                                                  |               |                                                  |
| E4-1                 | 304          |             |                                                  | 0.07                 |                       |                    |                                                  |               |                                                  |
|                      | 305          |             | ļ                                                | 0.1                  |                       |                    |                                                  |               |                                                  |
|                      | 307          |             | <u> </u>                                         | 0.08                 |                       | <b></b> _          |                                                  | ļ <u>.</u>    |                                                  |
| 9                    | 308,         |             | ļ                                                | 0.11                 |                       | ļ                  | <u> </u>                                         | <u> </u>      | <u> </u>                                         |
| 5                    | 314          |             | <del>                                     </del> | 0.14                 |                       |                    |                                                  |               |                                                  |
|                      | 315          |             | <del> </del>                                     | 0.22                 |                       |                    | <del> </del>                                     |               | <del> </del>                                     |
|                      | 274          |             |                                                  | 0.06                 |                       |                    |                                                  |               | <del></del>                                      |
|                      | 275          |             | <del>                                     </del> | 0.07                 | <del></del>           | <del> </del>       | <del>                                     </del> |               | <del> </del> -                                   |
|                      | 282          |             | <del>                                     </del> | 207                  |                       |                    |                                                  |               | <del>                                     </del> |
|                      | 277          |             |                                                  | 0.06                 |                       |                    | <del>                                     </del> |               | <del></del>                                      |
| <del></del>          | 262          |             |                                                  | 0.13                 | <del></del>           |                    | <del> </del>                                     |               | <del>                                     </del> |
| <i>U</i> 2           |              |             | <u> </u>                                         | (Je , )              |                       |                    | 1                                                | L             |                                                  |

acress.

W1-1

|                  | Sampling Location |              |          |                         | - Sample             | i ident            |          |              |             |
|------------------|-------------------|--------------|----------|-------------------------|----------------------|--------------------|----------|--------------|-------------|
| Duct Dimensionsx |                   |              | tart     | irt(HHMM) Time Finish(H |                      |                    |          |              |             |
|                  |                   |              | x        |                         | _ft. or Dia          | ameter             |          | f            |             |
| TCF              |                   |              |          |                         | % H <sub>2</sub> O _ |                    | -        |              |             |
| ar Press.        |                   |              |          | " Hg                    | % CO _               |                    | _ % N.   | , ——         |             |
| tatic Pres       | ss                |              |          | " H <sub>2</sub> O      | % CO,                |                    | % н      | ·<br>·       |             |
| perator I        | nitials           |              | <u></u>  | _                       | % O <sub>2</sub> _   |                    | % CI     | <b>'</b> 4 — | <del></del> |
| <del></del>      | Sta               | ack Temp. *  | F        | Velo                    | city Pressure        | * H <sub>2</sub> O |          | Other (      | )           |
| Pt.              | #1                | #2           | Ave.     | m,                      | #2                   | Ave.               | #1       | #2           | Ave.        |
| WZ-/             | 273               | ····         |          | 0.04                    |                      |                    |          |              |             |
| 2_               | 277               |              |          | 0.03                    |                      |                    |          |              |             |
| 3.               | 277               |              |          | 0.05                    |                      |                    |          |              |             |
| 4                | 279               |              |          | 0,07                    |                      |                    | ·        |              |             |
| 5                | 286               |              |          | 0.16                    |                      |                    |          |              |             |
| 6                | 276               |              |          | 0.15                    |                      |                    |          |              |             |
| N3-1             | 278               |              |          | 0,02                    |                      |                    |          |              |             |
| 2                | 202               |              |          | 0.04                    |                      |                    |          |              |             |
| 3,               | 284               |              |          | 0,06                    |                      |                    |          |              |             |
| 4                | 284               |              |          | 0.13                    |                      |                    |          | Ĺ            |             |
| 5                | 28/               |              |          | 0,17                    |                      | "                  |          |              |             |
| 6                | 279               |              |          | 0,19                    |                      |                    |          |              |             |
| 14-1             | 284               |              |          | 0.03                    |                      |                    |          |              |             |
|                  | 270               |              | <u> </u> | 0.05                    |                      | <u> </u>           |          |              |             |
| 3,               | 282,              |              |          | 0.08                    |                      |                    |          |              |             |
|                  | 284               |              |          | 0.13                    | <u> </u>             | <u></u>            | <u> </u> |              |             |
| 5                | 280               |              |          | 0.0                     |                      |                    |          |              |             |
| 6                | 272               |              |          | 0.13                    |                      |                    |          |              |             |
| eather/          |                   | <del> </del> |          |                         |                      |                    |          | ··-          |             |

|            | 10         |             |          |       |                      | _       |             |                   |      |
|------------|------------|-------------|----------|-------|----------------------|---------|-------------|-------------------|------|
| Sampling   | Location _ |             |          |       | Sample               | Ident   |             |                   |      |
| Date       | (N         | MDDYY)      | Time S   | tart  | (HHMM)               |         |             |                   |      |
|            |            |             |          |       |                      |         |             |                   | ft.  |
| PTCF       |            |             |          | _     | % H <sub>2</sub> O _ |         | _           |                   |      |
| Bar Press. |            |             |          | " Hg  | % co _               |         | _ % N       |                   | _    |
| PTCF       |            |             |          | ″ н,о | % CO,                |         | % н         | -<br>وا           |      |
| Operator I | nitials    |             | <u>.</u> |       | % O <sub>2</sub> _   |         | %0          | H <sub>4</sub> —— |      |
|            | St         | ack Temp. * | F        | Vei   | ocity Pressure       | . H³O   |             | Other (           | )    |
| Pt.        | #1         | #2          | Ave.     | #1    | 12                   | Ave.    | #1          | #2                | Ave. |
| 45-/       | 275        |             |          | 0.04  |                      |         |             |                   |      |
| 2          | 275        |             |          | 0.06  | <u> </u>             |         |             |                   |      |
| 3          | 274        |             | <u></u>  | 0,10  |                      |         |             |                   |      |
| 4          | 277        |             | ļ.,      | 0.11  |                      |         | <u> </u>    | <u> </u>          |      |
| 5          | 273        |             |          | 0.13  | <u> </u>             | <u></u> |             |                   |      |
| 6.         |            |             |          | 0.15  |                      |         |             |                   |      |
| W6-1       | 246        |             |          | 0.03  |                      |         |             |                   |      |
|            | 206        |             |          | 0,03  |                      |         |             |                   |      |
|            | 272        |             |          | 0.05  |                      | <u></u> |             |                   |      |
| 4          | 271        |             |          | 0.00  |                      |         |             |                   |      |
| 5          | 265        |             |          | 0,0%  |                      |         |             |                   |      |
| 6          | 261        |             |          | 0,16  |                      |         |             |                   |      |
| W7-1       | 260        |             |          | 0,02  |                      |         |             |                   |      |
| こ          | 263        |             |          | 0.02  |                      |         |             |                   |      |
| 3,         | 263        |             |          | 0.02  | 1                    |         |             |                   |      |
| 4          | 258        |             | <u> </u> | 0.02  | <u> </u>             |         |             | <u> </u>          |      |
| 5          | 260        |             |          | 0.34  | <u> </u>             |         |             |                   |      |
| 9          | 243        | <u></u>     |          | 0.04  |                      |         |             |                   |      |
| Weather    | <u></u>    |             |          |       |                      |         | <del></del> |                   | •    |
| Remarks    |            |             |          |       |                      |         |             |                   |      |

| Plant Name  |         |              |         |                      | Sample Ident.        |                       |           |                |             |  |
|-------------|---------|--------------|---------|----------------------|----------------------|-----------------------|-----------|----------------|-------------|--|
| Date        | (N      | (YYDDMN      | Time St | art                  | (Hi                  | HMM) Tin              | ne Finish |                | (HHMM)      |  |
|             |         |              |         |                      |                      |                       |           |                | ft.         |  |
| PTCF        | 0.8     | વ            |         | _                    | % H <sub>2</sub> O . | æ 7.0                 |           |                |             |  |
| Bar Press.  | 7,      | 7.58         |         | _ " Hg               | % CO _               |                       | _ % N     | , ——           |             |  |
| Static Pres | is      | G.4          |         | _ " H <sub>2</sub> O | % CO2                |                       | % н,      | ·<br>·         | <del></del> |  |
| Operator I  | nitials | JWW          |         | <del>-</del>         | % O <sub>2</sub> .   | 7.4                   | % Ci      | H <sub>4</sub> |             |  |
|             |         |              |         |                      |                      |                       |           |                |             |  |
|             | St      | ack Temp. *F | f       | Ve                   | locity Pressu        | re " H <sub>2</sub> O |           | Other (        | )           |  |
| Pt.         | #1      | #2           | Ave.    | #1 /                 | #2                   | Ave.                  | #1        | #2             | Ave.        |  |
| W8-1        | 254     |              |         | 0.04,                |                      |                       |           | 1              | T           |  |

282.9

0.7556

# APPENDIX D: QUALITY ASSURANCE/QUALITY CONTROL

Appendix D presents a summary of analytical results for QC samples, estimates of measurement precision and accuracy based on analysis of QC samples, and potential limitations in the use of the data.

Overall, QA/QC data associated with this program indicate that measurement data are acceptable and defensible. The QA/QC data indicate that the quality control mechanisms were effective in ensuring measurement data reliability within the expected limits of sampling and analytical error.

Quality control data provide information for identifying and defining qualitative limitations associated with measurement data. The following key types of QC procedures provide the primary basis for quantitatively evaluating data quality:

- Field and laboratory blank samples;
- Duplicate field samples;
- Matrix and surrogate spiked samples;
- Laboratory control samples; and
- Performance evaluation (audit) samples.

Additional details of the project QA/QC program are documented in the DOE Quality Assurance Project Plan.

#### Sample Collection

Several factors are evaluated to determine acceptable sample collection. Key components of the sampling equipment including the Pitot tubes, thermocouples, orifice meters, dry gas meters, and sampling nozzles were calibrated in the Radian Source Sampling Laboratory before use in the field. These calibrations were also checked after the equipment was returned to the laboratory after the field activities. The presampling calibrations were reviewed by the Radian QA Coordinator as part of the on-site Technical Systems audit.

These calibrations as well as the post sampling calibrations are on file at Radian Corporation. Standard EPA methods or other acceptable sampling methods were used to collect the organic, metal, and anion samples. The sampling runs were well documented, and all gas samples were collected at rates of between 90 and 110% of the isokinetic rates. Sufficient data were collected to ensure acceptable data completeness and comparability of the measurements.

Gas samples were collected from the ESP inlet, ESP outlet, and stack as integrated samples for most analyses over a specified time period. Solid samples of coal, limestone, bottom ash, ESP fly ash, and FGD slurry were collected at hourly intervals over each of the test runs. These individual grabs were combined to provide a single composite sample of each stream for each of the three test runs. Liquid streams were also collected as hourly grabs which were combined to provide a single composite for analysis for each test run. Liquid streams include the ash pond, gypsum recycle water, ash sluice filtrates, FGD slurry filtrate, limestone slurry filtrate, and the inlet and outlet to the condenser. All sampling was conducted while the plant was operating at 85 to 100% of full load and should be representative of typical operation for Plant Yates.

#### **Analytical Quality Control Results**

Generally, the type of quality control information obtained pertains to measurement precision, accuracy (which includes precision and bias), and blank effects that are determined using various types of replicate, spiked and blank samples. The specific characteristics evaluated depend on the type of quality control checks performed. For example, blanks may be prepared at different stages in the sampling and analysis process to isolate the source of the blank effect. Similarly, replicate samples may be generated at different stages to isolate and measure sources of variability. The QA/QC measures used as part of this program data evaluation protocol and the characteristic information obtained are summarized in Table D-1. The absence of any of these types of quality control checks from the data for a particular analytical technique does not necessarily reflect poorly on the quality of the data but does limit the ability to estimate the magnitude of the measurement error and hence, prevents placing an estimate of confidence in the results.

As shown in Table D-1, different QC checks provide different types of information, particularly pertaining to the sources of inaccuracy, imprecision, and blank effects. As part of this program, measurement precision and accuracy are typically being estimated from QC indicators that cover as much of the total sampling and analytical process as feasible. Precision and accuracy measurements are based primarily on the actual sample matrix. The precision and accuracy estimates obtained experimentally during the test program are compared to the data quality objectives (DQOs) established for the program as listed in the project QAPP.

These DQOs were not intended to be used as validation criteria but as empirical estimates of the precision and accuracy that would be expected from existing reference measurement methods and that would be considered acceptable. The precision and accuracy objectives are not necessarily derived from analyses of the same types of samples being investigated.

Table D-1
Types of Quality Control Samples

| QC Activity                                                     | Characteristic Measured                                                                                                                                                                      |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precision                                                       |                                                                                                                                                                                              |
| Replicate samples collected over time under the same conditions | Total variability, including process or<br>temporal, sampling, and analytical, but<br>not bias.                                                                                              |
| Duplicate field samples collected simultaneously                | Sampling plus analytical variability at the actual sample concentrations.                                                                                                                    |
| Duplicate Analyses of a Single Sample                           | Analytical variability at the actual sample concentrations.                                                                                                                                  |
| Matrix- or Media-Spiked Duplicates                              | Sampling plus analytical variability at an established concentration.                                                                                                                        |
| Laboratory Control Sample Duplicates                            | Analytical variability in the absence of sample matrix effects.                                                                                                                              |
| Surrogate-Spiked Sample Sets                                    | Analytical variability in the sample matrix but at an established concentration.                                                                                                             |
| Accuracy (Including Bias and Precision)                         |                                                                                                                                                                                              |
| Matrix-Spiked Samples                                           | Analyte recovery in the sample matrix, indicating possible matrix interferences and other effects. In a single sample indicates both random error (imprecision) and systematic error (bias). |
| Media-Spiked Samples                                            | Same as matrix-spiked samples. Used where a matrix-spiked sample is not feasible, such as the stack sampling methods.                                                                        |
| Surrogate-Spiked Samples                                        | Analyte recovery in the sample matrix, to the extent that the surrogate compounds are chemically similar to the compounds of interest. Primarily used as indicator of analytical efficacy.   |
| Laboratory Control Samples (LCS)                                | Analyte recovery in the absence of actual sample matrix effects. Used as an indicator of analytical control.                                                                                 |

Table D-1 (Continued)

| QC Activity                 | Characteristic Measured                                                                                                                                      |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard Reference Material | Analyte recovery in a matrix similar to the actual samples.                                                                                                  |
| Blank Effects               |                                                                                                                                                              |
| Field Blank                 | Total sampling plus analytical blank effect, including sampling equipment and reagents, sample transport and storage, and analytical reagents and equipment. |
| Trip Blank                  | Blank effects arising from sample trans-<br>port and storage. Typically only used<br>for volatile organic compound analyses.                                 |
| Method Blank                | Blank effects inherent in analytical method, including reagents and equipment.                                                                               |
| Reagent Blank               | Blank effects from reagents used.                                                                                                                            |

Although analytical precision and accuracy are relatively easy to quantify and control, sampling precision and accuracy are unique to each sample matrix. Data that do not meet these objectives are not necessarily unacceptable. Rather, the intent is to document the precision and accuracy obtained, and the objectives serve as benchmarks for comparison. The effects of not meeting the objectives should be considered in light of the intended use of the data.

Table D-2 presents the types of quality control data reported for the program and a summary of precision and accuracy estimates. Almost all of the quality control results met the project objectives.

The following potential problems were identified by the quality control data.

- Chloromethane, methylene chloride, and tetrachloroethene were found in one or more of the field blanks analyzed for VOST. In many cases, the same concentrations were also found in the field samples.
- A standard limestone sample (NIST 1C) was submitted blind as a performance audit sample. Aluminum, silicon, and sodium recoveries in this sample were below 50%, and the recovery of potassium was greater than 200 percent. This may indicate a similar low bias for these elements in the limestone process streams.
- Selenium showed no spike recovery in the impinger solutions analyzed by GFAAS.
   However, selenium recoveries in the audit samples submitted by RTI showed recoveries of 104 and 113 percent.

A discussion of the overall measurement precision, accuracy and blank effects is presented below for each measurement type.

Precision is a measure of the reproducibility of measurements under a given set of conditions. It is expressed in terms of the distribution, or scatter, of the data, calculated as the standard deviation or coefficient of variation (CV, standard deviation divided by the mean). For duplicates, precision is expressed as the relative percent difference (RPD).

Accuracy is a measure of the degree of conformity of a value generated by a specific procedure to be assumed or accepted true value, and includes both precision and bias. Bias is the persistent positive or negative deviation of the method average value from the assumed or accepted true value.

The efficiency of the analytical procedure for a given sample matrix is quantified by the analysis of spiked samples containing target or indicator analytes or other quality assurance measures, as necessary. However, all spikes, unless made to the flowing stream ahead of the sampling, produce only estimates of the recovery of the analyte through all of the measurement steps occurring after the addition of the spike. A good spike recovery tells little about the true value of the sample before spiking.

Table D-2 Summary of Precision and Accuracy Estimates

|                                                   |                                                                 | Ob                   | jectives                 | Measured             |                          |
|---------------------------------------------------|-----------------------------------------------------------------|----------------------|--------------------------|----------------------|--------------------------|
| Measurement Parameter                             | How Measured                                                    | Precision<br>(% RPD) | Accuracy<br>(% Recovery) | Precision<br>(% RPD) | Accuracy<br>(% Recovery) |
| Semivolatile Organics in Gas Solid Phase -        | Precision- Matrix-Spiked Duplicates                             |                      |                          |                      |                          |
| SW8270                                            | Accuracy - Matrix Spikes                                        |                      |                          |                      |                          |
| Acenaphthene                                      | -                                                               | 54                   | 47-145                   | 4.1                  | 86                       |
| 4-Chloro-3-methylphenol                           |                                                                 | 69                   | 22-147                   | 5.0                  | 84                       |
| 2-Chlorophenol                                    |                                                                 | 62                   | 23-134                   | 3.0                  | 82                       |
| 1.4-Dichlorobenzene                               |                                                                 | 58                   | 20-124                   | 3.2                  | 80                       |
| 2,4-Dinitrotoluene                                |                                                                 | 55                   | 39-139                   | 3.2                  | 78                       |
| n-Nitrosodipropylamine                            |                                                                 | 130                  | 0.1-230                  | 6.3                  | 60                       |
| 4-Nitrophenol                                     |                                                                 | 78                   | 0.1-132                  | 7.0                  | 89                       |
| Pentachlorophenol                                 |                                                                 | 84                   | 14-176                   | 9.0                  | 45                       |
| Phenol                                            |                                                                 | 43                   | 5-112                    | 3.4                  | 58                       |
| Pyrene                                            |                                                                 | 36                   | 52-115                   | 4.1                  | 86                       |
| 1,2,4-Trichlorobenzene                            |                                                                 | 55                   | 44-142                   | 4.0                  | 90                       |
| Semivolatile Organics in Fly Ash -                | Precision- Matrix-Spiked Duplicates                             |                      |                          |                      |                          |
| SW8270                                            | Accuracy - Matrix Spikes                                        |                      |                          |                      |                          |
| Acenaphthene                                      |                                                                 | 54                   | 47-145                   | 1.3                  | 82                       |
| 4-Chioro-3-methylphenol                           |                                                                 | 69                   | 22-147                   | 5.6                  | 84                       |
| 2-Chlorophenol                                    |                                                                 | 62                   | 23-134                   | 1.8                  | 84                       |
| 1,4-Dichlorobenzene                               |                                                                 | 58                   | 20-124                   | 2.5                  | 81                       |
| 2,4-Dinitrotoluene                                |                                                                 | 55                   | 39-139                   | 2.7                  | 76                       |
| n-Nitrosodipropylamine                            |                                                                 | 130                  | 0.1-230                  | 7.8                  | 60                       |
| 4-Nitrophenol                                     |                                                                 | 78                   | 0.1-132                  | 37                   | 49                       |
| Pentachiorophenoi                                 |                                                                 | 84                   | 14-176                   | 5.3                  | 64                       |
| Phenol                                            |                                                                 | 43                   | 5-112                    | 2.7                  | 76                       |
| Pyrene                                            |                                                                 | 36                   | 52-115                   | 17.7                 | 48Q                      |
| 1,2,4-Trichlorobenzene                            |                                                                 | 55                   | 44-142                   | 1.2                  | 89                       |
| Semivolatile Organics in FGD Solids -<br>SW8270   | Precision- Matrix-Spiked Duplicates Accuracy - Matrix Spikes    |                      |                          |                      |                          |
| Acenaphthene                                      | Accuracy - Maurix Spikes                                        | 54                   | 47-145                   | 7.3                  | 82                       |
| 4-Chloro-3-methylphenol                           |                                                                 | 69                   | 22-147                   | 7.3<br>9.3           | 76                       |
|                                                   |                                                                 | = -                  | 23-134                   |                      |                          |
| 2-Chlorophenol                                    |                                                                 | 62                   |                          | 7.1                  | 84                       |
| 1,4-Dichlorobenzene                               |                                                                 | 58                   | 20-124                   | 8.7                  | 80                       |
| 2,4-Dinitrotoluene                                |                                                                 | 55                   | 39-139                   | 4.0                  | 74                       |
| n-Nitrosodipropylamine                            |                                                                 | 130                  | 0.1-230                  | 14                   | 52                       |
| 4-Nitrophenol                                     |                                                                 | 78                   | 0.1-132                  | 14                   | 92                       |
| Pentachlorophenol                                 |                                                                 | 84                   | 14-176                   | 4.1                  | 74                       |
| Phenol                                            |                                                                 | 43                   | 5-112                    | 5.5                  | 73                       |
| Pyrene                                            |                                                                 | 36                   | 52-115                   | 4.4                  | 90                       |
| 1,2,4-Trichlorobenzene                            |                                                                 | 55                   | 44-142                   | 9.8                  | 92                       |
| Semivolatile Organics in Aqueous Streams - SW8270 | Precision- Matrix-Spiked Duplicates<br>Accuracy - Matrix Spikes |                      |                          |                      |                          |
| Acenaphthene                                      |                                                                 | 54                   | 47-145                   | 11                   | 79                       |
| 4-Chioro-3-methylphenoi                           |                                                                 | 69                   | 22-147                   | 10                   | 83                       |
| 2-Chlorophenol                                    |                                                                 | 62                   | 23-134                   | 10                   | 80                       |
| 1,4-Dichlorobenzene                               |                                                                 | 58                   | 20-124                   | 6.8                  | 72                       |
| 2,4-Dinitrotoluene                                |                                                                 | 55                   | 39-139                   | 7.4                  | 82                       |
| n-Nitrosodipropylamine                            |                                                                 | 130                  | 0.1-230                  | 12                   | 75                       |
| 4-Nitrophenol                                     |                                                                 | 78                   | 0.1-132                  | 8.6                  | 47                       |
| Pentachlorophenol                                 |                                                                 | 84                   | 14-176                   | 11                   | 72                       |
| Phenol                                            |                                                                 | 43                   | 5-112                    | 12                   | 40                       |
| Pyrene                                            |                                                                 | 36                   | 52-115                   | 7.6                  | 78                       |
| 1,2,4-Trichlorobenzene                            |                                                                 | 55                   | 44-142                   | 9.7                  | 82                       |
|                                                   |                                                                 |                      |                          | - • •                | ~ <b>~</b>               |

Table D-2 (Continued)

|                                                                 |                                                                 | Ob                   | jectives                 | Measured             |                          |
|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------------|--------------------------|----------------------|--------------------------|
| Measurement Parameter                                           | How Measured                                                    | Precision<br>(% RPD) | Accuracy<br>(% Recovery) | Precision<br>(% RPD) | Accuracy<br>(% Recovery) |
| Dioxins and Furans in Stack Gas Solid                           | Precision: NA                                                   |                      |                          | <del></del>          |                          |
| Phase                                                           | Accuracy: Internal Standard Recovery                            |                      |                          |                      |                          |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDF                     |                                                                 | 50                   | 40-120                   |                      | 60                       |
| <sup>13</sup> C <sub>12</sub> -2,3,7,8-TCDD                     |                                                                 | 50                   | 40-120                   |                      | 61                       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF                  |                                                                 | 50                   | 40-120                   |                      | 56                       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD                  |                                                                 | 50                   | 40-120                   |                      | 63                       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDF                |                                                                 | 50                   | 40-120                   |                      | 69                       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD                |                                                                 | 50                   | 40-120                   |                      | 69                       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-H <sub>P</sub> CDF |                                                                 | 50                   | 40-120                   |                      | 57                       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDD              |                                                                 | 50                   | 40-120                   |                      | 64                       |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8,9-OCDD             |                                                                 | 50                   | 40-120                   |                      | 50                       |
| PCDD/PCDF                                                       | Precision - NA                                                  |                      |                          |                      |                          |
|                                                                 | Accuracy - Internal Standard Recovery,                          |                      |                          |                      |                          |
|                                                                 | average for all samples analyzed.                               |                      |                          |                      |                          |
| <sup>13</sup> C <sub>12</sub> 2,3,7,8-TCDF                      |                                                                 |                      | 40-120                   |                      | 57.2                     |
| "C <sub>12</sub> -2,3,7,8-TCDD                                  |                                                                 |                      | 40-120                   |                      | 54.7                     |
| <sup>15</sup> C <sub>12</sub> -1,2,3,7,8-PeCDF                  |                                                                 |                      | 40-120                   |                      | 55.7                     |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8-PeCDD                  |                                                                 |                      | 40-120                   |                      | 63.3                     |
| <sup>13</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDF                |                                                                 |                      | 40-120                   |                      | 69.2                     |
| <sup>15</sup> C <sub>12</sub> -1,2,3,6,7,8-HxCDD                |                                                                 |                      | 40-120                   |                      | 69.0                     |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDF              |                                                                 |                      | 40-120                   |                      | 57.1                     |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8-HpCDD              |                                                                 |                      | 40-120                   |                      | 63.6                     |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,6,7,8,9-OCDD             |                                                                 |                      | 40-120                   |                      | 50.0                     |
| PCDD/PCDF in Stack Gas                                          | Precision - NA                                                  |                      |                          |                      |                          |
|                                                                 | Accuracy - Surrogate Spike Recovery,                            |                      |                          |                      |                          |
|                                                                 | average for all samples analyzed.                               |                      |                          |                      |                          |
| <sup>37</sup> Cl <sub>4</sub> -2,3,7,8-TCDD                     |                                                                 |                      | 70-130                   |                      | 118.4                    |
| <sup>13</sup> C <sub>12</sub> -2,3,4,7,8-PeCDF                  |                                                                 |                      | 70-130                   |                      | 113.2                    |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDF                |                                                                 |                      | 70-130                   |                      | 120.8                    |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8-HxCDD                |                                                                 |                      | 70-130                   |                      | 141.6                    |
| <sup>13</sup> C <sub>12</sub> -1,2,3,4,7,8,9-HpCDF              |                                                                 |                      | 70-130                   |                      | 104.7                    |
| <sup>13</sup> C <sub>12</sub> -1,2,3,7,8,9-HxCDF                |                                                                 |                      | 70-130                   |                      | 75.4                     |
| <sup>13</sup> C <sub>12</sub> -2,3,4,6,7,8-HxCDF                |                                                                 |                      | 70-130                   |                      | 84.3                     |
| Volatile Organics in Vapor Phase -                              | Precision - NA                                                  |                      |                          |                      |                          |
| SW8240                                                          | Accuracy - Surrogate Spike Recovery                             |                      |                          |                      |                          |
| 1,2-Dichloroethane-d4                                           |                                                                 | 50                   | 70-130                   |                      | 114                      |
| Toluene-d8                                                      |                                                                 | 50                   | 70-130                   |                      | 101                      |
| 4-Bromofluorobenzene                                            |                                                                 | 50                   | 70-130                   |                      | 108                      |
| Aldehydes in Vapor Phase                                        | Precision - Duplicate Analyses Accuracy - Matrix Spiked Samples |                      |                          |                      |                          |
| Acetaldehyde                                                    |                                                                 | 50                   | 50-150                   | 10                   | 94                       |
| Formaldehyde                                                    |                                                                 | 50                   | 50-150                   | 36                   | 90                       |
| Aldehydes in Aqueous Streams                                    | Precision - Duplicate Analyses                                  |                      |                          |                      |                          |
| -                                                               | Accuracy - Matrix Spiked Samples                                |                      |                          |                      |                          |
| Acetaldehyde                                                    |                                                                 | 50                   | 50-150                   | 14                   | 101                      |
| Formaldehyde                                                    |                                                                 | 50                   | 50-150                   | 18                   | 94                       |

### Appendix D: Quality Assurance/Quality Control

Table D-2 (Continued)

|                                     |                                        | Objectives           |                          | Measured             |                          |
|-------------------------------------|----------------------------------------|----------------------|--------------------------|----------------------|--------------------------|
| Measurement Parameter               | How Measured                           | Precision<br>(% RPD) | Accuracy<br>(% Recovery) | Precision<br>(% RPD) | Accuracy<br>(% Recovery) |
| Metals in Gas Solid Phase - ICP-AES | Precision - Matrix-spiked pairs        |                      |                          |                      |                          |
|                                     | Accuracy - Matrix-spiked Sample        |                      |                          |                      |                          |
| Aluminum                            |                                        | 20                   | 75-125                   | 62Q                  | 62Q                      |
| Antimony                            |                                        | 20                   | 75-125                   | 20                   | 84                       |
| Barium                              |                                        | 20                   | 75-125                   | 30Q                  | 75                       |
| Beryllium                           |                                        | 20                   | 75-125                   | <1                   | 89                       |
| Chromium                            |                                        | 20                   | 75-125                   | 2.9                  | 88                       |
| Cobalt                              |                                        | 20                   | 75-125                   | 1                    | 91                       |
| Copper                              |                                        | 20                   | 75-125                   | <1                   | 93                       |
| Manganese                           |                                        | 20                   | 75-125                   | 2.2                  | 91                       |
| Molybdenum                          |                                        | 20                   | 75-125                   | 3.7                  | 94                       |
| Nickel                              |                                        | 20                   | 75-125                   | 5                    | 89                       |
| Vanadium                            |                                        | 20                   | 75-125                   | 2.2                  | 94                       |
| Metals in Gas Solid Phase - ICP-AES | Precision - NA                         |                      |                          |                      |                          |
|                                     | Accuracy - Standard reference material |                      |                          |                      |                          |
|                                     | (NIST 1633a Fly Ash)                   |                      |                          |                      |                          |
| Aluminum                            | ,                                      | 20                   | 75-125                   |                      | 94                       |
| Antimony                            |                                        | 20                   | 75-125                   |                      | NC                       |
| Barium                              |                                        | 20                   | 75-125                   |                      | 82                       |
| Beryllium                           |                                        | 20                   | 75-125                   |                      | 147Q                     |
| Calcium                             |                                        | 20                   | 75-125                   |                      | 99                       |
| Chromium                            |                                        | 20                   | 75-125<br>75-125         |                      | 96                       |
| Cobait                              |                                        | 20                   | 75-125<br>75-125         |                      | 88                       |
| Copper                              |                                        | 20                   | 75-125<br>75-125         |                      | 95                       |
| Iron                                |                                        | 20                   | 75-125<br>75-125         |                      |                          |
|                                     |                                        | 20                   | 75-125<br>75-125         |                      | 93                       |
| Magnesium                           |                                        |                      |                          |                      | 95                       |
| Manganese                           |                                        | 20                   | 75-125                   |                      | 94                       |
| Potassium                           |                                        | 20                   | 75-125                   |                      | 109                      |
| Nickel                              |                                        | 20                   | 75-125                   |                      | 94                       |
| Silicon                             |                                        | 20                   | 75-125                   |                      | 98                       |
| Sodium                              |                                        | 20                   | 75-125                   |                      | 96                       |
| Strontium                           |                                        | 20                   | 75-125                   |                      | 92                       |
| Titanium                            |                                        | 20                   | 75-125                   |                      | 97                       |
| Vanadium                            |                                        | 20                   | 75-125                   |                      | 95                       |
| Zine                                |                                        | 20                   | 75-125                   |                      | 97                       |
| Metals in Gas Vapor Phase - ICP-AES | Precision - Matrix-spiked Duplicates   |                      |                          |                      |                          |
|                                     | Accuracy - Matrix-spiked Sample        |                      |                          |                      |                          |
| Aluminum                            |                                        | 20                   | 75-125                   | <1                   | 104                      |
| Antimony                            |                                        | 20                   | 75-125                   | 4                    | 101                      |
| Barium                              |                                        | 20                   | 75-125                   | 0                    | 106                      |
| Beryllium                           |                                        | 20                   | 75-125                   | 0                    | 108                      |
| Boron                               |                                        | 20                   | 75-125                   | 2.9                  | 104                      |
| Chromium                            |                                        | 20                   | 75-125                   | 0                    | 105                      |
| Cobalt                              |                                        | 20                   | 75-125                   | Ŏ                    | 102                      |
| Copper                              |                                        | 20                   | 75-125                   | 0                    | 105                      |
| Manganese                           |                                        | 20                   | 75-125<br>75-125         | <1                   | 103                      |
| Molybdenum                          |                                        | 20                   | 75-125<br>75-125         | 2.0                  | 100                      |
| Nickel                              |                                        | 20                   | 75-125<br>75-125         |                      | 100                      |
| Vanadium                            |                                        | 20                   |                          | 0                    |                          |
| A SINGINII)                         |                                        | 20                   | 75-125                   | U                    | 107                      |

Table D-2 (Continued)

|                                                                     |                                                           | Objectives           |                                       | Measured             |                          |
|---------------------------------------------------------------------|-----------------------------------------------------------|----------------------|---------------------------------------|----------------------|--------------------------|
| Measurement Parameter                                               | How Measured                                              | Precision<br>(% RPD) | Accuracy<br>(% Recovery)              | Precision<br>(% RPD) | Accuracy<br>(% Recovery) |
| Metals in Gas Vapor Phase - ICP-AES                                 | Precision - NA                                            |                      | · · · · · · · · · · · · · · · · · · · |                      |                          |
| (HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger Solution) | Accuracy - Standard reference material (EPA ICP-19)       |                      |                                       |                      |                          |
| Antimony                                                            | (======================================                   | 20                   | 75-125                                |                      | 93                       |
| Beryllium                                                           |                                                           | 20                   | 75-125                                |                      | 101                      |
| Calcium                                                             |                                                           | 20                   | 75-125                                |                      | 109                      |
| Chromium                                                            |                                                           | 20                   | 75-125                                |                      | 99                       |
| Cobalt                                                              |                                                           | 20                   | 75-125                                |                      | 100                      |
| Copper                                                              |                                                           | 20                   | 75-125                                |                      | 119                      |
| Iron                                                                |                                                           | 20                   | 75-125                                |                      | 93                       |
| Manganese                                                           |                                                           | 20                   | 75-125                                |                      | 97                       |
| Molybdenum                                                          |                                                           | 20                   | 75-125                                |                      | 108                      |
| Nickel                                                              |                                                           | 20                   | 75-125                                |                      | 102                      |
| Vanadium                                                            |                                                           | 20                   | 75-125                                |                      | 103                      |
|                                                                     | B 11 Nr.                                                  | 20                   | 75 .25                                |                      | 105                      |
| Metals in Coal - INAAS                                              | Precision - NA Accuracy - Standard Reference Material     |                      |                                       |                      |                          |
|                                                                     | (NIST 1632b coal)                                         |                      |                                       |                      |                          |
| Antimony                                                            |                                                           | 20                   | 80-120                                |                      | 94                       |
| Barium                                                              |                                                           | 20                   | 80-120                                |                      | 99                       |
| Beryllium                                                           |                                                           | 20                   | 80-120                                |                      | 109                      |
| Boron                                                               |                                                           | 20                   | 80-120                                |                      | 99                       |
| Chromium                                                            |                                                           | 20                   | 80-120                                |                      | 99                       |
| Cobalt                                                              |                                                           | 20                   | 80-120                                |                      | NC                       |
| Copper                                                              |                                                           | 20                   | 80-120                                |                      | 99                       |
| Manganese                                                           |                                                           | 20                   | 80-120                                |                      | 103                      |
| Molybdenum                                                          |                                                           | 20                   | 80-120                                |                      | 102                      |
| Nickel                                                              |                                                           | 20                   | 80-120                                |                      | 99                       |
| Vanadium                                                            |                                                           | 20                   | 80-120                                |                      | 97                       |
| Metals in Limestone - ICP-AES                                       | Precision - NA                                            |                      |                                       |                      |                          |
|                                                                     | Accuracy- Standard reference material (NIST Limestone Ic) |                      |                                       |                      |                          |
| Aluminum                                                            |                                                           | 20                   | 75-125                                |                      | 14Q                      |
| Calcium                                                             |                                                           | 20                   | 75-125                                |                      | 101                      |
| Iron                                                                |                                                           | 20                   | 75-125                                |                      | 700                      |
| Magnesium                                                           |                                                           | 20                   | 75-125                                |                      | 69Q                      |
| Manganese                                                           |                                                           | 20                   | 75-125                                |                      | 74Q                      |
| Potassium                                                           |                                                           | 20                   | 75-125                                |                      | 2240                     |
| Silicon                                                             |                                                           | 20                   | 75-125                                |                      | 1.5Q                     |
| Sodium                                                              |                                                           | 20                   | 75-125                                |                      | 47Q                      |
| Strontium                                                           |                                                           | 20                   | 75-125                                |                      | 97                       |
| Metals in FGD Solids - ICP-AES                                      | Precision - Matrix-spiked Duplicates                      |                      |                                       |                      |                          |
| A Brownian to                                                       | Accuracy - Matrix-spiked Samples                          | 20                   | 75 105                                | 0 7                  | 0.4                      |
| Aluminum                                                            |                                                           | 20                   | 75-125<br>75-126                      | 8.7                  | 94                       |
| Antimony                                                            |                                                           | 20                   | 75-125                                | 4.7                  | 83                       |
| Barium                                                              |                                                           | 20                   | 75-125                                | 6.0                  | 84                       |
| Beryllium                                                           |                                                           | 20                   | 75-125                                | 4.6                  | 81                       |
| Boron                                                               |                                                           | 20                   | 75-125                                | 28Q                  | 91                       |
| Chromium<br>Cabak                                                   |                                                           | 20                   | 75-125                                | 5.7                  | 82                       |
| Cobalt                                                              | •                                                         | 20                   | 75-125                                | 5.6                  | 78<br>27                 |
| Copper                                                              |                                                           | 20                   | 75-125                                | 5.1                  | 87                       |
| Manganese<br>Malubdanum                                             |                                                           | 20                   | 75-125                                | 15                   | 79<br>70                 |
| Molybdenum<br>Niebol                                                |                                                           | 20                   | 75-125<br>26-126                      | 5.1                  | 79<br>70                 |
| Nickel<br>Vandings                                                  |                                                           | 20                   | 75-125                                | 5.0                  | 79                       |
| Vanadium                                                            |                                                           | 20                   | 75-125                                | 5.6                  | 84                       |

Table D-2 (Continued)

|                                               |                                                                          | Ob                   | jectives                 | Me                   | easured                  |  |
|-----------------------------------------------|--------------------------------------------------------------------------|----------------------|--------------------------|----------------------|--------------------------|--|
| Measurement Parameter                         | How Measured                                                             | Precision<br>(% RPD) | Accuracy<br>(% Recovery) | Precision<br>(% RPD) | Accuracy<br>(% Recovery) |  |
| Metals in ESP Fly Ash - ICP-AES               | Precision - Matrix-spiked Duplicates Accuracy - Matrix-spiked Samples    |                      |                          |                      | <u> </u>                 |  |
| Aluminum                                      |                                                                          | 20                   | 75-125                   | 16                   | 78                       |  |
| Antimony                                      |                                                                          | 20                   | 75-125                   | 8.4                  | 91                       |  |
| Barium                                        |                                                                          | 20                   | 75-125                   | 10.2                 | 85                       |  |
| Beryllium                                     |                                                                          | 20                   | 75-125                   | 1.8                  | 92                       |  |
| Chromium                                      |                                                                          | 20                   | 75-125                   | 1.7                  | 94                       |  |
| Cobalt                                        |                                                                          | 20                   | 75-125                   | 1.8                  | 93                       |  |
| Copper                                        |                                                                          | 20                   | 75-125                   | 2.4                  | 95                       |  |
| Manganese                                     |                                                                          | 20                   | 75-125                   | 2.5                  | 92                       |  |
| Molybdenum                                    |                                                                          | 20                   | 75-125                   | 4.5                  | 84                       |  |
| Nickel                                        |                                                                          | 20                   | 75-125                   | 5.2                  | 96                       |  |
| Vanadium                                      |                                                                          | 20                   | 75-125<br>75-125         | 2.8                  | 94                       |  |
| Metals in Aqueous Process Streams -           | Precision - Matrix-spiked Duplicates                                     |                      |                          |                      |                          |  |
| ICP-AES                                       | Accuracy - Matrix-spiked Samples                                         |                      |                          |                      |                          |  |
| Aluminum                                      |                                                                          | 20                   | 75-125                   | 4.4                  | 96                       |  |
| Antimony                                      |                                                                          | 20                   | 75-125                   | 16                   | 87                       |  |
| Barium                                        |                                                                          | 20                   | 75-125                   | 7.6                  | 99                       |  |
| Beryllium                                     |                                                                          | 20                   | 75-125                   | 4.4                  | 92                       |  |
| Boron                                         |                                                                          | 20                   | 75-125                   | 1.0                  | 96                       |  |
| Chromium                                      |                                                                          | 20                   | 75-125                   | 4.9                  | 92                       |  |
| Cobalt                                        |                                                                          | 20                   | 75-125                   | 4.6                  | 89                       |  |
| Copper                                        |                                                                          | 20                   | 75-125                   | 4.0                  | 96                       |  |
| Manganese                                     |                                                                          | 20                   | 75-125                   | 4.5                  | 92                       |  |
| Molybdenum                                    |                                                                          | 20                   | 75-125                   | 4.8                  | 89                       |  |
| Nickel                                        |                                                                          | 20                   | 75-125                   | 7.3                  | 90                       |  |
| Vanadium                                      |                                                                          | 20                   | 75-125                   | 3.6                  | 95                       |  |
| Metals in Aqueous Process Streams -           | Precision - NA<br>Accuracy - Performance Audit Samples                   |                      |                          |                      |                          |  |
|                                               | (2 concentrations)                                                       |                      |                          |                      |                          |  |
| Antimony                                      | (2 ************************************                                  | 20                   | 75-125                   |                      | 127Q/82                  |  |
| Beryllium                                     |                                                                          | 20                   | 75-125                   |                      | 99/93                    |  |
| Calcium                                       |                                                                          | 20                   | 75-125                   |                      | 169Q                     |  |
| Chromium                                      |                                                                          | 20                   | 75-125                   |                      | 94/97                    |  |
| Cobait                                        |                                                                          | 20                   |                          |                      |                          |  |
|                                               |                                                                          | 20<br>20             | 75-125                   |                      | 100/87                   |  |
| Соррег                                        |                                                                          |                      | 75-125                   |                      | 96/110                   |  |
| ron                                           |                                                                          | 20                   | 75-125                   |                      | 103/139Q                 |  |
| Magnesium                                     |                                                                          | 20                   | 75-125                   |                      | 131Q                     |  |
| Manganese                                     |                                                                          | 20                   | 75-125                   |                      | 96/95                    |  |
| Molybdenum                                    |                                                                          | 20                   | 75-125                   |                      | 98/114                   |  |
| Nickel                                        |                                                                          | 20                   | 75-125                   |                      | 104/111                  |  |
| l'itanium                                     |                                                                          | 20                   | 75-125                   |                      | 98                       |  |
| Vanadium                                      |                                                                          | 20                   | 75-125                   |                      | 96/104                   |  |
| Zinc                                          |                                                                          | 20                   | 75-125                   |                      | 99                       |  |
| Metals in Gas Vapor Phase - GFAAS and CVAAS   | Precision - Matrix spiked Duplicates Accuracy - Matrix Spiked Samples    |                      |                          |                      |                          |  |
| Arsenic                                       | sand standards manual messelesans                                        | 20                   | 75-125                   | 4.0                  | 100                      |  |
| Cadmium                                       |                                                                          | 20                   | 75-125                   | <1                   | 114                      |  |
| Lead                                          |                                                                          | 20                   | 75-125                   | 45Q                  | 84                       |  |
| Mercury                                       |                                                                          | 20                   | 75-125                   | 1.3                  | 98                       |  |
| Selenium                                      |                                                                          | 20                   | 75-125                   | 940                  | 0                        |  |
| Metals in Gas Solid Phase - CVAAS             | Precision - Matrix spiked Duplicates<br>Accuracy - Matrix Spiked Samples | 20                   | 25                       | ,,,                  | Ū                        |  |
| Mercury                                       |                                                                          | 20                   | 75-125                   | 1.0                  | 128Q                     |  |
| Metals in Gas Vapor Phase - CVAAS             | Precision - NA                                                           |                      |                          |                      |                          |  |
| and a second                                  | Accuracy - Performance Audit Samples                                     |                      |                          |                      |                          |  |
| Mercury (KMnO <sub>4</sub> Impinger Solution) |                                                                          | 20                   | 75-125                   |                      | 33Q                      |  |
|                                               |                                                                          |                      |                          |                      |                          |  |

Table D-2 (Continued)

|                                                                     |                                                         | Objectives           |                          | Measured             |                                       |
|---------------------------------------------------------------------|---------------------------------------------------------|----------------------|--------------------------|----------------------|---------------------------------------|
| Measurement Parameter                                               | How Measured                                            | Precision<br>(% RPD) | Accuracy<br>(% Recovery) | Precision<br>(% RPD) | Accuracy<br>(% Recovery)              |
| Metals in Process Solid Streams - GFAAS                             | Precision - Matrix spiked Duplicates                    |                      |                          |                      | · · · · · · · · · · · · · · · · · · · |
| and CVAAS                                                           | Accuracy - Matrix Spiked Samples                        |                      |                          |                      |                                       |
| Arsenic                                                             |                                                         | 20                   | 75-125                   | < 1                  | 104                                   |
| Cadmium                                                             |                                                         | 20                   | 75-125                   | 8.8                  | 110                                   |
| Lead                                                                |                                                         | 20                   | 75-125                   | 1.2                  | 86                                    |
| Mercury                                                             |                                                         | 20                   | 75-125                   | 2.6                  | 107                                   |
| Selenium                                                            |                                                         | 20                   | 75-125                   | 25.3Q                | 103                                   |
| Metals in Solid Phase - GFAAS and                                   | Precision - NA                                          |                      |                          |                      |                                       |
| CVAAS                                                               | Accuracy - Standard reference material                  |                      |                          |                      |                                       |
| A:-                                                                 | (NIST 1633a Fly Ash)                                    | 20                   | 75-125                   |                      | NA                                    |
| Arsenic<br>Cadmium                                                  |                                                         | 20                   | 75-125<br>75-125         |                      | NA<br>NA                              |
|                                                                     |                                                         | 20                   |                          |                      |                                       |
| Lead                                                                |                                                         |                      | 75-125                   |                      | NA                                    |
| Mercury                                                             |                                                         | 20                   | 75-125                   |                      | 119                                   |
| Selenium                                                            |                                                         | 20                   | 75-125                   |                      | NA                                    |
| Metals in Aqueous Process Streams -                                 | Precision - Matrix Spiked Duplicates                    |                      |                          |                      |                                       |
| GFAAS and CVAAS                                                     | Accuracy - Matrix Spiked Samples                        |                      |                          |                      |                                       |
| Arsenic                                                             |                                                         | 20                   | 75-125                   | 4.2                  | 99                                    |
| Cadmium                                                             |                                                         | 20                   | 75-125                   | 2.2                  | 108                                   |
| Lead                                                                |                                                         | 20                   | 75-125                   | 12                   | 76                                    |
| Mercury                                                             |                                                         | 20                   | 75-125                   | 24.6Q                | 35Q                                   |
| Selenium                                                            |                                                         | 20                   | 75-125                   | 41.2Q                | 76.4                                  |
| Metals in Aqueous Process Streams -                                 | Precision - NA                                          |                      |                          |                      |                                       |
| GFAAS and CVAAS                                                     | Accuracy - Performance Audit Samples (2 concentrations) |                      |                          |                      |                                       |
| Arsenic                                                             | (2 COLCOLLISTICAL)                                      | 20                   | 75-125                   |                      | 94/100                                |
| Cadmium                                                             |                                                         | 20                   | 75-125                   |                      | 93/100                                |
| Lead                                                                |                                                         | 20                   | 75-125                   |                      | 99/96                                 |
| Selenium                                                            |                                                         | 20                   | 75-125                   |                      | 96/50                                 |
|                                                                     | maratita a NEA                                          | 20                   | 15-125                   |                      | 70/30                                 |
| Metals in Gas Vapor - ICP/MS                                        | Precision - NA                                          |                      |                          |                      |                                       |
| (HNO <sub>3</sub> /H <sub>2</sub> O <sub>2</sub> Impinger Solution) | Accuracy - Performance Audit Samples                    | 27.4                 | ***                      |                      | 90                                    |
| Antimony                                                            |                                                         | NA                   | NA                       |                      | 89                                    |
| Arsenic                                                             |                                                         | NA                   | NA                       |                      | 109                                   |
| Beryllium                                                           |                                                         | NA                   | NA                       |                      | 98                                    |
| Cadmium                                                             |                                                         | NA                   | NA                       |                      | 97<br>27                              |
| Chromium                                                            |                                                         | NA                   | NA                       |                      | 9 <b>7</b>                            |
| Cobalt                                                              |                                                         | NA                   | NA                       |                      | 88                                    |
| Copper                                                              |                                                         | NA                   | NA                       |                      | 83                                    |
| Lead                                                                |                                                         | NA                   | NA                       |                      | 87                                    |
| Manganese                                                           |                                                         | NA                   | NA                       |                      | 97                                    |
| Molybdenum                                                          |                                                         | NA                   | NA                       |                      | 94                                    |
| Nickel                                                              |                                                         | NA                   | NA                       |                      | 90                                    |
| Selenium                                                            |                                                         | NA                   | NA                       |                      | 106                                   |
| Vanadium                                                            |                                                         | NA                   | NA                       |                      | 93                                    |

### Appendix D: Quality Assurance/Quality Control

Table D-2 (Continued)

|                                  |                                        | Ob                   | jectives                 | Me                   | easured                  |
|----------------------------------|----------------------------------------|----------------------|--------------------------|----------------------|--------------------------|
| Measurement Parameter            | How Measured                           | Precision<br>(% RPD) | Accuracy<br>(% Recovery) | Precision<br>(% RPD) | Accuracy<br>(% Recovery) |
| Extractable Metals - ICP/MS      | Precision - Duplicate Analysis         |                      |                          |                      |                          |
| Nitric acid digestate)           | Accuracy - Matrix-Spiked Samples       |                      |                          |                      |                          |
| Antimony                         |                                        | 20                   | NA                       | 40Q                  | NA                       |
| Arsenic                          |                                        | 20                   | 75-125                   | 434Q                 | 118                      |
| Berium                           |                                        | 20                   | 75-125                   | 5.8                  | 94                       |
| Beryllium                        |                                        | 20                   | 75-125                   | 11                   | 108                      |
| Cadmium                          |                                        | 20                   | 75-125                   | 0                    | 94                       |
| Chromium                         |                                        | 20                   | 75-125                   | 9.4                  | 98                       |
| Cobalt                           |                                        | 20                   | 75-125                   | 7.7                  | 100                      |
| Copper                           |                                        | 20                   | 75-125                   | 19                   | 100                      |
| Lead                             |                                        | 20                   | 75-125                   | 1.6                  | 83                       |
| Manganese                        |                                        | 20                   | 75-125                   | 9.6                  | 108                      |
| Mercury                          |                                        | 20                   | 75-125                   | NC                   | 852Q                     |
| Molybdenum                       |                                        | 20                   | NA                       | 12                   | NA.                      |
| Nickel                           |                                        | 20                   | 75-125                   | 13                   | 103                      |
| Selenium                         |                                        | 20                   | 75-125                   | 43Q                  | 1380                     |
| Vanadium                         |                                        | 20                   | 75-125<br>75-125         | 3.6                  | 109                      |
|                                  |                                        | 20                   | 73-123                   | 3.0                  | 109                      |
| Extractable Metals - ICP/MS      | Precision - Duplicate analysis         |                      |                          |                      |                          |
| (Gastric fluid leachate)         | Accuracy - Matrix-spiked samples       |                      |                          |                      |                          |
| Antimony                         |                                        | 20                   | NA                       | 6.5                  | NA                       |
| Arsenic                          |                                        | 20                   | 75-125                   | NC                   | 0Q                       |
| Barium                           |                                        | 20                   | 75-125                   | 1.5                  | 85                       |
| Beryllium                        |                                        | 20                   | 75-125                   | 12                   | 79                       |
| Cadmium                          |                                        | 20                   | 75-125                   | 27Q                  | 107                      |
| Chromium                         |                                        | 20                   | 75-125                   | 4.2                  | 88                       |
| Cobalt                           |                                        | 20                   | 75-125                   | 3.4                  | 92                       |
| Copper                           |                                        | 20                   | 75-125                   | 14                   | 92                       |
| Lead                             |                                        | 20                   | 75-125                   | 3.2                  | 97                       |
| Manganese                        |                                        | 20                   | 75-125                   | 3.2                  | 710                      |
| Mercury                          |                                        | 20                   | 75-125                   | 610                  | 124                      |
| Molybdenum                       |                                        | 20                   | NA.                      | 10                   | NA.                      |
| Nickel                           |                                        | 20                   | 75-125                   | 3.7                  | 81                       |
| Selenium                         |                                        | 20                   | 75-125                   | NC                   | 84                       |
| Vanadium                         |                                        | 20                   | 75-125                   | NC                   |                          |
| Vanagium                         |                                        | 20                   | 73-123                   | NC                   | 0Q                       |
| Metals in Gas Solid Phase - GDMS | Precision - NA                         |                      |                          |                      |                          |
|                                  | Accuracy - Standard Reference Material |                      |                          |                      |                          |
| Aluminum                         | (NIST 1633a Fly Ash)                   |                      |                          |                      |                          |
| Antimony                         |                                        | NA                   | NA                       |                      | 180Q                     |
| Berium                           |                                        | NA                   | NA                       |                      | NC                       |
| Beryllium                        |                                        | NA                   | NA                       |                      | 357Q                     |
| Calcium                          |                                        | NA                   | NA                       |                      | NC                       |
| Chromium                         |                                        | NA                   | NA                       |                      | 70Q                      |
| Cobalt                           |                                        | NA                   | NA                       |                      | 140Q                     |
| Copper                           |                                        | NA                   | NA                       |                      | NC                       |
| Iron                             |                                        | NA                   | NA                       |                      | 203Q                     |
| Magnesium                        |                                        | NA                   | NA                       |                      | -                        |
| •                                |                                        |                      |                          |                      | 79                       |
| Manganese                        |                                        | NA<br>NA             | NA<br>NA                 |                      | 120                      |
| Potassium                        |                                        | NA                   | NA                       |                      | 58Q                      |
| Nickel                           |                                        | NA                   | NA                       |                      | 119                      |
| Silicon                          |                                        | NA                   | NA                       |                      | 115                      |
| Sodium                           |                                        | NA                   | NA                       |                      | 111                      |
| Strontium                        |                                        | NA                   | NA                       | ,                    | 39Q                      |
| Titanium                         |                                        | NA                   | NA                       |                      | 320Q                     |
| Vanadium                         |                                        | NA                   | NA                       |                      | 131Q                     |
| Zinc                             |                                        | NA                   | NA                       |                      | 141Q                     |
|                                  |                                        | NA                   | NA                       |                      | 129Q                     |

Table D-2 (Continued)

|                                       |                                                                            | Ob                   | jectives                 | Measured             |                       |  |
|---------------------------------------|----------------------------------------------------------------------------|----------------------|--------------------------|----------------------|-----------------------|--|
| Measurement Parameter                 | How Measured                                                               | Precision<br>(% RPD) | Accuracy<br>(% Recovery) | Precision<br>(% RPD) | Accuracy (% Recovery) |  |
| Anions in Aqueous Process Streams -   | Precision - NA                                                             |                      |                          |                      |                       |  |
|                                       | Accuracy - Performance Audit Samples                                       |                      |                          |                      |                       |  |
| Chloride                              |                                                                            | 20                   | 80-120                   |                      | 0Q                    |  |
| Fluoride                              |                                                                            | 20                   | 80-120                   |                      | 39Q                   |  |
| Sulfate                               |                                                                            | 20                   | 75-125                   |                      | 350Q                  |  |
| Anions in Gas Vapor Phase -           | Precision - Matrix spiked Duplicates                                       |                      |                          |                      |                       |  |
| ·                                     | Accuracy - Matrix Spiked Samples                                           |                      |                          |                      |                       |  |
| Chloride                              | • •                                                                        | 20                   | 80-120                   | 9.7                  | 100                   |  |
| Fluoride                              |                                                                            | 20                   | 80-120                   | 1.9                  | 107                   |  |
| Anions in Process Solid Streams       | Precision - Matrix spiked Duplicates                                       |                      |                          |                      |                       |  |
|                                       | Accuracy - Matrix Spiked Samples                                           |                      |                          |                      |                       |  |
| Chloride                              |                                                                            | 20                   | 80-120                   | <1                   | 95                    |  |
| Fluoride                              |                                                                            | 20                   | 80-120                   | 3.5                  | 70                    |  |
| Anions in Aqueous Process Streams     | Precision - Matrix spiked Duplicates                                       |                      |                          |                      |                       |  |
| Wittens III Wincons Liocess 24 exists | Accuracy - Matrix Spiked Samples                                           |                      |                          |                      |                       |  |
| Chloride                              | Accoracy - Madrix Spized Samples                                           | 20                   | 80-120                   | 3.6                  | 111                   |  |
| Fluoride                              |                                                                            | 20                   | 80-120                   | 1.6                  | 101                   |  |
| Sulfate                               |                                                                            | 20                   | 75-125                   | 1.5                  | 97                    |  |
| <del></del>                           | Province Matrix miles d Provinces                                          |                      |                          |                      |                       |  |
| Ammonia in Gas Vapor Phase by 350.2   | Precision - Matrix spiked Duplicates Accuracy - Performance Audit Standard |                      |                          |                      |                       |  |
| Ammonia                               | Accuracy - Performance Audit Standard                                      | 20                   | 80-120                   | 390                  | 63Q                   |  |
|                                       |                                                                            | 20                   | 80-120                   | 23Q                  | 03Q                   |  |
| Ammonia in Aqueous Streams by 350.1   | Precision - Matrix spiked Duplicates                                       |                      |                          |                      |                       |  |
| _                                     | Accuracy - Performance Audit Standard                                      |                      |                          |                      |                       |  |
| Ammonia                               |                                                                            | 20                   | 80-120                   | 60Q                  | 88                    |  |
| Cyanide in Gas Vapor Phase by 335.2   | Precision - Matrix spiked Duplicates                                       |                      |                          |                      |                       |  |
|                                       | Accuracy - Performance Audit Standard                                      |                      |                          |                      |                       |  |
| Cyanide                               |                                                                            | 20                   | 75-125                   | 16                   | 50                    |  |
| Cyanide in Aqueous Streams by 335.2   | Precision - Matrix spiked Duplicates                                       |                      |                          |                      |                       |  |
| •                                     | Accuracy - Performance Audit Standard                                      |                      |                          |                      |                       |  |
| Cyanide                               | -                                                                          | 20                   | 75-125                   | 13                   | 80                    |  |
| Phosphate in Aqueous Streams by 365.2 | Precision - Matrix spiked Duplicates                                       |                      |                          |                      |                       |  |
|                                       | Accuracy - Performance Audit Standard                                      |                      |                          |                      |                       |  |
| Phosphate                             |                                                                            | 20                   | 75-125                   | 6.1                  | 97                    |  |
|                                       |                                                                            |                      |                          |                      |                       |  |

NA = Not applicable.

NC = Not calculated.

Q = Outside project QC objectives.

Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. The representativeness criterion is based on making certain that the sampling locations are properly selected and that a sufficient number of samples are collected.

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another. Sampling data should be comparable with other measurement data for similar samples under similar conditions. This goal is achieved using standard techniques to collect and analyze representative samples and by reporting results in appropriate units. Data sets can be compared with confidence when the precision and accuracy is known.

Completeness is an expression of the number of valid measurements obtained compared with the number planned for a given study. The goal is to generate a sufficient amount of valid data.

### Semivolatile Organics

**Precision.** The precision of the semivolatile organic analyses was estimated using matrix spiked duplicate pairs. The precision was met for all of the gas-phase solid samples, the gas vapor-phase samples, the solid stream samples, and aqueous-phase sample streams. The precision estimates are summarized for each stream in Table D-2.

Accuracy. The accuracy of the semivolatile analyses was estimated using matrix spiked duplicate samples. All of the spiked compounds analyzed in the gas solid-phase samples and the aqueous process streams were within the accuracy objectives. Matrix spikes into the solid process streams were all within the recovery objects for all analytes in the FGD solid stream and all the except pyrene in the ESP ash solids. Recovery for pyrene was 51% and 56% (project objective--52-115%) for the ESP ash sample and 48% and 37% for the ESP ash field duplicate.

Blank Effects. Acetophenone and benzoic acid were found in one or more of the field blanks associated with the gas-phase solids analyses. The concentrations of these compounds in the blanks, however, were not significant in comparison to the concentrations found in the samples. Several phthalates were also found in the field blanks. The concentrations found in the samples were about the same level as found in the blanks and are therefore considered an artifact of the sampling and handling process.

### **Volatile Organics**

**Precision.** Precision for volatile organic analysis of the aqueous process streams was estimated using matrix spiked duplicate samples. The 50% precision objectives were met for each of the volatile analytes used for the matrix spikes.

Accuracy. Accuracy for the volatile organic analyses in the aqueous process streams was estimated using matrix spiked samples and accuracy for the gas vapor-phase streams was estimated using surrogates spiked into each sample prior to analysis. The accuracy objectives for recoveries ranging from 0.1% to 234% were met for all analytes of interest (actual recoveries ranged from 70-136%) for the aqueous streams. Accuracy objectives for surrogate recoveries of 70 to 130% for the gas-phase streams were met for all samples except for toluene-d8 in one stack sample. Accuracy based on the analysis of two laboratory method spikes met the recovery objectives for all analytes of interest except for one acetone, chloromethane, chloroethane, and methylene chloride spike.

Blank Effects. Chloromethane, methylene chloride, and tetrachloroethene were found in one or more of the field gas vapor-phase blank samples. In most cases these compounds were found in the investigative field samples at about the same level as in the field blank or at lower concentrations. The sampling, handling, and transport from the field may have contributed this observed contamination. Chloromethane and methylene chloride were also found in one laboratory blank.

### Aldehydes

**Precision.** Precision for the aldehyde analyses was estimated using duplicate sample analyses. The precision objectives of 50% were met for both formaldehyde and acetaldehyde in the gas vapor-phase samples and the aqueous process stream sample analyses.

Accuracy. Accuracy for the aldehydes was estimated using matrix spiked samples. The project accuracy objectives of recoveries of 50-150% were met for the gas vapor-phase and aqueous stream sample spikes for both formaldehyde and acetaldehyde.

Blank Effects. Formaldehyde and acetaldehyde were found in concentrations (3.8-8.2  $\mu$ g, formaldehyde; 2.7-8.6  $\mu$ g, acetaldehyde) above the reporting limits in the field blanks to the gas vapor-phase sampling train. Low levels (within 3 times the detection limit) of these analytes were also found in two of the four laboratory (method) blanks but were not found in the trip blanks.

### Metals

Precision. The precision of metals analyses by ICP-AES, GFAAS, and CVAAS was estimated for samples using matrix-spiked duplicate samples. The precision objectives (RPD <20%) were met for all target analytes analyzed by ICP-AES except aluminum and barium in the gas solid-phase spiked samples and boron in the process solid-spiked samples. The precision objectives for the GFAAS analyses were met except for lead in the gas vapor-phase matrix-spiked samples, selenium in the process solid matrix-spiked samples, and mercury and selenium in the aqueous process stream matrix spikes. In most of these cases, the concentrations of the analytes of interest were within 10 times the detection limit where the precision would not be expected as good or the spiked amount was low (<4 times) the amount found in the original sample.

Accuracy. The accuracy of metals analyses was estimated for the gas solid-phase samples using standard reference material (NIST 1633a fly ash) submitted blind to the laboratory as a performance audit sample. All of the metals analyzed by ICP-AES were within the 75-125% accuracy objectives except for beryllium (147%) which was recovered above the objectives. The fly ash (NIST 1633a) reference standard was also submitted for GDMS analysis. The results for this analysis are shown in Table D-2. Accuracy objectives were not assigned to the GDMS analyses since this technique has not been validated or widely used for these types of samples at the present time. However, the recoveries have been compared to the accuracy objectives for ICP-AES and flagged with a Q when outside the QC objectives.

The accuracy of the metals analyses was estimated for coal samples using a standard reference coal sample (NIST 1632b) submitted blind to the laboratory. All of the metals analyzed by INAA in the reference sample were within the 75-125% accuracy objective.

The accuracy of the metals analyses was estimated for the limestone samples using a standard reference limestone (NIST Limestone 1C) submitted blind to the laboratory. The results show that the recoveries for most of the metals were outside the 75-125% accuracy objectives. Aluminum, silicon, and sodium recoveries were 50%, and the recovery for potassium was greater than 200 percent. The recoveries of these analytes may show a similar bias in the limestone process streams.

The accuracy of the metals analyses for the gas vapor-phase samples and the aqueous process streams were estimated using performance audit samples prepared from EPA reference standards. The gas-phase audit sample was prepared in the solutions used for the impingers (multi-metals train) and the two aqueous-phase samples were prepared in HPLC grade water. The results show that the recoveries of all the metals analyzed by ICP-AES and GFAAS were within the 75-125% accuracy objectives except Sb (127%), Ca (169%), Fe (139%), and Mg (131%) by ICP-AES and Se (50%) and Hg (33%) by GFAAS. The concentrations of these elements in the samples were at or near the detection limit and are not expected to be as accurate as concentrations at higher levels (at least 10 times the detection limit). The gas-phase audit sample prepared in the HNO<sub>3</sub>/H<sub>2</sub>O<sub>2</sub> impinger solution was also analyzed by ICP/MS. The results for this analysis showed recoveries ranging from 83 to 109%, all within the accuracy objectives for ICP-AES (accuracy objectives were not assigned for ICP/MS).

Matrix-spiked samples were also used to determine the accuracy of the metals analyses in the gas, process solids, and aqueous process matrices. Recoveries for the target analytes were within the 75-125% accuracy objectives except for selenium (0% recovery) in the gas vaporphase matrix mercury (35% recovery) in the aqueous process stream matrix.

Blank Effects. Aluminum, iron, manganese, and nickel were found at concentrations above the reporting limits in the field blanks to the gas vapor-phase sampling train. These elements were also found to a lesser extent in the impinger reagent blank solutions. Field blank filters combined with probe/nozzle rinses were also analyzed to determine the contribution of the filter media to the gas solid-phase components. Background or blank correction was

performed for the gas-phase samples using the results of the analysis of the impinger reagent blanks and the blank filter media.

### **Anions**

**Precision.** Precision for the anions analyses was estimated for the gas vapor-phase samples, process solid streams, and aqueous process streams by the analysis of matrix spiked samples. The precision objectives of 20% were met for chloride, fluoride, and sulfate except for chloride and sulfate in one matrix spike pair from the stack with RPDs of 22% and 24%, respectively.

Accuracy. Accuracy for the anions analyses was estimated using matrix spiked duplicate samples. The accuracy objectives of 80-120% recovery were met for all analytes and all sample matrices except for the fluoride spikes into the ESP ash solid samples with recoveries of 56% and 60 percent. A performance audit sample was submitted for analysis of the target anions in an aqueous matrix. The recoveries for this sample were outside the accuracy objectives for all three analytes. This sample was prepared with each analyte concentration at the MDL; therefore, no corrective action was initiated.

### Cyanide, Ammonia, and Phosphate

**Precision.** Precision for the cyanide, ammonia, and phosphate analyses was estimated using matrix spiked duplicate sample analyses. The precision objectives of 20% were met for each of the analytes for both the gas vapor-phase and aqueous process streams except for ammonia spikes into the JBR process liquids. The spike concentration was too low in comparison to the level found in the native process sample.

Accuracy. Accuracy for ammonia, cyanide and phosphate was estimated using both matrix spiked duplicate samples and "double blind" performance audit samples. The accuracy objectives (cyanide, 75-125%; ammonia, 80-120%; phosphate, 75-125%) were met for all matrix spiked samples except for the ammonia spikes into the JBR process liquids with recoveries at 60 and 273 percent. Recoveries for the performance audit samples met the accuracy objectives for all analytes with recoveries of 88% for ammonia, 80% for cyanide, and 97% for phosphate. Recoveries for performance audit samples spiked into the gas vapor-phase impinger solutions were not as good as the aqueous spiked audit samples. The recovery for ammonia in the impinger solutions was 63% and the recovery for cyanide was 50 percent. The aqueous spikes and impinger spikes were performed using the same spiking solutions and were spiked at the same concentration levels.

### **Performance Evaluation Audit Samples**

Performance audit samples are samples of known composition which provide a point-in-time assessment of analytical performance. Audit samples were prepared for this study by spiking known concentrations of target analytes from EPA Quality Control Check material, vendor-certified standard material, or standards obtained from NIST (formerly NBS). Audit samples are similar to QCCS except that they are submitted "double blind" to the analytical laboratory. That is, the laboratory does not know the identity or composition of the audit samples.

Audit samples were prepared at concentration levels simulating the expected range of the analytes in the field samples when possible. Organic audit samples were not prepared because the laboratories performing organic analyses have consistently shown acceptable performance on surrogate recoveries and internal quality control samples. Results for these samples are shown in Table D-2.

### **Quality Assurance Audits**

The purpose of a quality assurance audit is to provide an objective, independent assessment of a sampling or measurement effort. It ensures that the sampling procedures, data generating, data gathering, and measurement activities produce reliable and useful results. Sometimes inadequacies are identified in the sampling/measurement system and/or the quality control program. In such cases, audits provide the mechanism for implementing corrective action.

A technical systems audit (TSA) is an on-site, qualitative review of the various aspects of a total sampling and/or analytical system. It is an assessment of overall effectiveness and represents a subjective evaluation of a set of interactive systems with respect to strengths, deficiencies, and potential areas of concern. The audit consists of observations and documentation of all aspects of the measurement effort. Checklists that delineate the critical aspects of each methodology are used by the Radian auditor during the audit to document all observations. In addition to evaluating sampling and analytical procedures and techniques, the systems audit emphasizes review of all recordkeeping and data handling systems including:

- Calibration documentation for analytical instrumentation and sampling apparatus;
- Documentation of quality control data (control charts, etc.);
- Completeness of data forms and notebooks;
- Data review and validation procedures;
- Sample logging procedures;
- Chain-of-custody procedures;

- Documentation of maintenance; and
- Review of malfunction reporting procedures.

A technical systems audit of the Radian sampling and on-site analytical efforts was conducted on June 23 - 25, 1993 at Plant Yates by Barbara Hayes, a member of Radian's Quality Assurance Section. No critical or major concerns were observed during the audit; therefore, no Recommendations for Corrective Action (RCAs) were made. The sampling team was led by Dave Virbick and the analytical team was led by David Maxwell. The sampling team appeared well versed in the sampling methodology and requirements of the program. The equipment and instrumentation were generally in good working condition. All sampling and measurement procedures conformed to those described in the site Management Plan. Sampling information and any problems encountered were recorded onto preformatted data sheets or into bound laboratory notebooks. Duplicate samples were collected for the solid and aqueous streams at a rate of ten percent or one duplicate set per sample type (bottom ash, fly ash, etc.).

Sample collection procedures used by the sampling team followed those outlined in the site test plan. A detailed sampling schedule was used by the team to guide the collection of the samples for each analytical species at each sampling point.

No problems were identified with the sample custody procedures or documentation. A detailed master logbook was prepared prior to the field effort for all samples to be collected during each sampling period. This log was updated as the various samples were collected with the actual dates and times of sample collection. Samples were labelled with preformatted sample labels and stored at ambient temperature or cooled as required by the analytical species. Chain-of-custody forms were filled out and the samples were prepared for shipment to the laboratories for analysis.

Calibration of all on-site equipment was checked and found to be up-to-date. The analytical balance and top loading balance in the on-site laboratory trailer had been calibrated and certified within the past year. In addition, certified weights were available for daily balance checkout. All dry gas meters, consoles, Pitot tubes, and nozzles had been calibrated in the Radian Source Sampling Laboratory prior to being transported to the field location. Documentation for each of the observed instruments and equipment in use could be found in the records maintained by the sampling crew chief in the on-site laboratory. Sufficient replacement units were on hand to allow for breakage or equipment malfunction.

Recordkeeping practices by the project team were observed to be sound. Entries were made onto preformatted data sheets in ink, without erasures, signed and the time noted as each sample was collected.

### Coal Round Robin

An interlaboratory study consisting of a coal round robin analysis was conducted by CONSOL, Inc. The objective of this round robin study was to estimate the analytical

variability one can expect on trace element analyses when comparing results from the same laboratory or results from two or more laboratories. The results of CONSOL's study is contained in the document entitled "Interlaboratory Variability and Accuracy of Coal Analyses in the U.S. Department of Energy Utility Air Toxics Assessment Program," which follows this section. The results from Radian's laboratory are designated as "Lab III" in the above referenced document. Radian's objectives in assessing this data are (1) to compare Radian's round robin results with the overall results of the study, and (2) based on this assessment, determine if a change in any of the analytical methods for Phase II should be made.

The analytical accuracy for each laboratory involved in the round robin study was measured by a comparative analysis of a standard reference material (SRM) coal sample (NIST 1632b). Each laboratory's analytical results for the standard reference material were compared to the certified or informational (non-certified) values. The round robin criteria for accurate results was 90-110% recovery of the SRM's certified value. (This is more stringent than the 80-120% recovery objective established for the program at Plant Yates). The following discussion addresses the performance of Radian's subcontracted coal laboratories with respect to the accuracy and precision assessments conducted by CONSOL on the NIST SRM.

### **Discussion of Results**

The results of Radian's analysis of the SRM and the SRM-certified values are shown in Table D-3. Accuracy and precision objectives for the SRM coal in the round robin study were met by Radian for all ultimate and proximate parameters (% ash, C, H, N, S, and HHV) with the exception of one sulfur analysis which was reported outside the objective range for accuracy and precision. The methods used for ultimate, proximate, and HHV analyses are current ASTM protocols and are consistent with the methods used by most of the other laboratories. No change in the analytical approach for Phase II of this project is warranted.

Major ash minerals were primarily determined by instrumental neutron activation analysis (INAA). Silicon dioxide (SiO<sub>2</sub>) and sulfur trioxide (SO<sub>3</sub>) were not reported for the Plant Yates or the round robin study. The accuracy and precision objectives were met for all major ash minerals reported except calcium, magnesium and potassium. For future work, other ASTM methods (ASTM D-4326 or alternate) should be used to improve analytical bias and precision for these elements. This is especially important where these major elements are considered key factors in assessing mass flow rates in material balance closures.

Radian analyzed most of the trace elements in coal by INAA. Other methods of analysis using different preparation techniques were performed for As, B, Be, Cd, F, Hg, Pb, and Se. Of the target trace elements, 82% were detected. Cadmium, copper, and nickel were not detected. The results for copper and nickel are surprising, since this same SRM (1632b) was used as an internal audit sample during the Plant Yates study, and recovery by the same method (INAA) was 99% for both elements. Cadmium was determined by ICP-AES and this technique does not have the sensitivity to detect cadmium at the levels present in the SRM. Analysis of cadmium by graphite furnace-AA will be specified in Phase II of this project.

The accuracy objectives of the round robin study were met for 50% of the detected trace elements. Elements meeting accuracy objectives were barium, chromium, cobalt, and vanadium. Certified values for boron, beryllium, fluorine, and mercury are not available for this SRM, so no accuracy measurements were performed for these elements in the round robin report. However, the results for these noncertified elements appear consistent with those from the other laboratories. Elements that did not meet the 90-110% recovery range were arsenic, cobalt (1 result), manganese, molybdenum, lead, antimony, and selenium. (Antimony, manganese and molybdenum SRM recovery values obtained during the Plant Yates study were well within the 90-110% objective of the round robin study. See Table D-2.)

One of the requirements of the round robin study was to report analytical results for the target analytes that were determined by the same methods used to report plant coal sample results. For the Yates project (and the coal round robin study), Radian performed multiple techniques for some elements (i.e., INAA vs. GFAA or ICP-AES) to provide comparative results, especially where questionable results by any one technique had been previously encountered. Performance evaluation (PE) audit samples (SRMs) were submitted for analysis by each method and the accuracy and precision were assessed before selecting the best qualified data for reporting and for use in material balance calculations.

### Comments

One of the conclusions evident from the round robin study is that there is a high degree of variability and repeatability between methods, laboratories, and duplicate results for trace elements. Evidence of the variability in trace element analyses can be shown, for example, with neutron activation analysis where unacceptable results were reported for the analysis of the NIST SRM in the round robin study, but the same technique produced 90-110% recovery for the same elements in the NIST 1632b standard reference coal submitted as an audit sample during this project. This suggests that the performance of some techniques, like INAA, may vary substantially between repeated analysis and analytical batches. Neutron activation appears to be a cost effective analytical technique; however, as with all analytical techniques, the results must be evaluated on a case-by-case basis.

Although the round robin analysis is useful for indicating problematic methods and poor quality control, the project-specific quality control activities should be used for assessing the accuracy and precision of the coal analyses performed at each site.

Table D-3
Radian Lab analysis of Standard Reference Coal, 1632b

| Parameter                      | Certified Value    | Analytical<br>Method | Average %<br>Recovery | Run 1  | Run 2  |
|--------------------------------|--------------------|----------------------|-----------------------|--------|--------|
| Ulitmate/Proxim                | nate (% Dry Basis) |                      |                       |        |        |
| Ash                            | 6.80               | D 3174               | 99.6                  | 6.78   | 6.77   |
| Carbon                         | 78.11              | D 5373               | 99.4                  | 77.74  | 77.52  |
| Hydrogen                       | 5.07               | D 5373               | 101.2                 | 5.14   | 5.12   |
| Nitrogen                       | 1.56               | D 5373               | 97.1                  | 1.54   | 1.49   |
| Sulfur                         | 1.89               | D 4239               | 140.7                 | 1.93   | 3.394  |
| Chlorine                       | 0.126              | D 4208               | 84.5                  | 0.107  | 0.106  |
| BTU/lb                         | 13,890             | D 2015               | 99.2                  | 13,767 | 13,797 |
| Major Ash Min                  | erals              |                      |                       |        |        |
| SiO <sub>2</sub>               | 44.03              |                      |                       |        | ·      |
| Al <sub>2</sub> O <sub>3</sub> | 23.75              | INAA                 | 98.5                  | 24.37  | 22.43  |
| TiO <sub>2</sub>               | 1.11               | INAA                 | 92.8                  | 0.97   | 1.09   |
| Fe <sub>2</sub> O <sub>3</sub> | 15.96              | INAA                 | 91.7                  | 14.24  | 15.04  |
| CaO                            | 4.2                | INAA                 | 53.5                  | 2.3    | 2.19   |
| MgO                            | 0.93               | INAA                 | 80.1                  | 0.77   | 0.72*  |
| Na <sub>2</sub> O              | 1.02               | INAA                 | 85.3                  | 0.87   | 0.87   |
| K <sub>2</sub> O               | 1.33               | INAA                 | 74.1                  | 1.07ª  | 0.9*   |
| $P_2O_5$                       |                    | ICP-AES              | -                     | 0.36   | 0.39   |
| SO <sub>3</sub>                |                    |                      | <b></b>               |        |        |

Table D-3 (Continued)

| Parameter      | Certified Value   | Analytical<br>Method | Average % Recovery | Run 1             | Run 2            |
|----------------|-------------------|----------------------|--------------------|-------------------|------------------|
| Trace Elements |                   |                      |                    | -                 |                  |
| As             | 3.72              | GF/AA                | 53.8               | 2 <sup>b</sup>    | 2⁵               |
| В              | ~-                | ICP-AES              |                    | 61                | 60               |
| Ва             | 67.5              | INAA                 | 106.6              | 71.2              | 72.7             |
| Ве             | ~                 | ICP-AES              | <u></u>            | 0.6               | 0.6              |
| Cd             | 0.0573            | ICP-AES              |                    | < 0.2             | < 0.2            |
| Cr             | 114               | INAA                 | 96.4               | 11                | 10.2             |
| Co             | 2.29              | INAA                 | 89.5               | 2.09              | 2.01°            |
| Cu             | 6.28              | INAA                 |                    | <35.3             | <35.7            |
| F              |                   | D 3761               |                    | 40                | 40               |
| Hg             |                   | DGA/CVAA             |                    | 0.05              | 0.05             |
| Mn             | 12.4              | INAA                 | 86.3               | 10.8°             | 10.6°            |
| Mo             | 0.94              | ĪNAA                 | 191.7              | 1.55 <sup>b</sup> | 1.9 <sup>b</sup> |
| Ni             | 6.1               | INAA                 | 145.1              | < 8.8             | < 8.9            |
| Pb             | 3.67              | ICP-AES              | 81.7               | 3°                | 3°               |
| Sb             | 0.24 <sup>d</sup> | INAA                 | 81.3               | 0.196°            | 0.194°           |
| Se             | 1.29              | GF/AA                | 77.5               | 1°                | 1°               |
| v              | 14 <sup>d</sup>   | INAA                 | 101.1              | 14.2              | 14.1             |

<sup>\*</sup> Results exceed ASTM reproducibility limits.

<sup>&</sup>lt;sup>b</sup> Results exceed certified values by more than 25 percent.

<sup>°</sup> Results exceed certified values by more than 10 percent.

d Informational value (not certified).

Interlaboratory Variability and Accuracy of Coal Analyses in the U.S. Department of Energy Utility Air Toxics Assessment Program

Lawrence W. Rosendale
Matthew S. DeVito
CONSOL Inc.
Research and Development
4000 Brownsville Road
Library, PA 15129

### INTRODUCTION

The 1990 Clean Air Act Amendments (CAAA) empower the Environmental Protection Agency to set emission standards for a variety of potentially hazardous air pollutants from combustion sources. In order to define emissions from coal combustion sources, the U.S. Department of Energy (DOE) is coordinating an air toxics assessment program to characterize stack emissions from coal-fired utility boilers of volatile and semi-volatile organics, metals and anions specified in Title III of the Clean Air Act Amendments of 1990. The information from the DOE study will enable the Environmental Protection Agency to properly classify coal-fired utility boilers with regard to the CAAA and evaluate the potential risk to human health posed by these types of emission sources.

The first phase of DOE study consisted of sampling eight power plants. These plants represented a diverse range of boiler configurations, emission controls, and coal feeds. Part of the sampling protocol at each of the sites was to collect representative samples of the feed coal to the boiler. By analyzing the feed coal as well as all gas, solid, and water effluent streams, a material balance around each site could be established. A material balance closure near 100% would indicate that sampling and analyses of all streams was handled properly, and reliable emission estimates could be calculated.

Five laboratories participated in analyzing samples that were collected at the eight test sites. As part of the DOE program, CONSOL R&D conducted a coal analysis round robin among these laboratories. The primary purpose of this study was to estimate the analytical variability one can expect on trace element analyses when comparing results from the same laboratory or results from two or more laboratories.

Trace elements in coal generally are defined as those elements that occur at concentrations of 100 parts per million (ppm) or less. Seventeen trace elements were included in this study. Thirteen of these elements are listed in the 1990 CAAA as hazardous air pollutants. Earlier studies have shown the interlaboratory variability of trace element analyses can be quite large. This analytical variability should be considered when determining the potential emissions from coal combustion sources.

The variability of other commonly measured coal quality parameters also was evaluated.

### COAL SAMPLES

The coal samples used in the round robin study were supplied to CONSOL R&D by the prime contractor at each of the eight test sites. These were the same coals that were being fed to the boilers during the testing period at each site. The coals were geologically diverse and ranged from lignite to bituminous in rank. Once received, all sample reduction and preparation was according to ASTM D 2013 "Standard Method of Preparing Coal Samples for Analyses". A spinning riffle was used to divide the gross sample prepared from each coal into homogenous splits. This is the preferred method in the coal industry to divide a sample of coal into several samples having the same composition and is widely used in commercially sponsored coal analyses round robin programs.

D-26 2

### ROUND ROBIN DESIGN

Each participating laboratory was provided duplicate samples of each of the eight coals, along with a sample of a National Institute for Standard and Technology (NIST) certified reference coal. The samples were randomized and were identified only by code letters. Each laboratory was requested to analyze the samples in duplicate using the same procedures used to analyze the samples from the DOE Air Toxics Assessment programs. By using this round robin design, intralaboratory repeatability and interlaboratory reproducibility, as well as individual laboratory precision, could be established. The suite of analyses included in this study is shown below:

| Proximate-Ultimate     | Major Ash Elements                               | Trace I | Elements |
|------------------------|--------------------------------------------------|---------|----------|
| Moisture               | SiO <sub>2</sub>                                 | As      | Hg       |
| Ash                    | ${\rm Al}_2 {f 	ilde{O}}_3$                      | В       | Mn       |
| Carbon                 | TiŌ2                                             | Ba      | Mo       |
| Hydrogen               | Fe $_2$ Ō $_3$                                   | Ве      | Ni       |
| Nitrogen               | CaŌ ਁ                                            | Cd      | Рb       |
| Sulfur                 | MgO                                              | Cr      | Sb       |
| Chlorine               | Na <sub>2</sub> O                                | Co      | Se       |
| Heating Value (Btu/lb) | K₂Õ                                              | Cu      | V        |
| •                      |                                                  | F       |          |
|                        | P <sub>2</sub> O <sub>5</sub><br>SO <sub>3</sub> |         |          |

The average interlaboratory results for this suite of analyses for all eight samples are shown in Table 1. Individual laboratory results for all samples are presented in Appendix A. Samples identified as A&J and B&K are Illinois basin bituminous coals. Samples C&L, F&O, and H&Q are mid-sulfur bituminous coals. Sample D&M is a subbituminous coal from the Powder River basin. Sample G&P is also a subbituminous coal. Sample E&N is ranked as a lignite.

### ANALYTICAL TECHNIQUES

The analytical techniques used by the participating laboratories to complete the suite of analysis in this study are shown in Table 2. No one parameter was measured by all laboratories by the same analytical technique. All of the labs used ASTM standard methods for the Proximate and Ultimate analyses. However, numerous techniques were used for the major ash and trace element analyses. The techniques included graphite furnace atomic absorption (GF/AA), inductively coupled plasma emission spectroscopy (ICP/ES), inductively coupled plasma mass spectroscopy (ICP/MS), instrumental neutron activation analyses (INAA), ion chromatography (IC), cold vapor atomic fluorescence (CV/AF), and X-ray fluorescence (XRF). Mercury was measured by gold amalgam cold vapor atomic absorption (GA/CVAA), double gold amalgam cold vapor atomic absorption (DGA/CVAA), and cold vapor atomic fluorescence (CV/AF). The techniques of AA, GF/AA, ICP/ES, ICP/MS, IC, and CVAA require that the analysis sample first be put into solution before being introduced into the instrument. INAA, XRF, GA/CVAA, and DGA/CVAA analyses can be performed on the whole coal or an ash sample of the coal.

### ACCURACY

The accuracy of analyses performed by each laboratory was evaluated using the NIST Standard Reference Coal 1632b. This Pittsburgh seam coal is the most characterized standard reference material available from NIST. Certified or informational values are listed for all of the parameters included in this study except for boron, barium, fluorine, phosphorus, and mercury. For trace elements, all definitive results ("<" values ignored) that fell within 10% of the certified or informational value arbitrarily were considered accurate values. Values outside this range were considered to be inaccurate. ASTM interlaboratory reproducibility limits were the criteria for accuracy on all other analyses. Table 3 shows the results reported by the each laboratory for NIST SRM 1632b. Using the previously described criteria for accuracy, the percentage of accurate results (accurate results/total definitive results) was calculated. Parameters without a certified or informational value were not included.

The table below shows the percentage of accurate results reported by each lab for the suite of trace elements, the percentage of accurate results for all analyses, and the percentage of trace element results that were reported as definitive. Although lab IV showed the highest percentage of accurate results (75%), that figure is based on only the 80% of definitive results reported by that laboratory.

As shown in the table below, the percentage of accurate trace element analyses ranged from 38% to 75%. Non-definitive results reported for antimony, cadmium, copper, fluorine, molybdenum, nickel, and selenium. Only one laboratory reported definitive results for the entire suite of trace elements. The most troublesome elements, with respect to accuracy, were arsenic, cadmium, molybdenum, antimony, and selenium. Only one lab reported accurate results for cadmium, molybdenum or antimony.

The Proximate and Ultimate analyses reported by labs II, III, IV, and V were all within ASTM reproducibility limits except for a single sulfur analysis. Lab I reported results that exceeded ASTM reproducibility limits for hydrogen, nitrogen, sulfur chlorine and heating value. Two labs reported all major ash elements within ASTM limits. Lab I exceeded limits for silicon, iron, calcium, magnesium, and potassium. Lab III exceeded limits for calcium, magnesium, and potassium. Lab IV performed only a limited number of major ash element analyses, but reported results for aluminum and potassium that were outside established ASTM reproducibility limits.

% ACCURATE RESULTS ON NIST 1632b

| Lab | Definitive Trace Element Results | Trace<br>Elements | All Analyses |
|-----|----------------------------------|-------------------|--------------|
| I   | 88                               | 38                | 43           |
| II  | 100                              | 73                | 88           |
| Ш   | 82                               | 50                | 63           |
| IV  | 80                               | 75                | 80           |
| V   | 100                              | 48                | 78           |

D-28 4

### REPRODUCIBILITY

The percent relative standard deviation (PRSD) of the analytical results was chosen to represent interlaboratory reproducibility in this study. Table 4 shows the average PRSD for all labs, on all samples, for the entire suite of analyses. Reproducibility for trace elements ranged from 11.0 PRSD for vanadium to 60.7 PRSD for molybdenum. The average PRSD for all of the trace elements (all coals, all labs) was 27.9%. In most cases the PRSDs for cadmium, copper and antimony are based on results from only three laboratories. These elements were either below detection limits at laboratories II and III or were not determined.

Excluding Lab I's results, Proximate and Ultimate analyses were generally within ASTM limits. Aside from the determination of percent ash this particular laboratory reported only a single sulfur analyses on the standard reference material that was within established ASTM limits. Chlorine, although not generally considered a trace element in coal, is listed in the 1990 CAAA as a hazardous air pollutant. It showed an average PRSD for all labs of 37.2 %. Three of the coals sampled in the study are ranked subbituminous or lignites. Chlorine on these samples (D&M, E&N, G&P) was reported as below detection limits (0.01 and 0.02%) by two laboratories and not determined by another laboratory. Therefore, the PRSD for these three samples was calculated with data from only two labs. The reproducibility estimates for chlorine may have been larger if more labs had reported data.

Major ash elements were determined with an average PRSD of 21.7%. This is only slightly better than the average PRSD of 27.9% for trace elements. Phosphorous, calcium, and magnesium had PRSDs greater than 35%. Including only labs II and V, the overall average PRSD for the major ash elements drops to 7%. These were the only labs that did not exceed ASTM limits on the certified reference material. Labs I and III showed a consistent low bias for calcium and magnesium on most samples as well as on the certified reference material. Lab I showed poor intralaboratory repeatability for most major ash elements.

Figure 1 shows the interlaboratory reproducibility as PRSD for the suite of trace elements on all samples. The overall average PRSDs for V, F, Be, Mn, B, Hg, Cu, Sb, and Cr, and Ba are between 9.6 and 22.9%. PRSDs for Ba, Co, Ni, and Se were somewhat poorer, averaging nearly 30%. Ni, As, Cd, Pb and Mo showed the most variability with PRSDs from 36.2 to 60.7%.

Figure 2 shows the average interlaboratory reproducibility for the suite of trace elements, as well as the range of PRSDs, for each element on each sample. Although the average PRSD for many elements is reasonably good (~20%), on any given sample the range of reported values can be quite large. The average minimum PRSD for interlaboratory trace element analyses was 13.6%. The average maximum was 48.1%. Ba, Cd, Cu, Hg, Mo, Ni, Pb and Sb all had a PRSD range over 30%. The range of reported values for Mo, Ni, and Cd on some samples was 52%, 76%, and 110% respectively. This shows that outliers are to be expected when comparing trace element analyses between laboratories.

### REPEATABILITY

Figure 3 shows the average intralaboratory repeatability for each trace element for all coals. Intralaboratory repeatability was calculated as the average percent difference in a given

laboratory's results on the eight paired samples. The data show that the overall laboratory repeatability on trace elements ranged from a low of 7.8% for chromium to a high of 32.5% for cadmium. The average repeatability for all trace elements was 14.6%. Overall intralaboratory repeatability for all elements by all labs was less than 10% on half of the analyses, less than 20% on 68%, and less than 30% on 75% of all trace element results. In general, elements with lower between-lab reproducibility also had lower same-lab repeatability. Similarly, elements like cadmium, that showed reproducibilities with a high PRSD, had higher average repeatabilities, with the exception of molybdenum. This element had a relatively low repeatability (16.8%), but showed the highest reproducibility (60.7%). This may suggest bias in the various methods used for its determination. Data showing the complete list of individual laboratory repeatability for all samples is presented in Appendix B.

### VARIABILITY vs COAL RANK

Figure 4 shows the variability in interlaboratory trace element analyses as PRSD plotted as a function of the as-determined heating value for the eight coals. The as-determined heating value of a coal is one way to roughly establish coal rank. The data clearly show that trace element analytical variability is a function of coal rank, increasing as the coal rank decreases. This is not unusual; many ASTM coal standards have precision statements that are rank-dependant. In the case of the eight coals studied here, as the heating value of the coal (Btu/lb) decreases, the analytical variability of trace elements increases. Sample pairs A&J, C&L, H&Q, F&O, and B&K are bituminous coals. Samples G&P and D&M are subbituminous and samples E&N are classified as lignites. A regression analyses of the data is shown in Figure 5 and has an r² value of 0.95. Average trace element intralaboratory repeatability showed a similar trend. The overall trace element repeatability for the bituminous coals was slightly better (14.8%) than that for the subbituminous and lignite samples (20.2%).

### **MERCURY**

Of the potential hazardous air pollutants mentioned in the CAAA, mercury is receiving the most attention regarding possible emissions from coal combustion sources. As mentioned earlier, four of the five laboratories in this study used some form of gold amalgamation followed by cold vapor atomic absorption for mercury analyses, the other used cold vapor atomic fluorescence. The table below summarizes intralaboratory repeatability and interlaboratory reproducibility for mercury analyses. Repeatability is shown as the percent difference in a laboratory's results on the eight paired samples, and reproducibility is shown as PRSDs.

### REPEATABILITY AND REPRODUCIBILITY OF MERCURY RESULTS

|                                   | <u>L&amp;A</u> | <u>B&amp;K</u> | C&L  | D&M  | E&N  | F&O  | G&P | H&O  | Avg. |
|-----------------------------------|----------------|----------------|------|------|------|------|-----|------|------|
| Repeatability,<br>as % difference | 11.3           | 46.3           | 19.1 | 19.1 | 25.8 | 11.7 | 8.6 | 21.2 | 17.6 |
| Reproducibility, as PRSD          | 10.4           | 40.6           | 24.8 | 16.7 | 16.9 | 20.4 | 9.1 | 26.1 | 20.6 |

A recent, more extensive round robin on mercury analyses<sup>3</sup> estimated interlaboratory reproducibility and intralaboratory repeatability at 25 and 50%, respectively. That particular round robin

involved three coal samples and 12 laboratories. Although the majority of laboratories in that study also used cold vapor atomic absorption for mercury analyses, some data were provided by labs using neutron activation and cold vapor atomic fluorescence.

### SUMMARY AND CONCLUSIONS

Based on the analyses of the certified reference coal, even the best laboratory in this study reported trace element levels to within 10% of their certified value only about 80% of the time. On average, only 57% of the reported data from all labs met this 10% level of accuracy.

The techniques used in many laboratories for trace element analyses produced a significant number of non-definitive ("<") results. If certain detection limits are required, analytical techniques must be specified.

Although the overall interlaboratory trace element reproducibility is 28%, it may be very poor, approaching 60% for some elements.

Interlaboratory reproducibility for trace element analyses is dependent on coal rank. As coal rank decreases, analytical variability increases.

The variability of coal trace element analyses makes accurate estimates of emissions from combustion sources difficult, especially if the estimates are based solely on feed coal analyses.

### RECOMMENDATIONS FOR CONDUCTING FUTURE COAL ANALYSES ROUND ROBIN PROGRAM

- 1. Follow ASTM standard method E 691. This standard lists specific guidelines for conducting an interlaboratory coal analysis round robin program. The standard also specifies software for the statistical interpretation of results. Both the method and the software are available from ASTM for a nominal fee. One of the guidelines violated in this round robin was the number of participating laboratories. E 691 states that a minimum of six laboratories is necessary to generate ASTM precision statements. For that reason we were unable to use the software from this standard that would have generated ASTM limits for repeatability and reproducibility.
- 2. Laboratories that are candidates for the round robin should be evaluated. Based on the data reported on the standard reference coal in this study, it is obvious that Lab I was not proficient with coal analyses. Laboratories that are candidates for round robins should be audited by someone familiar with the guidelines set forth in ASTM D 4182, "Evaluation of Laboratories Using ASTM Procedures in the Sampling and Analysis of Coal and Coke". These labs also should be able to demonstrate their ability to conform with ASTM D 4621, "Accountability and Quality Control in the Coal Analysis Laboratory". A lab not in compliance with either of the standards should not be included in the study. As a minimum, candidate labs should be able to demonstrate proficiency by analyzing a certified reference material within specified precision limits prior to conducting the actual round robin.
- 3. Specify the minimum detection limits that are required for each element. Based on the large number of non-definitive results reported for several of the trace elements it is apparent that

most laboratories are not using techniques that can accurately assess the levels of some of the trace elements found in coal. Using half the detection limit, which is the common practice for treating this type of result, would lead to a considerable overestimation of some trace element levels. Examples of this overestimation based on half the detection limit are found in Table 3. For instance, Lab III reported an average detection limit for Cu as 35.5 ppm. Using one half of this value, or 17.8 ppm, would overstate the certified value for Cu on this sample by nearly three fold.

### REFERENCES

- 1. Lengyel, John Jr. and Obermiller, Edward L. "Interlaboratory Variability and Accuracy In Trace Element Analyses of Coal". Proceedings, Fourth Annual Pittsburgh Coal Conference, Pittsburgh, PA, 1987, pp. 148-159.
- 2. "ASTM Volume 05.05 Gaseous Fuels; Coal and Coke", American Society for Testing and Materials, Philadelphia, PA, 1993.
- 3. Lengyel, John Jr., Devito, M. S., and Bilonick, R. A. "Interlaboratory and Intralaboratory Variability in The Analyses of Mercury In Coal". Paper to be presented at the Air Waste Management Association Annual Meeting, Cincinnati, OH, 6/19-24/94.

Table 1. Average of Interlaboratory Results for All Samples.

|                                | A&J<br>IL BASIN | B&K<br>IL BASIN | C&L<br><u>BIT.</u> | D&M<br>PRB  | E&N<br>ND LIG. | F&O<br>BIT.   | G&P<br>SUB. BIT. | H&Q<br>BIT. |
|--------------------------------|-----------------|-----------------|--------------------|-------------|----------------|---------------|------------------|-------------|
| Trace Elements                 |                 |                 | pı                 | pm Dry Coa  | ai             |               |                  |             |
| As                             | 2.39            | 2.74            | 9.43               | 1.24        | 7.64           | 26.0          | 1.70             | 3.45        |
| 8                              | 227             | 212             | 72. <b>3</b>       | 83.4        | 126            | 70.7          | 76.5             | 169         |
| Ba                             | 47.3            | 48.9            | 31.1               | 370         | 568            | 76.1          | 312              | 48.6        |
| ₿e                             | 1.33            | 1.61            | 1.33               | 0.42        | 0.72           | 2.37          | 1.29             | 1.41        |
| Cd                             | 0.580           | 1.013           | 0.112              | 0.058       | 0.079          | 0.085         | 0.560            | 0.508       |
| Cr                             | 28.3            | 34.7            | 16.3               | 4.40        | 8.05           | 20.0          | 9.61             | 21.4        |
| Co                             | 3.87            | 3.57            | 5.50               | 0.86        | 2.10           | 6.95          | 4,14             | 4.42        |
| Cu                             | 10.7            | 11.3            | 8.47               | 9.52        | 9.28           | 21.2          | 14.5             | 13.1        |
| F                              | 97.1            | 112             | 58.0               | 44.3        | 56.9           | 81.3          | 80.3             | 79.5        |
| Hg                             | 0.101           | 0.109           | 0.126              | 0.084       | 0.145          | 0.260         | 080.0            | 0.085       |
| Mn                             | 41.3            | 34.3            | 18.4               | 145         | 123            | 26.5          | 76.6             | 29.0        |
| Mo                             | 8.34            | 7.91            | 1.87               | 7.93        | 3.98           | 4,54          | 2,11             | 5.80        |
| Ni                             | 17.6            | 18.5            | 14.1               | 5.09        | 7.26           | 28.2          | 6.84             | 18.3        |
| Pb                             | 9,12            | 13.1            | 6.00               | 5.22        | 3.31           | 13.6          | 8.86             | 8.47        |
| Sb                             | 0.49            | 0.79            | 0.64               | 0.47        | 0.75           | 2.10          | 1.74             | 0.62        |
| Se                             | 2.94            | 3.16            | 1.92               | 0.84        | 0.80           | 2.56          | 1.18             | 2.21        |
| V                              | 36.6            | 46.3            | 31.0               | 9.36        | 16.8           | 34.0          | 26.1             | 38.5        |
| Proximate & Ultimate           |                 |                 | %                  | 6 Dry Basis |                |               |                  |             |
| Ash                            | 11.99           | 12.54           | 11.56              | 11.7        | 16.71          | 13.35         | 20.57            | 10.59       |
| Carbon                         | 69.58           | 69.80           | 72.08              | 67.6        | 58.80          | 70. <b>26</b> | 61.27            | 71.03       |
| Hydrogen                       | 4.87            | 4.78            | 4.96               | 4.80        | 4.53           | 4.86          | 4.78             | 5.14        |
| Nitrogen                       | 1.33            | 1.33            | 1.39               | 1.01        | 0.89           | 1.37          | 1.05             | 1.42        |
| Sulfur                         | 3.42            | 3.53            | 3.26               | 1.15        | 1.12           | 3,01          | 0.65             | 2.89        |
| Chlorine                       | 0.064           | 0.074           | 0.085              | 0.03        | 0.040          | 0.140         | 0.039            | 0.115       |
| Heating Valu                   | 12214           | 12189           | 12888              | 11350       | 9601           | 12452         | 10636            | 12587       |
| Major Ash Elements             |                 |                 | %                  | Dry Ash     |                |               |                  |             |
|                                |                 |                 |                    |             |                |               |                  |             |
| SiO <sub>5</sub>               | 44.58           | 49.7            | 44.98              | 42.12       | 39.48          | 45.67         | 59.26            | 51.55       |
| Al <sub>2</sub> Õ <sub>3</sub> | 16.78           | 18.6            | 21.41              | 16.48       | 10.58          | 22.54         | 20.62            | 21.74       |
| TiO <sub>2</sub>               | 0.89            | 0.99            | 0.99               | 0.88        | 0.47           | 1.22          | 1.00             | 1.03        |
| Fe <sub>2</sub> O <sub>3</sub> | 15.95           | 15.1            | 24.75              | 6.07        | 6.14           | 21.33         | 4.45             | 16.39       |
| CaO                            | 4.11            | 2.69            | 1.04               | 7.79        | 10.54          | 1.50          | 3.29             | 2.46        |
| MgO                            | 0.77            | 0.82            | 0.60               | 2.55        | 2.97           | 0.73          | 0.93             | 0.79        |
| Na <sub>2</sub> O <sub>3</sub> | 0.91            | 0.75            | 0.43               | 0.29        | 0.84           | 0.30          | 0.23             | 0.84        |
| ĸ,ŏ ´                          | 1.95            | 2.20            | 1.84               | 0.51        | 1.35           | 2.17          | 1.26             | 2.50        |
| P <sub>2</sub> O,              | 0.29            | 0.36            | 0.16               | 0.37        | 0.17           | 0.58          | 0.04             | 0.26        |
| so,                            | 4.57            | 2.61            | 1.39               | 11.41       | 15.08          | 1.71          | 3.68             | 2.56        |

Table 2. Analytical Methods Used on DOE Air Toxics Assessment Coal Samples.

| Parameter                      | Lab I  | Lab II    | Lab III  | Lab IV     | Lab V         |
|--------------------------------|--------|-----------|----------|------------|---------------|
| Moisture                       | D3173  | D 5142    | D 3173   | D 3173     | D 3173        |
| Ash                            | D3174  | D 5142    | D 3174   | D 3174     | D 3174        |
| Carbon                         | D3178  | D 5373    | D 5373   | D 3178     | D <b>5373</b> |
| Hydrogen                       | D3178  | D 5373    | D 5373   | D 3178     | D 5373        |
| Nitrogen                       | D3179  | D 5373    | D 5373   | D 3179     | D 5373        |
| Sulfur                         | D3177  | D 4239    | D 4239   | D 4239     | D 4239        |
| Chlorine                       | D4208  | LECO      | D 4208   | ***IC      | D 4208        |
| Stu/lb                         | D2015  | D 1989    | D 2015   | D 2015     | D 2015        |
| Major Ash Elements             |        |           |          |            |               |
| SiO <sub>2</sub>               | ICP/ES | ICP/ES    | ND       | D 4326 XRF | ICP/ES        |
| Al <sub>2</sub> Õ <sub>3</sub> |        | И         | INAA     | •          | •             |
| TiO <sub>2</sub>               | il     | ú         | •        | •          | ů.            |
| Fe₂Ō₃                          | N      |           | •        | ND         | H             |
| CaO                            | H      | ij        | •        | ND         | W             |
| MgO                            | •      | ₹         | •        | ND         | •             |
| NaO                            | H      | a         | •        | D 4326 XRF | u             |
| K <sub>2</sub> O <sub>3</sub>  | n      | n         | ¥        | 19         | •             |
| P2O3                           | a      | II.       | ICP/ES   | ND         | •             |
| so₃°                           | u      | N         | ND       | ND         | u             |
| Trace Elements                 |        |           |          |            |               |
| As                             | GF/AA  | ICP/MS    | GF/AA    | GF/AA      | CV/AF         |
| 8                              | ICP/ES | п         | ICP/ES   | ICP/ES     | ICP/ES        |
| 8a                             | •      | ICP/ES    | INAA     | •          |               |
| 8e                             | •      | ICP/MS    | ICP/ES   | •          | •             |
| Cd                             | AA     | 4         | •        |            | GF/AA         |
| Cr                             | ICP/ES | a a       | INAA     | 4          | ICP/ES        |
| Co                             | н      | u         | *        |            | •             |
| Cu                             |        | II        | *        | H          | 9             |
| Cu                             | ü      | п         | •        | u          | 4             |
| F                              | D3761  | *!C       | D 3761   | ***IC      | •             |
| Hg                             | CVAA   | DGA/CVAA  | DGA/CVAA | GA/CVAA    | CV/AF         |
| Mn                             | ICP/ES | ICP/MS    | INAA     | ICP/ES     | ICP/ES        |
| Mo                             | н      | 11        | •        | H          | •             |
| Ni                             | II .   | II .      | *        | 14         | •             |
| Pb                             | AA     | .i        | ICP/ES   | GF/AA      | GF/AA         |
| Sb                             | GF/AA  |           | INAA     | 11         | CV/AF         |
| Se                             | GF/AA  | **#ICP/MS | GF/AA    | 4          |               |
| V                              | ICP/ES | ICP/MS    | INAA     | ICP/ES     | ICP/ES        |
| -                              |        |           |          | · ·        | <b>,</b>      |

<sup>\*</sup>IC Hydropyrolysis with IC Finish

<sup>\*\*\*</sup>IC-Soluble Species Only

| AA<br>CVAA<br>CV/AF<br>DGA/CVAA<br>GF/AA | Atomic Absorption Cold Vapor Atomic Absorption Cold Vapor Atomic Fluorescence Double Gold Amalgam Cold Vapor Atomic Absorption Graphite Furnace Atomic Absorption | ICP/ES<br>ICP/MS<br>INAA<br>ND<br>XRF | inductively Coupled Plasma Emission Spectroscopy Inductively Coupled Plasma Mass Spectroscopy Instrumental Neutron Activation Analyses Not Determined X-ray Fluorescence |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC                                       | ion Chromatography                                                                                                                                                | AHF                                   | X-ray riuorescence                                                                                                                                                       |

<sup>\*\*#</sup>ICP/MS Hydropyrolysis with ICP/MS Finish

Table 3. Individual Laboratory Analyses of National Institute of Standard and Technology, Standard Reference Coal 1632b.

|                                                                                   | CERTIFIED                                                                                                                                                                         | 3                              | 181                                        | 3            | 17811        | **                          | # 8               | 7           | 2           | 148          | >             |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|--------------|--------------|-----------------------------|-------------------|-------------|-------------|--------------|---------------|
| PAHAMETER                                                                         | VALUE                                                                                                                                                                             | Aun 1                          | 1 Run 2                                    | Run 1        | Run 2        | Run 1                       | Run 1 Run 2       | Run 1 Run   | Run 2       | Run 1        | Run 2         |
|                                                                                   |                                                                                                                                                                                   |                                |                                            |              | g.           | Parts Per Million, Dry Coal | in, Dry Coal      |             |             |              |               |
| A S                                                                               | 3.72                                                                                                                                                                              | 3.04                           | 3.54                                       | 3.71         | 3.67         | Cal E                       | OH S              | N# Ş        | 9 Y         | 4 5          | C             |
| E C                                                                               | 67.5                                                                                                                                                                              | 201                            | 40<br>60<br>60                             | 8            | 90           | 71.2                        | 72.7              | 3 2         | 3 2         | 67.2         | 67.6          |
| 99                                                                                |                                                                                                                                                                                   | 0.93                           | 0.82                                       | 0.58         | 0.59         | 9.0                         | 0.0               | 0.5         | 0.0         | 0.693        | 0.668         |
| දී දී                                                                             | 0.0573                                                                                                                                                                            | 22                             | 3                                          | 91<br>9      | 0.000        | <0.2                        | <0.2              | <0.2        | <0.2        | 0.020        | ₽;            |
| <b>5</b> 6                                                                        | •                                                                                                                                                                                 | 122                            |                                            | )<br> -      | 5 6          | = 8                         | 20.5              | <b>3</b> 10 | =           | 7            | <b>;</b>      |
| 3 3                                                                               | 6.28                                                                                                                                                                              |                                | 21 K                                       | 9 4          | 2 K          | 20.0                        | 0.2<br>7.8<br>7.8 | N: <b>C</b> | NI <b>4</b> | 2.16<br>8.16 | 7             |
| u.                                                                                |                                                                                                                                                                                   | ×100                           | 400<br>400                                 | 63.0         | 35.0         | Ç                           | 4                 | ₽           | 문           | ;;;          | #<br>#        |
| HQ.                                                                               |                                                                                                                                                                                   | 0.17                           | 0.15                                       | 0.009        | 0.005        | 0.05                        | 0.05              | 0.05        | 0.07        | 0.057        | 0.062         |
| - F                                                                               | 12.4                                                                                                                                                                              | 111                            | T:                                         | 5.1          | 12           | 10.0                        | 10.0              | 12          | 13          | 10.9         | 11.1          |
| OM.                                                                               | 6.0                                                                                                                                                                               | 601<br>601                     | 2.63                                       | 0.85         | 0.0          | 1.55                        | 9                 | ۲ <u>٠</u>  | ×3          | Q            | Q             |
| Ē                                                                                 | 50                                                                                                                                                                                | - Col.                         | 7.30                                       | 5.65         | 6.23         | <b>8.8</b>                  | <b>9.9</b> \      | •           | Ľ           | 22           | œ             |
| 2 5                                                                               | 3.67                                                                                                                                                                              | 44.0                           | 3.44                                       | 3.61         | 6. 6<br>6. 6 | ر<br>د ا                    |                   | ਚ !         | ₹ '         | S)           | <b>-</b>      |
| 3 6                                                                               | •                                                                                                                                                                                 | 9.0°                           | 5 0.5<br>0 35                              | 0.22         | 0.23         | 6.1                         | 9                 | ⊽ ·         | ⊽ 9         | 2            | Q             |
| 5 >                                                                               | 14                                                                                                                                                                                | 102                            | 0 2 2<br>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |              | 12.7         | 4                           | 4                 | -: ₹        | S 5         | 1.23         | 0 751<br>14 a |
|                                                                                   | •                                                                                                                                                                                 |                                | #<br>24<br>1                               | ) i          | •            | •                           | <u>:</u>          | !           | 2           | 2            | 0.            |
| Single-underlined re Double-underlined re * Informational Value ND=Not Determined | Single – underlined results exceed certified values by more than 10% Double – underlined results exceed certified values by more than 25% * Informational Value ND=Not Determined | more than 10<br>y more than 29 | * <b>*</b>                                 |              |              |                             |                   |             |             |              |               |
|                                                                                   |                                                                                                                                                                                   |                                |                                            |              |              | wt %, Dry Coal              | / Coal            |             |             |              |               |
| Ash                                                                               | 6.80                                                                                                                                                                              | 6.92                           | 6.91                                       | 6.91         | 6.91         | 6.78                        | 6.77              | 6.78        | 6.79        | 6.76         | 6.83          |
| Carbon                                                                            | 78.11                                                                                                                                                                             | 76.43                          | 76.97                                      | 77.93        | 78.39        | 77.74                       | 77.52             | 76.89       | 76.72       | 77.62        | 77.2          |
| Hydrogen                                                                          | 5.07                                                                                                                                                                              | 6.70                           | 0.14                                       | 5.03         | 4.99         | 5.14                        | 5.12              | 40.4        | 4           | 5.06         | 5.01          |
| Nitrogen                                                                          | 1.56                                                                                                                                                                              | 0.47                           | 0                                          | 1.54         | 1.0          | 1.54                        | 1.40              | 1.5         | 1.56        | 1.46         | 1.41          |
| Suffer                                                                            | 1.89                                                                                                                                                                              | 2:27                           | - 8                                        | - 80         | 1.92         | 1.93                        | 3.39              | 8           | 1.95        | 29.          | 10.1          |
| Chlorine                                                                          | 0.126                                                                                                                                                                             | 0.030                          | 0.040                                      | 0.112        | 0.109        | 0.107                       | 0.106             | Q           | 2           | 0.12         | 0.12          |
| Btu/lb                                                                            | 13690                                                                                                                                                                             | 12796                          | 13022                                      | 13809        | 13809        | 13767                       | 13797             | 13760       | 13763       | 13774        | 13778         |
| Underlined results exceed ASIM repr                                               | ceed ASTM reproducibility limits                                                                                                                                                  |                                |                                            |              |              |                             |                   |             |             |              |               |
|                                                                                   |                                                                                                                                                                                   |                                |                                            |              |              | w %, Dry Ash                | y Ash             |             |             |              |               |
| SiO,                                                                              | 44.03                                                                                                                                                                             | 50.15                          | 47.08                                      | 45.27        | 45.41        | 2                           | Q                 | 44 02       | Q           | 4 4          | 438           |
| Alo,                                                                              | 23.75                                                                                                                                                                             | 25.7                           | 23.70                                      | 24.09        | 25.06        | 24.37                       | 22.43             | 15.51       | 2           | 24.3         | 242           |
|                                                                                   | 1.11                                                                                                                                                                              | 1.37                           | 1.25                                       | Ξ            | 1.11         | 0.97                        | 1.09              | 0.04        | Ş           | -            | 9.0           |
| Fe <sub>2</sub> O,                                                                | 15.96                                                                                                                                                                             | <b>88</b> 11                   | 16.75                                      | 16.88        | 17.03        | 14.24                       | 15.04             | Q           | Q           | 16.4         | 5             |
| Cao                                                                               | 4.2                                                                                                                                                                               | 1,72                           | 1.72                                       | 2            | 4.63         | <b>6</b>                    | 2 19              | 9           | Q           | 4.2          | 4.2           |
| 00.5                                                                              | 60.0<br>60.0                                                                                                                                                                      | 7 C                            |                                            | .03          | 8            | 0.77                        | 0.72              | 2           | 2 :         | 0.02         | 76.0          |
| , z                                                                               | 20.7                                                                                                                                                                              | 2 T.                           | 00.                                        | 40.          | CO.1         | 78.0                        | 0.87              | 101         | 2           | -            | -             |
| χ. α<br>Ο . α                                                                     | 1.33                                                                                                                                                                              |                                | 1.24                                       | e :          | 1.37         | 70.1                        | ol (              | S)          | 2           | E            | L.            |
| ֖֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֓֓֞֞֞֓֓֓֞֞֓֓֓֞֓֓֓֓֓֞֓֓֞                                          |                                                                                                                                                                                   | 0.20                           | 0.24                                       | ) i          | 91.0         | 0.36                        | 0.30              | 2           | Ž           | 0.23         | 0.23          |
| os<br>Os                                                                          |                                                                                                                                                                                   | 2                              | 2                                          | <del>*</del> | 51.4         | 2                           | 2                 | S           | 2           | <b>*</b>     | <u>4</u>      |
| Underlined results exceed ASTM repr                                               | ceed ASTM reproducibility limits                                                                                                                                                  |                                |                                            |              |              |                             |                   |             |             |              |               |

Table 4. Percent Relative Standard Deviation for All Samples.

| Trace<br>Elements     | A&J   | BR          | CAL      | D&M  | E&N          | F80          | G&P         | H.60  |      | Average<br>PRSD | Maximum<br>PRSD | Minimum |
|-----------------------|-------|-------------|----------|------|--------------|--------------|-------------|-------|------|-----------------|-----------------|---------|
| Ą                     | 24.3  | 37.7        | 36.2     | 40.4 | 43.7         | 38.5         | 39.3        | 29.3  |      | 36.2            | 43.7            | 24.3    |
| <b>6</b> 0 ;          | 14.6  | 14.7        | 16.0     | 33.8 | 35.0         | 18.3         | 16.7        | 21.6  |      | 21.3            | 35.0            | 14.6    |
| Ba                    | 37.7  | 21.5        | 20.6     | 53.4 | 34.7         | 26.8         | 45.0        | 14.4  |      | 31.7            | 53.4            | 4 4     |
| В                     | 4.1.4 | 15.9        | 15.7     | 17.9 | 17.0         | 11.8         | 8.40        | 21.7  |      | 15.0            | 17.9            | 4.0     |
| Ç                     | 35.1  | 58.4        | 32.0     | 62,9 | 38.6         | 39.0         | 142         | 57.9  |      | 58.3            | 142             | 32.0    |
| ŏ                     | 9.91  | 4.34        | 19.0     | 19.2 | 13.0         | 20.9         | 14.1        | 14.3  |      | 14.3            | 20.9            | 4.34    |
| ပိ                    | 29.0  | 21.4        | 30.6     | 43.1 | 45.5         | 27.8         | 25.4        | 40.3  |      | 32.9            | 45.5            | 21.4    |
| no -                  | 17.7  | 17.7        | 19.8     | 22.1 | 29.7         | 12.5         | 49.2        | 14.8  |      | 22.9            | 49.2            | 12.5    |
| u.;                   | 16.0  | 4.9         | 7.75     | 14.4 | 7.7          | 15.4         | 16.8        | 9.83  |      | 12.9            | 16.8            | 7.7     |
| H <sub>G</sub>        | 10.4  | 40.6        | 24.8     | 16.7 | 16.9         | 20.4         | 9.05        | 26.1  |      | 20.6            | 40.6            | 9.05    |
| W.                    | 24.4  | 14.0        | 10.1     | 19.1 | 17.1         | 1.3          | 20.1        | 13.0  |      | 16.1            | 24.4            | 10.1    |
| No.                   | 51.6  | 53.6        | 46.9     | 55.1 | 98.0         | 46.3         | 26          | 47.5  |      | 60.7            | 87              | 46.3    |
| Z                     | 15.5  | 13.0        | 15.4     | 89.8 | 49.9         | 38.2         | 17.5        | 25.0  |      | 33.1            | 89.8            | 13.9    |
| <del>2</del> :        | 34.8  | 29.8        | 43.8     | 27.2 | 63.6         | 33.7         | 22.6        | 38.5  |      | 36.8            | 63.6            | 22.6    |
| ag.                   | 5.86  | 35.2        | 7.59     | 4.08 | 36.9         | 9.11         | 44.0        | 25.0  |      | 21.4            | 44.0            | 5.86    |
| Se                    | 20.5  | 37.6        | 25.6     | 28.2 | 33.9         | 24.0         | 33.8        | 26.1  |      | 28.7            | 37.6            | 20.5    |
| >                     | 11.5  | Q)          | 13.7     | 9.31 | 8.73         | 13.9         | 6.07        | 15.3  |      | 11.0            | 13.9            | 6.07    |
| AVG.                  | 21.8  | 25.9        | 22.7     | 32.8 | 34.1         | 24.1         | 35.7        | 25.9  |      | 27.9            | 49.1            | 16.1    |
| Proximate & Ultimate  |       |             |          |      |              |              |             |       |      |                 |                 |         |
| Ash                   | 1.48  | 990         | 0.58     | 1.68 | 990          | 990          | 990         | 0.72  |      | 1 14            |                 |         |
| Carhon                | 9.0   | 271         | CRC      | 1 07 | 9 15         | 20.6         | 1 87        | 2 7 B |      | 8               |                 |         |
| Hydroden              | 70.5  | 4           | 4 66     | 0.44 | 23.0         | 2.4          | 7.65        | 2.1   |      | 9 0             |                 |         |
| de CoriN              | . v   | 2 6         | 3 5      |      | , C ,        | 3.0          | 60.4        |       |      | 2 4             |                 |         |
| Stiffer               | 5. S  | 4 45        | 2.5      | 3.5  |              | 0.45         | 20.4        | 4 75  |      | 9 -             |                 |         |
| Chlorina              | 23.1  | 3.15        | 2. A.    | 4 5  | 0 KG         | 2.15<br>30.5 | 2 e c       | . u   |      | 37.0            |                 |         |
| Heating Value, Btu/Ib | 4.89  | 3.44        | .58      | 6.79 | <b>6</b> .35 | 3.55         | 4.39        | 3.53  |      | 4.32            |                 |         |
|                       |       |             |          |      |              |              |             |       |      | !               |                 |         |
|                       |       |             |          |      |              |              |             |       | AVG. | 10.4            |                 |         |
| Major Ash Flements    |       |             |          |      |              |              |             |       |      |                 |                 |         |
| SiO,                  | 17.71 | 3.38        | 1.93     | 3.27 | 3.18         | 3.09         | 3.25        | 10.7  |      | 5.81            |                 |         |
| <b>,</b>              | 17.08 | 4.60        | 4.<br>Si | 26.0 | 34.9         | 4.72         | 4.1         | 7.23  |      | 13.8            |                 |         |
| TiÓ,                  | 8.77  | 25.7        | 5.58     | 15.6 | 5.67         | 32.0         | 16.3        | 30.0  |      | 17.5            |                 |         |
| 0,91                  | 7.74  | 36.8        | 5.71     | 15.2 | 16.1         | 3.43         | 7.40        | 10.8  |      | 12.9            |                 |         |
| CaO                   | 50.7  | 38.5        | 27.2     | 62.2 | 63.9         | 21.5         | 37.9        | 30.6  |      | 41.6            |                 |         |
| OBW.                  | 43.7  | 45.4        | 30.7     | 60.2 | 66.2         | 28.8         | 47.5        | 38.1  |      | 44.7            |                 |         |
| Najo                  | 9.35  | <b>4</b> .1 | 13.7     | 12.2 | 7.84         | 26.0         | 26.3        | 9.64  |      | 14.9            |                 |         |
| o.                    | 13.1  | 7.38        | 7.80     | 18.3 | 23.2         | 9.94         | 9.38        | 12.2  |      | 12.4            |                 |         |
| o d                   | 34.9  | 30.2        | 37.2     | 38.7 | 39.3         | 33.5         | 37.8        | 31.0  |      | 35.3            |                 |         |
| so,                   | 36.6  | 32.4        | 17.8     | 28.1 | 3.37         | 8.01         | 4<br>8<br>8 | 12.8  |      | 18.0            |                 |         |
|                       |       |             |          |      |              |              |             |       | AVG  | 21.7            |                 |         |

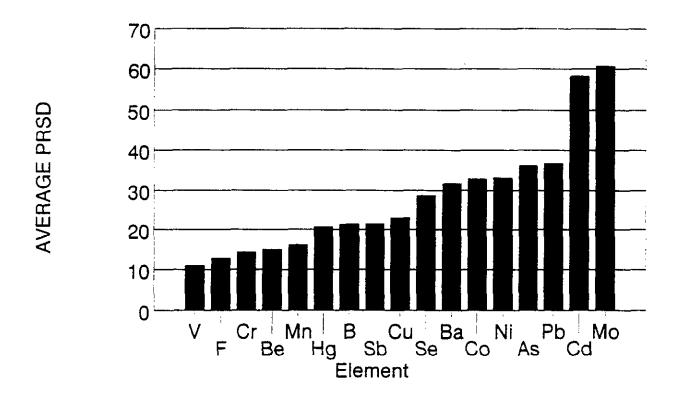



Figure 1. Average Variability for All Coals.

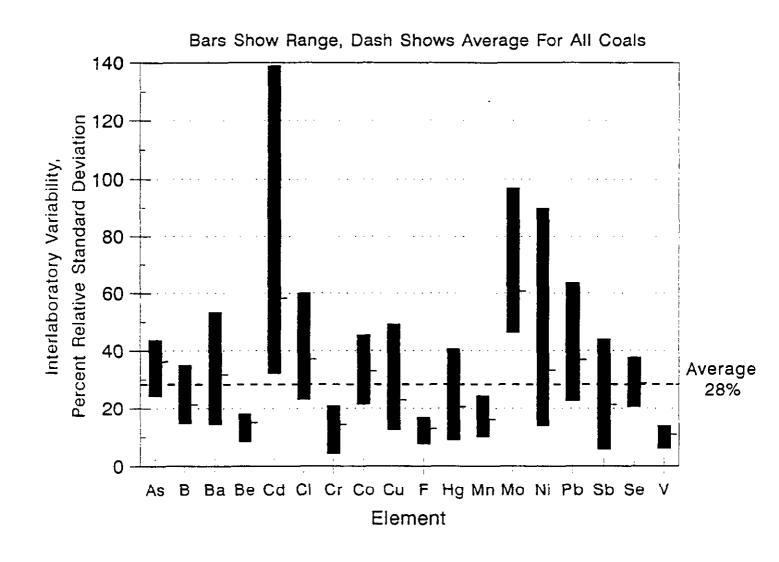



Figure 2. Interlaboratory Variability by Element

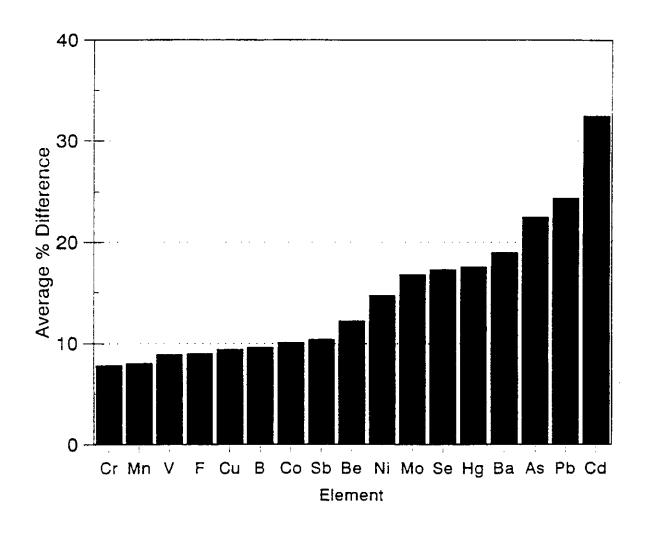



Figure 3. Average Interlaboratory Repeatability.

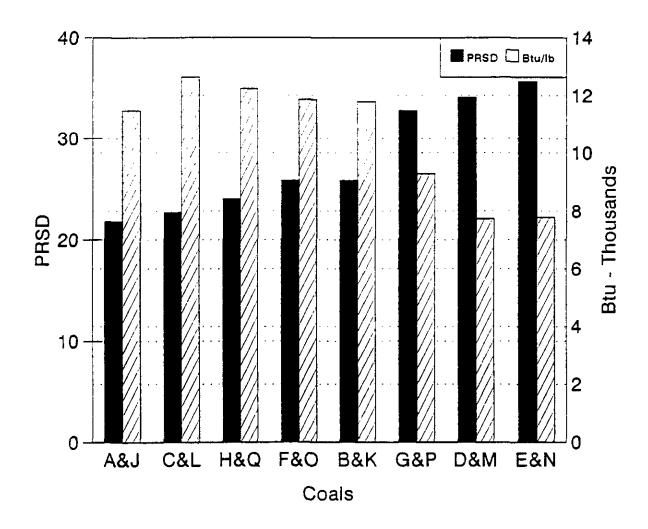



Figure 4. Comparison of Interlaboratory Variability vs. Heating Value.

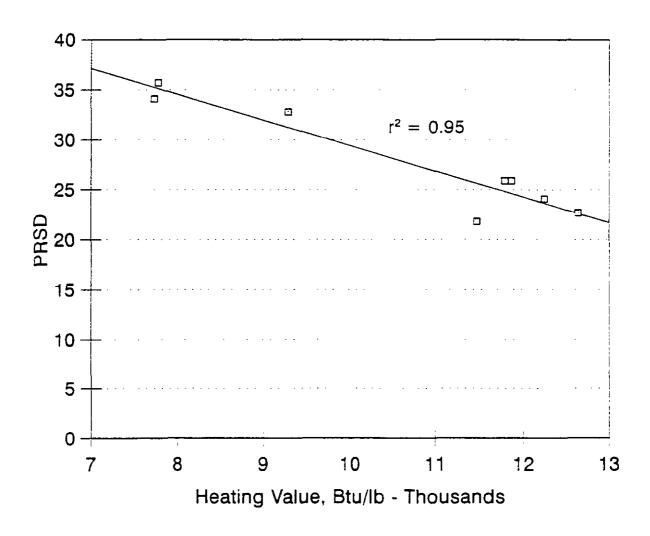



Figure 5. Correlation of Variability vs. Heating Value.

### APPENDIX A

### INDIVIDUAL LABORATORY ANALYSIS OF ROUND ROBIN SAMPLES

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE A

## PPM DRY WHOLE COAL BASIS

| TRACE                          | ם      | LAB I  |       | LABII  | 2                | LAB III   | Ξ.            | LAB IV | 7              | > 84  |
|--------------------------------|--------|--------|-------|--------|------------------|-----------|---------------|--------|----------------|-------|
| ELEMENTS                       | BUN 1  | RUN 2  | BUN 1 | BUN 2  | HUN 1            | RUN 2     | RUN 1         | RUN 2  | RUN 1          | RUN 2 |
| As                             | 2.36   | 3,01   |       | 3.46   | 8                | 2         | 2             | X      | 26             | 6     |
| <b>6</b> 0                     | 236.33 | 290.64 |       | 182.77 | 250              | 230       | 230           | 230    | 276            | 217   |
| Ва                             | 29     | 32.29  |       | 63.3   | 76.7             | 72        | 58            | 55     | 49.4           | 49.8  |
| Be                             | 1.29   | 161    |       | 1,09   | 1.3              | 6.1       | <del>v.</del> | 6.1    | 1.49           | 1.35  |
| PO                             | 0.5    | 0.55   | 0.57  | 0.59   | <0.3             | <0.3      | 4.0>          | <0.4   | 0.373          | 0.545 |
| ٙڹٙ                            | 25.78  | 30.14  |       | 24.44  | 25.2             | 28        | 35            | 34     | 24.6           | 25.5  |
| ပ္ပ                            | 4.73   | 5,81   |       | 3,35   | 3.28             | 3.44      | ß             | រប     | 2.71           | 3.79  |
| Cu                             | 8.7    | 10.76  |       | 8.54   | <37.3            | <38.3     | 12            | 12     | 13.2           | 13.1  |
| <u>u.</u> :                    | <100   | × 100  |       | 107,67 | \$               | 100       | S             | 2      | 72             | 19    |
| Hg                             | <0.1   | <0.1   |       | 0.095  | 0.09             | 60.0      | 0.1           | 0.1    | 0.123          | 0 109 |
| Æ                              | 36.52  | 39,83  |       | 51.8   | 29.3             | 31.2      | 53            | 52     | 42.8           | 41.7  |
| Wo                             | 11.82  | 8.61   |       | 6.78   | 15.1             | 14.6      | 9             | 9>     | 6.5            | ic.   |
| Z                              | 17.19  | 19,38  |       | 15.28  | 12.8             | 14        | 23            | 21     | 181            | 17.6  |
| Pb                             | 4.08   | 6,89   |       | 10.71  | 80               | 80        | 13            | 4      | 6.7            | 6     |
| Sb                             | 8.0>   | <0.8   |       | 0.53   | 0.466            | 0.512     | ₹             | Ī      | 2              | S     |
| <b>.</b>                       | 3.01   | 3,55   |       | 3.61   | 0                | 8         | 6             | 2      | 6.1            | 2.9   |
| >                              | 35.45  | 40.9   |       | 28.9   | 34.3             | 35.8      | 45            | 4      | 40.1           | 38.1  |
|                                |        |        |       |        | 9<br>7<br>2<br>2 | NDV BACIO |               |        |                |       |
| PROXIMATE & ULTIMATE           | AATE   |        |       |        | 2                |           |               |        |                |       |
| ASH                            | 12.16  | 12.18  | 12.08 | 12.13  | 12.18            | 12.26     | 11.83         | 11.75  | 11.86          | 11 05 |
| CARBON                         | 68.33  | 68.88  | 70.09 | 70.22  | 70.32            | 70.15     | 69.2          | 69.25  | 69 2           | 69 14 |
| HYDROGEN                       | 4.97   | 5,88   | 4.83  | 4.79   | 4.89             | 4.92      | 4.67          | 4.6    | 4.76           | 4.7.4 |
| NITROGEN                       | 1.25   | 1.26   | 1.37  | 1.41   | 1.48             | 1.4       | 1.35          | 1.31   | 1.25           | 1.28  |
| SULFUR                         | 3.44   | 3.6    | 3.44  | 3.48   | 3.46             | 3.42      | 3.41          | 3.4    | 3.43           | 3.4   |
| CHLORINE                       | 90.0   | 0.05   | 0.077 | 0.064  | 0.075            | 0.072     | 2             | 2      | 0.1            | 0.00  |
| Stu/ID                         | 12460  | 11297  | 12478 | 12462  | 12425            | 12477     | 12453         | 12455  | 12427          | 12402 |
|                                |        |        |       |        | %<br>0₽0         | K DRY ASH |               |        |                |       |
| MAJOR ASH ELEMENTS             |        |        |       |        |                  |           |               |        |                |       |
| SiO <sub>1</sub>               | 39.75  | 49.24  | 48.71 | 48.87  | 2                | S         | 47.03         |        | 45.9           | 46.8  |
| Al <sub>2</sub> O <sub>3</sub> | 13.18  | 15,36  | 18.5  | 18.84  | 16.37            | 17.74     | 18.21         | S      | 17.9           | 17.8  |
| 102                            | 0.6    | 0.97   | 0.95  | 0.95   | 0.72             | 0.7       | 0.89          |        | 0.9            | 0.8   |
| Fe <sub>1</sub> O <sub>3</sub> | 13.89  | 16.43  | 17.27 | 17.35  | 15.21            | 15.17     | 2             |        | 17             | 17.3  |
| O S                            | 2.47   | 2.23   | 6.48  | 6.43   | 2.36             | 2.21      | 2             |        | 5.5            | 5.9   |
| 08<br>**                       | 0.4    | 0.35   | 1.05  | 1.06   | 0.59             | 0.72      | 2             |        | <del>-</del> - | -     |
| )<br>Sec. 2<br>2 2             | 0.77   | 96'0   | 0.95  | 0.95   | 0.78             | 0.78      | 0.97          |        | 0.99           | 0.97  |
|                                | 1.92   | 2:24   | 2.18  | 2.18   | 1.68             | 1.85      | 2.01          | 문      | 2.1            | 2     |
| J. (3                          | 0.26   | S      | 0.25  | 0.22   | 0.2              | 0.24      | 2             | 2      | 0.24           | 0.26  |
| ર્જુ                           | Ş      | ₹      | 8.83  | 3.29   | <u>Q</u>         | 2         | 2             | S      | 6.18           | 5.97  |

## INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE B

## PPM DRY WHOLE COAL BASIS

| FI FMFNTS                      |            |             |        |                |             |                 | <u></u>        |       | 4              | >            |
|--------------------------------|------------|-------------|--------|----------------|-------------|-----------------|----------------|-------|----------------|--------------|
|                                | HUN 1      | RUN 2       | HUN 1  | RUN 2          | RUN 1       | RUN 2           | BUN 1          | HUN 2 | BUN 1          | RUN 2        |
| As                             | 2.7        |             | 3,26   | 3.18           | -           | 8               | S              | Q     | 53             | *            |
| æ                              | 260.01     | LW          | 193.41 | 189.71         | 260         | 270             | 190            | 200   | 227            | ğ            |
| Ba<br>:                        | 37.44      |             | 47.8   | 49.3           | 64.3        | 73.7            | 47             | 46    | 46.5           | 46.5         |
| . <b></b>                      | 1.87       | 1.86        | 1.37   | 1.44           | 1,5         | <del>.</del> 5. | 1.4            | £.    | <b>.</b> .     | <u>+</u>     |
| <b>5</b>                       | 0.92       |             | 26.0   | -              | <0,3        | <0.3            | <b>4.0&gt;</b> | <0.4  | 0.573          | 0.94         |
| <b>్</b>                       | 36.4       |             | 32.57  | 35.14          | 35.2        | 34.5            | 38             | 37    | 31.1           | 32.1         |
| ខ (                            | 5.62       |             | 3.43   | 3.58           | 3.57        | 3.53            | 0              | 6     | 2.77           | 3.0          |
| <b>7</b> 0                     | 11.44      |             | 9.61   | 9.79           | <41.8       | <42.4           | 5              | 9     | 13.2           | 13           |
| <u> </u>                       | ×100       |             | 124.37 | 125.42         | 110         | 120             | 9              | 2     | 88             | Ö            |
| Hg                             | <0.1       |             | 0.131  | 0.115          | 0.11        | 0.11            | 0.12           | 0.11  | 0.105          | 0.10         |
| Z .                            | 32.24      |             | 40.6   | 39.9           | 59.9        | 28.1            | 38             | 37    | 35             | 34.          |
| MO ::                          | 7.28       |             | 7.2    | 7.36           | <13.6       | <13.8           | ស              | ၈     | 4.9            | 9            |
| Z                              | 19.76      |             | 16.94  | 17.49          | 22.9        | 21.8            | 21             | 21    | 17.3           | 6            |
| Pb<br>g:                       | 7.49       |             | 14.95  | 14.77          | 15          | <del>6</del>    | 15             | 15    | 10.2           | တ            |
| Sp                             | <0.8       |             | 0.69   | 0.69           | 0.707       | 0.566           | ₹              | ⊽     | 2.56           | Z            |
| <b>%</b>                       | 3.33       |             | 4.71   | 4.78           | 6           | 4               | -              | Q     | 3.2            | 2            |
| >                              | 49.92      |             | 38.79  | 39.29          | 44.7        | 49.1            | 47             | 47    | 49.5           | 49.8         |
| PROXIMATE & UL'TIMATE          | (ATE       |             |        |                | % DRY BASIS | ASIS            |                |       |                |              |
| ASH                            | 12.68      | 12.54       | 12.69  | 12.72          | 12.56       | 12.53           | 12.45          | 12.55 | 12.43          | 12.4         |
| CARBON                         | 68.33      | 67.79       | 70.23  | 70.07          | 70.12       | 69.95           | 68.86          | 68.82 | 68.84          | 68.7         |
| HYDROGEN                       | 5.1        | 5.29        | 4.82   | 4.84           | 4.83        | 4.81            | 4.51           | 4.56  | 4.68           | 4            |
| NITROGEN                       | 1.26       | 1.23        | 1.33   | 1.44           | 1.42        | 4.              | 1.35           | 1,3   | 1.33           | 5.           |
| SULFUR                         | 3.63       | 3.63        | 3.43   | 3.49           | 3.46        | 3.47            | 3.48           | 3.47  | 3.51           | 3.4          |
| CHLORINE                       | 0.05       | 0.05        | 0.084  | 0.077          | 0.079       | 0.078           | Q              | 2     | 0.1            | 0.1          |
| Btu/Ib                         | 11900      | 11480       | 12398  | 12402          | 12376       | 12367           | 12390          | 12378 | 12350          | 12321        |
| MAJOR ASH EI FMENTS            | SIX        |             |        |                | & DRY ASH   | ASH             |                |       |                |              |
| SiO <sub>2</sub>               |            | 49.47       | 51.04  | 51.01          | Q           | 2               | 50.45          | 2     | 49.2           | 0.0          |
| Al <sub>2</sub> O <sub>3</sub> | 18.59      | 18.69       | 19.41  | 19,46          | 18.28       | 19.4            | 19.05          | 2     | 6              | <b>6</b>     |
| TO <sub>2</sub>                | 1.01       | -           | سب     | 0.99           | 0.86        | 0.78            | 96.0           | Q     | 8.0            | Ö            |
| Fe <sub>1</sub> O              | 16.42      | 16.5        | 17.97  | 17.83          | 16.7        | 16.42           | 욷              | 9     | 17.1           | 10           |
| CAO                            | 1.84       | 1.62        | 3.94   | 3.85           | 1.84        | 1.97            | Q              | S     | 3.6            | ဗ်           |
| Ç <sub>0</sub>                 | 0.3        | 0.36        | 1.09   | <del>-</del> - | 0.77        | 0.77            | S              | 용     | <del>-</del> - | <del>-</del> |
| Na,O,                          | 0.7        | 0.71        | 0.79   | 0.79           | 0.78        | 7.0             | 0.73           | 2     | 0.86           | 0.8          |
| 0,0                            | 2.37       | 2.19        | 2.39   | 2.38           | 2.25        | 2.22            | 2.26           | 2     | 2.2            | 2.2          |
| 7.0<br>                        | 6.0<br>6.4 | 0.0<br>E. ( | 0.26   | 0.27           | 0.51        | 0.51            | 9              | 2     | 0.43           | ö            |
| 3                              | Ē          | 2           | 70 +   | 40             | 2           | 2               | 2              | •     |                |              |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE C

| THACE                          | 4     | AB    | _     | LABII | 5           | IAB III   | IA    | ≥     | ¥     | / AB /       |
|--------------------------------|-------|-------|-------|-------|-------------|-----------|-------|-------|-------|--------------|
| ELEMENTS                       | RUN 1 | RUN 2 | HUN 1 | RUN 2 | HUN 1       | RUN 2     | BUN 1 | RUN 2 | RUN 1 | RUN 2        |
| As                             | 3.06  | 5.82  | 13.61 | 13.04 | G           | 7         | Q     |       | 12.1  | 13.4         |
| <b>©</b> :                     | 91.69 | 86.72 | 66.46 | 63.46 | 90          | 8         | 73    | 76    | 79.1  | - 10<br>- 40 |
| Ba                             | 28.52 | 27.55 | 32.2  | 34.9  | 34.6        | 45.2      | 35    | 35    | 35.2  | 34.3         |
| <b>8</b>                       | 1.63  | 1.63  | 1.13  | 1.17  | 1.3         | 1.2       | 1.2   | 1.2   | 1.53  | 15.          |
| <u>.</u>                       | 0.08  | 0.08  | 0.1   | 0.11  | <0.3        | <0.3      | <0.4  | <0.4  | 0.079 | 0.237        |
| <b>్</b>                       | 21.39 | 20.4  | 16.77 | 15.9  | 17.2        | 18.2      | 19    | 20    | 6     | 12.4         |
| ပိ                             | 9.37  | 8.67  | 4.51  | 4.46  | 4.92        | 5.13      | ιΩ    | 7     | 4.03  | 4.6          |
| Cu                             | 9.88  | 8.06  | 6.98  | 6.95  | <38         | <39.3     | \$    | 60    | 10.9  | 11.2         |
| <b>u.</b> ;                    | <100  | ×100  | 63.96 | 63.22 | 9           | 9         | 2     | 2     | 58    | 53           |
| Hg                             | <0.1  | 0.16  | 0.147 | 0.143 | 0.1         | 0.11      | 0.14  | 0.14  | 0.135 | 0.145        |
| E .                            | 18.34 | 18.36 | 15.7  | 16.4  | 19          | 18.5      | 22    | 23    | 61    | 961          |
| <b>\S</b>                      | 3.77  | 3.06  | 1.62  | 1,65  | 1.71        | 2.87      | 9>    | 9>    | 2     | 2260         |
| Z                              | 16.3  | 16.32 | 12.44 | 12.06 | 10.4        | 10.7      | 15    | 5     | 14.2  | 13.8         |
| Pb                             | 3.77  | 0.65  | 6.44  | 6.52  | S           | 7         | 7     | 60    | 4     | 5.7          |
| Sp                             | 8.0>  | <0.8  | 99.0  | 0.7   | 0.603       | 0.654     | . ₹   | \     | 2     | Z            |
| Se                             | 1.94  | 1.53  | 2.47  | 2.57  | -           | 8         | 8     | _     | 0.837 | -            |
| >                              | 37.69 | 37.75 | 24.63 | 25.27 | 9006        | 29.9      | 33    | 33    | 33    | 33.2         |
|                                |       |       |       |       |             |           |       |       |       | <b>!</b>     |
| PROXIMATE & ULTIMATE           | MATE  |       |       |       | X DRY BASIS | BASIS     |       |       |       |              |
| ASH                            | 11.59 | 11.62 | 11.52 | 11.53 | 11.64       | 11.6      | 11.57 | 11.51 | 1161  | 11 59        |
| CARBON                         | 71.69 | 71.12 | 72.79 | 72.63 | 72.98       | 72.72     | 71.64 | 71.72 | 71 99 | 71.86        |
| HYDROGEN                       | 5.76  | 5.01  | 4.85  | 4.86  | 4.99        | 4.98      | 4.6   | 4.0   | 4 85  | 4.86         |
| NITROGEN                       | 4.    | 1.38  | 1.44  | 1.39  | 1.42        | 1.42      | 1.45  | 1.45  | 1.43  | 36.1         |
| SULFUR                         | 3.44  | 3.55  | 3.15  | 3.16  | 3.28        | 3.27      | 3,13  | 3,18  | 3.37  | 3.16         |
| CHLORINE                       | 0.05  | 0.05  | 0.092 | 0.089 | 0.098       | 0.104     | 9     | Q     | 0.11  | 0.11         |
| Btu/lb                         | 11987 | 12644 | 12957 | 12971 | 12972       | 12932     | 12989 | 12953 | 12906 | 12906        |
|                                |       |       |       |       | % DA        | & DRY ASH |       |       |       |              |
| MAJOR ASH ELEMENTS             |       |       |       |       |             | •         |       |       |       |              |
| SiO <sub>2</sub>               | 47.09 | 45.15 | 45.02 | 45.57 | S           | 2         | 44.73 |       | 44.5  | 44.3         |
| Al <sub>2</sub> O <sub>3</sub> | 23.24 | 21.56 | 21.31 | 21.63 | 19.36       | 18.78     | 21.74 |       | 21.4  | 21.5         |
| 1102                           | 1.08  | 1.04  | 96.0  | 0.98  | =           | 1.09      | 0.99  | _     | 6'0   | 6.0          |
| Fe <sub>2</sub> O              | 25.13 | 25.11 | 25.63 | 26.06 | 23.41       | 24.61     | 2     |       | 25.2  | 25.4         |
| CaO                            | 0.64  | 0.64  | 1.22  | 1.29  | 1.17        | 1.04      | 2     |       | 7     | 1.1          |
| Og <b>X</b> :                  | 0.35  | 0.33  | 0.71  | 0.69  | 0.72        | 0.63      | 2     |       | 0.73  | 0.71         |
| Na <sub>2</sub> O <sub>3</sub> | 0.54  | 0.37  | 0.4   | 0.42  | 0.38        | 0.41      | 0.42  | _     | 0.44  | 0.46         |
| o,                             | 2.12  | 2.01  | 1.93  | 1.89  | 1.77        | <u>1.</u> | 1.85  | _     | 1.7   | 6            |
| P <sub>2</sub> O <sub>5</sub>  | 0.13  | 0.12  | 0.0   | 90.0B | 0.21        | 0.23      | 2     |       | 0.15  | 0.23         |
| so.                            |       | 2     | 1.44  | 1.51  | 9           | 2         | 2     | Q     | 1.04  | 1.05         |
|                                |       |       |       |       |             |           |       |       |       |              |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE D

# PPM DRY WHOLE COAL BASIS

| TRACE                          | ٥              | - AB   | -     | IABI  | H H H       | =           | N AB I      | 2     | 1     | × 04 1 |
|--------------------------------|----------------|--------|-------|-------|-------------|-------------|-------------|-------|-------|--------|
| ELEMENTS                       | RUN 1          | RUN 2  | HUN 1 | RUN 2 | RUN 1       | RUN 2       | RUN 1       | RUN 2 | RUN 1 | RUN 2  |
| As                             | 1.25           | 1.87   | 1.93  | 1.89  | ⊽           | V           | -           | S     | 0.45  | 0.63   |
| 82                             | 117.71         | 104.86 | 40.44 | 39.86 | 100         | 110         | 06          | 06    | 102   | 76     |
| Ba                             | 187.83         | 137.31 | 432.1 | 424.4 | 269         | 640         | 170         | 150   | 450   | 536    |
| Be                             | 0.53           | 0.47   | 0.45  | 0.41  | 0.4         | 0.4         | 0.3         | 0.3   | 0.421 | 0.408  |
| P (                            | <0.06          | >0.06  | 20.0  | 0.0   | <0.3        | <0.3        | <0.4        | <0.4  | 0.049 | 2      |
| ٠٥                             | 6.01           | 4.62   | 6.17  | 4.64  | 4.79        | 3.97        | 4           | 4     | 3.03  | 3.54   |
| ပိ                             | <2.0           | <2.0   | 1.19  | 1.17  | 0.757       | 0.663       | ⊽           | ⊽     | Q     | 0.77   |
| Š                              | 11.65          | 8.74   | 7.5   | 7.07  | <45         | <43.9       | 80          | 80    | 14    | 12.1   |
| <u>u</u> ;                     | ×100           | <100   | 48.59 | 48.12 | 20          | <u>2</u>    | 2           | 2     | 39    | 35     |
| 5H                             | <b>&lt;0.1</b> | <0.1   | 0.086 | 960'0 | 0.08        | 0.08        | 0.1         | 0.1   | 0.102 | 0.091  |
| <b>M</b> a                     | 137.74         | 121.08 | 188.4 | 186.3 | 96          | 9.66        | 160         | 150   | 148   | 151    |
| Mo                             | 9.01           | 6.99   | 6.55  | 6:38  | 11.1        | 10.8        | 7           | 4     | 4.84  | 5.37   |
| Ž                              | 5.01           | 3.74   | 4.15  | 3.34  | 16          | 15.2        | 8           | Ψ-    | 080   | 208    |
| Pb                             | 5.13           | 5.12   | 5.44  | 5.45  | 60          | 7           | S           | · w   | 3.8   | 600    |
| Sb                             | <0.8           | <0.8   | 0.48  | 0.48  | 0,451       | 0.429       | \<br>\<br>\ | √ √   | S     | Ş      |
| Se.                            | <0.6           | 76.0   | 6.0   | 0.92  | ⊽           | ⊽           | ·           | S     | Ş     | Ē      |
| >                              | 11.65          | 10.86  | 8.54  | 7.99  | 9.73        | 8.3         | 6           | 6     | 9.5   | 을 유    |
| PROXIMATE & UL'IIMATE          | AATE           |        |       |       | % DRY BASIS | ASIS        |             |       |       |        |
| ASH                            | 12             | 11.67  | 11.86 | 11.93 | 11.51       | 11.51       | 11.7        | 11 79 | 11 48 | ν<br>• |
| CARBON                         | 62.27          | 62.9   | 68.55 | 68.65 | 68.41       | 68.21       | 67.27       | 67.36 | 67.38 | 67.43  |
| HYDROGEN                       | 7.42           | 1.95   | 4.68  | 4.71  | 4.63        | 4.61        | 45.5        | 4 52  |       | 24.70  |
| NITROGEN                       | 0.98           | 0.94   | 0.93  | 0.85  | 1.08        | <u>-</u>    | 1 02        | 101   | . t   | 5 -    |
| SULFUR                         | 0.93           | 0.91   | 0.96  | 0.96  | 0.95        | 4.82        | 0.91        | 0.92  | 76.0  | 4      |
| CHLORINE                       | 0.04           | 0.04   | <0.02 | <0.02 | <0.01       | <b>60.1</b> | Q           | 2     | 0.03  | 0.04   |
| Btu/lb                         | 11342          | 9083   | 11735 | 11717 | 11693       | 11601       | 11751       | 11759 | 11634 | 11663  |
|                                |                |        |       |       | % DRY ASH   | YSH.        |             |       |       |        |
| MAJOR ASH ELEMENTS             | NTS            |        |       |       |             | ;           |             |       |       |        |
| SiO <sub>2</sub>               | 42.49          | 36.97  | 44.35 | 44.06 | Q           | 욷           | 41.94       | 2     | 41.7  | 41.8   |
| Ajo,                           | 20.6           | 8.89   | 19.24 | 19.09 | 18.48       | 18.26       | 18.88       | 2     | 18.2  | 18.1   |
| TiO <sub>2</sub>               | 0.92           | 0.86   | 98.0  | 0.85  | 0.8         | 0.67        | 0.85        | Q     | 0.8   | 90     |
| Fe <sub>2</sub> O <sub>3</sub> | 5.22           | 4.74   | 6.9   | 7.12  | 6.97        | 6.1         | 2           | 2     | 6.3   | 6      |
| CBO                            | 2.92           | 2.55   | 13.24 | 13.12 | 4.2         | 4.01        | 2           | 2     | 11.7  | 11.5   |
| MgO                            | _              | 1.01   | 4.13  | 4.09  | 1.22        | 1.21        | Q           | 2     | 4     | 60     |
| Na <sub>2</sub> O,             | 0.31           | 0.25   | 0.32  | 0.32  | 0.27        | 0.26        | 0.3         | 2     | 0.25  | 0.24   |
| o,                             | 0.72           | 0.67   | 0.52  | 0.51  | 0.4         | 9.0         | 0.5         | 2     | 0.47  | 0.48   |
| o,                             | 0.33           | 0.29   | e.0   | 0.3   | 0.56        | 0.56        | 윤           | 2     | 0.26  | 0.24   |
| SO<br>S                        | Q<br>N         | 2      | 11.31 | 11.21 | Q           | 2           | 2           | 2     | 13.02 | 13.54  |
|                                |                |        |       |       |             |             |             |       |       |        |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE E

| TRACE                          | ۵      | LAB          | _     | LAB II | _           | I AB III  | IAR   | 2     | -     | 7 04        |
|--------------------------------|--------|--------------|-------|--------|-------------|-----------|-------|-------|-------|-------------|
| ELEMENTS                       | HUN 1  | RUN 2        | RUN 1 | RUN 2  | RUN 1       | HUN 2     | RUN 1 | RUN 2 | RUN 1 | HUN 2       |
| As                             | 9.0>   | 8.63         | 11.53 | 11.69  | 4           |           | 7     | 60    | 84    | 66          |
| <b>a</b>                       | 153.79 | 139.65       | 45.15 | 45.15  | 150         |           | 130   | 140   | 151   | 138         |
| Ba                             | 192.23 | 266.6        | 628.9 | 669.8  | 795         |           | 400   | 380   | 714   | 2           |
| Be                             | 0.82   | 0.71         | 0.72  | 0.73   | 0.7         |           | 0.6   | 0.7   | 0.639 | 0.732       |
| Ç.                             | 0.12   | <0.06        | 0.1   | 0.1    | <0.3        |           | <0.4  | <0.4  | 0.052 | 0.092       |
| j,                             | 8.59   | 7.87         | 7.88  | 9.85   | 9.6         |           | \$0   | æ     | 6.4   | 9           |
| ပိ                             | 3.33   | 2.79         | 2.66  | 2,54   | 1.91        |           | -     | Q     | 2.02  | Q           |
| Ca                             | 9.36   | 8.89         | 6.97  | 7.1    | <48.2       |           | 7     | 7     | 6.1   | =           |
| Щ. ;                           | <100   | <100         | 55.8  | 60,87  | 9           |           | 9     | 2     | 54    | 57          |
| Hg                             | <0.1   | <b>40.</b> 1 | 0.159 | 0.144  | 0.17        |           | 0.18  | 0.18  | 0.113 | 0.136       |
| W.                             | 108.93 | 99.02        | 149.2 | 151.2  | 93.9        |           | 140   | 140   | 124   | 122         |
| OM:                            | 3.59   | 3,3          | 2.77  | 2.75   | 7.51        |           | 9>    | 9>    | 2     | 7.20        |
| Ž                              | 8.07   | 5.71         | 6.97  | 7.62   | 18.1        |           | 9     | 6     | 3.7   | 4.92        |
| <b>a</b> .                     | 1.92   | 9.0>         | 3.04  | 2,63   | 4           |           | 4     | 4     | 4     | 1.8         |
| Sp                             | <0.8   | <0.8         | 0.77  | 0.72   | 0.679       |           | 7     | 7     | Z     | 23          |
| 80                             | 9.0>   | <0.6         | 0.88  | 0,98   |             |           | -     | _     | 2     | 0 746       |
| >                              | 17.94  | 16.5         | 14.34 | 14.32  | 16.4        | 15.5      | 17    | 6     | 16.2  | 16.2        |
|                                |        |              |       |        |             |           |       |       |       |             |
| PROXIMATE & ULTIMATE           | MATE   |              |       |        | X DRY BASIS | BASIS     |       |       |       |             |
| ASH                            | 17.69  | 16.32        | 16.15 | 16.19  | 16.23       | 16.29     | 17.45 | 17.5  | 16.83 | 16.67       |
| CARBON                         | 55.85  | 54.93        | 59,58 | 59.55  | 59.05       | 59.17     | 58.91 | 58.61 | 59.38 | 59.33       |
| HYDROGEN                       | 7.41   | 7.38         | 4.21  | 4.15   | 4.24        | 4.31      | 3.92  | 3.9   | 3.91  | 3.87        |
| NITROGEN                       | 0.09   | 0.88         | 0.99  | 16.0   | 1.02        | 1.02      | 0.79  | 0.82  | 1.05  | 102         |
| SULFUR                         | 1.15   | 1.09         | 1.13  | 1,13   | 1.15        | 1.14      | 1.13  | 1.12  | 111   | 1 12        |
| CHLORINE                       | 0.03   | 0.03         | <0.02 | <0.02  | <0.01       | <0.01     | 2     | 2     | 0.05  | 0.05        |
| Btu/lb                         | 9252   | 8208         | 9842  | 9841   | 9920        | 9914      | 9777  | 9823  | 6866  | 9917        |
|                                |        |              |       |        | % DR)       | X DRY ASH |       |       |       |             |
| MAJOR ASH ELEMENTS             |        |              |       |        |             |           |       |       |       |             |
| SO.                            | 37.26  | 36.67        | 39.92 | 40.18  | 2           | 2         | 39.61 |       | 38.5  | 38.7        |
| Al <sub>1</sub> O <sub>3</sub> | 3.01   | 3.53         | 12.68 | 12.69  | 12.35       | 11.98     | 12.38 |       | 11.6  | 11.7        |
| 1102                           | 0.45   | 0.44         | 0.45  | 0,46   | 0.55        | 0.43      | 0.49  |       | 0.5   | 0.4         |
| Felo                           | 4.35   | 4.67         | 6.93  | 7      | 6.43        | 6.17      | 2     |       | 6.7   | 6.6         |
| CaC                            | 2.23   | 3.16         | 17.34 | 17,53  | 5.32        | 5.04      | S     |       | 16.2  | 16.3        |
| OŠ <b>M</b>                    | 0.94   | 1.15         | 4.96  | 4.97   | 1.19        | 1.05      | 2     |       | 4.8   | 4.          |
| Na <sub>2</sub> O <sub>3</sub> | 0.67   | 0.72         | 0.89  | 0.89   | 0.8         | 0.78      | 0.87  |       | 0.84  | 0.84        |
| Ŏ,                             | 4.     | 0.12         | 1.39  | 1.39   | 1.99        | 2.1       | 1.25  | S     | £.1   | 1.3         |
| o, d                           | 0.13   | 0.13         | 0.13  | 0.14   | 0.22        | 0.21      | S     | 2     | 0.13  | 0.11        |
| Ś                              | 2      | 2            | 14.99 | 15.21  | S           | 2         | 2     | 9     | 15.42 | 16.02       |
|                                |        |              |       |        |             |           |       |       |       | !<br>!<br>! |

# INDIVIDIJAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE F

| NIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | THACE                          | -      | - 04  | -      | = 0   |              |       | •     |                                                                                             | •        | :     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------|-------|--------|-------|--------------|-------|-------|---------------------------------------------------------------------------------------------|----------|-------|
| MATERILEMENTS    MATERILEMENTS    MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   MATERIAL   | CIEACATE                       | •      | - 20  |        |       | _            | ,     |       | ≥                                                                                           | ž        | >     |
| MATERILEMENT    1482   50.44   36.51   35.07   17   17   24   ND   26.7     267   27.57   27.4   27.1   27.5   26.5   27.5   27.5     267   27.57   27.4   27.1   27.5   27.5   27.5   27.5     267   27.57   27.4   27.5   27.5   27.5   27.5   27.5     27.57   27.54   27.5   27.5   27.5   27.5   27.5   27.5     27.54   27.54   27.5   27.5   27.5   27.5   27.5     27.54   27.5   27.5   27.5   27.5   27.5   27.5     27.54   27.5   27.5   27.5   27.5   27.5   27.5     27.54   27.5   27.5   27.5   27.5   27.5   27.5     27.54   27.5   27.5   27.5   27.5   27.5   27.5     27.54   27.5   27.5   27.5   27.5   27.5   27.5     27.55   27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5   27.5     27.5   27.5   27.5     27.5   27.5   27.5     27.5   27.5   27.5     27.5   27.5   27.5     27.5   27.5   27.5     27.5   27.5   27.5     27.5   27.5   27.5     | CLEMENIO                       | NO     | HON 2 | Z<br>Z | - 1   | NO.          |       | NON 1 | HUN 2                                                                                       | HUN I    |       |
| MATE & ULTIMATE   1982   196.74   64.7   64.4   198   65.6   65.6   64.9   65.8   64.9   65.8   64.9   65.8   64.9   65.8   64.9   65.8   65.8   64.9   65.8   65.8   64.9   65.8   65.8   65.8   64.9   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65.8   65   | As                             | 4.82   | 50.43 | 35.51  | 35.07 | 17           | 17    | 24    | S                                                                                           | 28.7     | 28.1  |
| SS.39   SS.51   B6.4   96.1   93   65.6   83   69   59   59   69   69   69   69   69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | æ                              | 89.23  | 96.74 | 64.7   | 63.46 | 73           | 26    | 69    | 65                                                                                          | 649      | 53.4  |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00      | ቘ                              | 55.38  | 53.51 | 86.4   | 98.1  | 66           | 85.6  | 83    | 89                                                                                          | )<br>(1) | 67.3  |
| Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo   | æ                              | 2.67   | 2.78  | 2.14   | 2.18  | <u>0</u>     | N     | 2.3   | 2.4                                                                                         | 2.75     | 2.44  |
| 22.56 22.64 25.55 26.97 19.7 21.7 20 21 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ਣ                              | 0.07   | 0.09  | 0.1    | 0.12  | <0.3         | <0.3  | <0.4  | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 0 093    | 2     |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ō                              | 22.56  | 22.64 | 25,35  | 28.97 | 19.7         | 21.7  | 50    | 22                                                                                          | =        | 144   |
| NATION ACTION   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo   | රි                             | 9.74   | 11.32 | 5.9    | 5.88  | 6.23         | 9     | 60    | 7                                                                                           | 4.56     | 3.59  |
| Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo   | J.                             | 21.54  | 21.61 | 17,35  | 17.07 | <37.8        | <37.4 | 20    | 2                                                                                           | 22.2     | 58    |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>L</b> .                     | <100   | <100  | 90.46  | 92,55 | 90           | 100   | 욷     | 2                                                                                           | 63       | 65    |
| 25.64 15.73 26.6 26.6 27 232 30 31 25.5 26.67 29.84 21.98 22.39 26.8 26.8 25 25 26 26 12 26.67 29.84 21.98 22.39 26.8 26.8 26 25 26 12 27.8 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E.                             | 0.21   | 0.27  | 0.238  | 0.251 | 0.24         | 0.26  | 0.25  | 0.25                                                                                        | 0.338    | 0.323 |
| 7.38 6.48 4.25 4.46 3.65 3.8 <6 6 6 192  2.6.67 2.944 2.198 2.239 26.6 2.55 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ę                              | 25.64  | 15.73 | 26.6   | 26.6  | 27           | 23.2  | 30    | 31                                                                                          | 25.5     | 26.6  |
| MATE & ULTIMATE   2964   21.96   22.39   26.8   28.2   25.5   1.13   2.26   3.27   3.29   2.25   1.13   2.26   3.27   3.29   2.2   2.2   3   ND   1.5   1.23   1.13   2.26   3.27   3.29   2.2   3   ND   1.5   1.53   1.13   2.26   3.27   3.29   3.6   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.5   3.6   3.6   3.5   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3   | °E :                           | 7.38   | 6.48  | 4.25   | 4.46  | 3.65         | 3.8   | 9>    | 9>                                                                                          | 1.92     | 15.   |
| 728   40.6   15.67   15.66   15   15   16   17   12.3   1.95   1.95   2.88   2.2   2.25   1.97   2.1   2   2   2   ND   1.5   1.5   1.95   3.2   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   3.6   | Z                              | 26.67  | 29.84 | 21.98  | 22.39 | 26.8         | 28.2  | 52    | 28                                                                                          | 23.5     | 23.8  |
| 195   288   2.2   2.25   1.97   2.1   2   2   NUD   1.5     1.13   2.26   3.27   3.29   2.3   36.3   35   ND   1.5     1.14   42.19   28.06   27.96   33.6   36.3   35   ND   1.5     1.15   2.86   2.87   2.87   3.88   3.8   3.8   3.8     1.15   13.42   13.42   13.44   13.4   13.21   13.27   13.39     13.42   13.42   13.45   13.44   13.4   13.21   13.27   13.39     13.4   13.4   13.4   13.4   13.4   13.2   13.27   13.39     13.5   13.6   4.77   4.94   4.86   4.63   4.58   4.77     13.6   2.95   2.95   3.1   3   2.96   2.99   3.16     14.6   2.95   2.95   3.1   3   2.96   2.99   3.16     14.7   1.207   1.267   1.2649   1.2649   1.2665   1.2669   1.2652     14.8   1.207   1.207   1.207   1.207   1.207   1.207     14.8   1.207   1.207   1.207   1.209   1.207   1.209   1.207     14.8   2.31   2.462   2.319   2.337   22.36   2.357   ND   22.1     14.8   1.12   1.23   1.06   1.07   1.3   1.12   1.12   ND   ND   0.24     14.8   1.10   1.17   1.28   1.39   0.85   ND   0.24     14.8   1.20   0.33   0.34   0.35   0.35   0.36   ND   0.24     15.8   2.31   2.32   2.319   2.32   2.319   0.35   0.35   ND   0.24     15.8   2.32   2.33   0.33   0.35   0.35   0.36   ND   0.24     1.10   2.21   2.32   2.33   0.33   0.35   0.35   ND   0.24     1.10   2.21   2.32   2.33   0.33   0.35   0.35   0.36   ND   0.24     1.10   2.21   2.32   2.33   0.33   0.35   0.36   ND   0.24     1.10   0.24   0.25   0.24   0.36   0.89   ND   0.24     1.10   0.24   0.25   0.24   0.36   0.89   ND   0.55     1.11   1.12   1.13   1.14   0.15   0.36   ND   0.24     1.12   2.13   0.33   0.46   0.48   0.89   0.89   ND   0.55     1.13   2.14   2.15   2.15   0.25   0.36   ND   0.55     1.14   0.17   0.18   0.19   0.86   0.89   0.89   ND   0.55     1.15   0.15   0.15   0.15   0.15   0.36   ND   0.24     1.15   0.15   0.15   0.15   0.15   0.36   ND   0.24     1.15   0.15   0.15   0.15   0.15   0.36   ND   0.24     1.15   0.15   0.15   0.15   0.15   0.36   ND   0.24     1.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15     1.15   0.15   0.15   0.15   0.15   0   | <b>a</b>                       | 7.28   | 9'0>  | 15.67  | 15.66 | 5            | 15    | 16    | 4                                                                                           | 12.3     | 11.5  |
| 1.13   2.26   3.27   3.29   2.5   3.5   3.5   3.5   3.5     MATE & ULTIMATE   13.42   13.42   13.45   13.44   13.4   13.21   13.27   13.39     OGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ą,                             | 1.95   | 2.88  | 2.2    | 2.25  | 1.97         | 2.1   | N     | N                                                                                           | 2        | Z     |
| MATE & ULTIMATE  ON 66.75 66.24 71.23 13.45 13.44 13.4 13.21 13.27 13.39  OGEN 5.3 5.26 4.76 4.71 71.34 71.38 70.41 70.23 69.98  OGEN 5.3 5.26 4.76 4.71 71.34 71.38 70.41 70.23 69.99  OGEN 1.39 1.35 1.43 1.43 1.45 1.39 1.35 1.28  OGEN 5.3 5.26 4.76 4.71 71.34 71.38 70.41 70.23 69.99  OGEN 6.75 0.05 0.14 0.119 0.12 ND ND 0.12  HINE 0.6 0.05 0.14 0.119 0.12 ND ND 0.12  IL207 10953 12674 12648 12645 12609 12665 12669 12653  A. DRY ASH  ELEMENTS  A. S. B. B. B. B. B. B. B. B. B. B. B. B. B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | స్తి                           | 1.13   | 2.26  | 3.27   | 3.29  | 8            | 8     | က     | Q<br>Z                                                                                      | 5        | 2.2   |
| MATE & ULTIMATE  13.42 13.42 13.42 13.42 13.42 13.43 13.44 13.41 13.42 13.42 13.42 13.45 13.44 13.44 13.41 13.27 13.39 OGEN 5.3 5.28 4.76 4.77 4.94 4.88 4.63 4.59 6.938 OGEN 1.39 1.35 1.43 1.43 1.45 1.34 1.45 1.39 1.32 1.32 1.33 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >                              | 40     | 42.19 | 28.06  | 27.98 | 33.6         | 36.3  | 35    | 36                                                                                          | 35.5     | 38.2  |
| ON 66.75 66.24 71.23 71.11 71.34 13.21 13.27 13.39 ON 66.75 66.24 71.23 71.11 71.34 71.38 70.41 70.23 69.96 OGEN 5.3 5.28 4.76 4.77 4.94 4.88 4.63 4.59 70.41 70.23 69.96 OGEN 1.39 1.35 1.43 1.45 1.39 1.39 1.35 1.28 71.11 71.34 71.34 70.41 70.23 69.96 70.41 70.60 0.05 70.14 70.14 70.12 ND ND ND 70.12 ND ND 70.12 ND ND 70.12 ND ND 70.12 ND ND 70.12 ND ND 70.12 ND ND 70.12 ND ND 70.12 ND ND 70.12 ND ND 70.14 70.14 70.14 70.14 1.36 ND ND 70.14 1.14 1.14 1.14 1.15 ND ND 70.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROXIMATE & UL                 | TIMATE |       |        |       | % DRY I      | BASIS |       |                                                                                             |          |       |
| ON         66.75         66.24         71.23         71.11         71.34         71.38         70.41         70.23         69.98           OGEN         5.3         5.28         4.76         4.77         4.94         4.88         4.63         4.58         4.77           OGEN         1.39         1.35         1.43         1.45         1.39         1.39         1.28         4.77           OGEN         1.39         1.35         1.43         1.45         1.39         1.39         1.28         4.77           OH         0.05         0.155         0.14         0.119         0.122         ND         ND         0.12           RINE         0.6         0.05         0.155         0.14         0.119         0.122         ND         ND         0.12           RASH ELEMENTS         *** PARK         1.2648         1.2648         1.2645         1.2609         1.2665         1.2669         1.2623           ASH ELEMENTS         1.12         47.16         46.04         ND         ND         44.91         ND         46.11           ASH ELEMENTS         1.12         4.50         1.05         2.34         2.39         2.39         1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASH                            | 13.42  | 13.42 | 13.42  | 13.45 | 13.44        | 13.4  | 13.21 | 13.27                                                                                       | 13.39    | 13.37 |
| OGEN         5.3         5.28         4.76         4.77         4.94         4.88         4.63         4.59         4.77           OGEN         1.39         1.35         1.43         1.45         1.39         1.39         1.36         4.78         4.77           OGEN         1.39         1.35         1.43         1.45         1.39         1.39         1.36         4.77           OF         0.05         0.155         0.14         0.119         0.122         ND         ND         ND         0.12           ND         12207         10953         12674         12646         12645         12669         12665         1269         3.16           ASH ELEMENTS         12207         10953         12674         12646         12645         12669         12665         12669         12663         12623           ASH ELEMENTS         45.04         ND         ND         44.91         ND         46.12         ND         46.04         ND         44.91         ND         46.12           ASH ELEMENTS         1.12         1.23         1.06         1.07         1.3         1.12         ND         ND         A6.1           ASH ELEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CARBON                         | 66.75  | 66.24 | 71.23  | 71.11 | 71,34        | 71.38 | 70.41 | 70.23                                                                                       | 89.98    | 60 04 |
| GGEN         1.39         1.35         1.43         1.45         1.39         1.39         1.35         1.48         1.45         1.39         1.39         1.35         1.28           PRINE         3.1         2.96         2.95         3.1         3         2.96         2.99         3.16           PRINE         0.6         0.05         0.155         0.14         0.119         0.122         ND         ND         ND         0.12           12207         10953         12674         12646         12645         12609         12665         12669         2.99         3.16           45.86         49.3         47.16         46.04         ND         ND         44.91         ND         46.1           23.1         24.62         23.19         23.37         22.98         23.97         22.55         ND         46.1           23.1         24.62         23.19         23.37         22.98         23.97         22.55         ND         17.4           1.12         1.23         1.06         1.07         1.34         1.36         ND         ND         ND         1.4           1.18         1.07         1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HYDROGEN                       | 5.3    | 5.28  | 4.76   | 4.77  | 4.94         | 4.88  | 4.63  | 4.58                                                                                        | 4.77     | 4 75  |
| HANNE 0.6 0.05 0.155 0.14 0.119 0.122 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND 0.12 ND ND ND ND ND ND ND ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NITROGEN                       | 1.39   | 1.35  | 1.43   | 1.43  | 1.45         | 1.39  | 1.39  | 1,35                                                                                        | 1.28     | 1.32  |
| HINE 0.6 0.05 0.155 0.14 0.119 0.122 ND ND 0.12 12207 10953 12674 12648 12645 12609 12665 12688 12623  ***CHAYASH**  ***CHYASH**  ***CH | SULFUR                         | 3.1    | 2.96  | 2.9    | 2.95  | 3.1          | 6     | 2.96  | 2.99                                                                                        | 3.16     | 3.13  |
| RASH ELEMENTS  45.86  49.3  47.18  46.04  ND  ND  ND  44.91  ND  46.1  23.1  23.1  24.62  23.19  23.37  22.98  23.97  22.98  23.97  22.15  ND  ND  22.1  1.12  1.23  1.06  1.07  1.85  1.91  1.44  1.36  ND  ND  ND  ND  21.4  1.18  1.07  1.85  1.91  1.44  1.36  ND  ND  ND  ND  ND  0.24  1.18  0.22  2.32  2.32  2.32  2.33  0.87  0.87  0.87  0.87  0.87  0.87  0.89  ND  ND  ND  ND  0.24  0.25  0.36  ND  ND  0.24  0.25  0.37  0.38  ND  ND  ND  0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.45  0.47  0.48  0.48  ND  ND  ND  ND  ND  1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHLORINE                       | 9.0    | 0.05  | 0.155  | 0.14  | 0.119        | 0.122 | 2     | S                                                                                           | 0.12     | 0.13  |
| ** DRY ASH         ASH ELEMENTS       ** DRY ASH         45.86       49.3       47.18       46.04       ND       44.91       ND       46.1         23.1       24.62       23.19       23.37       22.98       23.97       22.55       ND       22.1         1.12       1.23       1.06       1.07       1.3       1.12       1.12       ND       22.1         20.76       23.02       21.68       22.01       20.9       19.67       ND       ND       21.4         1.18       1.07       1.85       1.91       1.44       1.36       ND       ND       21.4         0.43       0.33       0.87       0.87       0.86       ND       ND       0.86         0.22       0.21       0.3       0.3       0.25       0.25       0.38       ND       0.24         2.39       2.22       2.3       2.32       1.92       2.11       2.05       ND       0.25         0.47       0.53       0.48       0.46       0.89       0.89       ND       ND       0.45         ND       1.78       1.83       ND       ND       ND       0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Btu/Ib                         | 12207  | 10953 | 12674  | 12648 | 12645        | 12609 | 12665 | 12688                                                                                       | 12623    | 12583 |
| HASH ELEMENTS  45.86  49.3  47.18  46.04  ND  ND  44.91  ND  46.11  23.1  24.62  23.19  23.37  22.98  23.97  22.55  ND  22.1  20.76  20.76  20.76  20.70  20.70  1.3  1.12  1.12  1.12  1.12  1.12  1.12  1.12  1.13  1.14  1.14  1.14  1.14  1.14  1.15  ND  1.17  1.18  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19  1.19 |                                |        |       |        |       | <b>★</b> DRY | ASH   |       |                                                                                             |          |       |
| 45.86 49.3 47.18 46.04 ND ND 44.91 ND 46.1 23.1 24.62 23.19 23.37 22.98 23.97 22.55 ND 22.1 1.12 1.23 1.06 1.07 1.3 1.12 1.12 ND 1 1.18 1.07 1.85 1.91 1.44 1.36 ND ND 21.4 0.43 0.33 0.87 0.87 0.86 ND ND 1.7 20.39 2.22 2.3 2.32 1.92 2.11 2.05 ND 0.24 2.39 2.22 2.3 2.32 1.92 2.11 2.05 ND 0.24 ND ND ND 0.45 ND ND ND 1.78 ND ND ND 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAJOH ASH ELEI                 |        |       |        |       |              |       |       |                                                                                             |          |       |
| 23.1 24.62 23.19 23.37 22.98 23.97 22.55 ND 22.1 1.12 1.23 1.06 1.07 1.3 1.12 1.12 ND 1 20.76 23.02 21.68 22.01 20.9 19.67 ND ND 21.4 1.18 1.07 1.85 1.91 1.44 1.36 ND ND 21.4 0.43 0.33 0.87 0.87 0.86 ND ND 1.7 2.39 2.22 2.3 2.32 1.92 2.11 2.05 ND 2.2 0.47 0.53 0.48 0.46 0.89 0.89 ND ND 0.45 ND ND 1.79 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S.C.                           | 45.86  |       | 47.18  | 46.04 | 2            | 2     | 44.91 | 2                                                                                           | 46.1     | 45.3  |
| 1.12 1.23 1.06 1.07 1.3 1.12 ND 1 20.76 23.02 21.68 22.01 20.9 19.67 ND ND 21.4 1.18 1.07 1.85 1.91 1.44 1.36 ND ND 21.4 0.43 0.33 0.87 0.87 0.86 ND ND 0.86 0.22 0.21 0.3 0.3 0.25 0.25 0.38 ND 0.24 2.39 2.22 2.3 2.32 1.92 2.11 2.05 ND 2.2 0.47 0.53 0.48 0.46 0.89 0.89 ND ND 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Al <sub>2</sub> O <sub>3</sub> | 23.1   |       | 23.19  | 23.37 | 22.98        | 23.97 | 22.55 | 2                                                                                           | 22.1     | 22.2  |
| 20.76 23.02 21.68 22.01 20.9 19.67 ND ND 21.4<br>1.18 1.07 1.85 1.91 1.44 1.36 ND ND 1.7<br>0.43 0.33 0.87 0.87 0.73 0.86 ND ND 0.86<br>1 0.22 0.21 0.3 0.3 0.25 0.25 ND 0.24<br>2.39 2.22 2.3 2.32 1.92 2.11 2.05 ND 2.2<br>0.47 0.53 0.48 0.46 0.89 0.89 ND ND 0.45<br>ND ND 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>⊡</b>                       | 1.12   |       | 1.06   | 1.07  | <del>.</del> | 1.12  | 1.12  | S                                                                                           | -        | -     |
| 1.18 1.07 1.85 1.91 1.44 1.36 ND ND 1.7 0.43 0.33 0.87 0.87 0.73 0.86 ND ND 0.86 0.22 0.21 0.3 0.3 0.25 0.25 0.38 ND 0.24 2.39 2.22 2.3 2.32 1.92 2.11 2.05 ND 2.2 0.47 0.53 0.48 0.46 0.89 0.89 ND ND 0.45 ND ND 1.78 1.83 ND ND ND ND 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fe <sub>2</sub> O <sub>3</sub> | 20.76  |       | 21.68  | 22.01 | 20.9         | 19.67 | 2     | 2                                                                                           | 21.4     | 2     |
| 0.43 0.33 0.87 0.73 0.86 ND ND 0.86<br>0.22 0.21 0.3 0.35 0.25 0.38 ND 0.24<br>2.39 2.22 2.3 2.32 1.92 2.11 2.05 ND 2.2<br>0.47 0.53 0.48 0.46 0.89 ND ND ND 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q<br>U                         | 1.18   |       | 1.85   | 1.91  | 1.44         | 1.36  | 2     | 2                                                                                           | 1.7      | 1.8   |
| O <sub>3</sub> 0.25 0.21 0.3 0.3 0.25 0.25 0.36 ND 0.24<br>2.39 2.22 2.3 2.32 1.92 2.11 2.05 ND 2.2<br>0.47 0.53 0.48 0.46 0.89 0.89 ND ND 0.45<br>ND ND 1.78 1.83 ND ND ND ND 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Og¥                            | 0.43   |       | 0.87   | 0.87  | 0.73         | 0.86  | Q     | 2                                                                                           | 0.86     | 0.86  |
| 2.39 2.22 2.3 2.32 1.92 2.11 2.05 ND 2.2<br>0.47 0.53 0.48 0.46 0.89 0.89 ND ND 0.45<br>ND ND 1.78 1.83 ND ND ND ND 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Na <sub>2</sub> O              | 0.22   |       | 0.3    | 0.3   | 0.25         | 0.25  | 0.38  | S                                                                                           | 0.24     | 0.26  |
| , 0.47 0.53 0.48 0.46 0.89 0.89 ND ND 0.45<br>ND ND 1.78 1.83 ND ND ND 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , K                            | 2.39   |       | 2.3    | 2.32  | 1.92         | 2.11  | 2.05  | 2                                                                                           | 2.2      | 2.2   |
| N ON ON ON ON 1.83 ND ON ON 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o, j                           | 0.47   |       | 0.48   | 0.46  | 0.89         | 0.89  | 2     | 2                                                                                           | 0.45     | 0.46  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | နှ                             | 2      |       | 1.78   | 1.83  | 욷            | 2     | Q     | 2                                                                                           | 1.53     | 1.49  |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE G

| TRACE                          |       | (AB      |          | LAB II        |             | LAB III | [AB          | ≥     | Š     | LAB V    |
|--------------------------------|-------|----------|----------|---------------|-------------|---------|--------------|-------|-------|----------|
| ELEMENIS                       | HON I | AUN 2    | NO.      | RUN 2         | FUN 1       | HUN 2   | NON T        | HUN 2 | HUN 1 | RUN 2    |
| As                             | 1.53  | 1.65     | 2.53     | 2.57          | -           | -       | 8            | 2     | 0.75  | 1.21     |
| <b>@</b> :                     | 95,36 | 74.61    | 87.94    | 6.06          | 96          | 84      | 82           | 65    | 60.7  | 47.4     |
| <b>8</b>                       | 95.36 | 88.87    | 404.6    | 417.4         | 402         | 461     | 250          | 520   | 365   | 389      |
|                                | 1.53  | 1.21     | 1.33     | <del>4.</del> | 1.2         | 1.2     | -            | 1.3   | 1.47  | 1.39     |
| <del>P</del> O                 | >0.06 | >0.06    | ,0.01    | <0.01         | <0.4        | <0.4    | 9'0>         | <0.6  | 0.036 | 0.34     |
| ٠<br>ت                         | 10.96 | 8.56     | 12.89    | 10.44         | 10.2        | 0       | 6            | 유     | 7     | 7.5      |
| <del>ပ</del> ိ                 | 5,59  | 4.83     | 3.96     | 4.07          | 4.24        | 4.38    | 4            | 4     | 2.34  | 2.38     |
| ָם<br>נו                       | 52.61 | 10.53    | 10.44    | 10.47         | <40.5       | <42.9   | 10           | 10    | 14.1  | 14.7     |
| ш.;                            | <100  | ×100     | 92.65    | 91.53         | 06          | 06      | <u>Q</u>     | 2     | 73    | 78       |
| Hg                             | ×0.1  | <0.1     | 0.097    | 0.093         | 0.08        | 0.08    | 0.07         | 0.07  | 0.078 | 0.071    |
|                                | 54.81 | 50.47    | 99.5     | 100.7         | 73.9        | 82.7    | 77           | 62    | 76.3  | 75.5     |
| <b>E</b> 0                     | 2.52  | <b>~</b> | 1.75     | 1.73          | 6.65        | 5.92    | 9            | 9>    | 0.429 | 0.795    |
| Z                              | 7,45  | 6.69     | 8.4      | 7.74          | <15.2       | <16.1   | 9            | 4     | 6.4   | 6.4      |
| Pb                             | 6.25  | 5.05     | 10.02    | 10.06         | 12          | 12      | 0            | =     | 6.1   | 7.5      |
| Sb.                            | 1.97  | 0.99     | 1.72     | 1.72          | 1.38        | 1.63    | -            | ~-    | 4.43  | 3.22     |
| œ,                             | <0.6  | <0.6     | 1.62     | 1.64          | -           | -       | 8            | 운     | 1.07  | 1.77     |
| >                              | 29.6  | 24.14    | 24.82    | 25.52         | 52          | 26.8    | 27           | 23    | 27    | 27.9     |
| PROXIMATE & ULTIMATE           | ATE   |          |          |               | % DRY BASIS | BASIS   |              |       |       |          |
| ASH                            | 20.52 | 20.6     | 20.54    | 20.66         | 20.6        | 20,63   | 20.64        | 20.61 | 20.71 | 20.86    |
| CARBON                         | 58.09 | 58.61    | 62.29    | 62.02         | 61.81       | 61.95   | 61.25        | 61.29 | 6135  | 61 13    |
| HYDROGEN                       | 5.82  | 5.38     | 9,4      | 4.62          | 4.71        | 4.76    | 4.51         | 4.5   | 4.35  | 4.56     |
| NITROGEN                       | 1.01  | 1.02     | 0.89     | 1.03          | 1.1         | 1.06    | 1.04         | 1.04  | 109   | 1.09     |
| SULFUR                         | 9.0   | 0.53     | 0.71     | 0.73          | 0.71        | 0.69    | 0.69         | 0.67  | 0.72  | 69 0     |
| CHLORINE                       | 0.08  | 0.05     | <0.02    | <0.02         | <0.01       | <0.01   | Ž            | 2     | 0.0   | 0.04     |
| Btu/Ib                         | 69/6  | 9471     | 10855    | 10858         | 10848       | 10848   | 10848        | 10857 | 10804 | 10797    |
|                                |       |          |          |               | X DRY ASH   | ASH     |              |       |       |          |
| MAJOR ASH ELEMENTS             |       |          |          |               |             | •       |              |       |       |          |
| SiO <sub>1</sub>               | 62.96 | 50.22    | 61.22    | 61.62         | S           | 2       | 59.37        | 60.34 |       | 59.6     |
| Alo,                           | 18.16 | 16.1     | 22.76    | 22.61         | 20.51       | •••     | 21.59        | 21.81 | 21.1  | 20.7     |
|                                | 0.98  | 0.81     | 0.96     | 0.93          | 1.35        |         | 1.19         | 0.94  |       | 0.0      |
| Fe <sub>2</sub> O <sub>3</sub> | 4.35  | 3.5      | 4.63     | 4.68          | 4.48        |         | <del>Q</del> | 2     |       | 4.6      |
| CaO                            | 2.24  | 2.01     | 4.68     | 4.68          | 1.52        |         | 운            | 2     |       | 4.2      |
| <b>0</b> 63                    | 0.23  | 0.33     | 1.33     | 1.32          | 0.73        |         | 2            | Q     |       | <u>.</u> |
| Na <sub>z</sub> O <sub>z</sub> | 0.12  | 0.11     | 0.25     | 0.27          | 0.2         |         | 0.31         | 0.19  |       | 0.29     |
| Ž,                             | 1.16  | 4.09     | <u>-</u> | 1.39          | 1.15        | 1.27    | 1.23         | 1.28  |       | 1.3      |
| o d                            | 0.04  | 0.03     | 0.03     | 0.03          | 0.05        |         | 2            | Q     |       | 0.1      |
| so,                            | Z     |          | 3.53     | 3.54          | 2           |         | 2            | 2     |       | 3.7      |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE H

|                                |        |        |              | •      |              | ב כסקו מ | S S S S S S S S S S S S S S S S S S S |                 |                |                |
|--------------------------------|--------|--------|--------------|--------|--------------|----------|---------------------------------------|-----------------|----------------|----------------|
| IHACE                          | _      | AB I   | لـ           | LABII  | ¥            | IAR III  | TY                                    | I AB IV         | -              | 3              |
| ELEMENTS                       | HUN 1  | HUN 2  | HUN 1        | RUN 2  | RUN 1        | RUN 2    | RUN 1                                 | RUN 2           | RUN 1          | 1 RUN 2        |
| As .                           | 9.0>   | 3.63   | 4.63         | 4.51   | ო            | en       | ď                                     | Ş               | č              |                |
| נ מב                           | 203.01 | 181.49 | 142.76       | 134,99 | 160          | 170      | 160                                   | <u>.</u><br>چ څ |                | 4. 4.<br>5. 6. |
| S (                            | 97.4   | 33.09  | 51.1         | 20     | 54.5         | 6.64     |                                       | <b>4</b>        | 101<br>48.8    | 142            |
| 9 F.                           | 1.71   | 1.49   | 1.23         | 1.26   |              | 7.       | 1.3                                   | -               | ,<br>,<br>,    | 97             |
| <u>ت</u> د                     | 0.46   | 0.4    | 0.56         | 0.63   | <0.2         | <0.2     | <0.                                   | ¥0>             | 2000           | 1000           |
| ט כֿ                           | 22.44  | 21.35  | 19.58        | 19.69  | 23.1         | 20.1     | 22                                    | 200             | 18.5           | 0.107          |
| <u>د</u><br>د د                | 6.41   | 7.79   | 3.59         | 3.62   | 4.08         | 3.71     | ស                                     | 4               | 2.0.c          | 5 6            |
| 3,                             | 13.89  | 11.74  | 10.99        | 11.19  | <34.0        | <32.2    | - 5                                   | · <u>c</u>      | 45.4           | 75.7           |
| <b>.</b> :                     | <100   | <100   | 92.92        | 93.09  | 8            | 90       | 2.84                                  | ! <del>S</del>  | <u> </u>       |                |
| Ď.                             | <0.1   | 0.15   | 0.098        | 0.098  | 0.05         | 0.05     | 0.05                                  | 2 0             | - <b>G</b>     | - 600          |
|                                | 26.71  | 23.49  | 31.7         | 31.7   | 21.2         | 22.3     | 3                                     | 3.5             | 2,75           | 0.080          |
| O <u>X</u> :                   | 5.98   | 6.73   | 5.05         | 5.1    | 11.5         | 11.4     | 7                                     | 5 °             | 5.7            | 7.07           |
| Z                              | 20.3   | 18.15  | 15.19        | 15.32  | 13.6         | 13.4     | r <u>α</u>                            | 4 0             | 7              | 40.0           |
| Pb                             | 5.45   | <0.6   | 10.6         | 10 73  | 0            |          | 2 ;                                   | ; مُ            | 7.01           | 16.3           |
| Sb                             | <0.8   | <0.8   | 0.62         |        | מ מ          | 7        | = 1                                   |                 | 7.6            | <b>9</b> .9    |
| S <sub>e</sub>                 | 130    | 17.    | 600          | 5 6    | 0.000        | 0.417    | <b>▽</b>                              | ⊽               | 2              | 2              |
| ; >                            | D 0    |        | 80.5         | 3.01   | N            | 8        | 8                                     | 운               | 7.5            | 6.             |
| •                              | 9.0    | /o./o  | 31.43        | 31.58  | 36.1         | 36.5     | 39                                    | 38              | 40.4           | 39.6           |
| PROXIMATE & ULTIMATE           | E E    |        |              |        | % DRY BASIS  | SASIS    |                                       |                 |                |                |
| ASH                            | 10.47  | 10.68  | 10.67        | 10 71  | 10 57        | 40       | 7                                     | 9               |                | ,              |
| CAHBON                         | 67.37  | 67.64  | 72 52        | 72.47  | 200          | 2 6      | 10.51                                 | 10.48           | 10.59          | 10.69          |
| HYDROGEN                       | 4      | 68.8   | 7.77         | 4.7    | 80'7'        | 72.7     | 71.27                                 | 71.23           | 71.23          | 71.19          |
| NITROGEN                       | •      | 5 4    | 7) .<br>T    | 4. j   |              | 5.01     | 4.7                                   | 4.73            | 4.81           | 4.79           |
| SHEIB                          | 87:- C | 54. 0  | <b>₽</b> . ( | 1.54   | 1.46         | 1.5      | 1.43                                  | 1.43            | 1.43           | 1.35           |
|                                | 3.00   | 7.07   | 20.<br>20.   | 2.84   | 2.87         | 2.86     | 2.86                                  | 2.89            | 2.86           | 2.82           |
| Bride                          | 90:0   | 90.0   | 0.122        | 0.124  | 0.135        | 0.148    | Q                                     | 2               | 0.14           | 0.14           |
|                                | 12911  | 0/911  | 12858        | 12828  | 12815        | 12809    | 12776                                 | 12767           | 12734          | 12706          |
| STATATION ACH CHEMINTS         | ģ      |        |              |        | % DRY        | ASH      |                                       |                 |                |                |
| SiO                            | 2      | 7.7    | 1            |        |              |          |                                       |                 |                |                |
|                                | 5,00   | 44.00  | 20.7         | 50.64  | 2            | 2        | 48.97                                 | 2               | 49.7           | 40 6           |
| 7.0°                           | 23.13  | 18.88  | 22.1         | 22.14  | 21.61        | 20.21    | 21.32                                 | 2               | 21.4           | 5              |
| 5.                             | 1.16   | 0.98   | 1.09         | 1.09   | <del>-</del> | 1.02     | 1.08                                  | S               | 0              | 2              |
| rez.                           | 16.05  | 14.01  | 16.52        | 16.59  | 15.37        | 13.41    | 2                                     | S               | . <del>.</del> | )<br>()        |
|                                | 1.71   | 1.54   | 3.3          | 3.39   | 1.89         | 1.68     | S                                     | S               | 0              | - 6            |
| 0 <b>6</b>                     | 0.39   | 0.38   | 1.06         | 1.07   | 0.85         | 0.85     | 2                                     | Ž               | יי<br>י        | <b>6</b> .7    |
| Na <sub>2</sub> O <sub>3</sub> | 0.85   | 69.0   | 0.91         | 0.93   | 0.79         | 0.72     | 0.76                                  | 2               | - 90           | - 6            |
| Υ,<br>O                        | 2.83   | 2.41   | 2.6          | 2.61   | 2.78         | 500      | . c                                   | 2 2             | 0.30           | 0.88           |
| P_0.                           | 0.21   | 0.18   | 0.18         | 0.0    | 0.35         | 9        | 21.7                                  | 2 2             | <b>7.7</b>     | 2.4            |
| ြင့်                           | 2      | 2      | 2.24         | 20.00  | S            | Š        | 2 5                                   | 2 2             | 0.27           | 0.22           |
| 1                              |        |        | !<br>!       | )<br>i | }            | Š        | Š                                     | 3               | 2.93           | 2.7            |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE J

| TRACE                          |        | AB 1         | ٦      | LAB II | <b>≤</b>    | LAB III | Ž        | ≥     | <b>Y</b> | LAB V |
|--------------------------------|--------|--------------|--------|--------|-------------|---------|----------|-------|----------|-------|
| ELEMENTS                       | RUN    | HUN 2        | HUN 1  | RUN 2  | RUN 1       | RUN 2   | RUN 1    | RUN 2 | HUN 1    | RUN 2 |
| As                             | 1.03   | 2.9          | 3.42   | 3.34   | 2           | 8       | 8        |       | 2.1      | 2.2   |
| œ                              | 311.53 | 257.9        | 186.96 | 179.35 | 230         | 220     | 200      | 210   | 222      | 205   |
| Ba                             | 3.22   | 27.94        | 54.1   | 57.7   | 54.7        | 55.6    | 21       | 49    | 2        | 51.6  |
| Be                             | 1.61   | 1.5          | 1.15   | 1.19   | 4.          | 4.1     | 1.1      | 1.2   | 1.47     | 1.43  |
| P)                             | 0.88   | 1.01         | 9.0    | 0.65   | <0.3        | <0.3    | <0.4     | <0.4  | 0.417    | 0.276 |
| ؙڹ                             | 34.38  | 26.86        | 26.3   | 26.97  | 20.6        | 26.5    | 30       | 28    | 56       | 33.3  |
| Ço                             | 6.45   | 5.48         | 3.65   | 3.59   | 3.49        | 3.13    | ო        | 6     | 2.52     | 2.63  |
| Cu                             | 8.81   | 10.75        | 9.35   | 9.18   | <39.2       | <35.2   | <b>t</b> | o     | 13.1     | 13.9  |
| <u> </u>                       | 0.01   | 0.01         | 111,15 | 110.27 | 100         | 110     | 4.35     | 2     | -6       | 87    |
| Hg.                            | 0.18   | <0.1         | 0.117  | 0.111  | 0.1         | 0.1     | 60.0     | 0.09  | 0.113    | 0.107 |
| M                              | 17.19  | 35.46        | 53.4   | 51.8   | 30.6        | 28.2    | 45       | 45    | 42.6     | 43.8  |
| O :                            | 10.74  | 7.52         | 7.07   | 7.04   | 16.7        | 15.6    | ß        | រព    | 5.2      | 5.4   |
| Z                              | 21.48  | 19.34        | 16.12  | 16.55  | 15.3        | 13.2    | 61       | 17    | 18.3     | 21.5  |
| Pb                             | <0.6   | 6.81         | 11,16  | 10.85  | 16          | 12      | Ξ        | =     | 7.6      | 7     |
| Sp                             | <0.0   | <b>8</b> .0> | 0.51   | 0.49   | 0.49        | 0.421   | ⊽        | ٧     | 2        | 2     |
| , ge                           | 1.93   | 2.79         | 4.16   | 3.99   | က           | 6       | 6        | Q.    | 2.5      | 2.5   |
| >                              | 45.12  | 36.54        | 32.32  | 33.8   | 33.5        | 32.1    | 36       | 36    | 38.5     | 38.6  |
|                                |        |              |        |        |             |         |          |       |          |       |
| PROXIMATE & ULTIMATE           | ATE    |              |        |        | % DHY BASIS | BASIS   |          |       |          |       |
| ASH                            | 12.2   | 12.17        | 12.13  | 12.16  | 11.75       | 11.77   | 11.89    | 11.87 | 11.84    | 11.85 |
| CARBON                         | 69.43  | 69.07        | 70.45  | 70.4   | 70.01       | 69.92   | 69.56    | 69.4  | 68.98    | 69 34 |
| HYDROGEN                       | 4.78   | 5.7          | 4.86   | 4.84   | 4.88        | 4.95    | 4.43     | 4.47  | 4.77     | 4.73  |
| NITHOGEN                       | 1.29   | <del>L</del> | 1.26   | 1.26   | 1.37        | 1.42    | 1.27     | 1.31  | 1.32     | 1.25  |
| SULFUR                         | 3.52   | 4.05         | 3.46   | 3.42   | 3.53        | 2.15    | 3.42     | 3.44  | 3.44     | 3.39  |
| CHLORINE                       | 0.04   | 0.04         | 0.08   | 0.075  | 0.079       | 0.076   | S        | 2     | 0.11     | 0.01  |
| 9tu/lb                         | 10161  | 11035        | 12502  | 12493  | 12493       | 12515   | 12446    | 12451 | 12410    | 12422 |
|                                |        |              |        |        | % DRY ASH   | ASH     |          |       |          |       |
| MAJOR ASH ELEMENTS             | IIS    |              |        |        |             |         |          |       |          |       |
| SiO <sub>1</sub>               | 7.17   | 43.52        | 48.35  | 48.95  | 2           | S       | 48.17    | QX    | 47.5     | 48.2  |
| Al <sub>2</sub> O <sub>3</sub> | 5.65   | 13.51        | 18.95  | 18.67  | 18.56       | 17.23   | 18.57    | S     | 17.6     | 17.8  |
| Ti0,                           | 1.09   | 6.0          | 0.94   | 0.93   | 6.0         | 0.74    | 0.94     | 2     | 6.0      | 6.0   |
| Fe <sub>2</sub> O <sub>3</sub> | 15.11  | 13.89        | 17.2   | 17.23  | 14.94       | 14.01   | S        | 2     | 16.4     | 16.8  |
| CBO                            | 1.85   | 1.98         | 6.55   | 6.45   | 2.21        | 2.1     | <u>Q</u> | 2     | 5.3      | 5,5   |
| MgO                            | 0.15   | 0.28         | 1.06   | 1.04   | 0.92        | 0.74    | Q        | S     | _        | -     |
| Na <sub>2</sub> O <sub>3</sub> | 0.69   | 6.0          | 0.93   | 0.91   | 0.85        | 0.82    | 1.01     | 2     | 0.99     | -     |
| Č.                             | 1.7    | 2.02         | 2.17   | 2.15   | 1.47        | 1.25    | 2.05     | 2     | 2.1      | 2.1   |
| o.                             | 0.28   | 0.24         | 0.27   | 0.29   | 0.51        | 0.55    | 2        | S     | 0.24     | 0.28  |
| S<br>S                         | Q<br>N | Ş            | 2.98   | 2.88   | 9           | 2       | 욷        | 2     | 5.86     | 6.05  |
|                                |        |              |        |        |             |         |          |       |          |       |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE K

# PPM DRY WHOLE COAL BASIS

|                                |        |        |        | <b>E</b> |             | י מכאר מ | 200   |       |            |                |
|--------------------------------|--------|--------|--------|----------|-------------|----------|-------|-------|------------|----------------|
| HACE                           |        | AB I   |        | LAB =    |             | LAB III  | PP (  | ≥     | ₹          | LAB V          |
| ELEMENIS                       | HON 1  | AUN 2  | NO.    | RUN 2    | HUN 1       | RUN 2    | BUN 1 | RUN 2 | RUN 1      | RUN 2          |
| As                             | 2.49   | 2.8    | 3.18   | 3.22     | ****        | 8        | 8     | 2     | 6.         | 2.8            |
| <b>co</b> :                    | 228.69 | 238.84 | 173    | 167.32   | 200         | 180      |       | 200   | 201        | 205            |
| <b>Ba</b>                      | 32.22  | 32,19  | 48.5   | 46.7     | 61.1        | 57.4     |       | 49    | 50.1       | 56.5           |
| Be                             | 1.66   | 1.77   | 1.34   | 1.42     | 1.7         | 1.7      | 1.2   | 4.4   | 1.69       | 2.37           |
| 5                              | 2.18   | 2.08   | 1.01   | 96.0     | <0.3        | <0.3     |       | <.04  | 0.564      | 0.184          |
| ٠<br>ت                         | 33.26  | 33.23  | 35.54  | 33.49    | 36.9        | 34.2     |       | 38    | 30.5       | 38.1           |
| රි (                           | 4.57   | 4.88   | 3.44   | 3.68     | 3.67        | 3.42     |       | က     | 1.82       | 3.84           |
| n i                            | 11.43  | 11.42  | 9,61   | 9.7      | <35.4       | <33.9    | 60    | 0     | 13.6       | 15.9           |
| <u>u</u> . :                   | 0.01   | 0.01   | 128.14 | 134.87   | 110         | 120      | 9     | 2     | 96         | 89             |
| ð.                             | 0.18   | 0.19   | 0.107  | 0.105    | 0.011       | 0.011    | 0,0   | 0.12  | 0.121      | 0.095          |
| <b>S</b>                       | 28.07  | 28.04  | 39.9   | 39.9     | 27.3        | 28.5     |       | 38    | 33.9       | 40.8           |
| OM:                            | 7.07   | 7.58   | 7.39   | 7.38     | 17.6        | 18.4     |       | 9>    | . EQ.      | 6.9            |
| Ž                              | 17.67  | 17.65  | 17.46  | 17.52    | 13.5        | 12.2     | 18    | 19    | 17.4       | 23             |
| Pb                             | 9.77   | 14.54  | 15.25  | 15.61    | 18          | €        | 15    | 16    | 10.2       | <u>ي</u><br>دن |
| as ·                           | <0.8   | <0.8   | 0.68   | 0.73     | 0.657       | 0.597    | ₹     | ٧     | 2          | 2              |
| <b>.</b>                       | 2.81   | 3.53   | 5,56   | 4.94     | က           | က        |       | S     |            | 2.2            |
| >                              | 46.78  | 45.69  | 38.76  | 4        | 44.8        | 46.8     | 45    | 48    | 48.6       | 57.9           |
| PROXIMATE & ULTIMATE           | VTE    |        |        |          | % DRY BASIS | SASIS    |       |       |            |                |
| ASH                            | 12.59  | 12.38  | 12.63  | 12.6     | 12,44       | 12.49    | 12.47 | 12.46 | 12 44      | 12.62          |
| CARBON                         | 68.06  | 81.55  | 70.23  | 70.02    | 69.61       | 69 21    | 68 88 | 68.92 | 69.7       | 58 03          |
| HYDROGEN                       | 4.98   | 4.6    | 4.82   | 4.87     | 16.4        | 0        | 4.55  | 4.53  | 4 69       | 4.7            |
| NITROGEN                       | 1.33   | 1.35   | 1.34   | 1.32     | 1.43        | 1.36     | 1.29  | 1.35  | 4 33       | . 20           |
| SULFUR                         | 4      | 3.88   | 9.6    | 3.43     | 3.51        | 3,54     | 3.48  | 3.45  | 3.44       | 98.8           |
| CHLORINE                       | 0.04   | 0.03   | 0.073  | 0.09     | 0.086       | 0.088    | 2     | 2     | 0.07       | 0.07           |
| Btu/lb                         | 11326  | 11013  | 12359  | 12363    | 12391       | 12411    | 12392 | 12369 | 12364      | 12388          |
|                                |        |        |        |          | % DRY ASH   | ASI      |       |       |            |                |
| MAJOR ASH ELEMENTS             | ည      |        |        |          |             |          |       |       |            |                |
| SiO,                           | 46     | 46.73  | 51.78  | 51.75    | S           | 오        | 48.95 | 2     | 50.6       | 52             |
| Al <sub>2</sub> O <sub>3</sub> | 15.6   | 17.43  | 19.36  | 19.39    | 18.74       | 17       | 18.5  | 2     | 18.6       | 18.4           |
| 170 <u>,</u>                   | 0.94   | 0.98   | 0.99   | 0.98     | 0.85        | 0.71     | 1.68  | QX    | 6.0        | -              |
| Fe <sub>2</sub> O <sub>3</sub> | 14.17  | 15.59  | 19.07  | 18.9     | 1.74        | 1.59     | 2     | ş     | 17.5       | 17.4           |
| CaO                            | 1.5    | 1.41   | 3.81   | 3.68     | 1.92        | 1.81     | 2     | Q     | ຕ          | 3.5            |
| MgO                            | 0.3    | 0.26   | 1.09   | 1.09     | 0.74        | 0.81     | 2     | 2     | <b>***</b> | -              |
| Na <sub>2</sub> O <sub>3</sub> | 0.7    | 0.27   | 0.77   | 0.76     | 0.0         | 0.7      | 0.77  | S     | 0.92       | 0.82           |
| ۲.<br>۲.                       | 2.19   | 2.32   | 2.36   | 2.35     | 1.71        | 2.05     | 1.95  | 2     | 2.2        | 2.2            |
|                                | 0.26   | 0.27   | 0.31   | 0.28     | 0.59        | 0.51     | 2     | 9     | 0.39       | 0.32           |
| og<br>S                        | O<br>Z | 2      | 1.87   | 1.82     | 2           | 웆        | Q     | 2     | 3.56       | 3.54           |
|                                |        |        |        |          |             |          |       |       |            |                |

D-52 28

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE L

| TRACE                          | ב     | LAB 1 | ב          | LABII | 148        | B III      | IAB IV   | <u>&gt;</u> | ¥     | IAB V |
|--------------------------------|-------|-------|------------|-------|------------|------------|----------|-------------|-------|-------|
| ELEMENTS                       | RUN 1 | RUN 2 | BUN 1      | RUN 2 | BUN 1      | HUN 2      | BUN 1    | RUN 2       | RUN 1 | RUN 2 |
| As                             | 14.26 | 10.18 | 13.18      | 13.29 | 7          | 50         | æ        | 2           | 10.9  | 10.7  |
| ☎ .                            | 81.46 | 98.77 | 62.87      | 64.7  | 79         | 72         | 29       | 63          | 63.9  | 50.1  |
| Ва                             | 25.46 | 27.49 | 32.7       | 32.9  | 34.4       | 34.1       | 30       | 30          | 2     | 93    |
| De C                           | 1.32  | 1.63  | 66 0       | 1.05  | 1.5        |            | 1-       |             | 1.43  | 1.44  |
| PO                             | 0.09  | 0.12  | 0.15       | 0.15  | <0.3       | <0.3       | <0.2     | <0.2        | 0.088 | 0.054 |
| ŏ                              | 16.29 | 20.36 | 15.08      | 14.92 | 17         | 16.5       | <u>2</u> | 16          | 11.7  | 6.17  |
| လ                              | 6.11  | 19.67 | 4.54       | 4.43  | 5.18       | 5.56       | 4        | 4           | 4.49  | 4.33  |
| Cu                             | 7.33  | 8.96  | 6.91       | 6.76  | <34.9      | <32.6      | 7        | 7           | Ŧ     | 10.6  |
| u.                             | <100  | ×100  | 61.87      | 61.71 | 9          | 50         | 2        | 2           | 52    | 52    |
| Τā                             | <0.1  | 0.19  | 0.155      | 0.154 | 0.12       | 0.12       | 0.1      | 0.1         | 0.185 | 0.176 |
| <b>M</b> n                     | 15.27 | 18.33 | 16.3       | 16.3  | 19.3       | 17.5       | <b>1</b> | 18          | 6.6   | 19.2  |
| Mo                             | <2    | 3.56  | 1.58       | 1.54  | 1.07       | 2.02       | <3       | <b>6</b>    | 2     | 2     |
| Z                              | 13.24 | 16.29 | 12.39      | 12.18 | 19.3       | 16.7       | 4        | 12          | 14.3  | 14.7  |
| РЪ                             | 3.46  | 3.67  | 6.67       | 6.55  | 15         | <b>5</b> 3 | 9        | 9           | 4.7   | €.    |
| <b>QS</b>                      | <0.8  | <0.8  | 0.67       | 99'0  | 0.546      | 0.597      | ٧        | V           | 2     | Ç     |
| <b>%</b>                       | 1.93  | 2.14  | 2.65       | 2.74  | R          | 8          | 8        | S           |       | 2.3   |
| >                              | 30,55 | 37.67 | 24.64      | 24.07 | 32.7       | 32.5       | 28       | 27          | 32,6  | 32,3  |
|                                |       |       |            |       | 2040 700 > | 01010      |          |             |       |       |
| PROXIMATE & ULTIMATE           | IATE  |       |            |       |            | Sico       |          |             |       |       |
| ASH                            | 11.58 | 11.56 | 11.45      | 11.53 | 11.61      | 11.61      | 11.45    | 11.38       | 11.49 | 1167  |
| CARBON                         | 71.12 | 71.51 | 72.74      | 72.82 | 72.69      | 72.38      | 71.92    | 71.97       | 71.59 | 71.67 |
| HYDROGEN                       | 5.17  | 5.41  | <b>4</b>   | 4.98  | 5.03       | 5.05       | 4.88     | 4.87        | 4.82  | 4.81  |
| NITROGEN                       | 1.36  | 1.37  | 1.39       | 1.42  | 1.43       | 1.42       | 14.      | 1.38        | 134   | 1.23  |
| SULFUR                         | 3.41  | 3.52  | 3.12       | 3.17  | 3.26       | 3.29       | 3.08     | 3,15        | 3.29  | 3.25  |
| CHLORINE                       | 0.05  | 90.0  | 0.091      | 0.078 | 0.099      | 960.0      | S        | 2           | 0.1   | 0.09  |
| Btu/Ib                         | 12539 | 13308 | 13004      | 13009 | 12925      | 12950      | 12977    | 12973       | 12925 | 12936 |
|                                |       |       |            |       | % DRY ASH  | / ASH      |          |             |       |       |
| MAJOR ASH ELEMENTS             |       |       |            |       |            |            |          |             |       |       |
| siO <sub>3</sub>               | 39.57 | 47.19 | 45.66      | 45.89 | 2          | 2          | 45.42    | S           | 45.1  | 44.3  |
| Al <sub>2</sub> O <sub>3</sub> | 19.93 | 23.29 | 21.77      | 21.86 | 21.55      | 21.56      | 22.07    | 2           | 21.2  | 20.7  |
| 10,                            | 0.94  | 1.07  | 0.97       | 0.98  | 96'0       | 1.08       | 0.97     | S           | 0.9   | -     |
| Fe <sub>2</sub> O <sub>3</sub> | 22.63 | 26.45 | 26.21      | 26.12 | 21.83      | 21.53      | Q<br>N   | 2           | 25.4  | 25.2  |
| CaO                            | 0.5   | 9.0   | 1.28       | 1.29  | 1.21       | 1.17       | Q        | 2           | 1.2   | 1.2   |
| Obw                            | 0.26  | 0.28  | 2.0        | 0.71  | 0.68       | 0.69       | S        | 2           | 0.73  | 0.71  |
| Na <sub>2</sub> O,             | 0.37  | 0.38  | 0.41       | 0.41  | 0.36       | 0.33       | 0.5      | S           | 0.57  | 0.52  |
| Ŏ,                             | 1.7   | 2.02  | <u>0</u> . | 1.92  | 1.58       | 1.42       | 1.83     | Ŝ           | 6.1   | 1.8   |
| P.O.                           | 0.11  | 0.13  | <u>.</u>   | 0.1   | 0.24       | 0.21       | S        | 2           | 0.19  | 0.21  |
| ်<br>တွေ                       |       | 2     | 1.64       | 1.62  | 9          | S          | S        | <u>Q</u>    | 1.42  | 1.4   |
|                                |       |       |            |       |            |            |          |             |       |       |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE M

| TRACE                          | _      | AR I   | -     | I AB II        | III OVI     | =            | V 041        | 2        | -        | 3           |
|--------------------------------|--------|--------|-------|----------------|-------------|--------------|--------------|----------|----------|-------------|
| ELEMENTS                       | RUN 1  | RUN 2  | RUN 1 | RUN 2          | BUN 1       | RUN 2        | RUN 1        | RUN 2    | RUN 1 RU | RUN 2       |
| As                             | 1.36   | 1.36   | 1.74  | 1.75           | 8           | -            | -            | Q        | 0.54     | 0.52        |
| 8                              | 101.72 | 105.45 | 26.13 | 31,55          | 66          | 8            | 97           | 9        | 79.6     | 612         |
| Ba                             | 161.27 | 173.68 | 438.5 | 451.3          | 559         | 589          | 120          | 140      | 445      | 503         |
|                                | 0.52   | 0.5    | 0.52  | 0.53           | 0,4         | 0.4          | 0.3          | 0.4      | 0.363    | 0.319       |
| <b>8</b>                       | <0.06  | >0.06  | 0.1   | 0.11           | <0.3        | <0.3         | <0.4         | <0.4     | 0.068    | 2           |
| ٔ ن                            | 5.21   | 5.09   | 4.8   | 4.76           | 4.94        | 5.01         | 6            | 4        | e<br>e   | 8 8         |
| <sub>ු</sub>                   | <2.0   | 2.73   | 1.19  | 1,16           | 0.619       | 0.641        | -            | -        | 2        | 0.86        |
| <del>z</del>                   | 10.42  | 10.3   | 8.21  | 8.21           | <36.7       | <41.6        | 7            | <b>E</b> | 11.5     | 11.6        |
| u.                             | <100   | × 100  | 50.01 | 53.25          | <b>4</b>    | 40           | Ş            | 2        | 39       | 66          |
| H <sub>G</sub>                 | <0.1   | <0.1   | 0.082 | 0.08           | 70.0        | 0.07         | 90.0         | 0.06     | 0.102    | 0.088       |
| <b>Z</b> 2                     | 119.09 | 119.09 | 184.4 | 186.5          | 126.3       | 132.7        | 140          | 160      | 141      | 141         |
| <b>M</b> o                     | 7.57   | 7.2    | 6.93  | 7.33           | 18.7        | 19.8         | ស            | 4        | 5.7      | (m)         |
| Ź                              | 4.09   | 4.47   | 3.6   | 3.56           | 7.91        | 40.4         | -            | 8        | S        | S           |
| Pb                             | 4.09   | 4.84   | 5.49  | 5.44           | 7           | 60           | · vo         | ı ıc     | (C)      | 0           |
| Sb                             | <0.8   | <0.8   | 0.49  | 0.5            | 0.479       | 0.481        | . ⊽          | · V      | Ş        | Ş           |
| క్రి                           | <0.6   | <0.6   | 0.98  | 0.95           | -           | <del>-</del> | ; <b>-</b>   | Ę        | -        | 2           |
| >                              | 99.6   | 10.67  | 9.3   | 9.35           | 8.68        | 9.07         | · cc         | ) a      | or<br>or | 9           |
|                                |        |        |       |                |             |              | •            | •        | )        | 3           |
| PROXIMATE & ULTIMATE           | ATE    |        |       |                | % DRY BASIS | ASIS         |              |          |          |             |
| ASH                            | 11.94  | 12.07  | 11.74 | 11.88          | 11.54       | 11.49        | 11.43        | 11.46    | 11.53    | 11.62       |
| CARBON                         | 67.62  | 67.2   | 68.81 | 68.56          | 68.36       | 68.49        | 67.86        | 67 79    | 67.51    | 67.67       |
| HYDROGEN                       | 7.29   | 6.03   | 4.72  | 4 75           | 4 72        | 4 70         | 0 F0         | A 5.8    |          | 5.5         |
| NITROGEN                       | 6      | -      | 28.0  | 700            |             |              | 80.5         | 90.4     | 5. J     | 00.4<br>0.4 |
|                                | 00.0   | - 6    | 5 6   | n c            | - ·         |              | 0.50<br>0.50 | 0.95     | [ .      | <u></u>     |
| IN INC                         | g c    | 0.03   | 8. c  | 86.0           | CO. 5       | 20.0         | 0.94         | 96.0     | 0.98     | 0.98        |
| OILCOURE<br>Dings              | 0.01   | 0.0    | 20.02 | 20.02<br>20.02 | <0.1<br>1   | <0.01        | 2            | 2        | 0.04     | 0.04        |
| ar/na                          | 06801  | 6333   | 11/4/ | 11743          | 11/38       | 11707        | 11775        | 11745    | 11670    | 11662       |
|                                |        |        |       |                | * DRY ASH   | ASH.         |              |          |          |             |
| MAJOR ASH ELEMENTS             | ITS    |        |       |                |             |              |              |          |          |             |
| SiO <sub>2</sub>               | 40.07  | 41.85  | 43.44 | 43.5           | 2           | 2            | 43,29        | 2        | 40.3     | 40.9        |
| Al <sub>2</sub> O <sub>3</sub> | 8.64   | 7.77   | 18.96 | 18.97          | 15,34       | 16.2         | 18.98        | Q        | 19.5     | 1.61        |
| Tio,                           | 0.81   | 98'0   | 0.81  | 0.81           | 1.29        | 1.23         | 0.84         | 2        | 8        | 80          |
| Fe <sub>2</sub> O <sub>3</sub> | 4.75   | 4.85   | 7.05  | 7.64           | 5.21        | 6.02         | Q            | 2        | 5.5      | 50.00       |
| CaO                            | 2.76   | 2.16   | 12.82 | 12.83          | 3.75        | 4.21         | 2            | 2        | 114      | 4.11        |
| MgO                            | 1.45   | 1.11   | 40.4  | 4.02           | 96.0        | 0.99         | Q            | 2        | 39       | 3.9         |
| Na <sub>2</sub> O <sub>3</sub> | 0.24   | 0.24   | 0.29  | 0.32           | 0.26        | 0.29         | 0.32         | 2        | 0.32     | 0.38        |
| <b>K</b> ,0                    | 0.84   | 0,46   | 0,5   | 0.51           | 0.37        | 0.44         | 0.48         | S        | 0.49     | 0.51        |
| P <sub>2</sub> O <sub>3</sub>  | 0.31   | 0.31   | 0.29  | 0.29           | 0.64        | 9.0          | 욮            | Q        | 0.29     | 0.27        |
| ွင့်                           | 9      | 2      | 1.77  | 11.84          | 2           | 문            | 2            | 2        | 14.48    | 14.08       |
| ı                              |        |        |       |                |             |              |              | !        |          | !<br>!<br>: |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE N

| HINN   HUN Z   HUN I   HUN Z   HUN I   HUN Z   HUN I   HUN Z   HUN I   HUN Z   HUN I   HUN Z   HUN I   HUN Z   HUN I   HUN Z   HUN I   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z   HUN Z          | TRACE                                  |                        | AB I   | -           |       | 5                | B<br>E | LAB        | ≥ 8        | Š              | LAB V    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|--------|-------------|-------|------------------|--------|------------|------------|----------------|----------|
| 1183   1007   1189   1171   4   5   3   ND   8.9     361.24   349.18   4106   452   73   773   390   460   754     0.11   0.01   0.07   0.51   0.51   0.08   0.08   0.6   0.04   0.01     0.12   0.07   0.05   0.05   0.08   0.08   0.0   0.04   0.01     0.13   0.01   0.01   0.01   0.03   0.04   0.06   0.06   0.01     0.14   0.07   0.05   0.05   0.04   0.06   0.04   0.01     0.15   0.01   0.01   0.01   0.01   0.03   0.04   0.01     0.16   0.01   0.01   0.01   0.01   0.01   0.01   0.01     0.17   0.01   0.02   0.02   0.02   0.02   0.01   0.01     0.18   0.02   0.02   0.02   0.02   0.01   0.01   0.01     0.19   0.02   0.02   0.02   0.01   0.01   0.01     0.10   0.02   0.02   0.02   0.02   0.02   0.01     0.10   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02     0.10   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.0          | ELEMENTS                               | NON                    | HUN 2  | HUN 1       | HUN 2 | HUN 1            | RUN 2  | HUN 1      |            | HUN 1          | Z        |
| 1893   14918   41.06   482   145   145   150   140   136     30124   3055   6955   6655   773   7779   390   400   774     0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٧s                                     | 11.83                  | 10.07  | 11,69       | 11.71 | 4                | D      | n          | Q          | 60             | 101      |
| MATE & ULTIMATE   S615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>5</b> 0                             | 199.3                  | 149.18 | 41.06       | 49.2  | 145              | 145    | 150        | 140        | 136            | 124      |
| 0.97 0.77 0.51 0.51 0.6 0.8 0.8 0.6 0.6 0.71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ва                                     | 361.24                 | 335.65 | 695.5       | 655   | 73               | 77.9   | 390        | 460        | 754            | 729      |
| 10.11   -0.006   0.13   0.13   -0.04   -0.04   -0.04   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01   -0.01          | Be                                     | 76.0                   | 0.77   | 0.51        | 0.51  | 0.8              | 0,8    | 0.6        | 9.0        | 0.711          | 1 13     |
| 10.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PS                                     | 0.11                   | >0.06  | 0.13        | 0.13  | <b>&lt;0&gt;</b> | <0.4   | <0.4       | <0.4       | 0.11           | 2        |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŏ                                      | 10.09                  | 7.71   | 8.01        | 8.45  | 90'6             | 8.67   | 60         | 50         | 6.4            | · 60     |
| 1158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | රි                                     | 4.73                   | 3.11   | 2.78        | 2.67  | 1.85             | 1.95   | -          | -          | 1.27           | 1.51     |
| - (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Çn                                     | 11.58                  | 8.95   | 7.72        | 7.57  | <39.7            | <40.7  | 7          | 7          | 16.2           | 13.2     |
| 137.02   105.67   15.08   14.7   15.1   10.1   0.15   0.15   0.15   12.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13.0   13          | u.                                     | ×100                   | ×100   | 62.27       | 62.91 | 50               | 50     | 2.05       | 2          | 54             | 56       |
| 137.2 10567 150.8 147.9 83.1 96.5 130 130 120 7.22 5.59 7.3 7.49 15.5 16.4 4 6.6 0.142 7.22 5.59 7.3 7.49 15.5 16.4 4 5.32 3.61 2.99 2.6 7.3 7.49 15.5 16.4 4 5.32 3.61 2.99 2.6 7.3 7.49 15.5 16.4 4 5.32 3.61 2.99 2.6 10.7 10.79 0.672 0.704 <1 1.0 ND 1.56 21.16 16.16 15.72 15.79 19.4 19.2 16 17 16 21.16 16.15 15.79 15.99 19.4 19.2 16 17 16 3.6 5.8 5.8 5.9 7 5.9 6 5.9 2 5.9 5.9 6 5.9 2 5.9 6.9 6 3.6 1.0 1.0 1.1 16.15 16.6 16.7 16.6 17.0 17 3.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.6 1.0 1.1 16.1 16.1 16.1 16.1 16.1 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hg                                     | <0.1                   |        | 0.129       | 0.167 | 0.11             | 0.1    | 0.13       | 0.13       | 0.153          | 0.155    |
| 3.99   3.85   2.82   2.88   10.5   11   <6   <6   0.142     3.61   2.98   2.82   2.88   10.5   11   <6   <6   0.142     3.61   2.98   2.87   2.98   1.55   16.4   4   4   5.32     4.08   4.08   0.77   0.79   0.672   0.704   <1   <1   ND   1.56     21.16   16.16   15.72   15.78   19.4   19.2   16   17   16     16.73   16.96   16.11   16.15   16.64   16.74   16.69   17.06     17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z.                                     | 137.02                 |        | 150.8       | 147.9 | 93.1             | 96.5   | 130        | 130        | 120            | 124      |
| 722 5.59 7.3 7.49 15.5 16.4 4 4 5.32 <ul> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> <li>COB</li> &lt;</ul> | Mo                                     | 3.99                   |        | 2.82        | 2.88  | 10.5             | Ξ      | 9>         | 9          | 0.142          | 0.44     |
| ASH ELEMENTS   2.86   2.6   2.5   9   9   9   3   3   1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ž                                      | 7.22                   |        | 7.3         | 7.49  | 15.5             | 16.4   | 4          | 4          | 10<br>13<br>13 | 4 1      |
| COLD   COLD   COLD   COLD   COLD   COLD   COLD     COLD   COLD   COLD   COLD   COLD     COLD   COLD   COLD   COLD   COLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pb                                     | 3.61                   | 2.98   | 2.6         | 2.5   | O                | 60     | · 0        | · 67       | 1 97           | 500      |
| MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE  MATE & ULTIMATE & ULTIMATE  MATE & ULTIMATE & ULTIMATE  MATE & ULTIMATE & ULTIMATE  MATE & ULTIMATE & ULTIMATE  MATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE & ULTIMATE        | QS<br>QS                               | 8.0>                   | <0.8   | 0.77        | 0.79  | 0.672            | 0.704  | ` ⊽        | , <u>r</u> | S              | 2        |
| ## PASH STATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & ULTIMATE  WATE & 16.96 16.11 16.15 16.64 16.46 16.74 16.59 17.06 17.06 17.06 17.06 19.06 19.02 17.06 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17        | Se                                     | 0.95                   |        | 1,03        | 1.03  | ₹                | V      | · •        | S          | +-             | 2        |
| ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY ASII  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## DRY BASIS  ## D        | >                                      | 21.18                  |        | 15.72       | 15.78 | 19.4             | 19.2   | · <u>4</u> | ţ          |                | <u> </u> |
| ## PARTE & ULTIMATE  16.73 16.96 16.11 16.15 16.64 16.46 16.74 16.69 17.06  56.35 56.36 59.77 59.64 59.26 59.22 56.96 59.26  GEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                        |        | 1           | )     | 2                | -      | 2          | •          | <u> </u>       | 7.01     |
| 16.73 16.96 16.11 16.15 16.64 16.46 16.74 16.69 17.06  16.03 4.36 59.77 59.64 59.26 59.22 58.96 59.26 59.26  GEN 6.03 4.36 4.23 4.25 4.28 4.31 4.06 40.2 3.8  GEN 0.82 0.82 0.91 0.91 1.06 1.05 0.81 0.77 1.02  R 1.02 1.02 1.15 1.13 1.18 1.16 1.13 1.14 1.13  IND ND <a href="https://doi.org/10.02/10.02/1.13">III 1.16 1.13 1.14 1.13</a> ASH ELEMENTS  4.36 4.23 4.25 4.28 4.31 4.06 40.2 3.8  F. 1.13 1.14 1.13 1.14 1.13  ASH ELEMENTS  4.36 4.136 40.88 ND ND 39.59 ND 39.59  4.36 3.6 12.34 12.09 12.98 13.13 12.28 ND 12.1  5.22 4.19 7.09 7.06 6.25 6.38 ND ND 15.1  6.54 9.89 17.58 17.35 4.77 5.06 ND ND 15.1  1.23 1.34 4.8 4.73 1.11 1.05 ND ND 15.1  6.94 0.82 0.87 0.84 0.83 0.91 0.85 ND 0.95  1.29 0.14 0.13 0.14 ND ND ND ND 15.1 1.1  ND ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1  ND ND 15.1 1.1          | PROXIMATE & ULTIM                      | IATE                   |        |             |       | ⊁ DRY            | BASIS  |            |            |                |          |
| NA   58.35   58.36   59.77   59.64   59.26   59.22   58.96   59.25   59.26     OBZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ASH                                    | 16.73                  |        | 16.11       | 16.15 | 16.64            |        | 16.74      | 16.69      | 17.06          | 17.32    |
| OGEN         6.03         4.36         4.23         4.25         4.28         4.31         4.06         4.02         3.6           GEN         0.082         0.91         0.91         1.06         1.05         0.81         0.77         1.02           R         1.02         1.02         1.15         1.13         1.14         1.13         1.14         1.13           IINE         ND         ND         <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CARBON                                 | 58.35                  |        | 59.77       | 59.64 | 59,26            |        | 58.96      | 59.22      | 59.26          | 59 64    |
| GEN 0.82 0.82 0.91 0.91 1.06 1.05 0.81 0.77 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.18 1.16 1.13 1.14 1.13 1.02 1.02 1.02 1.02 0.01 0.01 0.04 0.05 0.00 0.04 0.05 0.00 0.04 0.05 0.00 0.04 0.05 0.00 0.04 0.05 0.00 0.04 0.05 0.00 0.04 0.05 0.00 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.        | HYDROGEN                               | 6.03                   | 4.36   | 4.23        | 4.25  | 4.28             |        | 4.06       | 4.02       | 4 F            | 2 0 2    |
| H 102 1.02 1.15 1.13 1.18 1.16 1.13 1.14 1.13  ND ND <0.02 <0.02 <0.01 <0.01 ND 0.04  9107 7314 9867 9881 9924 9906 9906 9906 9894 9892  ** DRY ASH  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH T2.09 12.98 13.13 12.28 ND 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NITROGEN                               | 0.82                   | 0.02   | 0.91        | 0.91  | 106              |        | . C        | 7.00       | •              | 60.0     |
| ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH ELEMENTS  ASH T2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SULFUR                                 | 1 02                   | 1 02   | 1.5         | 4 13  | 4                |        | - 6        |            | 20.1           | n (n     |
| ASH ELEMENTS  46.27 34.56 41.36 40.88 ND ND 39.59 ND 39.6  4.36 3.6 12.34 12.09 12.98 13.13 12.28 ND 12.1  6.52 4.19 7.09 7.06 6.25 6.38 ND ND 6.6  4.9 3.9 17.58 17.35 4.77 5.06 ND ND 15.9  1.23 1.34 4.8 4.73 1.11 1.05 ND ND 15.9  1.29 0.94 0.82 0.87 0.84 0.8 0.61 0.85 ND 0.95  1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND ND 15.1  ND ND 14.56 14.4 ND ND ND ND 15.11 1.29  ND ND 14.56 14.4 ND ND ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CHLORINE                               | 2                      | 2      | <0.02       | 200>  | 200              |        | 2 2        | - 2        | 5.13           | 21.6     |
| ** DRY ASH 46.27 34.56 41.36 40.88 ND ND 39.59 ND 39.6 4.36 3.6 12.34 12.09 12.98 13.13 12.28 ND 12.1 6.57 0.44 0.43 0.42 0.44 0.53 0.48 ND 0.5 5.22 4.19 7.09 7.06 6.25 6.38 ND ND 6.6 4.9 3.9 17.58 17.35 4.77 5.06 ND ND 15.9 1.23 1.34 4.8 4.73 1.11 1.05 ND ND 4.7 6.94 0.82 0.87 0.84 0.8 0.81 0.85 ND 0.95 1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND ND 1.4 0.19 0.14 0.13 0.12 0.33 0.31 ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Btu/lb                                 | 9107                   | 7314   | 9867        | 9881  | 9924             |        | 9066       | 9894       | 9892           | 9885     |
| ASH ELEMENTS  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.36  4.37  4.39  4.39  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30  4.30        |                                        |                        |        |             |       | i                |        |            |            |                |          |
| 46.27       34.56       41.36       40.88       ND       ND       39.59       ND       39.6         4.36       3.6       12.34       12.09       12.98       13.13       12.26       ND       12.1         0.57       0.44       0.42       0.44       0.53       0.48       ND       0.5         5.22       4.19       7.09       7.06       6.25       6.38       ND       ND       6.6         4.9       3.9       17.58       17.35       4.77       5.06       ND       ND       4.7         1.23       1.34       4.8       4.73       1.11       1.05       ND       ND       4.7         0.94       0.82       0.87       0.84       0.8       0.81       0.85       ND       0.95         1.79       1.24       1.37       1.33       1.19       1.36       1.26       ND       ND       1.4         ND       ND       10.4       0.12       0.33       0.31       ND       1.51       1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA MB ASH ELEMEN                       | OT.                    |        |             |       | HO K             | L ASH  |            |            |                |          |
| 4.36 3.6 12.34 12.99 12.99 13.13 12.28 ND 12.1<br>0.57 0.44 0.42 0.44 0.53 0.48 ND 12.1<br>5.22 4.19 7.09 7.06 6.25 6.39 ND ND 6.6<br>4.9 3.9 17.58 17.35 4.77 5.06 ND ND 15.9<br>1.23 1.34 4.8 4.73 1.11 1.05 ND ND 4.7<br>0.94 0.82 0.87 0.84 0.8 0.81 0.85 ND 0.95<br>1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND 1.4<br>0.19 0.14 0.13 0.12 0.33 0.31 ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SiO.                                   |                        | 34 56  | 41.36       | AO AB | S                | 5      | 02 06      | 2          | ć              |          |
| 0.57 0.44 0.42 0.44 0.53 0.48 ND 12.1<br>5.22 4.19 7.09 7.06 6.25 6.38 ND ND 6.6<br>4.9 3.9 17.58 17.35 4.77 5.06 ND ND 15.9<br>1.23 1.34 4.8 4.73 1.11 1.05 ND ND 4.7<br>0.94 0.82 0.87 0.84 0.8 0.81 0.85 ND 0.95<br>1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND 1.4<br>0.19 0.14 0.13 0.12 0.33 0.31 ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70 <b>7</b>                            | 4.36                   |        | 10.94       | 00.01 | 2 2              | 2 5    | 40.09      | 2 5        | 0.60           | 4.65     |
| 5.22 4.19 7.09 7.06 6.25 6.39 ND 0.5<br>4.9 3.9 17.58 17.35 4.77 5.06 ND ND 15.9<br>1.23 1.34 4.8 4.73 1.11 1.05 ND ND 4.7<br>0.94 0.82 0.87 0.84 0.8 0.81 0.85 ND 0.95<br>1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND 1.4<br>0.19 0.14 0.13 0.12 0.33 0.31 ND 0.16<br>ND ND 14.56 14.4 ND ND ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tio                                    | 0.67                   |        | 2.5         | 60.7  | 2.30             | 2.5    | 12.20      | € :        | 12.1           | 12.2     |
| 5.22 4.19 7.09 7.06 6.25 6.38 ND ND 6.6<br>4.9 3.9 17.58 17.35 4.77 5.06 ND ND 15.9<br>1.23 1.34 4.8 4.73 1.11 1.05 ND ND 4.7<br>0.94 0.82 0.87 0.84 0.8 0.81 0.85 ND 0.95<br>1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND 1.4<br>0.19 0.14 0.13 0.12 0.33 0.31 ND 0.16<br>ND ND 14.56 14.4 ND ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - []<br>- ()                           | ָהָי נְיִהְיִי<br>ביים |        | 5 (S        | 0.42  | 0.44             | 0.53   | 0.48       | S          | 0.5            | 0.5      |
| 4.9 3.9 17.58 17.35 4.77 5.06 ND ND 15.9<br>1.23 1.34 4.8 4.73 1.11 1.05 ND ND 4.7<br>0.94 0.82 0.87 0.84 0.8 0.81 0.85 ND 0.95<br>1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND 1.4<br>0.19 0.14 0.13 0.12 0.33 0.31 ND ND 0.18<br>ND ND 14.56 14.4 ND ND ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ֖֖֖֖֖֖֖֖֖֓֞֞֞֓֞֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 27.0                   |        | 7.09        | 7.06  | 6.25             | 6.38   | 2          | 2          | 6.6            | 6.6      |
| 1.23 1.34 4.8 4.73 1.11 1.05 ND ND 4.7 0.94 0.82 0.87 0.84 0.8 0.81 0.85 ND 0.95 1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND 1.4 0.19 0.14 0.13 0.12 0.33 0.31 ND ND 0.18 ND ND 14.56 14.4 ND ND ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Car<br>Car                             | <b>4</b> .00           |        | 17.58       | 17.35 | 4.77             | 5.06   | 2          | 2          | 15.9           | 16       |
| 0.94 0.82 0.87 0.84 0.8 0.81 0.85 ND 0.95<br>1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND 1.4<br>0.19 0.14 0.13 0.12 0.33 0.31 ND ND 0.18<br>ND ND 14.56 14.4 ND ND ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O <sup>S</sup>                         | 1.23                   |        | <b>4</b> .8 | 4.73  | 1.1              | 1.05   | 2          | 2          | 4.7            | 4.7      |
| 1.79 1.24 1.37 1.33 1.19 1.36 1.26 ND 1.4<br>0.19 0.14 0.13 0.12 0.33 0.31 ND ND 0.16<br>ND ND 14.56 14.4 ND ND ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 e :                                  | 0.94                   | 0.82   | 0.87        | 0.84  | 0.8              | 0.61   | 0.85       | 2          | 0.95           | 0.92     |
| 0.19 0.14 0.12 0.33 0.31 ND ND 0.16<br>ND ND 14.56 14.4 ND ND ND ND 15.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o, Y                                   | 1.79                   | 1 24   | 1.37        | 1.33  | 1.19             | 1.36   | 1.26       | 오          | 4.             | 4.       |
| N ON ON ON ON ON ON ON ON ON ON ON 15:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P <sub>2</sub> O <sub>3</sub>          | 0.19                   | o      | 0.13        | 0.12  | 0.33             | 0.31   | 욷          | 2          | 0.18           | 0.15     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | တ်                                     | 욷                      |        | 14.56       | 14.4  | 2                | 2      | 2          | 2          | 15.11          | 14.94    |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE O

| TRACE                          | _     | - H         | -     | AD II       | 14.         | =     | -          | 2           | -                      | :     |
|--------------------------------|-------|-------------|-------|-------------|-------------|-------|------------|-------------|------------------------|-------|
| ELEMENTS                       | RUN 1 | BUN 2       | RUN 1 | RUN 2       | RUN 1       | RUN 2 | RUN 1      | HUN 2       | RUN 1                  | RUN 2 |
| As                             | 46.12 | 35.85       | 34.96 | 36.04       | 2           | 8     | 7.6        | S           | 20.4                   | 7     |
| 8                              | 99.41 | 74.78       | 58.5  | 62.38       | 73          | 11    | 72         | 2           | , 40<br>1. 10<br>1. 10 | 47.8  |
| Ba                             | 53.29 | 48.15       | 84.8  | 86.2        | 107         | 5     | 92         | 6           | Z                      | . E   |
| Be<br>                         | 2.97  | 2.25        | 1.9   | 2.03        | 2.7         | 2.4   | 2.1        | 2.4         | 2.58                   | 2.61  |
| <b>5</b>                       | 0.11  | 90.0        | 0.14  | 0.13        | <0,3        | <0.3  | <0.4       | <b>~0.4</b> | 0.11                   | 2     |
| ن ن                            | 22.55 | 18.44       | 20.68 | 19,39       | 21          | 22.6  | 20         | 8           | 13.3                   | 13.9  |
| လို (                          | 9.74  | 9.12        | 5.9   | 6.16        | 29.9        | 7.72  | <b>6</b> 0 | 7           | 4.6                    | 5.8   |
| Ö,                             | 23.57 | 18.44       | 17.81 | 18.62       | ×31         | <32.6 | 22         | 22          | 22.7                   | 23.5  |
| ш.;                            | 0.01  | 0.1         | 80.03 | 68.12       | 8           | 06    | 2          | 2           | 73                     | 73    |
| G.                             | 0.14  | <b>0</b> .0 | 0.248 | 0.273       | 0.23        | 0.23  | 0.2        | 0.5         | 0.399                  | 0.353 |
| <b>X</b>                       | 26.64 | 21.51       | 27.2  | 24.8        | 27.4        | 30.4  | 30         | 31          | 26                     | 26.4  |
| o X                            | 10.25 | 5.33        | 4.05  | 4.09        | 5.09        | 5.68  | 9          | \<br>\<br>\ | 1.85                   | 279   |
| Z                              | 27.67 | 21.51       | 21.12 | 22.1        | 54.5        | 61.9  | 56         | 25          | 23.7                   | 24 1  |
| Pb                             | 9.94  | 11.27       | 15.29 | 15.14       | 17          | 20    | 6          | <b>.</b>    | 10.5                   | 0.7   |
| Sb                             | 2.15  | 1.43        | 2.09  | 2.17        | 1.85        | 1.78  | 8          |             | 2.6                    | 2.4   |
| å                              | 2.05  | 2.15        | 3.39  | 3.37        | 8           | က     | <b>п</b>   | 2           |                        | , ,   |
| >                              | 44.07 | 33.8        | 28.47 | 30.13       | 32.3        | 32.1  | 82         | <b>5</b> 9  | 35.6                   | 36.6  |
|                                |       |             |       |             |             |       |            |             |                        |       |
| PROXIMATE & ULTIMATE           | ATE   |             |       |             | % DRY BASIS | SASIS |            |             |                        |       |
| ASH                            | 13.29 | 13.46       | 13.32 | 13.3        | 13.28       | 13.4  | 13.12      | 13.18       | 19.31                  | 13.46 |
| CARBON                         | 69.61 | 69.56       | 71.35 | 71.16       | 71.19       | 71.46 | 70.38      | 70.79       | 70.5                   | 70.66 |
| HYDROGEN                       | 5.06  | 5.24        | 4.82  | 4.78        | 4.91        | īŪ    | 4.6        | 4 65        | 4.76                   | 4 70  |
| NITROGEN                       | 1.3   | 1.31        | 1.34  | 1.47        | 1.41        | 1.37  | 1.36       | 1.38        | 1.33                   | 4.25  |
| SULFUR                         | 3.08  | 3.1         | 2.92  | 2.97        | 3.02        | 2.89  | 3.01       | 3.04        | 60.0                   |       |
| CHLORINE                       | 0.05  | 0.05        | 0.13  | 0.13        | 0.127       | 0.13  | 2          | S           | 0.12                   |       |
| Btu/lb                         | 11774 | 11530       | 12737 | 12720       | 12654       | 12655 | 12690      | 12708       | 12644                  | 12637 |
|                                |       |             |       |             | M DRY ASH   | ACH   |            |             |                        |       |
| MAJOR ASH ELEMENTS             | TS    |             |       |             | 2           | 5     |            |             |                        |       |
| SiO <sub>2</sub>               | 52.88 | 39.14       | 46.16 | 46.9        | QN          | 8     | 42.89      | 2           | 45.3                   | Ā     |
| Al <sub>2</sub> O <sub>3</sub> | 24.76 | 20.13       | 23.46 | 23.32       | 20.52       | 20.27 | 21.3       | 2           | 22.5                   | 200   |
| 10,                            | 1.29  | 96.0        | 1.09  | 1.08        | 1.03        | 1.02  | 2.32       | 2           | 1                      | -     |
| Fe <sub>2</sub> O <sub>3</sub> | 23.15 | 17.41       | 22.28 | 22.17       | 20.6        | 22.79 | 2          | 2           | 24                     | 21.4  |
| CBO                            | 1.19  | 0.97        | 1.84  | <b>9</b> .1 | 1.31        | 1.22  | 2          | 2           | 1.7                    | 1.7   |
| Og M                           | 0.37  | 0.44        | 0.88  | 0.87        | 0.83        | 0.77  | 2          | 9           | 0.85                   | 0.85  |
| O S                            | 0.24  | 0.21        | 0.31  | 0.29        | 0.25        | 0.25  | 0.36       | 2           | 0.47                   | 0.44  |
| ο.                             | 2.51  | 2.11        | 2.32  | 2.32        | 2.27        | 2.33  | 1.72       | 9           | 2.2                    | 2.2   |
| o,                             | 0.53  | <b>0</b> .4 | 0.48  | 0.47        | 16.0        | 0.85  | 오          | 2           | 0.49                   | 0.53  |
| Š,                             | 2     | 9           | 1.83  | 1.75        | 2           | 오     | 2          | 2           | 1.74                   | 174   |
|                                |       |             |       |             |             |       |            |             | ,                      | :     |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE P

| TRACE                | لب                | 1 <b>7</b> 8 I |       | I AB II | -            | II 48    |                |                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :              |
|----------------------|-------------------|----------------|-------|---------|--------------|----------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| ELEMENTS             | RUN 1             | RUN 2          | HUN 1 | RUN 2   | RUN 1        | HUN 2    | RUN 1          | RUN 2          | RUN 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LAB V<br>RUN 2 |
| ٧s                   | 1.75              | 2.19           | 2.48  | 2.6     | -            | -        | •              | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| <b>6</b>             | 89.74             | 90.81          | 75.17 | 75.9    | · 6          | - 11     | - C            | 2 1            | , K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4            |
| <b>8</b>             | 82.08             | 79.87          | 397.2 | 377.8   | 495          | 482      | 290            | • 6            | 45.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.9           |
| <b>S</b>             | 1.42              | 1.42           | 1.14  | 1.16    | -            | 1 4      | 0° +           | 7              | con<br>con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/6            |
| 8                    | 90.0 <del>8</del> | 2.95           | ×.01  | <0.1    | <b>4</b> .0> | 40>      | <u> </u>       |                | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SE. 1          |
| ، ت                  | 10.84             | 10.72          | 9.42  | 6.6     | 10.8         | , a      | 9              | 9.0            | 6.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ₹;             |
| o l                  | 6.24              | 6.24           | 4.15  | 4       | 434          | 9.70     | 2 4            | <b>3</b> C     | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.7            |
| no i                 | 13.13             | 14.22          | 11.56 | 11.49   | <39.2        | <35.7    | , <del>.</del> | n <del>Ç</del> | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.41           |
| <b>_</b> ;           | 0.01              | ×100           | 87.98 | 88.66   | 9            | 6        | : <u>S</u>     | 2 5            | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.4           |
| ß,                   | <0.1              |                | 0.082 | 0.089   | 0.07         | 800      | 5              | 2 6            | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8              |
| C .                  | 51.44             |                | 90.6  | 90.6    | 82.5         | 79.1     | 78             | 90.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C.0.5          |
| 0                    | 2.96              |                | 1.68  | 1.66    | <19.6        | < 17 B   | 5 \$           | 2 4            | 7.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0            |
| Ž į                  | 8.54              |                | 7.28  | 8,23    | <14.7        | <13.4    | ) kr           | ) <b>"</b>     | 90.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⋛ ;            |
| e e                  | 7.33              |                | 9,45  | 9.63    | 1            | a        | , <del>C</del> | o              | 9.0<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 1            |
| g c                  | 1.42              |                | 1.7   | 1.73    | 1.77         | 1.55     | 5 0            | n <del>-</del> | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 5            |
| <b>9</b>             | 1.2               |                | 1,59  | 1.72    | -            | -        | ٠.۷            | - 2            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2              |
| >                    | 26.27             | 27.35          | 22,37 | 23.81   | 26.1         | 21.6     | , ec           | 2              | 7 (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20           |
|                      |                   |                |       |         | 3            | 5        | 8              | 8              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.1           |
| PROXIMATE & ULTIMATE | \TE               |                |       |         | * DRY BASIS  | BASIS    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| ASH                  | 20.56             | 20.54          | 20.58 | 20.6    | 20.44        | 20.43    | 20.24          | 00.00          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ć              |
| CAHBON               | 60.52             | 61.06          | 62.04 | 62.16   | 62 33        | 62.4     | 64 FB          | 50.53          | 50.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.73          |
| HYDROGEN             | 5.12              | 5.39           | 4.65  | 458     | 0 T          | 101      | 00.10          | 01.24          | 90.Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61.27          |
| NITROGEN             | 1.02              | 1 02           | 800   | 7       | ,            | 0.4      | 4.01           | 4.65           | 4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.58           |
| SULFUR               | 0.61              | 0.64           | 5.0   | - 020   |              | 1.15     | 1.08           | <b>-</b>       | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.08           |
| CHLORINE             | 0.0               | 5 6            | ÷ 6   | 0.072   | C.0          | 0.7      | 0.69           | 7.0            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.71           |
| Btu/lb               | 1032              | 0.00           | 20.02 | ×0.02   | ×0.01        | <0.01    | 2              | 2              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04           |
| !                    |                   | n<br>C         | 2     |         | 708/2        | 10870    | 10852          | 10865          | 10857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10830          |
|                      |                   |                |       |         | % DRY ASH    | ASH      |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| MAJOH ASH ELEMENTS   |                   |                |       |         |              | •        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| SO.                  | 57.03             | 55.93          | 61.79 | 61.01   | 2            | 2        | 60.75          | 50.54          | and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra | 0              |
| Z.                   | 16.09             | 15.09          | 22.5  | 22,16   | 22.53        | 19.93    | 22.08          | 21.79          | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 6            |
| 2<br>2               | 0.98              | 0.98           | 0.95  | 0.93    | -            | 1.04     | 0.94           | 000            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¥0.8           |
| <b>5</b>             | 4.1               | 3.88           | 4.84  | 4.86    | 4.           | 4.35     | Ş              | S              | - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 4            |
|                      | 2.31              | 2.01           | 4.57  | 4.51    | 2.38         | 2.52     | £              | 2              | † ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|                      | 0.32              | 0.28           | 1.34  | 1.31    | 0.93         | 0.91     | S              | S              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                      | 0.13              | 0.11           | 0.27  | 0.26    | 0.26         | 0.24     | 0.28           | 000            | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.0            |
| o, i                 | 1.09              | 1.03           | 1.39  | 1.39    | 1.32         | 1.28     | -              | 1 27           | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.27           |
|                      | 0.03              | 0.04           | 0.04  | 0.04    | 0.02         | 0 03     | Ş              | <u> </u>       | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0            |
| ်ဝွှ                 | Q                 | 2              | 3.61  | 3.52    | 2            | 2        | 2              | 2 5            | 5<br>5<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D.C.           |
|                      |                   |                |       |         |              | <u>}</u> | <u>}</u>       | <u>}</u>       | 3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0            |

# INDIVIDUAL LABORATORY ANALYSES OF ROUND ROBIN SAMPLE Q

| CHICARITY OF                   |        | 1 <b>7</b> 8 – | _     | 178 II | <b>≤</b>    | LAB III        | ₹     | ≥ 8   | 5     | LAB V |
|--------------------------------|--------|----------------|-------|--------|-------------|----------------|-------|-------|-------|-------|
|                                | NO.    | HON 2          | NON   | NON 2  | HUN -       | FUN 2          | NON T | RUN 2 | HUN 1 | RUN 2 |
| <b>As</b>                      | 4.72   | 5.67           |       | 4.43   | 60          | 6              | 9     | Q     | 2.3   | 6.0   |
| <b>60</b> 1                    | 235.98 | 288.74         |       | 135,55 | 160         | 180            | 160   | 170   | 140   | 150   |
| - Ba                           | 39.69  | 41.71          |       | 50.8   | 56.8        | 67.1           | 20    | 47    | 48.6  | 50.2  |
| <b>8</b>                       | 1.93   | 2.35           |       | 1.18   | 1.5         | <u>+</u>       | 1.2   | 1.2   | 1.44  | 1.48  |
| ပ်                             | 0.55   | 1.39           | 0.66  | 0.63   | <0.2        | <0.2           | <0.3  | <0.3  | 0.286 | 0.089 |
| ٠<br>ت                         | 25.74  | 32.08          |       | 20.28  | 21.9        | 21.5           | 22    | 22    | 19.2  | 17.4  |
| ු ු                            | 7.08   | 8.77           |       | 3.59   | 3.88        | 4.23           | 4     | , ro  | 2.79  | 2.29  |
| ,<br>J                         | 12.87  | 18.18          |       | 10.79  | <34.3       | <34.8          | 12    | 12    | 15.3  | 15.3  |
| LL :                           | <100   | <100           |       | 80.89  | 90          | 90             | S     | 2     | 70    | 75    |
| BH.                            | <0.1   | 0.18           |       | 0.109  | 20.0        | 0.07           | 0.09  | 0.08  | 0.117 | 0.113 |
| <b>~</b>                       | 33.25  | 34.22          |       | 33.2   | 29.7        | 29.3           | 31    | 30    | 26.6  | 26.9  |
| OM:                            | 6.54   | 60.6           |       | 5.1    | 9'8>        | <8.7           | 9>    | 9     | 46.4  | 4     |
| Ž                              | 21.45  | 24.6           |       | 15.24  | 28.4        | 29.7           | 18    | 9     | 17.3  | 16.5  |
| g. ;                           | 6.22   | 1.39           |       | 10.68  | =           | 12             | -     | 5     | 8.8   | 6.2   |
| age                            | <0.8   | <0.8           |       | 0.58   | 0.445       | 0.596          | ⊽     | ⊽     | 1.78  | 2     |
| <b>%</b> ;                     | 1.39   | 2.03           | ٠     | 2.91   | ಣ           | <sub>(C)</sub> | N     | S     | 2.4   | 1.87  |
| >                              | 48.27  | 57.75          |       | 32.81  | 36.6        | 35.7           | 39    | 39    | 4     | 39.4  |
|                                |        |                |       |        | 3           | 0              |       |       |       |       |
| PROXIMATE & ULTIMATE           | /TE    |                |       |        | A UNI BASIS | DASIS          |       |       |       |       |
| ASH                            | 10.61  | 10.58          | 10.65 | 10.76  | 10.56       | 10.55          | 10.46 | 10.51 | 10.62 | 10.64 |
| CARBON                         | 66.15  | 69.69          | 72.54 | 72.7   | 72.68       | 72.58          | 71.32 | 716   | 71.05 | 74.03 |
| HYDROGEN                       | 6.38   | 5.87           | 4.89  | 4,89   | 5.11        | 50.5           | A.71  | 4 73  | 4 77  | 27.4  |
| NITROGEN                       | 1.41   | 1.42           | 1.48  | 1.48   | 1.52        | 1.45           | 1.37  | 1.36  | 1.34  | 131   |
| SULFUR                         | 3.25   | 3.25           | 2.77  | 2.76   | 2.78        | 2.86           | 2.9   | 000   | 78.0  |       |
| CHLORINE                       | 0.07   | 0.08           | 0.139 | 0.137  | 0.148       | 0.136          | 2     | S     | 0     |       |
| Btu/Ib                         | 12206  | 11290          | 12901 | 12875  | 12785       | 12769          | 12815 | 12809 | 12768 | 12733 |
|                                |        |                |       |        | A DRY ASH   | HSH.           |       |       |       |       |
| MAJOR ASH ELEMENTS             | Z.     |                |       |        |             |                |       |       |       |       |
| sio,                           | 99.09  | 69.31          | 50.76 | 50.64  | 2           | 2              | 49.64 |       | 50.1  | 50.2  |
| A <sub>1</sub> O <sub>3</sub>  | 24.82  | 26.73          | 22.2  | 22.07  | 19.79       | 19.71          | 21.62 |       | 21.7  | 21.5  |
| TO.                            | 1.37   | 1.64           | 1.11  | 1.01   | 0.27        | 0.27           | 1.07  |       | 5.    | 1.2   |
| Fe <sub>2</sub> O,             | 18.79  | 21.68          | 16.92 | 16.92  | 16.53       | 16.39          | 2     |       | 15.4  |       |
| O                              | 1.7    | 1.56           | 3.31  | 3.4    | 2.22        | 2.01           | 2     |       | 2.9   | 6     |
| Q <sup>B</sup> M∷              | 0.34   | 0.28           | 1.03  | 1.04   | 0.69        | 99'0           | 2     |       | •     |       |
| Na <sub>1</sub> O <sub>3</sub> | 0.91   | 1.01           | 0.87  | 0.89   | 0.7         | 0.81           | 0.81  |       | 0.9   | 0.91  |
| Č.                             | 2.92   | 3.41           | 2.58  | 2.56   | 6:1         | 2.04           | 2.38  | Q     | 2.5   | 2.4   |
| O. J.                          | 0.22   | 0.3            | 0.5   | 0.21   | 0.39        | 0.43           | 2     |       | 0.21  | 0.21  |
| S<br>S                         | 2      | 2              | 2.23  | 2.32   | S           | 2              | 2     |       | 2.82  | 2.9   |

## APPENDIX B

# INTRALABORATORY TRACE ELEMENT REPEATABILITY AS PERCENT DIFFERENCE

# Laboratory Repeatability Samples A & J

| TRACE<br>ELEMENTS | LAB I | LAB II      | LAB III | LAB IV                                | LAB V | MEAN        | SDEV  | PRSD   |
|-------------------|-------|-------------|---------|---------------------------------------|-------|-------------|-------|--------|
| CLLMLIATO         |       | <del></del> |         | · · · · · · · · · · · · · · · · · · · |       | <del></del> |       |        |
| As                | 31.0% | 1.9%        | 0.0%    | 0.0%                                  | 6.7%  | 7.9%        | 13.2% | 166.3% |
| В                 | 7.7%  | 1.0%        | 6.5%    | 11.5%                                 | 14.3% | 8.2%        | 5.1%  | 62.0%  |
| Ba                | 65.2% | 6.3%        | 29.7%   | 12.2%                                 | 63.1% | 35.3%       | 27.7% | 78.5%  |
| Ве                | 57.1% | 6.6%        | 7.4%    | 16.0%                                 | 2.1%  | 17.8%       | 22.5% | 126.2% |
| Cd                | 9.1%  | 7.5%        |         | ļ                                     | 27.9% | 14.8%       | 11.4% | 76.7%  |
| Cr                | 12.4% | 4.4%        | 3.5%    | 17.3%                                 | 16.8% | 10.9%       | 6.6%  | 61.0%  |
| Co                | 0.5%  | 6.9%        | 1.5%    | 50.0%                                 | 23.2% | 16.4%       | 20.9% | 127.2% |
| Cu                |       | 6.9%        |         | 23.3%                                 | 2.6%  | 10.9%       | 10.9% | 99.8%  |
| F                 | İ     | 2.2%        | 4.9%    |                                       | 24.6% | 10.6%       | 12.2% | 115.8% |
| Hg                | )     | 18.7%       | 10.5%   | 10.5%                                 | 5.3%  | 11.3%       | 5.5%  | 49.1%  |
| Mn                | 36.7% | 1.5%        | 2.8%    | 18.2%                                 | 2.2%  | 12.3%       | 15.3% | 124.4% |
| Мо                | 11.2% | 2.3%        | 8.4%    | 50.0%                                 | 9.0%  | 16.2%       | 19.2% | 118.6% |
| Ni                | 11.0% | 3.3%        | 6.1%    | 20.0%                                 | 11.1% | 10.3%       | 6.3%  | 61.5%  |
| Pb                | 21.8% | 1.9%        | 54.5%   | 12.8%                                 | 7.8%  | 19.8%       | 20.8% | 105.1% |
| Sb                | İ     | 4.9%        | 7.1%    |                                       | ļ     | 6.0%        | 1.6%  | 26.2%  |
| Se                | 32.6% | 12.5%       | 18.2%   | 0.0%                                  | 17.4% | 16.1%       | 11.7% | 72.7%  |
| V                 | 6.7%  | 13.2%       | 6.6%    | 17.7%                                 | 1.4%  | 9.1%        | 6.4%  | 69.7%  |
| Average           | 23.3% | 6.0%        | 11.2%   | 18.5%                                 | 14.7% | 13.8%       | 7.9%  | 57.8%  |

# Laboratory Repeatability Samples B & K

| TRACE    | LABI  | LAB II | LAB III | LAB IV | LAB V  | MEAN   | SDEV   | PRSD    |
|----------|-------|--------|---------|--------|--------|--------|--------|---------|
| ELEMENTS | !     |        |         | 1      |        |        |        |         |
|          |       | 0.00/  | 0.00/   | a= -a/ | 22.40( | 04.454 | 00.00/ | 450 504 |
| As       | 3.7%  | 0.6%   | 0.0%    | 85.7%  | 32.1%  | 24.4%  | 36.8%  | 150.5%  |
| В        | 10.3% | 11.8%  | 33.0%   | 2.5%   | 3.2%   | 12.2%  | 12.4%  | 101.6%  |
| Ba       | 10.5% | 2.0%   | 15.2%   | 8.2%   | 13.6%  | 9.9%   | 5.2%   | 52.4%   |
| Be       | 8.4%  | 1.8%   | 12.5%   | 3.8%   | 9.5%   | 7.2%   | 4.4%   | 60.5%   |
| Cd       | 86.4% | 0.0%   | Ì       | 1      | 67.7%  | 51.4%  | 45.5%  | 88.5%   |
| Cr       | 7.3%  | 1.9%   | 2.0%    | 6.9%   | 7.1%   | 5.0%   | 2.8%   | 55.9%   |
| Co       | 7.3%  | 1.6%   | 0.1%    | 0.0%   | 3.1%   | 2.4%   | 3.0%   | 123.9%  |
| Cu       | 0.2%  | 0.5%   | J       | 5.1%   | 9.5%   | 3.8%   | 4.4%   | 115.4%  |
| F        |       | 5.2%   | 0.0%    |        | 0.5%   | 1.9%   | 2.8%   | 149.1%  |
| Hg       |       | 14.8%  | 163.6%  | 4.3%   | 2.3%   | 46.3%  | 78.4%  | 169.5%  |
| Mn       | 12.0% | 0.9%   | 3.9%    | 2.7%   | 6.8%   | 5.2%   | 4.3%   | 82.8%   |
| Мо       | 2.3%  | 1.4%   |         |        | 9.9%   | 4.5%   | 4.7%   | 102.6%  |
| Ni       | 8.3%  | 1.6%   | 54.0%   | 12.7%  | 9.6%   | 17.2%  | 20.9%  | 121.6%  |
| Pb       | 84.5% | 3.8%   | 14.9%   | 3.3%   | 2.1%   | 21.7%  | 35.5%  | 163.5%  |
| Sb       |       | 2.2%   | 1.5%    |        | ]      | 1.8%   | 0.5%   | 25.0%   |
| Se       | 28.1% | 10.1%  | 15.4%   | 100.0% | 7.3%   | 32.2%  | 38.7%  | 120.4%  |
| ٧        |       | 2.1%   | 2.4%    | 4.3%   | 7.0%   | 4.0%   | 2.3%   | 56.9%   |
|          |       |        |         | į      |        |        |        |         |
| Average  | 20.7% | 3.7%   | 22.7%   | 17.2%  | 12.0%  | 14.8%  | 23.8%  | 160.7%  |

# Laboratory Repeatability Samples C & L

| TRACE<br>ELEMENTS | LABI  | LAB II | LAB III | LAB IV | LAB V | MEAN  | SDEV  | PRSD   |
|-------------------|-------|--------|---------|--------|-------|-------|-------|--------|
| _                 |       |        |         |        |       |       |       |        |
| As                | 93.4% | 0.7%   | 22.2%   | 28.6%  | 16.6% | 32.3% | 35.7% | 110.6% |
| В                 | 1.0%  | 1.8%   | 5.8%    | 19.9%  | 15.5% | 8.8%  | 8.5%  | 96.2%  |
| Ва                | 5.7%  | 2.3%   | 15.2%   | 15.4%  | 71.2% | 22.0% | 28.1% | 128.1% |
| Be                | 10.0% | 12.0%  | 18.2%   | 8.7%   | 5.8%  | 10.9% | 4.6%  | 42.5%  |
| Cd                | 27.0% | 35.3%  | i       | ,      | 76.0% | 46.1% | 26.2% | 56.9%  |
| Cr                | 13.1% | 8.5%   | 5.5%    | 22.9%  | 5.7%  | 11.1% | 7.2%  | 65.0%  |
| Co                | 13.4% | 0.0%   | 6.6%    | 40.0%  | 2.2%  | 12.4% | 16.2% | 130.5% |
| Cu                | 9.6%  | 1.9%   |         | 13.3%  | 2.3%  | 6.8%  | 5.6%  | 83.1%  |
| F                 | i     | 2.9%   | 8.7%    |        | 6.5%  | 6.0%  | 2.9%  | 48.8%  |
| Hg                | 17.1% | 6.3%   | 13.3%   | 33.3%  | 25.3% | 19.1% | 10.5% | 55.0%  |
| Mn                | 8.8%  | 1.5%   | 1.9%    | 22.2%  | 1.3%  | 7.2%  | 9.0%  | 125.7% |
| Мо                | 62.9% | 4.7%   | 16.3%   | İ      | Ì     | 28.0% | 30.8% | 110.2% |
| Ni                | 9.9%  | 0.3%   | 52.2%   | 14.3%  | 3.5%  | 16.0% | 20.9% | 130.6% |
| Pb                | 46.9% | 2.0%   | 66.7%   | 22.2%  | 12.5% | 30.1% | 26.4% | 87.7%  |
| Sb                | į     | 2.2%   | 9.5%    | 1      |       | 5.9%  | 5.1%  | 87.6%  |
| Se                | 15.9% | 6.7%   | 28.6%   | 0.0%   | 54.8% | 21.2% | 21.6% | 102.0% |
| V                 | 10.1% | 2.4%   | 7.5%    | 18.2%  | 1.7%  | 8.0%  | 6.7%  | 84.1%  |
| Average           | 23.0% | 5.4%   | 18.5%   | 19.9%  | 20.0% | 17.2% | 11.6% | 67.9%  |

## Laboratory Repeatability Samples D & M

| TRACE<br>ELEMENTS | LABI  | LAB II | LAB III | LAB IV | LAB V | MEAN  | SDEV  | PRSD   |
|-------------------|-------|--------|---------|--------|-------|-------|-------|--------|
|                   | [     |        |         |        |       |       |       |        |
| As                | 13.7% | 9.0%   |         | 0.0%   | 1.9%  | 6.1%  | 6.4%  | 103.5% |
| В                 | 7.2%  | 32.8%  | 5.4%    | 7.0%   | 23.3% | 15.1% | 12.3% | 81.2%  |
| Ва                | 0.3%  | 3.8%   | 15.2%   | 20.7%  | 3.9%  | 8.8%  | 8.7%  | 99.1%  |
| Be                | 0.2%  | 19.9%  | 0.0%    | 15.4%  | 16.6% | 10.4% | 9.6%  | 91.8%  |
| Cd                | ļ     | 40.0%  |         |        | 32.5% | 36.2% | 5.3%  | 14.7%  |
| Cr                | 3.2%  | 12.3%  | 12.7%   | 13.3%  | 1.1%  | 8.5%  | 5.9%  | 69.1%  |
| Co                |       | 0.4%   | 11.9%   |        | 11.0% | 7.8%  | 6.4%  | 82.1%  |
| Cu                | 1.6%  | 11.9%  |         | 6.5%   | 12.2% | 8.0%  | 5.0%  | 62.7%  |
| F                 | į     | 6.6%   | 22.2%   |        | 5.3%  | 11.3% | 9.4%  | 83.2%  |
| Hg                | }     | 11.6%  | 13.3%   | 50.0%  | 1.6%  | 19.1% | 21.2% | 110.9% |
| Mn                | 8.3%  | 1.0%   | 26.8%   | 3.3%   | 5.9%  | 9.0%  | 10.3% | 113.7% |
| Мо                | 1.5%  | 9.7%   | 55.0%   | 20.0%  | 7.4%  | 18.7% | 21.3% | 113.9% |
| Ni                | 2.2%  | 4.5%   | 52.1%   | 0.0%   | İ     | 14.7% | 25.0% | 170.0% |
| Pb                | 13.8% | 0.4%   | 0.0%    | 0.0%   | 0.0%  | 2.8%  | 6.1%  | 216.4% |
| Sb                | ļ     | 3.1%   | 8.7%    |        |       | 5.9%  | 4.0%  | 67.5%  |
| Se                | İ     | 5.9%   |         | 0.0%   | ŀ     | 2.9%  | 4.1%  | 141.4% |
| V                 | 10.1% | 12.1%  | 1.6%    | 5.7%   | 3.1%  | 6.5%  | 4.5%  | 68.7%  |
|                   |       |        | 15.001  | 4.5.5  |       |       | - 151 |        |
|                   | 5.6%  | 10.9%  | 17.3%   | 10.9%  | 9.0%  | 11.3% | 7.1%  | 63.0%  |

# Laboratory Repeatability Samples E & N

| TRACE<br>ELEMENTS | LAB I  | LAB II | LAB III | LAB IV | LAB V | MEAN  | SDEV  | PRSD   |
|-------------------|--------|--------|---------|--------|-------|-------|-------|--------|
| As                | 86.9%  | 0.8%   | 0.0%    | 85.7%  | 7.7%  | 36.2% | 45.8% | 126.6% |
| B                 | 17.1%  | 0.0%   | 3.4%    | 7.1%   | 10.6% | 7.6%  | 6.6%  | 86.2%  |
| Ba                | 41.2%  | 1.6%   | 163.0%  | 8.6%   | 4.7%  | 43.8% | 68.5% | 156.3% |
| Be                | 12.8%  | 34.8%  | 13.3%   | 8.0%   | 29.3% | 19.6% | 11.7% | 59.4%  |
| Cd                | 8.7%   | 26.1%  | 10.070  | 2.075  | 26.8% | 20.5% | 10.2% | 49.9%  |
| Cr                | 7.8%   | 7.4%   | 1.2%    | 0.0%   | 0.0%  | 3.3%  | 4.0%  | 121.5% |
| Co                | 24.6%  | 4.7%   | 0.5%    | 40.0%  | 31.7% | 20.3% | 17.1% | 84.3%  |
| Cu                | 11.8%  | 8.3%   |         | 0.0%   | 24.9% | 11.2% | 10.3% | 92.0%  |
| F                 |        | 7.0%   | 18.2%   |        | 0.9%  | 8.7%  | 8.8%  | 100.6% |
| Hg                |        | 2.3%   | 47.3%   | 32.3%  | 21.2% | 25.8% | 18.9% | 73.5%  |
| Mn                | 15.4%  | 0.6%   | 3.7%    | 7.4%   | 0.8%  | 5.6%  | 6.1%  | 110.2% |
| Мо                | 12.9%  | 3.2%   | 38.0%   |        | 50.7% | 26.2% | 21.9% | 83.7%  |
| Ni                | 7.3%   | 1.4%   |         | 11.8%  | 66.0% | 21.6% | 29.9% | 138.4% |
| Pb                | 109.8% | 10.6%  | 72.0%   | 28.6%  | 96.7% | 63.5% | 42.8% | 67.4%  |
| Sb                |        | 4.6%   | 58.6%   |        | į     | 31.6% | 38.2% | 120.9% |
| Se                | ļ      | 10.2%  |         | 0.0%   | 70.6% | 26.9% | 38.2% | 141.7% |
| V                 | 81.0%  | 9.4%   | 19.0%   | 5.9%   | 0.6%  | 23.2% | 33.0% | 142.3% |
| Average           | 33.6%  | 7.8%   | 33.7%   | _18.1% | 27.7% | 23.3% | 19.5% | 83.9%  |

# Laboratory Repeatability Samples F & O

| TRACE<br>ELEMENTS | LAB I  | LAB II       | LAB III | LAB IV | LAB V | MEAN  | SDEV  | PRSD    |
|-------------------|--------|--------------|---------|--------|-------|-------|-------|---------|
|                   | 25.00( | 0.004        | 40.50   | 44.004 | 0.404 | 44.00 | 4.504 | 400 701 |
| As                | 38.9%  | 0.6%         | 13.7%   | 11.8%  | 6.1%  | 14.2% | 14.7% | 103.5%  |
| В                 | 6.5%   | 5.8%         | 0.7%    | 13.3%  | 14.5% | 8.2%  | 5.7%  | 70.1%   |
| Ba                | 7.1%   | 7.6%         | 14.7%   | 4.7%   | 53.0% | 17.4% | 20.2% | 116.1%  |
| Be                | 4.3%   | 9.5%         | 26.7%   | 4.3%   | 0.6%  | 9.1%  | 10.3% | 113.9%  |
| Cd                | 6.1%   | 20.4%        | ļ       |        | 16.7% | 14.4% | 7.4%  | 51.6%   |
| Cr                | 9.8%   | 30.2%        | 5.2%    | 2.5%   | 6.8%  | 10.9% | 11.1% | 102.0%  |
| Co                | 11.0%  | 2.3%         | 16.2%   | 0.0%   | 24.3% | 10.8% | 10.0% | 92.7%   |
| Cu                | 2.7%   | 5.7%         |         | 7.1%   | 10.3% | 6.4%  | 3.1%  | 48.9%   |
| F                 |        | 21.1%        | 5.4%    |        | 13.1% | 13.2% | 7.8%  | 59.3%   |
| Hg                | 8.7%   | 6. <b>3%</b> | 8.3%    | 22.2%  | 12.9% | 11.7% | 6.3%  | 54.3%   |
| Mn                | 15.1%  | 2.3%         | 14.1%   | 0.0%   | 0.6%  | 6.4%± | 7.5%  | 117.5%  |
| Мо                | 11.7%  | 6.8%         | 36.4%   |        | 30.0% | 21.2% | 14.2% | 67.1%   |
| Ni                | 13.9%  | 2.6%         | 71.6%   | 3.8%   | 1.1%  | 18.6% | 30.1% | 161.5%  |
| Pb                | 97.8%  | 2.9%         | 20.9%   | 11.4%  | 16.4% | 29.9% | 38.5% | 129.0%  |
| Sb                | 29.7%  | 4.4%         | 11.4%   | 0.0%   |       | 11.4% | 13.1% | 115.1%  |
| Se                | 21.3%  | 3.0%         | 22.2%   | 0.0%   | 39.1% | 17.1% | 16.0% | 93.2%   |
| v                 | 5.4%   | 4.5%         | 8.2%    | 27.2%  | 2.1%  | 9.5%  | 10.2% | 107.3%  |
| Average           | 18.1%  | 8.0%         | 18.4%   | 7.7%   | 15.5% | 13.6% | 9.8%  | 72.6%   |

## Laboratory Repeatability Samples G & P

| TRACE<br>ELEMENTS | LAB I | LAB II | LAB III | LAB IV | LAB V  | MEAN   | SDEV  | PRSD   |
|-------------------|-------|--------|---------|--------|--------|--------|-------|--------|
| As                | 21.3% | 0.4%   | 0.0%    | 66.7%  | 82.3%  | 34.1%  | 38.2% | 112.0% |
| В                 | 6.0%  | 16.8%  | 8.0%    | 5.9%   | 2.7%   | 7.9%   | 5.3%  | 67.6%  |
| Ва                | 12.9% | 5.9%   | 10.3%   | 6.2%   | 0.7%   | 7.2%   | 4.7%  | 65.1%  |
| Be                | 3.6%  | 17.1%  | 8.0%    | 4.3%   | 6.9%   | 8.0%   | 5.4%  | 68.0%  |
| Cd                | į     |        |         |        | 165.0% | 165.0% | į     |        |
| Cr                | 9.9%  | 18.8%  | 2.4%    | 0.0%   | 3.4%   | 6.9%   | 7.6%  | 109.9% |
| Co                | 18.0% | 1.5%   | 5.9%    | 0.0%   | 26.3%  | 10.3%  | 11.4% | 110.3% |
| Cu                | 79.1% | 9.7%   |         | 4.9%   | 6.1%   | 24.9%  | 36.2% | 144.9% |
| F                 |       | 4.2%   | 11.8%   | İ      | 29.7%  | 15.2%  | 13.1% | 86.1%  |
| Hg                | į     | 10.5%  | 6.5%    | 13.3%  | 3.9%   | 8.6%   | 4.2%  | 48.8%  |
| Mn                | 6.7%  | 10.0%  | 3.1%    | 4.3%   | 0.5%   | 4.9%   | 3.6%  | 73.4%  |
| Mo                | 80.4% | 4.1%   |         | 1      | 86.0%  | 56.8%  | 45.7% | 80.5%  |
| Ni                | 16.2% | 4.0%   |         | 9.5%   | 3.1%   | 8.2%   | 6.0%  | 73.8%  |
| Pb                | 30.9% | 5.1%   | 18.2%   | 10.0%  | 0.9%   | 13.0%  | 11.9% | 91.4%  |
| Sb                | 13.5% | 0.3%   | 9.8%    | 40.0%  | 98.5%  | 32.4%  | 39.8% | 122.7% |
| Se                |       | 4.4%   | 0.0%    | į      | 92.0%  | 32.2%  | 51.9% | 161.4% |
| V                 | 0.2%  | 8.6%   | 8.2%    | 3.6%   | 3.3%   | 4.8%   | 3.6%  | 74.4%  |
| Average           | 23.0% | 7.6%   | 7.1%    | 13.0%  | 36.0%  | 25.9%  | 18.9% | 73.1%  |

## Laboratory Repeatability Samples H & Q

| TRACE<br>ELEMENTS | LAB I | LAB II | LAB III | LAB IV | LAB V  | MEAN  | SDEV  | PRSD   |
|-------------------|-------|--------|---------|--------|--------|-------|-------|--------|
| As                | 96.4% | 3.6%   | 0.0%    | 0.0%   | 27.7%  | 25.5% | 41.3% | 161.7% |
| В                 | 30.8% | 1.4%   | 3.0%    | 6.3%   | 3.0%   | 8.9%  | 12.4% | 139.5% |
| Ва                | 14.4% | 0.6%   | 17.1%   | 1.0%   | 4.1%   | 7.4%  | 7.8%  | 104.1% |
| Ве                | 28.9% | 8.4%   | 30.8%   | 4.1%   | 1.4%   | 14.7% | 14.1% | 95.7%  |
| Cd                | 77.1% | 8.1%   |         |        | 15.7%  | 33.6% | 37.8% | 112.5% |
| Cr                | 27.6% | 0.5%   | 0.5%    | 0.0%   | 1.7%   | 6.0%  | 12.1% | 199.6% |
| Co                | 11.0% | 0.1%   | 4.0%    | 0.0%   | 2.6%   | 3.6%  | 4.5%  | 126.6% |
| Cu                | 19.1% | 3.1%   |         | 0.0%   | 2.3%   | 6.1%  | 8.8%  | 143.0% |
| F                 |       | 14.1%  | 0.0%    |        | 2.1%   | 5.4%  | 7.6%  | 141.0% |
| Hg                | 18.2% | 5.5%   | 33.3%   | 42.9%  | 6.3%   | 21.2% | 16.6% | 78.0%  |
| Mn                | 29.4% | 3.4%   | 30.2%   | 1.6%   | 0.9%   | 13.1% | 15.3% | 116.4% |
| Мо                | 20.6% | 0.1%   |         |        | 18.3%  | 13.0% | 11.2% | 86.4%  |
| Ni                | 18.0% | 0.3%   | 73.1%   | 5.7%   | 3.9%   | 20.2% | 30.3% | 150.1% |
| Pb                | 33.1% | 1.0%   | 24.4%   | 4.4%   | 10.2%  | 14.6% | 13.6% | 93.2%  |
| Sb                |       | 3.3%   | 3.8%    | į      | 100.0% | 35.7% | 55.7% | 155.9% |
| Se                | 9.8%  | 2.5%   | 40.0%   | 0.0%   | 22.7%  | 15.0% | 16.5% | 110.2% |
| V                 | 30.5% | 2.1%   | 0.4%    | 1.3%   | 0.8%   | 7.0%  | 13.1% | 187.8% |
|                   |       |        |         |        |        |       | į     |        |
| Average           | 31.0% | 3.4%   | 18.6%   | 5.2%   | 13.2%  | 14.8% | 15.2% | 103.2% |

39 D-63

Laboratory Repeatability
All Coals

| TRACE<br>ELEMENTS | LAB I | LAB II | LAB III | LAB IV | LAB V | MEAN  | SDEV  | PRSD  |
|-------------------|-------|--------|---------|--------|-------|-------|-------|-------|
| As                | 48.2% | 2.2%   | 4.5%    | 34.8%  | 22.6% | 22.5% | 19.7% | 87.6% |
| В                 | 10.8% | 8.9%   | 8.2%    | 9.2%   | 10.9% | 9.6%  | 1.2%  | 12.4% |
| Ba                | 19.7% | 3.8%   | 35.1%   | 9.6%   | 26.8% | 19.0% | 12.6% | 66.6% |
| Be                | 15.7% | 13.8%  | 14.6%   | 8.1%   | 9.0%  | 12.2% | 3.4%  | 28.2% |
| Cd                | 26.8% | 17.2%  |         | 3.1,0  | 53.6% | 32.5% | 18.9% | 58.0% |
| Cr                | 11.4% | 10.5%  | 4.1%    | 7.9%   | 5.3%  | 7.8%  | 3.2%  | 40.3% |
| Co                | 10.7% | 2.2%   | 5.9%    | 16.3%  | 15.5% | 10.1% | 6.1%  | 60.2% |
| Cu                | 15.5% | 6.0%   | ·       | 7.5%   | 8.8%  | 9.4%  | 4.2%  | 44.5% |
| F                 | !     | 7.9%   | 8.9%    |        | 10.3% | 9.0%  | 1.2%  | 13.6% |
| Hg                | 5.5%  | 9.5%   | 37.0%   | 26.1%  | 9.8%  | 17.6% | 13.4% | 76.3% |
| Mn                | 16.6% | 2.6%   | 10.8%   | 7.5%   | 2.4%  | 8.0%  | 6.0%  | 74.7% |
| Мо                | 25.4% | 4.0%   | 19.3%   | 8.8%   | 26.4% | 16.8% | 10.0% | 59.7% |
| Ni                | 10.9% | 2.2%   | 38.6%   | 9.7%   | 12.3% | 14.7% | 13.9% | 94.3% |
| Pb                | 54.8% | 3.5%   | 34.0%   | 11.6%  | 18.3% | 24.4% | 20.4% | 83.3% |
| Sb                | 5.4%  | 3.1%   | 13.8%   | 5.0%   | 24.8% | 10.4% | 9.0%  | 86.7% |
| Se                | 13.5% | 6.9%   | 15.5%   | 12.5%  | 38.0% | 17.3% | 12.0% | 69.5% |
| V                 | 18.0% | 6.8%   | 6.7%    | 10.5%  | 2.5%  | 8.9%  | 5.8%  | 65.3% |
| Average           | 19.3% | 6.5%   | 17.1%   | 12.3%  | 17.5% | 14.7% | 6.9%  | 46.6% |

| Average Repea | itability by Coals |
|---------------|--------------------|
| Coal          | Avg                |
| A&J           | 13.8%              |
| B&K           | 14.8%              |
| C&L           | 17.2%              |
| D&M           | 11.3%              |
| E&N           | 23.3%              |
| F&O           | 13.6%              |
| G&P           | 25.9%              |
| Н&Q           | 14.7%              |

D-64 40

# DOE COAL ROUND ROBIN TRACE ELEMENT REPEATABILITY RESULTS % of Individual Lab Analysis Within Repeatability Ranges

| Repeatability Range | Lab I | Lab II | Lab III | Lab IV | Lab V | All Labs |
|---------------------|-------|--------|---------|--------|-------|----------|
| Less than 10%       | 31.0  | 79.0   | 42.0    | 46.0   | 52.0  | 50.0     |
| 10 to 20%           | 24.0  | 14.0   | 19.0    | 17.0   | 15.0  | 18.0     |
| 20 to 30%           | 8.0   | 2.0    | 7.0     | 7.0    | 11.0  | 7.0      |
| 30 to 50%           | 7.0   | 4.0    | 6.0     | 6.0    | 3.0   | 5.0      |
| Greater than 50%    | 10.0  | 0.0    | 9.0     | 4.0    | 12.0  | 7.0      |
| Non Determined      | 20.0  | 1.0    | 18.0    | 21.0   | 7.0   | 13.0     |

# APPENDIX E: ANALYTICAL PROTOCOL

### Introduction

This appendix contains brief descriptions of the analytical methods used. The analogous water, solid, and gas methods are described together.

Methods used for sample analysis are presented in Table E-1. Most of the laboratory methods identified in this document were published by the United States Environmental Protection Agency in "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846," Third Edition, or "Methods for Chemical Analysis of Water and Wastes." Additional methods identified were published in "Criteria for Identification of Hazardous and Extremely Hazardous Wastes," "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act," 40 CFR 136, 49 FR 209 (26 October 1984), Annual Book of ASTM Standards, Volume 4.08, and "Standard Methods for the Examination of Water and Wastewater."

### **Extraction Methods**

Extraction/digestion methods for liquid and solid matrices are briefly described in this section.

# Method SW3005<sup>1</sup> Acid Digestion of Aqueous Samples for Analyses by ICP

This method is an acid digestion procedure used to prepare water samples for metals analysis. The digested samples can be analyzed for total recoverable and dissolved metals determination by either flame (FLAA) or inductively coupled plasma atomic emission spectroscopy (ICP-AES). Samples may be analyzed for the following metals:

| Aluminum  | Cadmium  | Iron       | Nickel    | Thallium |
|-----------|----------|------------|-----------|----------|
| Antimony  | Calcium  | Lead       | Potassium | Vanadium |
| Arsenic   | Chromium | Magnesium  | Selenium  | Zinc     |
| Barium    | Cobalt   | Manganese  | Silver    |          |
| Beryllium | Copper   | Molybdenum | Sodium    |          |

Table E-1
Analytical Methods Used During Sampling Activities at Plant Yates

Analytical Method **Parameter** Water Gas Solids NA A-D3173<sup>2</sup> **Moisture Content** NA EPA M5/M17 Particulate Loading NA NA **EPA** Particle Size Distribution NA Ultimate NA NA ASTM D-31763 **Proximate** NA NA ASTM D-31724 Carbon NA NA ASTM D-53735 Sulfur NA NA ASTM D-4239° Heating Value NA NA ASTM D-2015<sup>7</sup> Chloride E300.0 E300.0 SM4500-CI-D8 Fluoride E340.2 E340.2 E340.29 Phosphate E365.2 E365.2 NA E300.0 E300.0 E300.010 Sulfate Sulfite E377.111 E377.1 NA Ammonia E350.1 E350.2 NA Cyanide, Total SW9012 SW9012 NA **ICP-AES Metals** SW601012 SW6010 SW6010 **ICP-MS Metals** SW6020 SW6020 SW602013 Metals NA NA INAA Metals NA NA **GDMS** Arsenic SW7060 SW7060 SW706014 Cadmium SW7131 SW7131 SW713115 Lead SW7421 SW7421 SW742116 SW747117 Mercury SW7470 SW7471 SW774018 SW7740 Selenium SW7740 Aldehydes SW8315 E0011a NA SW8240 Volatile Organic Compounds SW8240 NA SW8270 SW827019 Semivolatile Organic Compounds SW8270 Polychlorinated Dioxins and Furans Method 23 Method 23<sup>20</sup> NA Radionuclides NA NA E901.1/900.021

NA = Not Applicable.

<sup>\*</sup> Method abbreviations include ASTM = American Society of Testing and Materials, EPA = EPA "Methods for Chemical Analysis of Water and Wastes," SM = "Standard Methods for the Examination of Water and Wastewater," and SW = SW-846 "Test Methods for Evaluating Solid Waste."

For analysis of total recoverable metals, the entire sample is acidified at collection time with nitric (HNO<sub>3</sub>) acid to a pH <2. At the time of analysis, a 50-mL aliquot of the sample is heated with 1 mL of 1:1 nitric acid and 5 mL of hydrochloric acid and reduced to a specific volume. The sample must not be boiled because antimony is volatile and easily lost. The digestate is then adjusted to a final volume of 50 mL with reagent water.

For analysis of dissolved metals, the samples are filtered through a 0.45  $\mu$ m filter immediately upon collection in the field, and acidified with nitric (HNO<sub>3</sub>) acid to a pH < 2. For analysis, the sample is digested as described above.

# Modified Method SW3020<sup>22</sup> Acid Digestion of Aqueous Samples for Analyses by Graphite Furnace Atomic Absorption Spectroscopy

Water samples are digested according to a modification of method SW3020. In Method SW3020, the sample is treated in a manner similar to that described in Method SW3005 except that 1 mL of 1:1 HNO<sub>3</sub> and 5 mL of  $H_2O_2$  are used.

### Microwave Assisted Acid Digestion of Solids

Microwave assisted digestion is applicable to the preparation of solid samples and water samples containing solids for metals analysis by FLAA or GFAA or ICP. A representative sample of up to 0.5 g (wet weight) is digested with concentrated nitric acid for 60 minutes using microwave heating in a suitable laboratory microwave unit. The sample is placed in a Teflon PFA vessel with 10 mL of concentrated acid. The vessel is capped and heated in the microwave unit for three 20-minute intervals with 5-minute cooling period between each heating period. After the samples are cooled and vented, 5 mL of hydrofluoric acid and 1 mL of hydrochloric acid are added and the sample is digested for 15 minutes. After cooling, the vessel contents are diluted to volume and analyzed by the appropriate SW-846 method. A separate sample is dried for a total solids and/or percent moisture determination.

Some samples can contain diverse matrix types, which may present specific analytical problems. Spiked samples and any relevant standard reference material are processed to aid in determining whether the method is applicable to a given matrix.

# SW3500 Series Methods Organic Extraction and Sample Preparation

The SW3500 series methods are used to quantitatively extract nonvolatile and semivolatile organic compounds from various sample matrices. Prior to analysis, a sample of a known volume or weight is solvent extracted, then dried and concentrated in a Kuderna-Danish apparatus.

# Method SW3510<sup>23</sup> Separatory Extraction

Method SW3510 is designed to quantitatively extract nonvolatile and semivolatile organic compounds from liquid samples using standard separatory funnel techniques. The sample and extracting solvent must be immiscible in order to yield recovery of target compounds. Subsequent cleanup and detection methods are described in the organic analytical method that will be used to analyze the extract.

Samples are adjusted to a specified extraction pH and extracted with the appropriate solvent for the analytical method. Methylene chloride should be employed when a solvent is not specified.

## Method SW3520<sup>24</sup> Liquid-Liquid Extraction

Method SW3520 is designed to quantitatively extract nonvolatile and semivolatile organic compounds from liquid samples using standard liquid/liquid techniques. The sample and extracting solvent must be immiscible in order to yield recovery of target compounds. Subsequent cleanup and detection methods are described in the organic analytical method that will be used to analyze the extract.

Samples are adjusted to a specified extraction pH and extracted with the appropriate solvent for the analytical method. Methylene chloride should be employed when a solvent is not specified.

## Method SW3540<sup>25</sup> Soxhlet Extraction

Method SW3540 is a procedure for extracting nonvolatile and semivolatile organic compounds from solids such as soils and sludges. The Soxhlet extraction process ensures intimate contact of the sample matrix with the extraction solvent. Extraction is accomplished by mixing the solid sample with anhydrous sodium sulfate, placing it in an extraction thimble or between two plugs of glass wool, and extracting it with an appropriate solvent in the Soxhlet extractor. Methylene chloride should be employed when a solvent is not specified. The extract is dried and concentrated, and then treated using a clean-up method, or analyzed directly by the appropriate measurement technique.

## Method SW3550<sup>26</sup> Sonication Extraction

Method SW3550 is a procedure for extracting nonvolatile and semivolatile organic compounds from solids such as soils and sludges. The sonication process ensures intimate contact of the sample matrix with the extraction solvent. Extraction is accomplished by mixing the solid sample with anhydrous sodium sulfate, mixing with the extraction medium, and dispersing into the solvent by sonication. The extract is dried and then concentrated.

The resulting solution may then be cleaned up or analyzed directly using the appropriate technique.

# Method SW5030<sup>27</sup> Purge-and-Trap Method

Method SW5030 is used to determine the concentration of volatile organic compounds (VOCs) in a variety of liquid and solid matrices. It is based upon a purge-and-trap gas chromatographic procedure. The method is applicable to the types of samples collected for this project. The success of this method depends on the level of interferences in the sample; results may vary due to the large variability and complexity of some matrices.

A direct purge-and-trap can be performed for low-concentration samples. If higher concentrations are expected, a portion of the solid sample is dispersed in methanol to dissolve the volatile organic constituents. A portion of the methanol solution is combined with water in a purging chamber. An inert gas is then bubbled through the solution at ambient temperature to transfer the volatile components to the vapor phase. The vapor is swept through a sorbent column where the volatile components are trapped. After purging is completed, the sorbent column is heated and backflushed with inert gas to desorb the components onto a gas chromatographic column. The gas chromatographic column is heated to elute the components that are detected by the appropriate detector.

### Organic and Inorganic Analytical Methods for Water and Solid Samples

# Method ASTM D-3173 Percent Moisture

Percent moisture was determined for solid samples undergoing analysis for organic and inorganic analytes. The percent moisture must be known so that the analytical results can be reported on a dry weight basis (i.e.,  $\mu g/kg$  or mg/kg). The sample is weighed, dried, and then re-weighed. Percent moisture is calculated as:

# Method E300.0 Anions (CI, F and SO<sub>a</sub>) by Ion Chromatography

Water samples were analyzed for fluoride, chloride, and sulfate anions by ion chromatography using U.S. EPA Method 300.0. Ion chromatography is a rapid method for separating and analyzing complex solutions of ionic species. The technique employs a carbonate/bicarbonate eluent and ion exchange resins to separate individual ions, and a suppressor column to remove the eluent ions. The detection and quantitation of the anions is performed conductimetrically.

## Method E350.1 Nitrogen, Ammonia

Ammonia nitrogen in water samples were measured by U.S. EPA Method 350.1. This method is an automated colorimetric procedure in which alkaline phenol and hypochlorite react with ammonia to form an indophenol blue complex that is proportional to the ammonia concentration. The blue color is intensified with sodium nitroprusside and is measured at 630-660 nm.

## Method SW9012<sup>28</sup> Cyanide, Total

Water and impinger samples were analyzed for total cyanide using SW9012. Cyanide as hydrocyanic acid (HCN) is released from cyanide complexes by means of an reflux-distillation under highly acidic conditions. The released cyanide is absorbed into a scrubber containing sodium hydroxide solution. The cyanide ion in the absorbing solution is then determined using an automated UV colorimetry. The colorimetric procedure is sensitive to about 0.02 mg/L.

# Method 365.2<sup>29</sup> Total Phosphate

Total phosphate was determined on acid-preserved water samples using EPA Method 365.2. Complexed phosphates are digested to the ortho-phosphate form by heating with sulfuric acid and potassium persulfate. The ortho-phosphate is reacted with ammonium molybdate and antimony potassium tartrate to form an antimony-phospho-molybdate complex which is reduced to an intensely blue-colored complex by ascorbic acid. The sample intensity is measured at 650 or 880 nm and compared with the intensity of a standard phosphate solution.

## Method SW6010<sup>30</sup> ICP Metals

Samples are analyzed for trace elements or metals using SW6010. Analysis for most metals requires digestion of the sample with acid. This digestion is performed as SW846 Method 3005 for water or SW846 Method 3050 for solids. Following digestion, the trace elements are simultaneously or sequentially determined using ICP-AES.

## Methods SW7060<sup>31</sup>/SW7041<sup>32</sup>/SW7131<sup>33</sup>/SW7421<sup>34</sup>/SW7740<sup>35</sup>/SW7841<sup>36</sup> Graphite Furnace Atomic Absorption Metals Analyses for Arsenic, Cadmium, Lead, and Selenium

Graphite furnace AA spectrometry was used to measure concentrations of arsenic (As), cadmium (Cd), lead (Pb), and selenium (Se) in the water and solid samples. The samples are extracted using SW3020 or SW3050 as appropriate. Discrete aliquots of sample extract are deposited in a graphite tube furnace in microliter amounts. The graphite tube is

resistively heated by an electrical current. The sample solution is dried and charred to remove sample matrix components, and then atomized at temperatures sufficient to vaporize the element of interest. Matrix modification is used to eliminate interference effects, and may also enhance the vaporization efficiency and allow lower detection limits. This method usually has a linear analysis range at the ppb or sub-ppb level.

## Method SW7470<sup>37</sup>/SW7471<sup>38</sup> Mercury - Manual Cold-Vapor Technique

Liquid (water and impinger) and solid samples were analyzed for mercury using SW7470 and SW7471, respectively. This method is a cold-vapor flameless AA technique based on the absorption of radiation by mercury vapor. Mercury is reduced to the elemental state and aerated from solution in a closed system. The mercury vapor passes through a cell positioned in the light path of an AA spectrophotometer. Mercury concentration is measured as a function of absorbance.

### Instrumental Neutron Activation Analysis (INAA)

Neutron activation is a non-destructive technique that measures the number and energy of gamma and X-rays emitted by the radioactive isotopes produced in the sample matrix by irradiation with thermal neutrons. The samples require no special preparation except for encapsulation in high purity polyethylene vials prior to irradiation. Both samples and standards of the elements of interest are irradiated in a nuclear reactor. Each sample is then counted on a gamma ray detector to produce its characteristic gamma ray spectrum. Quantitation of sample concentration is done by comparison with the energy spectra from those standards run simultaneously with the unknown samples.

This technique is applicable to determining bulk composition and is feasible for very small sample quantities. The method does not introduce any contaminating or interfering substances, and it provides a multi-element analysis. It is not applicable to those elements that have either extremely short half-lives, or those elements, such as lead, that do not produce radioactive isotopes.

### Glow Discharge Mass Spectrometry (GDMS)

Glow discharge mass spectrometry was used as an alternative to INAA for determining the bulk composition of the size fractionated fly ash samples. In this technique, the sample is mixed with silver powder and is pressed into the shape of a pin to serve as a conducting electrode in a low-pressure argon plasma ionization chamber. Sample atoms are sputtered into the plasma and then ionized. The plasma is a constant matrix in which the ionization efficiencies of the elements also remain constant. The ionization efficiencies expressed as relative sensitivity factors (RSFs) are used to convert ion intensities to elemental concentrations. The application of this technique to fly ash particles has been demonstrated successfully, and it can provide a complete analysis on the target list, including fluorine, beryllium, and lead, that cannot be determined by INAA.

## EPA Method 0011A<sup>39</sup> Aldehydes

Aldehydes in the gas, liquid, and solid samples were determined using EPA Method 0011A. Samples collected in dinitrophenylhydrazine (DNPH) are extracted with methylene chloride and then solvent exchanged to acetonitrile. The acetonitrile is concentrated and analyzed by high performance liquid chromatography as the DNPH adduct.

## Method SW8240<sup>40</sup> Volatile Organic Compounds

Volatile, or purgeable, organics in water and by VOST in the gas streams were analyzed using Method SW8240. This method uses a purge-and-trap GC/MS technique. An inert gas is bubbled through the water samples to transfer the purgeable organic compounds from the liquid to vapor phase. The vapor is then swept through a sorbent trap where the purgeable organics are trapped. The trap is backflushed and heated to desorb the purgeable organics onto a gas chromatographic column where they are separated and then detected with a mass spectrometer. VOST samples are thermally desorbed from the resin/charcoal traps and analyzed directly.

## Method SW8270<sup>41</sup> Semivolatile Organic Compounds

Semivolatile organics, also known as base/neutral and acid extractables (BNA), were analyzed using Method SW8270. These techniques quantitatively determine the concentration of a number of semivolatile organic compounds. Organic compounds are extracted from the sample with methylene chloride at a pH greater than 12 to obtain base/neutral extractables. Acid extractable compounds are obtained from the sample by extraction with methylene chloride at a pH of 2 or less. Both base/neutral and acid extracts are then concentrated by removal of the methylene chloride through evaporation. Compounds of interest are separated and quantified using a GC/MS.

# Method 23<sup>42</sup> Chlorinated Dioxins and Furans

Flue gas and gas particulate samples were analyzed for chlorinated dioxins and furans using Method 23. The dioxins and furans are extracted from the samples with toluene using the soxhlet extraction described in Method 23. The extracts are cleaned by passing the solvent through alumina, silica gel, and carbon columns. The cleaned extracts are concentrated and injected onto the a fused silica capillary column of a gas chromatograph/mass spectrometer.

### References

- U.S. Environmental Protection Agency. Office of Solid Waste. "Method 3005: Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by Flame Atomic Absorption Spectroscopy or Inductively Coupled Plasma Spectroscopy," Test Methods for Evaluating Solid Waste. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 2. American Society for Testing and Materials. "Test Method for Moisture in the Analysis Sample of Coal and Coke," 1991 Annual Book of ASTM Standards. Section 5, Vol. 5.05, Method D-3173. Philadelphia, PA (1991).
- 3. American Society for Testing and Materials. "Standard Practice of Ultimate Analysis of coal and Coke," 1991 Annual Book of ASTM Standards. Section 5, Vol. 5.05, Method D-3176-89. Philadelphia, PA (1991).
- 4. American Society for Testing and Materials. "Standard Practice of Proximate Analysis of Coal and Coke," 1991 Annual Book of ASTM Standards. Section 5, Vol. 5.05, Method D-3172-89. Philadelphia, PA (1991).
- 5. American Society for Testing and Materials. "Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and Coke," 1991 Annual Book of ASTM Standards. Section 5, Vol. 5.05, Method D-5373. Philadelphia, PA (1991).
- 6. American Society for Testing and Materials. "Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High Temperature Tube Furnace Combustion Methods," 1991 Annual Book of ASTM Standards. Section 5, Vol. 5.05, Method D-4239. Philadelphia, PA (1991).
- 7. American Society for Testing and Materials. "Standard Test Method for Gross Calorific Value of Coal and Coke by the Adiabatic Bomb Calorimeter," 1991 Annual Book of ASTM Standards. Section 5, vol. 5.05, Method D-2015-85. Philadelphia, PA (1991).
- 8. American Public Health Association, et al. "4500-Cl D. Potentiometric Method," Standard Methods for the Examination of Water and Wastewater. 17th ed. Washington, D.C. (1989).
- 9. U.S. Environmental protection Agency. Environmental Monitoring and Support Laboratory. "Fluoride, Method 340.2 (Potentiometric, Ion Selective Electrode)," *Methods for Chemical Analysis of Water and Wastes*. EPA-600/4-79-020. Cincinnati, OH (March 1983).

- J.W. O'Dell, J.D. Pfaff, M.E. Gales, and G.D. McKee. U.S. Environmental Protection Agency. Environmental Monitoring and Support Laboratory. "Test Method: The Determination of Inorganic Anions in Water by Ion Chromatography--Method 300.0." EPA-600/4-84-017. Cincinnati, OH (March 1984).
- 11. U.S. Environmental Protection Agency. Environmental Monitoring and Support Laboratory. "Sulfite, Method 377.1 (Titrimetric)," *Methods for Chemical Analysis of Water and Wastes*. EPA-600/4-79-020. Cincinnati, OH (March 1983).
- 12. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 6010: Inductively Coupled Plasma Atomic Emission Spectroscopy," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 13. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 6020: Inductively Coupled Plasma Mass Spectrometry," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 14. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7060: Arsenic (AA, Furnace Technique)," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 15. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7131: Cadmium (AA, Furnace Technique)," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 16. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7421: Lead (AA, Furnace Technique)," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 17. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7471: Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 18. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7740: Selenium (AA, Furnace Technique)," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 19. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 8270: Gas Chromatography/Mass Spectrometry for Semivolatile Organics: Capillary Column Technique," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 20. 40 CFR 266, Appendix IX: Methods Manual for Compliance with the BIF Regulations. "Determination of Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) from Stationary Sources (Method 23)."

- 21. U.S. Environmental Protection Agency. Methods 901.1 and 900.0. Prescribed Procedures for the Measurement of Radioactivity in Drinking Water. EPA-600/4/80-032 (1980).
- 22. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 3020: Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by GFAA Spectroscopy," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 23. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 3510: Separatory Funnel Liquid-Liquid Extraction," Test Methods for Evaluating Solid Waste. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 24. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 3520: Continuous Liquid-Liquid Extraction," *Test Methods for Evaluating Solid Waste*. SW-484, 3rd ed. Washington, D.C. (November 1986).
- 25. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 3540: Soxhlet Extraction," *Test Methods for Evaluating Solid Waste*. SW-484, 3rd ed. Washington, D.C. (November 1986).
- 26. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 3550: Sonication Extraction," *Test Methods for Evaluating Solid Waste*. SW-484, 3rd ed. Washington, D.C. (November 1986).
- U.S. Environmental Protection Agency. Office of Solid Waste. "Method 5030: Purge-and-Trap," Test Methods for Evaluating Solid Waste. SW-484, 3rd ed. Washington, D.C. (November 1986).
- 28. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 9012: Total and Amenable Cyanide (Colorimetric, Automated UV)," *Test Methods for Evaluating Solid Waste*. SW-484, 3rd ed. Washington, D.C. (November 1986).
- 29. U.S. Environmental Protection Agency. Environmental Monitoring and Support Laboratory. "Phosphorus, All Forms, Method 365.2 (Colorimetric, Ascorbic Acid, Single Reagent)," *Methods for Chemical Analysis of Water and Wastes*. EPA-600/4-79-020. Cincinnati, OH (March 1983).
- U.S. Environmental Protection Agency. Office of Solid Waste. "Method 6010: Inductively Coupled Plasma Atomic Emission Spectroscopy," Test Methods for Evaluating Solid Waste. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 31. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7060: Arsenic (AA, Furnace Technique)," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).

- 32. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7041: Antimony (Atomic Absorption, Furnace Technique)," Test Methods for Evaluating Solid Waste. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 33. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7131: Cadmium (AA, Furnace Technique)," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 34. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7421: Lead (AA, Furnace Technique)," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 35. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7740: Selenium (AA, Furnace Technique)," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 36. U.S. Environmental Protection Agency, Office of Solid Waste. "Method 7841: Thallium (AA, Furnace Technique)." *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. November 1986.
- 37. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7470: Mercury in Liquid Waste (Manual Cold-Vapor Technique)," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 38. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 7471: Mercury in Solid or Semisolid Waste Manual Cold-Vapor Technique," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 39. 40 CFR 266, Appendix IX: Methods Manual for Compliance with the BIF Regulations. "Analysis for Aldehydes and Ketones by High Performance Liquid Chromatography (HPLC) (Method 0011A)."
- 40. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 8240: Gas Chromatography/Mass Spectrometry for Volatile Organics," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 41. U.S. Environmental Protection Agency. Office of Solid Waste. "Method 8270: Gas Chromatography/Mass Spectrometry for Semivolatile Organics: Capillary Column Technique," *Test Methods for Evaluating Solid Waste*. SW-846, 3rd ed. Washington, D.C. (November 1986).
- 42. 40 CFR 266, Appendix IX: Methods Manual for Compliance with the BIF Regulations. "Determination of Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) from Stationary Sources (Method 23)."

# APPENDIX F: ERROR PROPAGATION AND UNCERTAINTY CALCULATIONS

An error propagation analysis was performed on calculated results to determine the contribution of process, sampling, and analytical variability and measurement bias to the overall uncertainty in the result. This uncertainty was determined by propagating the bias and precision error of individual parameters through the calculation of the results. This uncertainty does not represent the total uncertainty in the result since some important bias errors are unknown and have been assigned a value of zero for this analysis. Also, the uncertainties calculated apply only over the period of time during which the measurements were made.

The procedure described below is based on ANSI/ASME PTC 19.1-1985, "Measurement Uncertainty."

### Nomenclature

```
r = Calculated result, a function of several parameters; S_{pi} = Sample standard deviation of parameter i; <math>\theta_i = Sensitivity of the result to parameter i; <math>\beta_{pi} = Bias \ error \ estimate for parameter i; <math>v_i = Degrees \ of \ freedom \ in \ parameter i; <math>v_r = Degrees \ of \ freedom \ in \ result; 
S_r = Precision \ component \ of \ result \ uncertainty; 
S_r = Bias \ component \ of \ result \ uncertainty; 
S_r = Student \ "t" \ factor \ (two-tailed \ distribution \ at \ 95\%); 
S_r = Uncertainty \ in \ r; \ and
```

 $N_i$  = Number of measurements of parameter i.

### Appendix F: Error propagation & Uncertainty Calculations

For a result, r, the uncertainty in r is calculated as:

$$U_{r} = \sqrt{\beta_{r}^{2} + (S_{r} * t)^{2}}$$
 (F-1)

The components are calculated by combining the errors in the parameters used in the result calculation.

$$\beta_{r} = \sqrt{\sum_{i=1}^{j} (\theta_{i} * \beta_{\overline{p}i})^{2}}$$
 (F-2)

$$S_{r} = \sqrt{\sum_{i=1}^{j} (\theta_{i} * S_{\overline{pi}})^{2}}$$
 (F-3)

The sensitivity of the result to each parameter is found from a Taylor series estimation method:

$$\theta_i = \frac{\partial r}{\partial p_i} \tag{F-4}$$

Or using a perturbation method (useful in computer applications):

$$\theta_i = \frac{r_{P_i + \Delta P_i} - r_{P_i}}{\Delta P_i}$$
 (F-5)

The standard deviation of the average for each parameter is calculated as:

$$S_{\overline{p}i} = \frac{S_{pi}}{\sqrt{N}} \tag{F-6}$$

The degrees of freedom for each parameter is found from

$$\mathbf{v}_{i} = \mathbf{N}_{i} - 1 \tag{F-7}$$

and the degrees of freedom for the result if found by weighing the sensitivity and precision error in each parameter.

$$v_{r} = \frac{S_{r}^{4}}{\sum_{i=1}^{j} \left[ \frac{(S_{\overline{p}i} \times \theta_{i})^{4}}{v_{i}} \right]}$$
 (F-8)

The student "t" in Equation 1 is associated with the degrees of freedom in the result.

The precision error terms are easily generated using collected data. The bias error terms are more difficult to quantify. The percentage bias assumed in certain flow rates is based on how accurately particular flows were felt to be measured. For example, the coal flow rate was measured by counting (nominally) 500 lb buckets. While this method has good precision, there is likely to be a bias. A 5% bias is therefore assumed for the coal flow rate to account for the uncertainty. Similarly, measurements of slurry flow rates in FGD systems are quite precise, but are frequently biased. For this reason a 20% bias was assumed for limestone and JBR blowdown slurry flow rates. The following conventions were used for this report:

- 5% bias in coal flow rates.
- 20% bias in limestone slurry and JBR blowdown slurry flow rates.
- No bias in gas flow rates.
- No bias in analytical results unless the result is less than detection limit. Then one-half the detection limit is used for both the parameter value and its bias in calculations.

In addition to the assumptions about bias errors referred to above, the calculations also assume that the population distribution of each measurement is normally distributed and that the samples collected reflect the true population.

Also, the uncertainty calculated is only for the average value over the sampling period. The uncertainty does not represent long-term process variations. In other words, the calculated uncertainty does not include a bias term to reflect the fact that the sampled system was probably not operating (and emitting) at conditions equivalent to the average conditions for

that system over a longer period (in other words, autocorrelation may be important). An example of the confidence interval calculation is provided below.

### **Confidence Interval Calculations**

The following example shows an example calculation for the 95% confidence interval for emission factor. This procedure utilizes the same method outlined earlier in this appendix. The example uses concentration data for mercury in the stack gas.

$$E = \frac{(Q_{gas} * C_{i,s}) + (Q_{gas} * C_{i,v})}{H_{coal} * F_{coal} * (1-C_{w,coal})} * 2204.6$$
 (F-9)

where:

 $E = Emission factor in 1b/10^{12} Btu;$ 

 $Q_{\text{stackgas}} = Gas flow rate, Nm<sup>3</sup>/hr;$ 

 $C_{i,a} = Solid-phase conc., \mu g/Nm<sup>3</sup>;$ 

 $C_{i,v}$  = Vapor-phase conc.,  $\mu g/Nm^3$ ;

H<sub>coal</sub> = Coal higher heating value, Btu/lb on a dry basis;

 $F_{coal} = Coal feed rate, lb/hr;$ 

 $C_{w,coal}$  = Coal water content, weight fraction; and

2204.6 = Conversion from  $\mu$ g/Btu to lb/10<sup>12</sup> Btu.

The values used to calculate the emission factor and the confidence interval are as follows:

| Parameter |
|-----------|
|-----------|

|                               | Q <sub>stackgas</sub><br>Nm³/hr | C <sub>i,s</sub><br>μg/Nm³ | $C_{i,v}$ $\mu g/Nm^3$ | H <sub>ooal</sub><br>Btu/lb | C <sub>w,coal</sub><br>g/g | F <sub>coal</sub><br>lb/hr |
|-------------------------------|---------------------------------|----------------------------|------------------------|-----------------------------|----------------------------|----------------------------|
| Mean                          | 456,000                         | 0.00707                    | 3.04                   | 12,700                      | 0.117                      | 91,000                     |
| S,                            | 3,990                           | 0.00638                    | 0.11                   | 260                         | 0.0087                     | 3,200                      |
| $S_{\overline{p}}$            | 2,310                           | 0.00451                    | 0.064                  | 150                         | 0.0050                     | 380                        |
| N                             | 3                               | 2                          | 3                      | 3                           | 3                          | 71                         |
| $oldsymbol{eta_{\mathtt{p}}}$ | 0                               | 0                          | 0                      | 0                           | 0                          | 4,540                      |
| θ                             | 6.6x10 <sup>6</sup>             | 0.99                       | 0.99                   | -2.3x10 <sup>4</sup>        | 2.73                       | -3.2x10 <sup>s</sup> -     |
| V <sub>p</sub>                | 2                               | 1                          | 2                      | 2                           | 2                          | 70                         |

The calculation of the sensitivity,  $\theta$ , for the vapor-phase concentration is shown below:

Vapor-phase analytical: 2.92 μg/Nm<sup>3</sup>

$$3.13 \ \mu g/Nm^3$$

$$3.07 \, \mu g/Nm^3$$

$$N = 3$$

$$Mean = \Sigma C_{i,v} / N = 3.04$$

$$S_p = \sqrt{[\Sigma(C_{i,v} - Mean)^2/(N-1)]} = 0.11$$

$$S_{\bar{p}} = \frac{0.11}{\sqrt{3}} = 0.064$$

As explained above, the  $\beta$  for analytical results is set equal to zero.

$$\beta_p = 0$$

Next, calculate the sensitivity using perturbation method. The perturbation is equal to the standard deviation:

$$\theta = [r_{Ci,v=3.15} - r_{Ci,v=3.04}] / 0.11 = [3.109 - 3.00] / 0.11$$
$$= 0.99$$

Similar calculations are performed for each parameter.

### Appendix F: Error propagation & Uncertainty Calculations

The precision component is then found by root-sum-squaring the product of the normalized standard deviations and their respective sensitivities.

$$S_{r} = \sqrt{\left(\theta_{Q_{-}} S_{C_{-}}\right)^{2} + \left(\theta_{C_{L}} S_{C_{-}}\right)^{2} + \left(\theta_{C_{L}} S_{C_{-}}\right)^{2} + \left(\theta_{H_{-}} S_{H_{-}}\right)^{2} + \left(\theta_{F_{-}} S_{F_{-}}\right)^{2} + \left(\theta_{C_{-}} S_{C_{-}}\right)^{2}}$$

$$S_{r} = 0.066$$

The bias component is found using the same equation substituting  $\beta p$  for the Sp term.

$$\beta_{r} = \sqrt{\left(\theta_{Q_{\text{max}}} \beta_{Q_{\text{max}}}\right)^{2} + \left(\theta_{C_{L}} \beta_{C_{L}}\right)^{2} + \left(\theta_{C_{L}} \beta_{C_{L}}\right)^{2} + \left(\theta_{H_{\text{max}}} \beta_{H_{\text{max}}}\right)^{2} + \left(\theta_{F_{\text{max}}} \beta_{F_{\text{max}}}\right)^{2} + \left(\theta_{C_{\text{max}}} \beta_{C_{\text{max}}}\right)^{2}}$$

$$\beta_{\rm r} = 0.14$$

The uncertainty in the result is then

$$U_r = \sqrt{\beta_r^2 + \left(t \times S_r\right)^2}$$
 (F-12)

To calculate the Student t factor, the degrees of freedom must be calculated using the following equation:

$$v_{r} = \frac{S_{r}^{4}}{\sum_{i=1}^{j} \frac{\left(S_{pi} \theta_{i}\right)^{4}}{V_{pi}}}$$

$$= 2.7$$

The Student t factor for a two-tailed 95% confidence interval with 2.7 degrees of freedom is 3.2. The uncertainty in the emission factor can now be calculated.

$$U_r = \sqrt{(0.14)^2 + (3.2 \times .066)^2}$$

$$= 0.25$$

The emission rate is calculated as 3.0 lb/10<sup>12</sup> Btu.

The value is reported as  $3.0 \pm 0.3 \text{ lb/}10^{12} \text{ Btu}$ .

### APPENDIX G: TREATMENT OF NONDETECTS, VALUES OUTSIDE OF THE CALIBRATION RANGE, AND BLANKS

Treatment of nondetects (analytical results for which the concentration of the species of interest is below the detection limit of the method) and blank values is of critical importance in this program because detection levels and blank concentrations are often on the same order of magnitude as sample values. When the results are then used for risk assessments or policy decisions, treatment of the data becomes important. This discussion describes how blank and nondetect values are to be treated in presenting/developing reported results.

### **Nondetects**

The discussion presented below explains how averages, sums, and reported emission values are to be calculated for all species given various combinations of detected and nondetected values.

All values detected. The arithmetic average or sum is taken, as appropriate. No special techniques required.

All values below the detection limit. For individual test runs or species, the data are to be reported as "ND < (detection limit)." For cases where all three runs are below the detection limit, the average is reported as nondetected less than the average detection limit of the three runs.

Some values are detected and some are nondetects. As an approximation, half of the detection limit for nondetect values and the actual value for detects will be used to determine reported values. As an example of averaging, an average for three test runs with results of 10, 8, and ND < 6 would be 7. As an example for summing (such as for mercury fractions), individual species values of 50, ND < 1, and ND < 2 would be summed to provide a value of 50 + 0.5 + 1, or 51.5. In reporting these types of sums or average no "<" sign is used. The only exception to this rule occurs when the average is less than the highest detection limit of the nondetected values. In this case, the average is reported as "ND < (the highest detection limit)." For example, 5, ND < 4, and ND < 3 would be reported as "ND < 4."

This approach is also used to obtain test train totals which required analyses of separate fractions for each individual run. Specifically, the volatile, metals, and anion test train totals for each run are obtained by addition of test train fractions which were analyzed separately.

Fractions from the volatile test train included separate analyses of the tenax and tenax/charcoal tubes for each sample period. Separate analyses were conducted on the filterable and gaseous test train components for both the metals and anion test trains.

Detection limit ratio. These methods of treating the data may result in some loss of information in going from raw data to final values. Specifically, what is often lost is the amount of a final emission value that is attributable to detection limits and the amount that is attributable to measured values. In order to quantify and present this information, all results in this report are presented along with the "Detection Limit Component Ratio," which is calculated as the ratio of the contribution of detection limit values to a final emission result.

For example, a set of three values of 16, ND <6, and ND <5 should be reported as 7, with a detection limit ratio of 26% [(3+2.5)/(16+3+2.5)], while a set of values of 12, ND <6, and 9 should be reported as 8, with a detection limit ratio of 13 percent. The different ratios provide insight as to the extent something is "really there" and, it is hoped, can help provide better information to those making decisions on risk and policy issues.

### Values Outside the Calibration Range

It is possible that the reported lab data will be outside the calibration range of the instrument. Data reported below the lower detection limit will be flagged with a qualifier (e.g., "J"). Data with the "J" flag will have been tentatively identified and tentatively quantified. Data reported above the upper detection limit will be flagged with a qualifier (e.g., "E"). Data with the "E" flag will have been positively identified and tentatively quantified. Data with both qualifiers will be estimates. Consider J and E values to be quantitatively representative when calculating averages. Neither flag should cause a value to be weighted more or less important. The J and E data qualifiers should appear in the respective laboratory analytical report. The data qualifiers need not appear on the calculated data summaries.

### **Blank Values**

The level and treatment of blank values is important in interpreting data, since in some cases species are detected but not at levels significantly higher than blanks. In these cases, measured values may not represent emissions, but rather just limitations of the method. However, most of the test methods used in this program either do not allow subtraction of blanks or are silent on how to treat blank values.

When a method does not specify how the sample will be blank-corrected, the appropriate blank train values should be subtracted. Laboratory and site/reagent blanks will be analyzed and the results evaluated for identification of contamination. If a sample compound is blank-corrected, the data will be flagged by a "B." If the value is blank-corrected below the detection limit, it should be reported as "ND < (detection limit) BC." A "C" flag indicates

that the blank value was greater than the sampled value. In no case should the blank-corrected values be reported below the method detection limit.

### APPENDIX H: DETAILED ANALYTICAL RESULTS

### Appendix H: Detailed Analytical Results

### **TABLE OF CONTENTS**

| ESP Inlet                        |
|----------------------------------|
| ESP Outlet                       |
| Stack                            |
| Raw Coal                         |
| Feed Coal                        |
| Pulverizer Rejects               |
| Bottom Ash                       |
| Sluiced Fly Ash H-57             |
| ESP Hopper Ash (Field 1)         |
| ESP Hopper Ash (Field 2)         |
| Raw Limestone H-75               |
| Limestone Slurry Solids          |
| JBR Underflow Slurry Solids      |
| Ash Pond Water H-85              |
| Bottom Ash Sluice Filtrate       |
| ESP Fly Ash Sluice Filtrate H-97 |
| Gypsum Pond Water                |
| JBR Underflow Slurry Filtrate    |
| Limestone Slurry Filtrate        |
| Cooling Water                    |
| Coal Pile Run-Off                |

Gas Stream Data

SAMPLE STREAM: ESP INLET

| Analyte              | <u>.</u>                 | Analyticat<br>Method | ##     | - Run            | E          |      | Run       |          | Run        |            | Average   | * 5     | Ratio   |
|----------------------|--------------------------|----------------------|--------|------------------|------------|------|-----------|----------|------------|------------|-----------|---------|---------|
| orifice Latering     |                          | Versy                | S/Nm3  | , a              | ۷ ا        |      | 9.017     |          | 9.533      |            | 8 057     | - 53    |         |
| Rainen Potalis       |                          | <b>5</b>             | )<br>) |                  | 2          |      | <u>.</u>  |          | }          |            | 7000      | 3       |         |
| Reduced Species      | Ammonia as N             | EPA 350.1            | ug/Nm3 | 27.              | 98<br>B    |      | 32.33     | <b>6</b> | 26.65      | ∞          | 83        | 7.38    |         |
| Reduced Species      | Hydrogen Cyanide         | SW 9012              | ug/Nm3 | 0.043            | £<br>-     |      | 0.221     | 7        | 0.199      | 7          | 0.154     | 0.24    |         |
| Anions - Vapor Phase | Chloride                 | EPA 300.0            | ug/Nm3 | 127,702          | 202        |      | 105,013   |          | 102,681    |            | 111,799   | 34,338  |         |
| Anions - Vapor Phase | Fluoride                 | EPA 340.2            | ug/Nm3 | 7,8              | 99         |      | 8,946     |          | 8,123      |            | 8,311     | 1,401   |         |
| Anions - Vapor Phase | Sulfate                  | EPA 300.0            | ug/Nm3 | 7,339            | 547        |      | 7,389,801 |          | 7,662,782  |            | 7,464,043 | 432,118 |         |
| Anions - Particulate | Chloride                 | EPA 300.0            | ug/Nm3 | 3,703            | 33         |      | 10,334    |          | 4,333      |            | 6,123     | 9,094   |         |
| Anions - Particulate | Fluoride                 | <b>EPA 340.2</b>     | ug/Nm3 | 0.2              | 48 B       |      | 2.01      | 60       | 1.72       | <b>1</b> 0 | 1.33      | 2.35    |         |
| Anions - Particulate | Sulfate                  | EPA 300.0            | ug/Nm3 | 52,2             | <u>35</u>  |      | 124,668   |          | 61,094     |            | 79,338    | 98,145  |         |
| Anions - Total       | Chloride                 | EPA 300.0            | ug/Nm3 | 131,             | \$         |      | 115,347   |          | 107,014    |            | 117,922   | 30,799  |         |
| Anions - Total       | Fluoride                 | EPA 340.2            | ug/Nm3 | 7,8              | 98         |      | 8,948     |          | 8,124      |            | 8,313     | 1,403   |         |
| Anions - Total       | Sulfate                  | EPA 300.0            | ug/Nm3 | 7,391,798        | 798        |      | 7,514,469 |          | 7,723,876  |            | 7,543,381 | 417,161 |         |
| Radionuclides        | Actinium-228 @ 338 KeV   | EPA 901.1            | pCi/g  | ¥<br>v           | 10         |      | 35        |          | \$         |            | 24.7      | 35.9    | 1.8     |
| Radionuclides        | Actinium-228 @ 911 KeV   | EPA 901.1            | bCl/g  | =                | "          |      | 8         |          | 72         |            | 20.3      | 14.6    |         |
| Radionuclides        | Actinium-228 @ 968 KeV   | EPA 901.1            | pCVg   | ۸ 2              | ^1         |      | प्र       |          | £          |            | 29.3      | 41.0    | 13%     |
| Radionuclides        | Bismuth-212 @ 727 KeV    | EPA 901.1            | pCivg  | < 37             |            | ٧    | £         | v        | 88         | •          | 39.3      | :       | 100%    |
| Radionuclides        | Bismuth-214 @ 1120.4 KeV | EPA 901.1            | pCi/g  | γ<br>γ           | 10         | v    | 73        | v        | 24         | v          | 24.3      | :       | 100%    |
| Radionuclides        | Bismuth-214 @ 1764.7 KeV | EPA 901.1            | pCi/g  | ~                | _          | v    | 8         |          | 8          |            | 49.3      | 70.9    | 11<br>% |
| Radionuclides        | Bismuth-214 @ 609.4 KeV  | EPA 901.1            | pCi/g  | 74               | _          |      | <b>78</b> |          | 32         |            | 28.0      | 17.4    |         |
| Radionuclides        | K-40 @ 1460 KeV          | EPA 901.1            | pCl/g  | 17               | 0          |      | 150       |          | 380        |            | 233       | 317     |         |
| Radionuclides        | Lead-210 @ 46 KeV        | EPA 901.1            | bCi/g  | 24               | _          |      | 8         |          | 2          |            | 79.0      | 32.5    |         |
| Radionuclides        | Lead-212 @ 238 KeV       | EPA 901.1            | pCi/g  | =                |            |      | 20        |          | <b>5</b> 6 |            | 19.0      | 18.8    |         |
| Radionuclides        | Lead-214 @ 295.2 KeV     | EPA 901.1            | pCi/g  | 24               | _          |      | 16        |          | 32         |            | 24.0      | 19.9    |         |
| Radionuclides        | Lead-214 @ 352.0 KeV     | EPA 901.1            | pCi/g  | 24               | _          |      | ಜ         |          | 29         |            | 25.3      | 7.99    |         |
| Radionuclides        | Radium-226 @ 186.0 KeV   | EPA 901.1            | pCi/g  | 110              | 0          |      | 130       |          | 150        |            | 130       | 20      |         |
| Radionuclides        | Thallium-208 @ 583 KeV   | EPA 901.1            | pCi/g  |                  | <b>~</b> ! |      | 19        |          | 20         |            | 17.0      | 10.8    |         |
|                      |                          |                      |        | ESP Inlet - Page | t - Pag    | le 1 |           |          |            |            |           |         |         |

SAMPLE STREAM: ESP INLET

| Anaivte           |                        | Analytical |              | Run                | Œ.         | s           | Run     |         | 86%             | 占     |
|-------------------|------------------------|------------|--------------|--------------------|------------|-------------|---------|---------|-----------------|-------|
| Group             | Specie                 | Method     | Units        | -                  |            | 2           | •       | Average | 5               | Ratio |
| Radioniclides     | Thallium-208 @ 860 KeV | EPA 901.1  | pCl/g        |                    | ^          |             | 29 >    | < 66.7  | ;               | 100%  |
| Radionuclides     | Thorium-234 @ 1001 KeV | EPA 901.1  | b<br>Sod     | 88                 | 7          | ıΩ          | 8       | 79.3    | 34.8            |       |
| Radionuclides     | Thorium-234 @ 63.3 KeV | EPA 901.1  | bC/kg        | 88                 | Ŋ          | 22          | 88      | 69.3    | 42.8            |       |
| Radionuclides     | Uranium-235 @ 143 KeV  | EPA 901.1  | pci/g        | 8                  | u>         | 4           | 88      | 69.3    | 42.8            | ٠     |
| Part Metals by Wt | Aluminum               | SW 6010    | ₿/6n         | 94,401             | 94;        | 94,503      | 102,093 | 666'96  | 10,961          |       |
| Part Metals by Wt | Antimony               | ICP-MS     | 6/6n         | 3.24               | 6          | 89          | 4.68    | 3.61    | 2.36            |       |
| Part Metals by Wt | Arsenic                | SW 7060    | 5/6n         | 4                  | 4          | 4           | S       | 44.9    | 11.6            |       |
| Part Metals by Wt | Barium                 | SW 6010    | 8∕8n         | 447                | ភ          | ¥           | 530     | 494     | <del>1</del> 06 |       |
| Part Metals by WI | Beryllium              | SW 6010    | 5/Sn         | Ξ                  | -          | 0           | =       | 10.4    | 0.57            |       |
| Part Metals by Wt | Boron                  |            |              | 1                  | •          |             | ı       |         |                 |       |
| Part Metals by Wt | Cadmium                | SW 7131    | 6/6n         | 2.76               | 2.         | 20          | 3.21    | 2.68    | 1.43            |       |
| Part Metals by Wt | Calcium                | SW 6010    | 6/6n         | 19,815             | 17,        | 647         | 16,792  | 18,085  | 3,871           |       |
| Part Metals by Wt | Chromium               | SW 6010    | 6/6n         | 183                | ស          | 6           | 223     | 318     | 8               |       |
| Part Metals by Wt | Cobatt                 | SW 6010    | ₿/6n         | 3                  | n          | <u></u>     | 34      | 31      | 0.83            |       |
| Part Metals by Wt | Copper                 | SW 6010    | 6/6n         | 98                 | <b>E</b> D | 'n          | 98      | 98      | 2.64            |       |
| Part Metals by Wt | Iron                   | SW 6010    | 6/6n         | 102,776            | 87,        | 367         | 82,002  | 90,715  | 26,792          |       |
| Part Metals by Wt | Lead                   | SW 7421    | 6/6n         | 7                  | 7          | Ģ.          | 98      | 79      | 6               |       |
| Part Metals by Wt | Magnesium              | SW 6010    | 6/6n         | 4,549              | 4.6        | 119         | 4,910   | 4,692   | 476             |       |
| Part Metals by Wt | Manganese              | SW 6010    | 6/6n         | 248                | ĸ          | <b>6</b>    | 223     | 237     | 32              |       |
| Part Metals by Wt | Mercury                | SW 7471    | ₫/gn         | 0.63               | <b>*</b>   | 92          | 99.0    | 0.79    | 0.59            |       |
| Part Metals by Wt | Molybdenum             | SW 6010    | 6/6n         | 17                 | 4          | <del></del> | 4       | ક્ષ     | 93              |       |
| Part Metals by Wt | Nickel                 | SW 6010    | ng/g         | 99                 | <b>ස</b>   | 36          | 179     | 226     | 245             |       |
| Part Metals by Wt | Phosphorus             | SW 6010    | <b>D/D</b> n | 161                | ಸ          | 92          | 569     | 228     | <del>1</del>    |       |
| Part Metals by Wt | Potassium              | SW 6010    | 6/6n         | 16,630             | 17,        | 647         | 18,125  | 17,467  | 1,897           |       |
| Part Metals by Wt | Selenium               | SW 7740    | 6/6n         | 12                 | -          | 80          | 4       | 5       | 7.01            |       |
| Part Metals by Wt | Sodium                 | SW 6010    | 6/6n         | 5,196              | 5,1        | 121         | 5,042   | 5,120   | 192             |       |
| Part Metals by Wt | Strontium              | SW 6010    | 6/6n         | 319                | ਲੌ         | 50          | 325     | 324     | 12              |       |
| Part Metals by Wt | Titanium               | SW 6010    | 6/6n         | 5,811              | 6,1        | 172         | 6,446   | 6,143   | 792             |       |
| Part Metals by Wt | Vanadium               | SW 6010    | 6/6n         | 310                | ñ          | 0           | 306     | 308     | 5.74            |       |
| Part Metals by Wt | Zinc                   | SW 6010    | 6/6n         | 391                | 4          | 61          | 458     | 423     | \$              |       |
|                   |                        |            | ũ            | ESP Inlet - Page 2 | qe 2       |             |         |         |                 |       |
|                   |                        |            |              |                    | ;<br>,     |             |         |         |                 |       |

Gas Stream Data

SAMPLE STREAM: ESPINLET

| Analyte            |            | Analytical |          | Run                | Run        | Run             |         | 95%      | 5     |
|--------------------|------------|------------|----------|--------------------|------------|-----------------|---------|----------|-------|
| Group              | Specie     | Method     | Units    | -                  | 2          | 8               | Average | 5        | Ratio |
|                    |            |            |          |                    |            |                 |         |          |       |
| Part Metals by Vol | Aluminum   | SW 6010    | ug/Nm3   | 784,242            | 852,556    | 973,562         | 870,120 | 238,184  |       |
| Part Metals by Vol | Antimony   | ICP-MS     | ug/Nm3   | 26.92              | 26.10      | 44.68           | 32.56   | 26.08    |       |
| Part Metals by Vol | Arsenic    | SW 7060    | ug/Nm3   | 339                | 397        | 477             | 404     | 172      |       |
| Part Metals by Vol | Barium     | SW 6010    | ug/Nm3   | 3,713              | 4,550      | 5,053           | 4,438   | 1,682    |       |
| Part Metals by Vol | Beryllium  | SW 6010    | ug/Nm3   | 87                 | 91         | 100             | 83      | 16       |       |
| Part Metals by Vol | Boron      |            |          | 1                  | i          | ı               |         |          |       |
| Part Metals by Vol | Cadmium    | SW 7131    | ug/Nm3   | ន                  | 19         | 3               | 24      | 15       |       |
| Part Metals by Vol | Calcium    | SW 6010    | ug/Nm3   | 164,612            | 159,202    | 160,128         | 161,314 | 7,188    |       |
| Part Metals by Vol | Chromium   | SW 6010    | ug/Nm3   | 1,518              | 4,959      | 2,127           | 2,868   | 4,562    |       |
| Part Metals by Vol | Cobalt     | SW 6010    | ug/Nm3   | 254                | 281        | 291             | 275     | <b>8</b> |       |
| Part Metals by Vol | Copper     | SW 6010    | ug/Nm3   | 718                | 763        | 823             | 768     | 131      |       |
| Part Metals by Vol | Iron       | SW 6010    | ug/Nm3   | 853,821            | 788,179    | 781,972         | 166 209 | 96,905   |       |
| Part Metals by Vol | read       | SW 7421    | ug/Nm3   | 283                | 717        | 819             | 708     | 286      |       |
| Part Metals by Vol | Magnesium  | SW 6010    | ug/Nm3   | 37,788             | 41,671     | 46,820          | 42,093  | 11,256   |       |
| Part Metals by Vol | Manganese  | SW 6010    | ug/Nm3   | 2,062              | 2,157      | 2,126           | 2,115   | 121      |       |
| Part Metals by Vol | Mercury    | SW 7471    | ug/Nm3   | 5.23               | 10         | 6.44            | 2.08    | 5.56     |       |
| Part Metals by Vol | Molybdenum | SW 6010    | ug/Nm3   | 139                | 371        | 435             | 315     | 387      |       |
| Part Metals by Vol | Nickel     | SW 6010    | ug/Nm3   | 1,327              | 3,062      | 1,704           | 2,031   | 2,267    |       |
| Part Metals by Vol | Phosphorus | SW 6010    | ug/Nm3   | 1,338              | 2,305      | 2,564           | 2,069   | 1,606    |       |
| Part Metals by Vol | Potassium  | SW 6010    | ug/Nm3   | 138,151            | 159,202    | 172,840         | 156,731 | 43,416   |       |
| Part Metals by Vol | Selenium   | SW 7740    | ug/Nm3   | 103                | 162        | <del>1</del> 34 | 133     | 73       |       |
| Part Metals by Vol | Sodium     | SW 6010    | ug/Nm3   | 43,168             | 46,195     | 48,080          | 45,814  | 6,156    |       |
| Part Metals by Vol | Strontium  | SW 6010    | ug/Nm3   | 2,651              | 2,967      | 3,100           | 2,906   | 572      |       |
| Part Metals by Vol | Třaníum    | SW 6010    | ug/Nm3   | 48,274             | 55,677     | 61,471          | 55,141  | 16,434   |       |
| Part Metals by Vol | Vanadium   | SW 6010    | ug/Nm3   | 2,575              | 2,793      | 2,916           | 2,761   | 429      |       |
| Part Metals by Vol | Zinc       | SW 6010    | ug/Nm3   | 3,247              | 3,784      | 4,371           | 3,801   | 1,397    |       |
| Motole Vanor       | Aluminum   | SW 6010    | ug/Nm3   | 72                 | 8 1821 B   | 220             | 146     | 937      |       |
| Metals, Vapor      | Antimony   | ICP-MS     | ug/Nm3   | 1.07               | 0 1000 3 8 | 0.044 B         | 0.56    | 6.50     |       |
| Metals, Vapor      | Arsenic    | SW 7060    | ng/Nm3 < | 0.19               | > B 2701 3 | 0.14 C          | > 0.08  | :        | 100%  |
|                    |            |            | ES       | ESP Inlet - Page 3 | age 3      |                 |         |          |       |
| H                  |            |            | j        |                    |            |                 |         |          |       |

**Gas Stream Data** 

SAMPLE STREAM: ESP INLET

| Analyte       |                   | Analytical |        | Run                    |          | Run        | Run     |            |   |         | <b>32%</b>   | 占     |
|---------------|-------------------|------------|--------|------------------------|----------|------------|---------|------------|---|---------|--------------|-------|
| Group         | Specie            | Method     | Units  | -                      |          | 2          | 60      |            |   | Average | ਹ            | Ratio |
| Motole Money  | Baring            | SW 6010    | Em/Nm3 | 78.0                   | Œ        | H 22 H     | 211     | 60         |   | 46      | 7.85         |       |
| Metals, Vapor | Beodium           | SW 6010    | na/Nm3 | 0.076                  | ····     | 8 22       | 0.037   | ר ו        |   | 90.0    | 0.25         |       |
| Metals, Vapor | Boron             | SW 6010    | ug/Nm3 | 7,330                  | · co     | 7,080      | 5,451   | 60         |   | 6,390   | 11,939       |       |
| Metals, Vapor | Cadmium           | SW 7131    | ug/Nm3 | < 0.07                 | ပ        | 667 8      | 0.18    | 8          |   | 0.11    | 0.93         | 16%   |
| Metals, Vapor | Calcium           | SW 6010    | ng/Nm3 | 788                    | <b></b>  | 5,333 8    | 305     | Φ          |   | 297     | 90           |       |
| Metals, Vapor | Chromium          | SW 6010    | ug/Nm3 | 22                     | 60       | 102. B     | 0.65    | 8          |   | 11.33   | 136          |       |
| Metals, Vapor | Cobalt            | SW 6010    | ug/Nm3 | 0.30                   | ٦        | • 122 C    | c 0.74  | O          | v | 12      | ;            | 22%   |
| Metals, Vapor | Copper            | SW 6010    | ug/Nm3 | 1.01                   | ~<br>~   | 8 C1       | 1.26    | 8          |   | 1.13    | 1.59         |       |
| Metals, Vapor | Iron              | SW 6010    | ug/Nm3 | 146                    | 60       | 1,321 8    | 128     | 8          |   | 137     | 118          |       |
| Metals, Vapor | Lead              | SW 7421    | ug/Nm3 | < 0.24                 | ပ        | 251 8      | . 0.17  | ပ          | v | 0.10    | ;            | 100%  |
| Metals, Vapor | Magnesium         | SW 6010    | ug/Nm3 | 19                     | æ        | 156 55     | 22      | Ø          |   | 20.50   | <del>2</del> |       |
| Metais, Vapor | Manganese         | SW 6010    | ug/Nm3 | < 0.12                 | ပ        | (3 B       | د 0.09  | ပ          | v | 0.05    | ;            | 100%  |
| Metals, Vapor | Mercury           | CVAA       | ug/Nm3 | 5.09                   | ω        | 8 PZS      | 2.97    | <b>6</b>   |   | 5.53    | 5.59         |       |
| Metals, Vapor | Molybdenum        | SW 6010    | ug/Nm3 | < 1.36                 | ပ        | 1.4        | 0.63    | 7          | v | 0.66    | ;            | 52%   |
| Metals, Vapor | Nickel            | SW 6010    | ug/Nm3 | 13                     | <b>6</b> | E3         | 2,15    | ပ          |   | 7.18    | 78           | %     |
| Metals, Vapor | Phosphorus        | SW 6010    | ug/Nm3 | < 18                   | ပ        | 45 8       | 13      | ပ          | v | 7.80    | ;            | 100%  |
| Metals, Vapor | Potassium         | SW 6010    | ug/Nm3 | <ul><li>0.84</li></ul> | ပ<br>ပ   | 208 B      | 21      | <b>6</b> 0 |   | 10.74   | 131          | 7%    |
| Metals, Vapor | Selenium          | SW 7740    | ug/Nm3 | < 0.25                 | ပ        | 0.21       | 0.18    | ပ          | v | 0.25    | :            | 100%  |
| Metals, Vapor | Sodium            | SW 6010    | ug/Nm3 | 214                    | ω        | 8 27       | 270     | 82         |   | 242     | 326          |       |
| Metals, Vapor | Strontium         | SW 6010    | ug/Nm3 | 1.68                   | <b></b>  | 3.3 8      | 2.32    | œ          |   | 2.00    | 4            |       |
| Metals, Vapor | Titanium          | SW 6010    | ug/Nm3 | 3.31                   | 60       | д <b>3</b> | 4       | <b>6</b>   |   | 8.89    | ۲            |       |
| Metals, Vapor | Vąnadium          | SW 6010    | ug/Nm3 | 96.0                   | 60       | n R        | 1.45    | <b>8</b> 0 |   | 1.20    | က            |       |
| Metals, Vapor | Zinc              | SW 6010    | ug/Nm3 | 94                     | <br>     | B 22       | 9       | 8          |   | સ       | 185          |       |
| Total Metals  | Aluminum          | SW 6010    | ug/Nm3 | 784,314                | _        | 854,177    | 973,781 |            |   | 870,757 | 238,039      |       |
| Total Metals  | Antimony          | ICP-MS     | ug/Nm3 | 27.98                  |          | 26.68      | 44.72   |            |   | 33.13   | 52           |       |
| Total Metals  | Arsenic           | SW 7060    | ug/Nm3 | 340                    |          | 407        | 477     |            |   | 408     | 17           |       |
| Total Metals  | Barium            | SW 6010    | ug/Nm3 | 3,713                  |          | 4,562      | 5,055   |            |   | 4,443   | 1,686        |       |
| Total Metals  | Beryllium         | SW 6010    | ug/Nm3 | 88                     |          | 35         | \$      |            |   | 83      | 9            |       |
| Total Metals  | Boron(vapor only) | SW 6010    | ng/Nm3 | 7,330                  |          | 7,080      | 5,451   |            |   | 6,620   | 2,536        |       |
| Total Metals  | Cadmium           | SW 7131    | ug/Nm3 | <b>54</b>              |          | 19         | સ       |            |   | ĸ       | <del>4</del> |       |
|               |                   |            |        | ESP Inlet - Page 4     | - Page   | 4          |         |            |   |         |              |       |
|               |                   |            |        |                        | )<br> -  | •          |         |            |   |         |              |       |

| SAMPLE STREAM: ESP | INLET        |
|--------------------|--------------|
| AMPLE STREAN       |              |
| ~,                 | AMPLE STREAN |

| Analyte                |                    | Analytical |        | Run                | Run     | Run     |         | %96<br>%96   | 占        |
|------------------------|--------------------|------------|--------|--------------------|---------|---------|---------|--------------|----------|
| Group                  | Specie             | Method     | Units  | -                  | 2       | 6       | Average | ច            | Ratio    |
|                        | •                  |            | į      | •                  |         | 000     | 700     | 9            |          |
| Total Metals           | Calcium            | SW 6010    | ng/Nm3 | 164,900            | 164,535 | 160,433 | 103,269 | 701,0        |          |
| Total Metals           | Chromium           | SW 6010    | ug/Nm3 | 1,540              | 5,061   | 2,127   | 2,909   | 4,686        |          |
| Total Metals           | Cobalt             | SW 6010    | ug/Nm3 | <b>254</b>         | 283     | 293     | 712     | ₽            |          |
| Total Metals           | Copper             | SW 6010    | ug/Nm3 | 719                | 77.3    | 825     | 277     | 131          |          |
| Total Metals           | lron               | SW 6010    | ug/Nm3 | 853,967            | 789,500 | 782,099 | 808,522 | 98,206       |          |
| Total Metals           | Lead               | SW 7421    | ug/Nm3 | 290                | 719     | 819     | 710     | <b>58</b> 6  |          |
| Total Metals           | Magnesium          | SW 6010    | ug/Nm3 | 37,807             | 41,859  | 46,842  | 42,169  | 11,243       |          |
| Total Metals           | Manganese          | SW 6010    | ug/Nm3 | 2,063              | 2,170   | 2,127   | 2,120   | <u>\$</u>    |          |
| Total Metals           | Mercury            | SW 7471    | ug/Nm3 | <b>6</b>           | 5       | 12      | 13      | 5.60         |          |
| Total Metals           | Molybdenum         | SW 6010    | LB/Nm3 | 141                | 382     | 436     | 321     | 391          |          |
| Total Metals           | Nickel             | SW 6010    | ug/Nm3 | 1,341              | 3,115   | 1,707   | 2,054   | 2,328        |          |
| Total Metals           | Phosphorus         | SW 6010    | ug/Nm3 | 1,356              | 2,350   | 2,578   | 2,095   | 1,614        |          |
| Total Metals           | Potassium          | SW 6010    | ug/Nm3 | 138,153            | 159,411 | 172,861 | 156,808 | 43,476       |          |
| Total Metals           | Selenium           | SW 7740    | ug/Nm3 | 40                 | 162     | 135     | 134     | 72           |          |
| Total Metals           | Sodium             | SW 6010    | ng/Nm3 | 43,382             | 46,422  | 48,349  | 46,051  | 6,222        |          |
| Total Metals           | Strontium          | SW 6010    | ug/Nm3 | 2,653              | 2,999   | 3,102   | 2,918   | 282          |          |
| Total Metals           | Titanium           | SW 6010    | ug/Nm3 | 48,277             | 55,771  | 61,485  | 55,178  | 16,457       |          |
| Total Metals           | Vanadium           | SW 6010    | ug/Nm3 | 2,576              | 2,820   | 2,917   | 2,771   | 437          |          |
| Total Metals           | Zinc               | SW 6010    | ng/Nm3 | 3,293              | 3,842   | 4,388   | 3,841   | 1,360        |          |
| На Уарог. Вюот         | Mercury, Elemental | CVAFS      | ug/Nm3 | 2.43               | 2.36    | 1,15    | 8.      | 1.78         |          |
| Ha Vapor, Bloom        | Mercury II         | CVAFS      | ug/Nm3 | 4.38               | 3.46    | 4.45    | 4.10    | 1.37         |          |
| Hg Vapor, Bloom        | Mercury, Methyl    | CVAFS      | ug/Nm3 | 0.10               | 0.28    | 0.57    | 0.31    | 0.59         |          |
| Hg Vapor, Bloom        | Mercury, Total     | CVAFS      | ug/Nm3 | 6.91               | 6.09    | 6.17    | 6.39    | 1.12         |          |
| Extract Metals, Nitric | Antimony           | ICP-MS     | ₿/ϐn   | 2.37               | 3.04    | 2.62    | 2.68    | 0.85         |          |
| Extract Metals, Nitric | Arsenic            | ICP-MS     | 6/6n   | 36.33              | 63.18   | 28.23   | \$      | <b>₹</b>     |          |
| Extract Metals, Nitric | Barium             | ICP-MS     | 6∕6n   | 181                | 287     | 192     | 220     | <del>1</del> |          |
| Extract Metals, Nitric | Beryflium          | ICP-MS     | 5/6n   | 3.36               | 5.14    | 3.83    | 4.11    | 2.29         |          |
| Extract Metals, Nitric | Boron              | ICP-MS     | 5/5n   | 1,495              | 1,871   | 1,181   | 1,516   | 857          |          |
| Extract Metals, Nitric | Cadmium            | ICP-MS     | 6/6n   | < 0.72             | 2.28    | 4.03    | 2.22    | 4.57         | %<br>23% |
|                        |                    |            | E      | ESP Inlet - Page 5 | rc.     |         |         |              |          |

SAMPLE STREAM: ESP INLET

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Analytical |               |       | Run                | -          | Run   |   | Run   |            | <b>%</b> 96 | 占     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|---------------|-------|--------------------|------------|-------|---|-------|------------|-------------|-------|
| Grain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Specie     | Method     | Units         |       | -                  |            | 2     |   | 8     | Average    | ច           | Ratio |
| droip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |            |               |       |                    |            |       |   |       |            |             |       |
| Extract Metals Nitric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chromium   | ICP-MS     | Ø/Bn          | `,    | 35.93              | e.         | 6.16  | • | 14.92 | ଷ          | සි          |       |
| Cotron Matale Nitrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cohatt     | ICP-MS     | p/dn          |       | 3.75               | <b>J</b> , | .51   |   | 1.81  | 5.03       | 9.95        |       |
| Extract Metals Nitric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cooper     | ICP-MS     | 5/bin         | •••   | 28.83              | 4          | 7.95  | Ţ | 95'6  | 32         | 36          |       |
| Extract Motals Nitric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pead       | ICP-MS     | מלקם          | •     | 22.90              | ø          | 2.80  | • | 32.06 | ඉ          | 25          |       |
| Extract Metals Nitric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mandanese  | ICP-MS     | )<br>D        |       | 138                | •          | 54    | _ | 90.04 | 120        | 87          |       |
| Extract Metals Nitric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mercury    | ICP-MS     | )<br>()<br>() | v     | 1.92               | •          | 180   |   | 64.11 | <b>3</b> 5 | 226         | 0.4%  |
| Extract Metals Nitric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Molybdenum | ICP-MS     | 5/6n          | ••    | 34.16              | 9          | 9.84  | • | 24.60 | €          | 59          |       |
| Extract Metals Within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nickel     | ICP-MS     | 5/6n          | •     | 53.31              | W.         | 0.81  | • | 31.25 | ŧ\$        | 8           |       |
| Extract Metals Nitric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Selenium   | ICP-MS     | b/bn          | v     | 23.43              | ^          | 2.58  | v | 23.92 | 53         | :           | 100%  |
| Extract Metals, Nitric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vanadium   | ICP-MS     | 6/6n          | •     | 107.21             | 73         | 20.17 | - | 09.68 | 146        | 160         |       |
| Subject Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th | Actimony   | ICP-MS     | naja          |       | 0.66               | Ū          | 0.73  |   | 0.73  | 0.71       | 60.0        |       |
| Extract Metals, Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Arsenic    | ICP-MS     | g p/on        | v     | 0.65               | v          | 99.0  | v |       | > 0.68     | ;           | 400%  |
| Extract Metals, Castric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barien     | ICP-MS     | , p/gn        |       | 81.68              |            | 103   |   | 126   | 103        | 22          |       |
| Extract Metals, Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Beryllium  | ICP-MS     | 6/6n          |       | 06:0               |            | .39   |   | 1.13  | 1.14       | 0.61        |       |
| Extract Metals Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Boron      | ICP-MS     | 6/6n          |       | 669                |            | 969   |   | 669   | 969        | 4.55        |       |
| Extract Metals Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cadmium    | ICP-MS     | 5/5n          |       | 0.55               | •          | 2.91  |   | 2.01  | 1.82       | 2.97        |       |
| Extract Metals, Cosmo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chromium   | ICP-MS     | 6/6n          |       | 28.99              | 43         | 1.89  |   | 21.52 | 23         | 13          |       |
| Extract Metaks Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cobalt     | ICP-MS     | 6/6n          |       | 1.21               |            | 2.37  |   | 1.80  | 1.80       | 4           |       |
| Extract Metals, Castric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Copper     | ICP-MS     | 5/6n          |       | 8.57               | _          | 2.41  |   | 8.89  | 96'6       | 5.29        |       |
| Extract Metals: Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lead       | ICP-MS     | ₿/₿n          |       | 5.63               | -          | 3.36  |   | 9.12  | 9.37       | 9.62        |       |
| Extract Motale Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manganese  | ICP-MS     | 6/6n          |       | 87.97              | (4)        | 6.41  |   | 55.76 | 8          | 92          |       |
| Extract Metals, Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mercury    | ICP-MS     | 6/6n          |       | 1.63               | •          | 3.23  |   | 0.84  | 1.90       | 3.03        |       |
| Extract Metals, Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Molybdenum | ICP-MS     | 5/Sin         |       | 20.75              | τ,         | 8.48  |   | 28.60 | 8          | 22          |       |
| Extract Metals Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nickel     | ICP-MS     | 6/6n          |       | 6.17               | •          | 0.16  |   | 4.58  | 5          | 7           |       |
| Extract Metals Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Selenium   | ICP-MS     | ₿/Ĝn          | v     | 0.84               | v          | 98.0  | v | 0.92  | 0.88       | ;           | 100%  |
| Extract Metals, Gastric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vanadium   | ICP-MS     | 6/6n          | ٧     | 0.34               | •          | 0.36  | v | 0.37  | 0.36       | :           | 100%  |
| Change the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o | Antimony   | CP-MS      | 5,6n          |       | 0.44               |            | 1.30  |   | 0.65  | 0.80       | 1,11        |       |
| Exilact incides, accident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arsenic    | ICP-MS     | B/Bn          |       | 1.16               |            | 0.73  |   | 1.17  | 1.02       | 0.63        |       |
| Extract Metals, Actio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Barium     | ICP-MS     | B/Bn          |       | 34.39              | •          | 33.34 |   | 56.47 | ₩          | 8           |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            | }             | ESP 1 | ESP Inlet - Page 6 | 9          |       |   |       |            |             |       |

Gas Stream Data

SAMPLE STREAM: ESP INLET

| Analyte                |            | Analytical |              | Run              | Run              | Run     |         | %96    | 늄     |
|------------------------|------------|------------|--------------|------------------|------------------|---------|---------|--------|-------|
| Group                  | Specie     | Method     | Units        | -                | 2                | 8       | Average | 5      | Ratio |
| Extract Motels Analis  | Becellin   | SP-MS      | D/DH1        | 012              | 95               | 0.28    | 0.32    | 0.54   |       |
| Extract Metale Acetic  | Boron      | CP-MS      | 0/00         | <b>706</b>       | 1.04             | 1.086   | 1,010   | 236    |       |
| Extract Metals, Acetic | Cadmium    | ICP-MS     | 5/B          | 0.62             | 2.97             | 1.17    | 1.65    | 2.86   |       |
| Extract Metals, Acetic | Chromium   | ICP-MS     | 6/6n         | 5.32             | 11.11            | 5.67    | 7.37    | 8.07   |       |
| Extract Metals, Acetic | Cobalt     | ICP-MS     | 6/6n         | 1.19             | 1.86             | 1.37    | 1.48    | 0.87   |       |
| Extract Metals, Acetic | Copper     | ICP-MS     | 6/6n         | 5.56             | 17.04            | 10.24   | 10.95   | 14.35  |       |
| Extract Metals, Acetic | Lead       | ICP-MS     | 6/6n         | 0.14             | 0.37             | 0.11    | 0.21    | 0.35   |       |
| Extract Metals, Acetic | Manganese  | ICP-MS     | 6/6n         | 72.92            | 31.05            | 50.15   | 51.37   | 52.09  |       |
| Extract Metals, Acetic | Mercury    | ICP-MS     | 6/6n         | 0.17             | <del>.</del> .56 | 0.39    | 0.71    | 1.86   |       |
| Extract Metals, Acetic | Molybdenum | ICP-MS     | ō/ōn         | 0.39             | 3.91             | 90.0    | 1.45    | 5.30   |       |
| Extract Metals, Acetic | Nickel     | ICP-MS     | 6/Bn         | 6.62             | 11.09            | 8.19    | 8.64    | 5.63   |       |
| Extract Metals, Acetic | Selenium   | ICP-MS     | 5/6n         | < 0.54           | 0.23             | 0.17 J  | < 0.54  | :      | 41%   |
| Extract Metals, Acetic | Vanadium   | ICP-MS     | 6/6n         | 1.45             | 1.05             | 1.88    | 1.46    | 1.03   |       |
|                        |            |            |              | •                |                  | 100     | 1       | ;      |       |
| Metals by Size, >10 um | Aluminum   | SW 6010    | ₿/₿n         | 98,300           | 103,000          | 125,000 | 108,767 | 35,411 |       |
| Metals by Size, >10 um | Antimony   | ICP-MS     | 6/6n         | 2.53             | 1.71             | 1.82    | 2.02    | 1.10   |       |
| Metals by Size, >10 um | Arsenic    | SW 7060    | 6/6n         | 29.80            | 23.30            | 25.00   | 8       | 8.37   |       |
| Metals by Size, >10 um | Barium     | SW 6010    | <b>6/6</b> n | 459              | 521              | 565     | 515     | 132    |       |
| Metals by Size, >10 um | Beryllium  | SW 6010    | 6/6n         | 11.20            | 10.70            | 7.09    | 5       | 5.57   |       |
| Metals by Size, >10 um | Cadmium    | SW 7131    | 6/6n         | 2.03             | 29.              | 1.32    | 1.66    | 0.88   |       |
| Metals by Size, >10 um | Calcium    | SW 6010    | 6/6n         | 19,500           | 20,000           | 26,700  | 22,067  | 986'6  |       |
| Metals by Size, >10 um | Chromium   | SW 6010    | 6/6n         | 185              | 182              | 185     | 184     | 4.30   |       |
| Metals by Size, >10 um | Cobalt     | SW 6010    | 6/6n         | 30.30            | 33.40            | 33.30   | 32      | 4.38   |       |
| Metals by Size, >10 um | Copper     | SW 6010    | 6/6n         | 97.80            | 84.90            | 79.60   | 87      | ន      |       |
| Metals by Size, >10 um | tron       | SW 6010    | 6/6n         | 102,000          | 101,000          | 103,000 | 102,000 | 2,484  |       |
| Metals by Size, >10 um | Lead       | SW 7421    | 6/6n         | 59.40            | 47.80            | 45.30   | 51      | 19     |       |
| Metals by Size, >10 um | Magnesium  | SW 6010    | 6/6n         | 4,860            | 4,900            | 6,300   | 5,353   | 2,037  |       |
| Metals by Size, >10 um | Manganese  | SW 6010    | 6/6n         | 241              | 230              | 243     | 238     | 11     |       |
| Metals by Size, >10 um | Mercury    | SW 7471    | 5/6n         | 0.32             | 0.69             | 0.48    | 0.50    | 0.47   |       |
| Metals by Size, >10 um | Molybdenum | SW 6010    | ₫/ĝn         | 7.27             | 20.80            | 21.40   | 16      | 8      |       |
| Metals by Size, >10 um | Nickel     | SW 6010    | 6/6n         | 133              | 124              | 106     | 121     | ¥      |       |
| 11)                    |            |            | ш            | ESP Inlet - Page | 7                |         |         |        |       |

| Analyte                 |            | Analytical |               | Run                |             | Run     |   | Run     |         | <b>%</b> 96 | 占     |
|-------------------------|------------|------------|---------------|--------------------|-------------|---------|---|---------|---------|-------------|-------|
| Group                   | Specie     | Method     | Units         | -                  |             | 2       |   | •       | Average | 5           | Ratio |
| Metals by Size >10 um   | Phosphorus | SW 6010    | 6/6n          | < 72.60            | v           | 72.20   | v | 72.20   | 27 >    | :           | 100%  |
| Metals by Size, >10 um  | Potassium  | SW 6010    | 5/6n          | 17,800             |             | 17,900  |   | 19,700  | 18,467  | 2,656       |       |
| Metals by Size, >10 um  | Selenium   | SW 7740    | 6/6n          | 6.47               |             | 10.70   |   | 15.00   | 1       | =           |       |
| Metals by Size, >10 um  | Silicon    | SW 6010    | ₿/6n          | 223,000            |             | 223,000 |   | 209,000 | 218,333 | 20,081      |       |
| Metals by Size, >10 um  | Sodium     | SW 6010    | 6/ôn          | 5,470              |             | 4,330   |   | 4,060   | 4,620   | 1,859       |       |
| Metals by Size, >10 um  | Strontium  | SW 6010    | 6/6n          | 340                |             | 330     |   | 402     | 357     | 97          |       |
| Metals by Size, >10 um  | Titanium   | SW 6010    | 6/6n          | 6,340              |             | 6,210   |   | 5,900   | 6,150   | 295         |       |
| Metals by Size, >10 um  | Vanadium   | SW 6010    | 6/Gn          | 310                |             | 296     |   | 274     | 293     | ਨ           |       |
| Metals by Size, >10 um  | Zinc       | SW 6010    | 6 <i>/</i> 6n | 346                |             | 276     |   | 243     | 288     | 131         |       |
| Metals by Size, 10-3 um | Aluminum   | SW 6010    | 6/6n          | 123,000            |             | 107,000 |   | 123,000 | 117,667 | 22,949      |       |
| Metals by Size, 10-3 um | Antimony   | ICP-MS     | 6/ <b>6</b> n | 6.04               |             | 4.19    |   | 4.19    | 4.81    | 5.66        |       |
| Metals by Size, 10-3 um | Arsenic    | SW 7060    | 6/6n          | 82.90              |             | 72.10   |   | 57.90   | 7       | ਲ           |       |
| Metals by Size, 10-3 um | Barium     | SW 6010    | 6/6n          | 575.00             |             | 572.00  |   | 745.00  | 831     | 246         |       |
| Metals by Size, 10-3 um | Beryllium  | SW 6010    | 6/6n          | 16.50              |             | 11.30   |   | 10.50   | 13      | 8.09        |       |
| Metals by Size, 10-3 um | Cadmium    | SW 713     | ნ/ნი          | 7.30               |             | 5.84    |   | 4.40    | 5.84    | 3.60        |       |
| Metals by Size, 10-3 um | Calcium    | SW 6010    | ₿/B'n         | 14,500             |             | 15,000  |   | 26,300  | 18,600  | 16,578      |       |
| Metals by Size, 10-3 um | Chromium   | SW 6010    | 6/6n          | 225                |             | 215     |   | 213     | 218     | 9           |       |
| Metals by Size, 10-3 um | Cobalt     | SW 6010    | ₿/Ĝn          | 45.70              |             | 42.40   |   | 41.40   | £4      | 5.59        |       |
| Metals by Size, 10-3 um | Copper     | SW 6010    | B/Bn          | 152                |             | 140     |   | 135     | 142     | 22          |       |
| Metals by Size, 10-3 um | Iron       | SW 6010    | 6/6n          | 60,700             |             | 29,300  |   | 72,900  | 64,300  | 18,584      |       |
| Metals by Size, 10-3 um | Lead       | SW 7421    | ₿/₿n          | 157                |             | \$      |   | 26      | 119     | 83          |       |
| Metals by Size, 10-3 um | Magnesium  | SW 6010    | ₿/₿'n         | 6,460              |             | 6,480   |   | 6,110   | 6,350   | 517         |       |
| Metals by Size, 10-3 um | Manganese  | SW 6010    | 6/6n          | 228                |             | 217     |   | 238     | 526     | ጸ           |       |
| Metals by Size, 10-3 um | Mercury    | SW 7471    | ₿/ɓn          | 0.22               |             | 0.60    |   | 09'0    | 0.47    | 0.5<br>24   |       |
| Metals by Size, 10-3 um | Molybdenum | SW 6010    | 6/6n          | 55.90              |             | 51.90   |   | 30.50   | \$      | ਝ           |       |
| Metals by Size, 10-3 um | Nickel     | SW 6010    | ₿/Bn          | 182                |             | 128     |   | 145     | 152     | 66          |       |
| Metals by Size, 10-3 um | Phosphorus | SW 6010    | 5/6n          | < 72.80            | v           | 72.60   | v | 72.50   | s 73    | :           | 100%  |
| Metals by Size, 10-3 um | Potassium  | SW 6010    | 6/6n          | 23,300             |             | 21,500  |   | 20,700  | 21,833  | 3,308       |       |
| Metals by Size, 10-3 um | Selenium   | SW 7740    | ₿/6n          | 6.29               |             | 2.39    | v | 1.15    | 3.09    | 7.25        | %9    |
| Metals by Size, 10-3 um | Silicon    | SW 6010    | ₿/6n          | 236,000            |             | 231,000 |   | 225,000 | 230,667 | 13,683      |       |
|                         |            |            |               | FSP Inlet - Page 8 | 8 908       |         |   |         |         |             |       |
|                         |            |            |               |                    | )<br>)<br>) |         |   |         |         |             |       |

Gas Stream Data

SAMPLE STREAM: ESP OUTLET

| Analyte            |            | Analytical |        | Run               |            |        | Run          |              |   | Run      |          |   |         | <b>32%</b> | 占        |
|--------------------|------------|------------|--------|-------------------|------------|--------|--------------|--------------|---|----------|----------|---|---------|------------|----------|
| Group              | Specie     | Method     | Units  | -                 |            |        | ~            |              |   | -        |          |   | Average | 5          | Ratio    |
|                    |            |            | ;      | i                 | •          |        | ļ            | •            |   |          | 1        |   |         | į          |          |
| Part Metals by Vol | Molybdenum | SW 6010    | ug/Nm3 | 8.                | α          |        | 0.07         | p            |   | 7.7      | מ        |   | 80.0    | 17.1       |          |
| Part Metals by Vol | Nickel     | SW 6010    | ng/Nm3 | 2                 | 60         | ,      | ଷ            | æ            |   | SS<br>SS | <b>6</b> |   | 23      | 5.68       |          |
| Part Metals by Vol | Phosphorus | SW 6010    | ug/Nm3 | N                 | •          | 600000 | <del>5</del> | <u>~</u>     |   |          | œ        |   | 001     | ì          |          |
| Part Metals by Vol | Potassium  | SW 6010    | ug/Nm3 | (30)              |            | 000000 | 2,150        | <b>a</b>     |   |          | <b>e</b> |   | 2,150   | ı          |          |
| Part Metals by Vol | Selenium   | SW 7740    | ug/Nm3 | 142               |            |        | 4            | <b>ac</b>    |   | 61       | <b>6</b> |   | 82      | 131        |          |
| Part Metals by Vol | Sodium     | SW 6010    | ug/Nm3 | 9.                |            | ****** | 803          | <u>~</u>     | ۰ | ٠        | o        |   | 803     | 1          |          |
| Part Metals by Vol | Strontium  | SW 6010    | ug/Nm3 | 38                | 4          | 000000 | \$           | <u>~</u>     | · | 8        | o        |   | \$      | 1          |          |
| Part Metals by Vol | Titanium   | SW 6010    | ug/Nm3 | <b>8</b>          |            |        | 719          | <b>2</b> 2   |   | 198      | 6        |   | 757     | 727        |          |
| Part Metals by Vol | Vanadium   | SW 6010    | ug/Nm3 | 51.35             | 80         |        | 5            | æ            |   | 58.42    | ₽        |   | ኔ       | Ξ          |          |
| Part Metals by Vol | Zinc       | SW 6010    | ug/Nm3 | £0 ,              |            | 2000   | 108          | æ            |   | 220      | o        |   | 108     | ı          |          |
| Metals, Vapor      | Aluminum   | SW 6010    | ug/Nm3 | 8                 | ₩          |        | 8            | 20           |   | 12       | 8        |   | 88      | <b>4</b>   |          |
| Metals, Vapor      | Antimony   | ICP-MS     | ug/Nm3 | 0.021             | 80         |        | 0.018        | œ            |   | 0.025    | <b>6</b> |   | 0.02    | 0.010      |          |
| Metals, Vapor      | Arsenic    | SW 7060    | ug/Nm3 | < 0.17            | ပ          | ٧      | 0.19         | ပ            | v | 0.18     | ပ        | v | 0.18    | :          | 100%     |
| Metals, Vapor      | Barium     | SW 6010    | ug/Nm3 | 0.81              | 60         |        | 69.0         | æ            |   | 1.50     | 8        |   | 8       | 1.08       |          |
| Metals, Vapor      | Beryllium  | SW 6010    | ug/Nm3 | 0.12              | 7          | ٧      | 0.16         | ပ            | v | 0.16     | ပ        | v | 0.16    | :          | 27%      |
| Metals, Vapor      | Boron      | SW 6010    | ug/Nm3 | 7,482             | 8          |        | 6,621        | <b>&amp;</b> |   | 6,617    | 80       |   | 906'9   | 1,237      |          |
| Metals, Vapor      | Cadmium    | SW 7131    | ug/Nm3 | > 0.06            | ပ          |        | 0.25         | ဆ            | v | 0.07     | ပ        |   | 0.10    | 0.31       | 21%      |
| Metals, Vapor      | Calcium    | SW 6010    | ug/Nm3 | 224               | 80         |        | 171          | œ            |   | 158      | 8        |   | 184     | 87         |          |
| Metals, Vapor      | Chromium   | SW 6010    | ug/Nm3 | 0.99              | <b>6</b> 0 | v      | 0.73         | ပ            | v | 0.70     | ပ        | v | 0.73    | ;          | 42%      |
| Metals, Vapor      | Cobatt     | SW 6010    | ug/Nm3 | 99'0              | 7          | v      | 6.           | ပ            |   | 0.45     | _        | v | 1,00    | ;          | 31%      |
| Metals, Vapor      | Copper     | SW 6010    | ug/Nm3 | > 0.99            | ပ          |        | 1.39         | 20           |   | 1.28     | 8        |   | 1.06    | 1.21       | 16%      |
| Metals, Vapor      | <u>lon</u> | SW 6010    | ug/Nm3 | ጽ                 | 8          |        | 3            | 8            |   | 87       | 8        |   | S       | 78         |          |
| Metals, Vapor      | lead       | SW 7421    | ug/Nm3 | < 0.21            | ပ          |        | 0.88         | Œ            | v | 0.22     | ပ        |   | 0.37    | 1.1        | <b>%</b> |
| Metals, Vapor      | Magnesium  | SW 6010    | ug/Nm3 | 15                | ω          |        | 우            | ∞            |   | Ξ        | Φ        |   | 12      | 6.40       |          |
| Metals, Vapor      | Manganese  | SW 6010    | ug/Nm3 | < 0.10            | ပ          | v      | 0.12         | ပ            | v | 0.11     | ပ        | v | 0.11    | ;          | 100%     |
| Metals, Vapor      | Mercuny    | CVAA       | ug/Nm3 | 6.04              | 80         |        | 5.18         | æ            |   | 5.54     | 8        |   | 5.59    | 1.07       |          |
| Metals, Vapor      | Molybdenum | SW 6010    | ug/Nm3 | 0.55              | 7          | v      | 1.36         | ပ            |   | 09:0     | _        | v | 1.36    | ;          | 37%      |
| Metals, Vapor      | Nickel     | SW 6010    | ug/Nm3 | < 2.57            | ပ          | v      | 2.90         | O            |   | 1.87     | _        | v | 2.90    | ;          | 20%      |
| Metals, Vapor      | Phosphorus | SW 6010    | ug/Nm3 | ۰<br>16           | ပ          | v      | 18           | O            | v | 17       | ပ        | v | 17      | ;          | 100%     |
| Metals, Vapor      | Potassium  | SW 6010    | ug/Nm3 | 7                 | 80         | v      | 0.84         | ပ            | v | 0.81     | ပ        |   | 75      | 5          | ₹        |
| •                  |            |            |        | ESP Outlet - Page | ilet - F   | age    | ೮            |              |   |          |          |   |         |            |          |
| H                  |            |            |        |                   |            | J      |              |              |   |          |          |   |         |            |          |

| Specie         Method         Units         1         2         3         Average         CI           Schemlum         SW 7740         ug/Mm3         4 16         B         241         B         224         C         6 22         C         C         022         C         C         022         C         C         022         C         C         022         C         C         022         C         C         022         C         C         022         C         C         022         C         C         022         C         C         022         C         C         022         C         C         022         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C         023         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyte      |                   | Analytical |        | œ                                       | Run        |       | Run                |            | -   | Run                    |            | 1 |                                          | <b>398</b> %    | 占 ;   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|------------|--------|-----------------------------------------|------------|-------|--------------------|------------|-----|------------------------|------------|---|------------------------------------------|-----------------|-------|
| Selentum         SW 7740         ug/hm3         C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Group        | Specie            | Method     | Units  |                                         |            |       | 7                  | 1          |     | 9                      |            | Á | verage                                   | ច               | Ratio |
| Soleinum SW 9710 ug/hm3 4 U.22 U S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                   | 1          |        |                                         | 8          | ,     | C                  | Ç          |     | 124                    | ن          | v | 23                                       | ;               | 100%  |
| Significant Service Control of Paris 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tals, Vapor  | Selenium          | SW 7740    | UQ/NEG | -                                       | <b>3</b>   | ,     | 0.63               | > 1        |     |                        | ) c        |   | 287                                      | Jan             |       |
| Strontlum         SW 6010         ug/hmis         1.48         B         1.31         B         1.28         B         1.38         0.26           Varnadium         SW 6010         ug/hmis         1.26         B         4.01         B         2.52         3.28           Zinc         SW 6010         ug/hmis         1.27         B         4.01         B         0.26         1.27         B         1.23         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27         B         1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tals Vapor   | Sodium            | SW 6010    | ug/Nm3 | 4                                       | 16<br>B    |       | 241                | <b>1</b> 0 | . • | \$                     | 2          |   | 107                                      | 707             |       |
| Triantium SW 6010 ug/Mm3 2.16 B 138 B 401 B 253 336  Vanadium SW 6010 ug/lm3 14 B 138 B 401 B 253 336  Znc SW 6010 ug/lm3 14 B 131 B 59 B 62 123  Antimony ICP-MS Ug/lm3 0.344 0.377 0.463 16.57 0.408 0.119  Barlum SW 6010 ug/lm3 1.414 16.14 16.14 19.43 16.57 0.408 0.119  Beryllium SW 6010 ug/lm3 1.434 16.14 17.75 1.745 1.757 1.738 1.604  Arsenic SW 6010 ug/lm3 1.434 16.14 1.73 1.742 0.483 16.57 0.408 0.119  Beryllium SW 6010 ug/lm3 1.434 16.14 1.73 1.742 0.483 1.577 1.748 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1.7481 1. | tale Vapor   | Strontium         | SW 6010    | ug/Nm3 | -                                       | •          |       | <u>1.3</u>         | <b>1</b>   | •   | 28                     | ø          |   | 1.36                                     | 0.28            |       |
| Aurandum         SW 6010         ug/hm3         1.35         B         C 669         C 116         B         0.98         1.33           Zinc         Zinc         SW 6010         ug/hm3         1,41         B         113         B         69         B         69         1,23           Atuminam         SW 6010         ug/hm3         1,41         B         1,13         B         69         B         69         1,23           Assentic         SW 6010         ug/hm3         1,41         B         1,2179         1,433         1,439         -7           Beron(vapor Omly)         SW 6010         ug/hm3         1,46         1,73         1,439         -7           Cachmum         SW 6010         ug/hm3         1,46         1,73         1,439         -7           Cachmum         SW 6010         ug/hm3         1,46         1,24         1,73         1,439         -7           Cachmum         SW 6010         ug/hm3         1,46         1,24         1,72         1,439         -7           Cachmum         SW 6010         ug/hm3         1,62         1,24         1,43         1,33           Cachmum         SW 6010         ug/hm3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | idis, vapor  | Titanium          | SW 6010    | ua/Nm3 | 2                                       | .16 B      |       | 1.38               | 80         | •   | <u>1</u> .0            | D.         |   | 2.52                                     | 3.36            |       |
| Authinory (CP-MS up/Mm3 (2004) (12.179 (16.97) (12.179 (16.97) (12.179 (16.97) (12.179 (16.97) (12.179 (16.97) (12.179 (16.97) (12.179 (16.97) (12.179 (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) (16.97) | tals, Vapor  | Transfer of       | SW 6010    | un/Nm3 | _                                       | 35         | ٧     | 0.69               | ပ          | _   | 1,18                   | <b>6</b> 0 |   | 96.0                                     | 1.33            | 12%   |
| Attention SW 6010 ug/km3 0.384 0.377 0.463 12.778 0.408 d. 12.179 0.463 1.657 0.408 d. 12.179 0.3463 1.657 0.408 d. 12.179 0.3463 1.657 0.408 d. 12.179 0.3463 1.657 0.408 d. 12.179 0.3463 1.657 0.408 d. 12.179 0.3463 1.657 0.408 d. 12.179 0.3463 1.657 0.3463 1.657 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3463 0.3 | als, Vapor   | Variacium         | SW 6010    | ug/Nm3 | •                                       | 4          |       | 113                | <b>6</b>   |     | 20                     | 83         |   | 62                                       | 123             |       |
| Aluminum (1974) 1974(1) 1944(1) 1944 (1944) 1944 (1944) 1944(1) 1944 (1944) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 1944(1) 19 | arg, erbor   |                   |            |        |                                         |            |       | 42 479             | 99900      |     | 068                    |            |   | 12,179                                   | ţ               |       |
| Artitimony (10PAMS tophina) 14,334 (13,17) (13,44) (16,17) (13,44) (16,17) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17,18) (17 | al Metals    | Aluminum          | OLOG MS    | CILL I |                                         |            | ×     | 7 2 2 2            | u:         |     | 463                    |            |   | 608                                      | 0.119           |       |
| Barium   SW 6010   ug/hm3   14.13   16.14   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5   17.5    | Fotal Metals | Antimony          | ICP-MS     | ng/Nm3 | Ö                                       | <b>3</b>   |       | 0.377              |            | •   | 3 5                    |            |   | 48.F7                                    | 28              |       |
| Barrium         SW 6010         ug/lm3         100         75         117         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         173         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | al Metals    | Arsenic           | SW 7060    | ug/Nm3 | <b>1</b>                                | 1.13       | ***   | 16.14              | 224        |     | 2                      |            |   | 16.37                                    | 5               |       |
| Beryllium         SW 6010         ug/Nm3         1,74         6,621         6,671         6,906         1,73         6,906         1,73         6,906         1,73         6,906         1,73         6,906         1,73         6,906         1,73         6,906         1,73         6,906         1,73         1,73         6,906         1,73         1,73         6,906         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73         1,73 <th< td=""><th>al Metals</th><td>Barium</td><td>SW 6010</td><td>ug/Nm3</td><td></td><td>8</td><td></td><td>55</td><td></td><td></td><td></td><td></td><td></td><td>85 F</td><td>ŧ</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Metals    | Barium            | SW 6010    | ug/Nm3 |                                         | 8          |       | 55                 |            |     |                        |            |   | 85 F                                     | ŧ               |       |
| Boron(Vapor Only)         SW 6010         ug/Nm3         7,482         6,621         6,617         6,540         6,540           Cadmium         SW 6010         ug/Nm3         1,32         0,05         1,32         0,05         1,32           Cadmium         SW 6010         ug/Nm3         1,623         23         23,43         1,34         1,32         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34         1,34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al Metals    | Beryllium         | SW 6010    | ug/Nm3 |                                         | 3          |       | 1.73               | -          |     |                        |            |   | 6/:L                                     |                 |       |
| Cadmium         SW 7131         ug/Nm3         0.47         1.32         0.58         1.32           Calcium         SW 6010         ug/Nm3         1.663         1.946         1.72         1.946         1.34           Chromium         SW 6010         ug/Nm3         1.73         4.95         5.74         4.95           Copper         SW 6010         ug/Nm3         1.73         1.72         18.03         17.26           Lead         SW 6010         ug/Nm3         1.652         19         1.72         18.03         17.26           Magnesium         SW 6010         ug/Nm3         1.652         19         1.62         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88         6.88 </td <th>at Metals</th> <td>Boron(Vapor Only)</td> <td>SW 6010</td> <td>ug/Nm3</td> <td>7</td> <td>482</td> <td>900</td> <td>6,621</td> <td></td> <td></td> <td>,617</td> <td>******</td> <td></td> <td>906.0</td> <td>157.</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | at Metals    | Boron(Vapor Only) | SW 6010    | ug/Nm3 | 7                                       | 482        | 900   | 6,621              |            |     | ,617                   | ******     |   | 906.0                                    | 157.            |       |
| Calcium         SW 6010         ug/Nm3         1,946         1,946         1,946         1,948         1,948         1,948         1,948         1,948         1,948         1,948         1,948         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43         23.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | at Metals    | Cadmium           | SW 7131    | ug/Nm3 | •                                       | Q          |       | 1.32               |            |     | 8                      |            |   | 1.32                                     | ŧ               |       |
| Chocwilum         SW 6010         ug/lm3         £5.60         23         23.45         4.95         £5.20         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         4.95         8.58         8.58         8.58         8.58         8.58         8.58         8.58         8.58         8.58         8.58         8.58         8.58         8.58         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.72         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.71         8.72         8.71         8.72         8.72         8.72         8.72         8.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Metals       | Calcium           | SW 6010    | ug/Nm3 |                                         | 683        |       | 1,948              |            |     |                        |            |   | <b>9</b> 9                               | ŧ               |       |
| Cobalt         SW 6010         ug/Nm3         16.53         17.22         18.03         17.26           Lon         SW 6010         ug/Nm3         16.53         17.22         18.03         17.26           Iron         SW 6010         ug/Nm3         6.806         8.069         8.668         8.587           Magnesium         SW 6010         ug/Nm3         15.22         19         16.34         19.21           Manganese         SW 6010         ug/Nm3         8.456         32.60         34.27         34.15           Mohybdenum         SW 6010         ug/Nm3         22.86         21.55         26.46         23.62           Phosphorus         SW 6010         ug/Nm3         1.43         6.153         2.150         2.150         2.150           Phosphorus         SW 6010         ug/Nm3         1.43         6.080         2.150         2.150           Phosphorus         SW 6010         ug/Nm3         1.44         1.044         2.150         2.150           Selenium         SW 6010         ug/Nm3         1.4         1.044         1.044         1.044           Sitrontium         SW 6010         ug/Nm3         1.4         1.044         1.044         1.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metals       | Chromium          | SW 6010    | ug/Nm3 |                                         | 9          |       | ឌ                  |            |     | 9                      |            |   | 23.43                                    | ŧ               |       |
| Copper         SW 6010         ug/lm3         16.53         17.22         18.03         17.20           Iron         SW 6010         ug/lm3         46.69         8,069         8,885         8,587           Magnesium         SW 6010         ug/lm3         44.6         668         34.27         34.15           Manganese         SW 6010         ug/lm3         6.153         5.302         5.683         5.713           Manganese         SW 6010         ug/lm3         6.153         5.302         5.683         5.713           Morbdenum         SW 6010         ug/lm3         8.436         9.352         8.317         8.702           Nickel         SW 6010         ug/lm3         2.266         21.55         26.46         23.62           Potassium         SW 6010         ug/lm3         2.150         2.150         2.150         2.150           Sodium         SW 6010         ug/lm3         2.150         44.14         40.90         2.150           Sodium         SW 6010         ug/lm3         2.150         44.74         1.044         21.44           Sitontium         SW 6010         ug/lm3         594         720         865         760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | at Metals    | Coball            | SW 6010    | ug/Nm3 |                                         | 2          |       | 35                 |            | Ì   |                        |            |   | S 5                                      | 1 6             |       |
| Iron   SW 6010   ug/hm3   8,808   8,069   8,885   8,585   9,597     Lead   SW 7421   ug/hm3   446   668   442   668   442     Manganesium   SW 6010   ug/hm3   35.60   32.60   34.27   34.15     Manganesium   SW 6010   ug/hm3   6.153   5.302   5.883   5.713     Manganesium   SW 6010   ug/hm3   22.86   21.55   26.46   21.50     Nickel   SW 6010   ug/hm3   22.86   21.55   26.46   21.50     Selenium   SW 6010   ug/hm3   22.46   21.50   22.150     Selenium   SW 6010   ug/hm3   22.45   1.044   24.74     Sodium   SW 6010   ug/hm3   23.50   44.13   60.80   62.51     Strontium   SW 6010   ug/hm3   33.50   34.77   44.74   44.74     Strontium   SW 6010   ug/hm3   34.50   35.50   36.50     Titanium   SW 6010   ug/hm3   35.50   36.40   36.50     Titanium   SW 6010   ug/hm3   35.50   36.40   36.50     Titanium   SW 6010   ug/hm3   36.40   720   865   760     Titanium   SW 6010   ug/hm3   36.40   44.74   44.74     Titanium   SW 6010   ug/hm3   36.40   44.74     Tanalam   SW 6010   ug/hm3   36.40   44.74     Titanium   SW 6010   ug/hm3   36.40   44.74     Titanium   SW 6010   ug/hm3   36.40   44.74     Titanium   SW 6010   ug/hm3   44.74   44.74     Titanium   SW 6010   ug/hm3   44.74   44.74     Titanium   SW 6010   ug/hm3   44.74   44.74     Titanium   SW 6010   ug/hm3   44.74   44.74     Titanium   SW 6010   ug/hm3   44.74   44.74     Titanium   SW 6010   ug/hm3   44.74   44.74     Titanium   SW 6010   ug/hm3   44.74   44.74     Titanium   SW 6010   ug/hm3   44.74   44.74     Titanium   SW 6010   ug/hm3   44.74   44.74     Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Titanium   Tit   | at Metals    | Copper            | SW 6010    | ng/Nm3 |                                         | 5.53       |       | 17.22              |            |     | 3.00<br>10.00<br>10.00 |            |   | 87.7                                     | 6.              |       |
| Lead         SW 7421         ug/Nm3         152.         19         16.26         688           Magnesium         SW 6010         ug/Nm3         35.60         32.60         34.27         34.15           Manganese         SW 6010         ug/Nm3         6.153         5.302         5.683         5.713           Molybdenum         SW 6010         ug/Nm3         6.153         2.362         8.317         8.702           Nickel         SW 6010         ug/Nm3         2.286         21.55         26.46         23.62           Phosphorus         SW 6010         ug/Nm3         2.286         21.55         26.46         23.62           Potassium         SW 6010         ug/Nm3         4.43         6.080         82.51         108.72           Sodium         SW 6010         ug/Nm3         4.413         6.0.80         82.51         2.150           Sodium         SW 6010         ug/Nm3         2.44         44.13         6.0.80         82.51           Strontium         SW 6010         ug/Nm3         6.0.80         44.14         44.74         44.74         44.74           Strontium         SW 6010         ug/Nm3         6.0.80         7.04         7.04         44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at Metals    | lron              | SW 6010    | ug/Nm3 |                                         | 808        | ***   | 8 <sup>0</sup> 069 |            |     | Ç                      |            |   | ,00°,0                                   | <u>-</u>        |       |
| Magnesium         SW 6010         ug/Nm3         466         668         4.27         34.15           Manganese         SW 6010         ug/Nm3         6.153         5.302         5.683         5.713           Molybdenum         SW 6010         ug/Nm3         6.153         5.302         5.683         5.713           Nickel         SW 6010         ug/Nm3         22.86         21.55         26.46         23.62           Phosphorus         SW 6010         ug/Nm3         7.09         1.99         1.90         1.98.72           Phosphorus         SW 6010         ug/Nm3         7.150         2.150         2.150         2.150           Selenium         SW 6010         ug/Nm3         1.43         44.13         60.80         82.51           Sodium         SW 6010         ug/Nm3         2.150         2.150         2.150         82.51           Sodium         SW 6010         ug/Nm3         2.150         44.74         1.044         44.74           Strontlum         SW 6010         ug/Nm3         694         720         865         760           Titanium         SW 6010         ug/Nm3         694         720         865         760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al Metals    | Lead              | SW 7421    | ug/Nm3 |                                         | 22         |       | <u>6</u>           |            |     | 8                      |            |   | 17.51                                    | ì               |       |
| Manganese         SW 6010         ug/Nm3         35.60         32.60         34.27         34.13           Mercury         SW 7471         ug/Nm3         6.153         5.302         5.683         5.713           Molybdenum         SW 6010         ug/Nm3         6.436         9.352         8.317         8.702           Nickel         SW 6010         ug/Nm3         22.86         21.55         26.46         23.62           Potassium         SW 6010         ug/Nm3         7.00         2.150         2.150         108.72           Selenium         SW 6010         ug/Nm3         4.43         60.80         82.51         2.150           Sodium         SW 6010         ug/Nm3         23.60         44.74         1.044         1.044           Strontium         SW 6010         ug/Nm3         694         720         66.80         760           Titanium         SW 6010         ug/Nm3         694         720         66.50         760           Titanium         SW 6010         ug/Nm3         694         720         66.50         760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al Metals    | Magnesium         | SW 6010    | ug/Nm3 |                                         | 9          | ***   | 99                 |            |     | 9                      |            |   | 8 3                                      | 1 6             |       |
| Mercury         SW 7471         ug/Nm3         6.153         5.302         5.683         9.713           Molybdenum         SW 6010         ug/Nm3         8.436         9.352         8.317         8.702           Phosphorus         SW 6010         ug/Nm3         22.86         21.55         26.46         23.62           Phosphorus         SW 6010         ug/Nm3         20.86         21.55         26.46         23.62           Potassium         SW 6010         ug/Nm3         20.40         2,150         2,150         2,150           Sodium         SW 6010         ug/Nm3         4.4         1,044         2,150         2,150           Titanium         SW 6010         ug/Nm3         4.4         7         4.74         4.74           Titanium         SW 6010         ug/Nm3         694         720         865         760           Titanium         SW 6010         ug/Nm3         ESP Outlet - Page 4         720         865         760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al Metals    | Manganese         | SW 6010    | ug/Nm3 |                                         | 2.60       |       | 32.60              |            |     | 34.2/                  |            |   | 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5 | 4 6             |       |
| Molybdenum         SW 6010         ug/Nm3         8.436         9.352         8.317         0.702           Nickel         SW 6010         ug/Nm3         22.86         21.55         26.46         23.62           Phosphorus         SW 6010         ug/Nm3         20.40         2,150         2,376         109.72           Potassium         SW 6010         ug/Nm3         143         44.13         60.80         82.51           Sodium         SW 6010         ug/Nm3         20.00         1,044         21.50         24.74           Strontlum         SW 6010         ug/Nm3         20.00         44.74         44.74         44.74           Titanium         SW 6010         ug/Nm3         694         720         865         760           Titanium         SW 6010         ug/Nm3         ESP Outlet - Page 4.         720         865         760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al Metals    | Mercury           | SW 7471    | ug/Nm3 |                                         | 153        |       | 5.302              |            | ,   | 5.683                  |            |   | 5.7.3                                    | 8 5             |       |
| Nicke  SW 6010 ug/Nm3   22.86   21.55   26.46   23.02     Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al Metals    | Molybdenum        | SW 6010    | ug/Nm3 |                                         | .436<br>8. |       | 9.352              |            |     | 5.317                  |            |   | 0.102                                    | F 6             |       |
| Phosphorus         SW 6010         ug/Nm3         109         134         104.12           Potassium         SW 6010         ug/Nm3         2,150         2,150         2,150         2,150           Selenium         SW 7740         ug/Nm3         143         44.13         60.80         82.51           Strontium         SW 6010         ug/Nm3         2,20         44.74         1,044         44.74           Strontium         SW 6010         ug/Nm3         694         720         865         760           Titanium         SW 6010         ug/Nm3         694         720         865         760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al Metals    | Nickel            | SW 6010    | ug/Nm3 | 000000000000000000000000000000000000000 | 2.86       | ***   | 21.55              |            |     | <del>9</del>           |            |   | 20.02                                    | 0.32            |       |
| Potassium         SW 6010         ug/Nm3         7047         2,150         44,13         60,80         82.51           Selenium         SW 6010         ug/Nm3         42,4         1,044         712         1,044           Strontlum         SW 6010         ug/Nm3         694         720         865         760           Titanium         SW 6010         ug/Nm3         694         720         865         760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al Metals    | Phosphorus        | SW 6010    | ug/Nm3 |                                         | 8          |       | \$                 |            |     | 3                      |            |   | 106.72                                   | ;               |       |
| Selenium         SW 7740         ug/Nm3         43         44.13         60.80         62.51           Sodium         SW 6010         ug/Nm3         33.76         44.74         1,044         44.74         44.74         44.74         44.74         44.74         44.74         44.74         770         865         760           Titanium         SW 6010         ug/Nm3         694         720         865         760           ESP Outliet - Page 4         Annual March 100         44.74         44.74         44.74         760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al Metals    | Potassium         | SW 6010    | ng/Nm3 |                                         | 3          | ***   | 2,150              |            |     |                        |            |   | 06L'2                                    | ış              |       |
| Sodium SW 6010 ug/Nm3 (24 1,044 212 1,044 Strontlum SW 6010 ug/Nm3 694 720 865 760 Titanium SW 6010 ug/Nm3 694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al Metais    | Selenium          | SW 7740    | ug/Nm3 | *************************************** | 143        | 00000 | 4.5                |            |     | 99.80                  |            |   | 62.51                                    | 5               |       |
| Strontlum SW 6010 ug/Nm3 \$2,20 44,74 44,74 44,74  Titanium SW 6010 ug/Nm3 694 720 865 760  ESP Outlet - Page 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al Metals    | Sodium            | SW 6010    | ug/Nm3 |                                         | **         |       | <u>-</u><br>8      |            |     | 212                    |            |   | <u>4</u>                                 | ı               |       |
| Titanium SW 6010 ug/Nm3 694 720 865 760 700 FSP Outlet - Pace 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a Metals     | Strontium         | SW 6010    | ug/Nm3 |                                         | D          |       | 44.74              |            |     | 9                      |            |   | 44.74                                    | 1 5             |       |
| ESP Outlet - Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a Metals     | Titanium          | SW 6010    | ug/Nm3 |                                         | 694        |       | 720                |            |     | 965                    |            |   | 8                                        | <del>2</del> 57 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |            |        | ESP<br>D                                | Outlet     | - Pan |                    |            |     |                        |            |   |                                          |                 |       |

SAMPLE STREAM: ESP OUTLET

| Analyte                 |                    | Analytical |        | Run                                     | Run          | Run     |         | *9 <b>6</b> | ᡖ         |
|-------------------------|--------------------|------------|--------|-----------------------------------------|--------------|---------|---------|-------------|-----------|
| Group                   | Specie             | Method     | Units  | 1                                       | 2            |         | Average | ਹ           | Ratio     |
| Total Metale            | Weney.             | CW ROTO    |        | 22.70                                   | 54           | 909     | 54.47   | ÷           |           |
| Con Inclais             |                    | 3          |        | 600000000000000000000000000000000000000 | 5            | 80.65   | ξ<br>*  | =           |           |
| Total Metais            | Zinc               | SW 6010    | ug/Nm3 |                                         | 23           | 23.04   | 221.22  | ı           |           |
| Hg Vapor, Bloom         | Mercury, Elemental | CVAFS      | ug/Nm3 |                                         | 2.60         | 2.38    | 250     | 0.28        |           |
| Hg Vapor, Bloom         | Mercury II         | CVAFS      | ug/Nm3 |                                         | 3.78         | 3.64    | 4.16    | 96.1        |           |
| Hg Vapor, Bloom         | Mercury, Methyl    | CVAFS      | ug/Nm3 |                                         | 0.75         | 0.42    | 0.63    | 0.45        |           |
| Hg Vapor, Bloom         | Mercury, Total     | CVAFS      | ug/Nm3 | 8.32                                    | 7.14         | 6.43    | 7.30    | 2.36        |           |
| Extract Metals, Nitric  | Antimony           | ICP-MS     | 6/6n   | 4.790                                   | 2.379        | 2.471   | 3.21    | 3.39        |           |
| Extract Metals, Nitric  | Arsenic            | ICP-MS     | 6/6n   | 2.                                      | 116          | 88      | 98.39   | 39.98       |           |
| Extract Metals, Nitric  | Barium             | ICP-MS     | 6/6n   | 316                                     | 322          | 315     | 318     | 8.38        |           |
| Extract Metals, Nitric  | Beryflium          | ICP-MS     | 6/6n   | 3,992                                   | 8.127        | 4.183   | 5.43    | 5.80        |           |
| Extract Metals, Nitric  | Boron              | ICP-MS     | 6/6n   | 2413                                    | 1987         | 1430    | 1,943   | 1,225       |           |
| Extract Metals, Nitric  | Cadmium            | ICP-MS     | 6/6n   | 14                                      | <del>.</del> | 1.521   | 9.79    | 17.83       |           |
| Extract Metals, Nitric  | Chromium           | ICP-MS     | 6/6n   | 82                                      | \$           | 47      | 2       | 6           |           |
| Extract Metals, Nitric  | Cobatt             | ICP-MS     | ₿/₿n   | <b>8</b>                                | 85           | 5       | 17      | 3.76        |           |
| Extract Metals, Nitric  | Copper             | ICP-MS     | 6/6n   | 113                                     | 91           | 6       | 86      | 33          |           |
| Extract Metals, Nitric  | Lead               | ICP-MS     | ₿/ϐn   | 126                                     | 120          | 102     | 116     | ਲ           |           |
| Extract Metals, Nitric  | Manganese          | ICP-MS     | 6/6n   | 2,584                                   | 197          | 132     | 971     | 3,471       |           |
| Extract Metals, Nitric  | Mercury            | ICP-MS     | B/Bn   | 8.782                                   | 1.784        | < 1.853 | 3.83    | 10.71       | 89%<br>9% |
| Extract Metals, Nitric  | Molybdenum         | ICP-MS     | ₿/₿n   | 72                                      | 8            | 2       | 72      | 7           |           |
| Extract Metals, Nitric  | Nickel             | ICP-MS     | ₿/₿n   | ક્ક                                     | 83           | ន       | 2       | 46          |           |
| Extract Metals, Nitric  | Selenium           | ICP-MS     | B/Bn   | × 24 ×                                  |              | 83      | < 23.26 | :           | 100%      |
| Extract Metals, Nitric  | Vanadium           | ICP-MS     | ₿/₿n   | 325                                     | 339          | 152     | 272     | 52          |           |
| Extract Metals, Gastric | Artimony           | ICP-MS     | ₿/₿'n  | 1.024                                   | 0.769        | 1.068   | 0.95    | 0.40        |           |
| Extract Metals, Gastric | Arsenic            | ICP-MS     | 6/6n   | > 0.668                                 | 0.629        | × 0.684 | > 0.66  | :           | 100%      |
| Extract Metals, Gastric | Barium             | ICP-MS     | ₿/₿'n  | 115                                     | 129          | 132     | 125     | ଷ           |           |
| Extract Metals, Gastric | Beryllium          | ICP-MS     | 6/6n   | 2.829                                   | 2.909        | 2.416   | 2.72    | 99.0        |           |
| Extract Metals, Gastric | Boron              | ICP-MS     | 6/6n   | 198                                     | 792          | 814     | 822     | 88          |           |
| Extract Metals, Gastric | Cadmium            | ICP-MS     | ₿/₿n   | 4.803                                   | 7.294        | 5.486   | 5.86    | 3.20        |           |
|                         |                    |            |        | ESP Outlet - Page                       | e 5          |         |         |             |           |

Gas Stream Data

SAMPLE STREAM: ESP OUTLET

| Analyte                  |            | Analytical |       | Run               | Run        | Run          |           | %<br>6 | Z     |
|--------------------------|------------|------------|-------|-------------------|------------|--------------|-----------|--------|-------|
| Group                    | Specie     | Method     | Units | 1                 | 2          | 67           | Average   | ច      | Ratio |
| Extract Motels Contries  | į          | 9          | •     | ;                 | •          |              |           |        |       |
| Extract metals, Gasing   | Chromain   | CF-MX      | ng/g  | 25                | 83         | <del>4</del> | ĸ         | 18     |       |
| Extract Metals, Gastric  | Cobalt     | ICP-MS     | g/gu  | 5.432             | 6.286      | 4.678        | 5.47      | 2.00   |       |
| Extract Metals, Gastric  | Copper     | ICP-MS     | 6/6n  | ଞ୍ଚ               | 96         | 83           | 8         | 673    |       |
| Extract Metals, Gastric  | Lead       | ICP-MS     | g/gu  | 8                 | 35         | 8            | 8         | 707    |       |
| Extract Metals, Gastric  | Manganese  | ICP-MS     | 6/6n  | 64                | 84         | 4            | <b>\$</b> | 10.69  |       |
| Extract Metalls, Gastric | Mercury    | ICP-MS     | ₿⁄₿'n | 0.479             | 0.345      | 0.318        | 850       | 22     |       |
| Extract Metals, Gastric  | Motybdenum | ICP-MS     | ō/ōn  | 62                | 8          | 95           | 3         | 11 70  |       |
| Extract Metals, Gastric  | Nickel     | ICP-MS     | ō/6n  | 88                | 47         | 8 8          | ;         | 3      |       |
| Extract Metals, Gastric  | Selentum   | ICP-MS     | 0,6n  | 17                | 7          | 5 9          | 3 €       | £ 8.83 |       |
| Extract Metals, Gastric  | Vanadium   | ICP-MS     | 6/6n  | 127               | 152        | 68           | 12.27     | 78.53  |       |
| Extract Metals, Acetic   | Antimony   | ICP-MS     | ₿/₿∩  | 1.023             | 0.882      | 0.721        | 0.88      | 0.38   |       |
| Extract Metals, Acetic   | Arsenic    | ICP-MS     | 5/50  | 5.183             | 2.711      | 2.250        | 8         | 392    |       |
| Extract Metals, Acetic   | Barium     | ICP-MS     | 6/6n  | 5                 | 88         | 49           | 4 1       | 13.45  |       |
| Extract Metals, Acetic   | Beryllium  | ICP-MS     | B/Gn  | 1.197             | 0.976      | 0.769        | 96.0      | 0.53   |       |
| Extract Metals, Acetic   | Boron      | ICP-MS     | B/Bn  | 677               | 1000       | 942          | 206       | 284    |       |
| Extract Metals, Acetic   | Cadmium    | ICP-MS     | 6/6n  | 3,243             | 22         | 3.394        | 9.57      | 26.91  |       |
| Extract Metals, Acetic   | Chromium   | (CP-MS     | 6/6n  | 21                | . 21       | 16           | 19.47     | 7.19   |       |
| Extract Metals, Acetic   | Cobalt     | ICP-MS     | 6/6n  | 4.566             | 9.437      | 4.058        | 6.02      | 7.38   |       |
| Extract Metals, Acetic   | Copper     | ICP-MS     | 6/6n  | 19                | 19         | 16           | 17.90     | 4.94   |       |
| Extract Metaks, Acetic   | Lead       | ICP-MS     | 6/6n  | 1.950             | 1.220      | 1.317        | 1.50      | 96.0   |       |
| Extract Metals, Acetic   | Manganese  | ICP-MS     | 6/6n  | 38                | £          | 98           | 88        | 8.45   |       |
| Extract Metals, Acetic   | Mercury    | ICP-MS     | 6/6n  | 0.309             | 0.019<br>J | 0.077<br>J   | 0.13      | 0.38   |       |
| Extract Metals, Acetic   | Molybdenum | ICP-MS     | 6/6n  | 9.913             | 1.379      | 2.010        | 4.43      | 11.81  |       |
| Extract Metals, Acetic   | Nickel     | ICP-MS     | 6/6n  | 23                | 83         | 23           | 83        | 1.03   |       |
| Extract Metals, Acetic   | Selenium   | ICP-MS     | 8/6n  | 3.938             | 2.786      | 5.471        | 4.07      | 3.35   |       |
| Extract Metals, Acetic   | Vanadium   | ICP-MS     | ₿/ôn  | 9.440             | 2.758      | 1.856        | 4.68      | 10.29  |       |
| Metals by Size, > 10 um  | Aluminum   | SW 6010    | ₿/6n  | 70,100            | 99,700     | 79,300       | 72,033    | 16.195 |       |
| Metals by Size, > 10 um  | Antimony   | ICP-MS     | 6/6n  | 3.58              | 2.74       | 3.17         | 3.17      | 10.    |       |
| Metals by Size, > 10 um  | Arsenic    | SW 7060    | 6/6n  | 82                | 4          | 6            | 64        | 72     |       |
|                          |            |            | ш     | ESP Outlet - Page | 30e S      |              |           |        |       |
|                          |            |            | l     | •                 |            |              |           |        |       |

| Analyte                   |            | Analytical |               | Run               | Run      | Run         |             | 96%              | ដ     |
|---------------------------|------------|------------|---------------|-------------------|----------|-------------|-------------|------------------|-------|
| Group                     | Specie     | Method     | Units         | 1                 | 2        | 8           | Average     | ਠ                | Ratio |
| ;                         |            |            | 1             | Ş                 | ,        | Ş           | Ş           | Ş                |       |
| Metals by Size, > 10 um   | Barlum     | SW 6010    | 5/6n          | 409               | झे       | <b>4</b> 74 | 285         | 5                |       |
| Metals by Size, > 10 um   | Beryllium  | SW 6010    | 6/6n          | <del>1</del> 8    | 40.4     | 8.05        | 5           | 18               |       |
| Metals by Size, > 10 um   | Cadmium    | SW 7131    | 6/6n          | 4.03              | 2.76     | 4.03        | 3.61        | 1.82             |       |
| Metals by Size, > 10 um   | Calcium    | SW 6010    | 6/6n          | 15,800            | 12,800   | 13,500      | 14,033      | 3,899            |       |
| Metals by Size, > 10 um   | Chromium   | SW 6010    | ₿/ɓn          | 197               | 219      | 223         | 213         | ક્ષ              |       |
| Metals by Size, > 10 um   | Cobalt     | SW 6010    | 6/6n          | 4                 | 92       | 93          | 32          | <b>6</b>         |       |
| Metals by Size, > 10 um   | Copper     | SW 6010    | 5/6n          | 117               | 3        | 35          | 102         | 83               |       |
| Metals by Size, > 10 um   | tron       | SW 6010    | 5/6n          | 95,000            | 203,000  | 169,000     | 155,667     | 137,187          |       |
| Metals by Size, > 10 um   | Lead       | SW 7421    | 5/6n          | 98                | 62       | 88          | 2           | ਲ                |       |
| Metals by Size, > 10 um   | Magnesium  | SW 6010    | 6/6n          | 3,000             | 3,920    | 4,270       | 3,730       | 1,630            |       |
| Metals by Size, > 10 um   | Manganese  | SW 6010    | 6/6n          | 536               | 1,160    | 723         | 727         | 1,070            |       |
| Metals by Size, > 10 um   | Mercury    | SW 7471    | 6/ <b>6</b> n | 0.59              | 09'0     | 0.45        | 0.55        | 0.21             |       |
| Metals by Size, > 10 um   | Molybdenum | SW 6010    | 5/Sn          | 94                | 37       | 47          | 43          | 13               |       |
| Metals by Size, > 10 um   | Nickel     | SW 6010    | 6/Sn          | 174               | 50       | 109         | 129         | 86               |       |
| Metals by Size, > 10 um   | Phosphorus | SW 6010    | ₿/₿'n         | s 71              | ۰<br>۲   | × 74        | × 71        | ;                | 100%  |
| Metals by Size, > 10 um   | Potassium  | SW 6010    | 6/6n          | 15,500            | 13,300   | 15,000      | 14,600      | 2,865            |       |
| Metals by Size, > 10 um   | Selenium   | SW 7740    | ₿/Bri         | 9/                | 245      | ফ্র         | 158         | 210              |       |
| Metals by Size, > 10 um   | Silicon    | SW 6010    | 6/6n          | 207,000           | 145,000  | 174,000     | 175,333     | 27,068           |       |
| Metals by Size, > 10 um   | Sodium     | SW 6010    | ₿/Bn          | 7,310             | 4,640    | 4,450       | 5,467       | 3,973            |       |
| Metals by Size, > 10 um   | Strontium  | SW 6010    | 6/6n          | 306               | 267      | 305         | <b>76</b> 2 | 88               |       |
| Metals by Size, > 10 um   | Tifanium   | SW 6010    | 6/6n          | 6,170             | 4,640    | 4,940       | 5,250       | 2,014            |       |
| Metals by Size, > 10 um   | Vanadium   | SW 6010    | 6/đn          | 340               | 247      | 272         | 286         | 120              |       |
| Metals by Size, > 10 um   | Zinc       | SW 6010    | B/6n          | 517               | 346      | 378         | 414         | 828              |       |
| Metals by Size, 10 - 3 um | Aluminum   | SW 6010    | 6/6n          | 75,800            | 119,000  | 120,000     | 104,933     | 62,693           |       |
| Metals by Size, 10 - 3 um | Anlimony   | ICP-MS     | 5/6n          | 8.95              | 8.65     | 8.12        | 8.57        | <del>1</del> .85 |       |
| Metals by Size, 10 - 3 um | Arsenic    | SW 7060    | 6/6n          | 132               | 124      | 125         | 127         | =                |       |
| Metals by Size, 10 - 3 um | Barium     | SW 6010    | 6/6n          | 603               | 899      | 616         | 623         | 8                |       |
| Metals by Size, 10 - 3 um | Beryllium  | SW 6010    | ₿/ôn          | 83                | 5        | 15          | 8           | 5                |       |
| Metals by Size, 10 - 3 um | Cadmium    | SW 7131    | 6/6n          | 12                | 9        | 9           | =           | 2.39             |       |
| Metals by Size, 10 - 3 um | Calcium    | SW 6010    | ₫/gu          | 13,500            | 14,700   | 13,700      | 13,967      | 1,597            |       |
|                           |            |            |               | ESP Outlet - Page | - Page 7 |             |             |                  |       |
|                           |            |            |               |                   |          |             |             |                  |       |

Gas Stream Data

SAMPLE STREAM: ESPOUTLET

| Analyte                   |            | Analytical |              | Run               | Run          | Run          |         | <b>%96</b>     | 占     |
|---------------------------|------------|------------|--------------|-------------------|--------------|--------------|---------|----------------|-------|
| Group                     | Specie     | Method     | Units        | -                 | 2            | 6            | Average | ਠ              | Ratio |
|                           |            |            |              |                   |              |              |         |                |       |
| Metals by Size, 10 - 3 um | Chromium   | SW 6010    | 6/6n         | 282               | 297          | 246          | 275     | ß              |       |
| Metals by Size, 10 - 3 um | Coball     | SW 6010    | ₿/₿n         | S                 | <b>S</b> S   | 84           | 5       | ₽              |       |
| Metals by Size, 10 - 3 um | Copper     | SW 6010    | 6/6n         | 165               | 187          | 157          | 170     | ස              |       |
| Metals by Size, 10 - 3 um | Iron       | SW 6010    | 6/6n         | 006'09            | 009'69       | 28,700       | 63,067  | 14,320         |       |
| Metals by Size, 10 - 3 um | Lead       | SW 7421    | 6/6n         | 193               | 190          | 189          | 191     | 5.17           |       |
| Metals by Size, 10 - 3 um | Magnesium  | SW 6010    | 6/6n         | 3,190             | 009'9        | 5,100        | 4,963   | 4,246          |       |
| Metals by Size, 10 - 3 um | Manganese  | SW 6010    | 6/6n         | 253               | 334          | 255          | 281     | 115            |       |
| Metals by Size, 10 - 3 um | Mercuny    | SW 7471    | 6/6n         | 97.0              | < 0.48       | 0.36         | < 0.48  | ;              | 18%   |
| Metals by Size, 10 - 3 um | Molybdenum | SW 6010    | 6/6n         | 8                 | &            | 70           | 8       | 53             |       |
| Metals by Size, 10 - 3 um | Nickel     | SW 6010    | 6/6n         | 245               | 192          | 197          | 211     | 23             |       |
| Metals by Size, 10 - 3 um | Phosphorus | SW 6010    | 6/6n         | 193               | 220          | 272          | 228     | 8              |       |
| Metals by Size, 10 - 3 um | Potassium  | SW 6010    | 6/6n         | 18,500            | 24,300       | 21,100       | 21,300  | 7,217          |       |
| Metals by Size, 10 - 3 um | Selenium   | SW 7740    | ₿/6n         | 28                | <del>8</del> | 3            | \$      | ဆ              |       |
| Metals by Size, 10 - 3 um | Silicon    | SW 6010    | 6/6n         | 211,000           | 227,000      | 216,000      | 218,000 | 20,335         |       |
| Metals by Size, 10 - 3 um | Sodium     | SW 6010    | 6/6n         | 8,080             | 8,420        | 7,280        | 7,927   | <del>1</del> . |       |
| Metals by Size, 10 - 3 um | Strontium  | SW 6010    | 6/6n         | 319               | 413          | 363          | 365     | 117            |       |
| Metals by Size, 10 - 3 um | Titanium   | SW 6010    | 6/6n         | 6,540             | 7,220        | 6,810        | 6,857   | 821            |       |
| Metals by Size, 10 - 3 um | Vanadium   | SW 6010    | 6/6n         | 505               | 548          | 475          | 206     | 6              |       |
| Metals by Size, 10 - 3 um | Zinc       | SW 6010    | 6/6n         | 1,090             | 1,120        | 1,030        | 1,080   | 114            |       |
| Metals by Size, < 3 um    | Aluminum   | SW 6010    | 6/6n         | 123,000           | 125,000      | 117,000      | 121,667 | 10,343         |       |
| Metals by Size, < 3 um    | Antimony   | ICP-MS     | 6/6n         | 13.10             | 13.78        | 13.17        | 13      | <del>,</del>   |       |
| Metals by Size, < 3 um    | Arsenic    | SW 7060    | 6/6n         | 183               | 198          | 226          | 202     | 25             |       |
| Metals by Size, < 3 um    | Barium     | SW 6010    | 5/Sn         | 773               | 782          | 719          | 758     | 82             |       |
| Metals by Size, < 3 um    | Beryllium  | SW 6010    | <b>6</b> /6n | 4                 | 4            | 18           | 15      | 5.02           |       |
| Metals by Size, < 3 um    | Cadmium    | SW 7131    | 6/6n         | 23                | 83           | 17           | 21      | 8.04           |       |
| Metals by Size, < 3 um    | Calcium    | SW 6010    | 6/6n         | 17,100            | 16,000       | 15,400       | 16,167  | 2,142          |       |
| Metals by Size, < 3 um    | Chromium   | SW 6010    | 6/6n         | 326               | <b>784</b>   | 528          | 290     | 84             |       |
| Metals by Size, < 3 um    | Cobatt     | SW 6010    | 5/6n         | 69                | 88           | 22           | 64      | 15             |       |
| Metals by Size, < 3 um    | Copper     | SW 6010    | 6/6n         | 332               | 222          | <del>2</del> | 250     | <del>2</del>   |       |
| Metals by Size, < 3 um    | Iron       | SW 6010    | 6/6n         | 70,300            | 67,000       | 66,500       | 67,933  | 5,130          |       |
|                           |            |            |              | ESP Outlet - Page | age 8        |              |         |                |       |
|                           |            |            |              | ;<br> <br>        |              |              |         |                |       |

Gas Stream Data

SAMPLE STREAM: ESPOUTLET

| Analyte                 |                             | Analytical |         |     | Run            |        | Run      |    | Run            |          |          | 86%      | 2     |
|-------------------------|-----------------------------|------------|---------|-----|----------------|--------|----------|----|----------------|----------|----------|----------|-------|
| Group                   | Specie                      | Method     | Units   |     | -              | -      | 2        | ĺ  | 6              |          | Average  | 5        | Ratio |
| Metals by Size, < 3 um  | Lead                        | SW 7421    | 5/6n    |     | 311            |        | 236      |    | 124            |          | 224      | 234      |       |
| Metals by Size, < 3 um  | Magnesium                   | SW 6010    | 6/6n    |     | 7,870          |        | 080'     |    | ,160           |          | 6,703    | 3,462    |       |
| Metals by Size, < 3 um  | Manganese                   | SW 6010    | 6/6n    |     | 327            |        | 325      |    | 306            |          | 319      | 83       |       |
| Metals by Size, < 3 um  | Mercury                     | SW 7471    | 6/6n    |     | 44.0           |        | 0.32     |    | 0.40           |          | 0.39     | 0.15     |       |
| Metals by Size, < 3 um  | Molybdenum                  | SW 6010    | 6/8n    |     | 138            |        | 117      |    | 86             |          | 118      | 6        |       |
| Metals by Size, < 3 um  | Nickel                      | SW 6010    | 5/Bn    |     | 259            |        | 727      |    | 220            |          | 235      | 25       |       |
| Metals by Size, < 3 um  | Phosphorus                  | SW 6010    | 6/6n    |     | 528            |        | 773      | _  | ,160           |          | 820      | 792      |       |
| Metals by Size, < 3 um  | Potassium                   | SW 6010    | ₿/Bin   |     | 25,100         | N      | 2,500    | 7  | 0,500          |          | 22,700   | 5,730    |       |
| Metals by Size, < 3 um  | Selenium                    | SW 7740    | 6/6n    |     | 79             |        | 55       |    | <del>2</del> 5 |          | 8        | <b>a</b> |       |
| Metals by Size, < 3 um  | Silicon                     | SW 6010    | 6/6n    |     | 213,000        | ×      | 000'60   | ÷  | 9,000          |          | 207,000  | 17,915   |       |
| Metals by Size, < 3 um  | Sodium                      | SW 6010    | 6/Bn    |     | 9,490          |        | 3,240    | 1- | ,210           |          | 8,313    | 2,837    |       |
| Metals by Size, < 3 um  | Strontium                   | SW 6010    | 5/60    |     | 460            |        | 439      |    | 389            |          | 429      | 5        |       |
| Metals by Size, < 3 um  | Titanium                    | SW 6010    | 6/6n    |     | 6,880          | •      | 3,820    | •  | 096'           |          | 6,887    | 174      |       |
| Metals by Size, < 3 um  | Vanadium                    | SW 6010    | 6/6n    |     | 852            |        | 781      |    | 899            |          | 191      | 231      |       |
| Metals by Size, < 3 um  | Zinc                        | SW 6010    | 6/6n    |     | 1,790          | •      | 1,580    | -  | ,570           |          | 1,647    | 306      |       |
| Organics, Aldehydes     | Acetaldehyde                | BIF-0011   | ug/Nm3  |     | 2.38           |        | 1.22     |    | 0.14           |          | 1.24     | 2.78     |       |
| Organics, Aldehydes     | Fomaldehyde                 | BIF-0011   | ug/Nm3  |     | 1.01           |        | 0.40     |    | 0.11           |          | 0.50     | 1.15     |       |
|                         |                             | 02007910   | 6.11    | ,   | Ş              | ,      |          |    | Š              | ,        | 7 9 9    |          | 7000  |
| Organics, Semi-Volatile | 1,2,4,5-1 etrachioropenzene | 0/70 AAS   | CHIN/BU | v   | 701            | v      | 8        |    | 2              | v        | <u> </u> | :        | ŝ     |
| Organics, Semi-Volatile | 1,2,4-Trichlorobenzene      | SW 8270    | ng/Nm3  | ٧   | 186            | v      | 184      |    | 197            | v        | 189      | ;        |       |
| Organics, Semi-Volatile | 1,2-Dichlorobenzene         | SW 8270    | ng/Nm3  | v   | 245            | v      | 243      |    | 213            | v        | 234      | :        | 100%  |
| Organics, Semi-Volatile | 1,2-Diphenylhydrazine       | SW 8270    | ng/Nm3  | v   | 31,477         | က<br>v | 471,1    | e, | 3,586          | v        | 32,079   | ;        | 100%  |
| Organics, Seml-Volatile | 1,3-Dichlorobenzene         | SW 8270    | ng/Nm3  | v   | <del>2</del> 2 | v      | 123      |    | 241            | v        | 窓        | ;        | 100%  |
| Organics, Semi-Volatile | 1,4-Dichlorobenzene         | SW 8270    | ng/Nm3  | v   | 254            | v      | 252      |    | 197            | v        | 235      | ;        | 100%  |
| Organics, Semi-Volatile | 1-Chloronaphthalene         | SW 8270    | ng/Nm3  | v   | 203            | v      | 201      |    | 180            | v        | 195      | :        | 100%  |
| Organics, Semi-Volatile | 1-Naphthylamine             | SW 8270    | ng/Nm3  | ٧   | 491            | v      | 486      |    | 682            | v        | 553      | :        | 100%  |
| Organics, Semi-Volatile | 2,3,4,6-Tetrachlorophenol   | SW 8270    | ng/Nm3  | v   | 158            | v      | 157 <    |    | 156            | <b>v</b> | 157      | :        | 100%  |
| Organics, Semi-Volatile | 2,4,5-Trichlorophenol       | SW 8270    | ng/Nm3  | ٧   | 104            | v      | 103      |    | 171            | v        | 126      | ;        | 100%  |
| Organics, Semi-Volatile | 2,4,6-Trichlorophenol       | SW 8270    | ng/Nm3  | v   | 110            | v      | 109<br>A |    | 170            | v        | 130      | ;        | 100%  |
| Organics, Semi-Volatile | 2,4-Dichlorophenol          | SW 8270    | ng/Nm3  | v   | 139            | v      | 138      |    | 191            | v        | 156      | :        | 400%  |
|                         |                             |            |         | ESP | Outlet - Page  | ge 9   |          |    |                |          |          |          |       |
|                         |                             |            |         |     |                |        |          |    |                |          |          |          |       |

H-25

**Gas Stream Data** 

SAMPLE STREAM: ESPOUTLET

| Analyte                 |                                | Analytical |         |            | Run      |              | Run          |          | Run                  |   |              | <b>36</b> % | 5     |
|-------------------------|--------------------------------|------------|---------|------------|----------|--------------|--------------|----------|----------------------|---|--------------|-------------|-------|
| Group                   | Specie                         | Method     | Units   |            | 1        |              | 2            |          | 60                   |   | Average      | ಶ           | Ratio |
|                         |                                |            |         |            |          |              |              |          |                      |   |              |             |       |
| Organics, Semi-Volatile | 2,4-Dimethylphenol             | SW 8270    | ng/Nm3  | ٧          | 346      | v            | 343          | v        | 437                  | v | 375          | :           | 100%  |
| Organics, Semi-Volatile | 2,4-Dinitrophenol              | SW 8270    | ng/Nm3  | ٧          | 2,203    | ٧            | 2,182        | ٧        | <b>.</b><br><b>.</b> | v | 1,930        | :           | 100%  |
| Organics, Semi-Volatile | 2,4-Dinitrotoluene             | SW 8270    | ng/Nm3  | ٧          | 173      | ٧            | 171          | v        | 198                  | v | 181          | :           | 100%  |
| Organics, Semi-Votatile | 2,6-Dichlorophenol             | SW 8270    | ng/Nm3  | ٧          | 228      | v            | 225          | ٧        | 172                  | v | 208          | ;           | 100%  |
| Organics, Semi-Volatile | 2,6-Dinitrotoluene             | SW 8270    | ng/Nm3  | ٧          | 60       | ٧            | 108          | ٧        | 289                  | v | 169          | :           | 100%  |
| Organics, Semi-Votatile | 2-Chloronaphthalene            | SW 8270    | ng/Nm3  | v          | 102      | v            | 101          | ٧        | 132                  | v | 112          | ;           | 100%  |
| Organics, Semi-Volatite | 2-Chtorophenol                 | SW 8270    | ng/Nm3  | ٧          | 240      | ٧            | 238          | ٧        | 213                  | v | 231          | :           | 100%  |
| Organics, Semi-Volatile | 2-Methylnaphthalene            | SW 8270    | ng/Nm3  | ٧          | 208      | v            | 206          | ٧        | 122                  | ٧ | 67)          | :           | 100%  |
| Organics, Semi-Volatile | 2-Methylphenol(o-cresol)       | SW 8270    | ng/Nm3  |            | 2,487    |              | 2,837        |          | 10,378               |   | 5,234        | 11,076      |       |
| Organics, Semi-Volatile | 2-Naphthylamine                | SW 8270    | ng/Nm3  | ٧          | 614      | ٧            | 608          | v        | 537                  | v | 586          | ;           | 100%  |
| Organics, Semi-Volatile | 2-Nitroaniline                 | SW 8270    | ng/Nm3  | v          | 127      | ٧            | 125          | v        | 23                   | ٧ | 158<br>821   | :           | 100%  |
| Organics, Semi-Volatile | 2-Nitrophenol                  | SW 8270    | ng/Nm3  | v          | 138      | v            | 137          | v        | 175                  | v | 150          | ;           | 100%  |
| Organics, Semi-Volatile | 2-Picotine                     | SW 8270    | ng/Nm3  | v          | 343      | ٧            | 340          | ~        | 278                  | • | 320          | ;           | 100%  |
| Organics, Semi-Volatile | 3,3'-Dichlorobenzidine         | SW 8270    | ng/Nm3  | v          | 154      | ٧            | 153          | ٧        | 112                  | • | 140          | :           | 100%  |
| Organics, Semi-Volatile | 3-Methylcholanthrene           | SW 8270    | ng/Nm3  | ٧          | 246      | ٧            | 244          | v        | 168                  | v | 219          | ;           | 100%  |
| Organics, Semi-Volatile | 3-Nitroaniline                 | SW 8270    | ng/Nm3  | •          | 160      | ٧            | 159          | v        | 132                  | v | 150          | ;           | 400%  |
| Organics, Semi-Volatile | 4,6-Dinitro-2-methylphenol     | SW 8270    | ng/Nm3  | v          | 249      | ٧            | 247          | v        | 144                  | v | 214          | ;           | 100%  |
| Organics, Semi-Volatile | 4-Aminobiphenyl                | SW 8270    | ng/Nm3  | v          | 235      | v            | 233          | ~        | 400                  | v | 289          | :           | 100%  |
| Organics, Semi-Volatile | 4-Bromophenyl phenyl           | SW 8270    | ng/Nm3  | ٧          | 144      | v            | 142          | v        | <b>163</b>           | • | 149          | :           | 100%  |
| Organics, Semi-Volatile | 4-Chloro-3-methylphenol        | SW 8270    | ng/Nm3  | v          | 228      | ν            | 225          | v        | 173                  | v | 509          | ;           | 100%  |
| Organics, Semi-Volatile | 4-Chlorophenyl phenyl ether    | SW 8270    | ng/Nm3  | v          | 166      | v            | <del>1</del> | ~        | 141                  | v | 157          | :           | 100%  |
| Organics, Semt-Volatite | 4-Methyiphenol(p-cresol)       | SW 8270    | ng/Nm3  |            | 2,068    |              | 1,443        |          | 1,679                |   | 1,730        | 784         |       |
| Organics, Semi-Volatile | 4-Nitroaniline                 | SW 8270    | ng/Nm3  | ٧          | 152      | v            | 151          | •        | 204                  | v | 169          | :           | 100%  |
| Organics, Semi-Volatile | 4-Nitrophenol                  | SW 8270    | ng/Nm3  | v          | 218      | v            | 215          | v        | 315                  | v | 249          | ;           | 100%  |
| Organics, Semi-Volatile | 7,12-Dimethylbenz(a)anthracene | SW 8270    | ng/Nim3 | v          | 604      | v            | 599          | v        | 74                   | v | 220          | :           | 100%  |
| Organics, Semi-Volatile | Acenaphthene                   | SW 8270    | ng/Nm3  | v          | 150      | ν            | 149          | v        | 94                   | v | 130          | :           | 100%  |
| Organics, Semi-Volatile | Acenaphthylene                 | SW 8270    | ng/Nm3  | v          | 7        | v            | 2            | v        | 45                   | • | ¥            | :           | 100%  |
| Organics, Semi-Volatile | Acetophenone                   | SW 8270    | ng/Nm3  |            | 3,525    |              | 2,930        |          | 3,322                |   | 3,259        | 751         |       |
| Organics, Semi-Volatile | Aniline                        | SW 8270    | ng/Nm3  | v          | 294      | ٧            | 291          | v        | 207                  | • | 7 <u>9</u> 2 | ;           | 100%  |
| Organics, Semi-Volatile | Anthracene                     | SW 8270    | ng/Nm3  | •          | 183      | ν            | 181          | •        | 124                  | • | 惡            | :           | 100%  |
| Organics, Semi-Volatile | Benzidine                      | SW 8270    | ng/Nm3  | v          | 6,295    | ν            | 6,235        | <b>v</b> | 6,717                | v | 6,416        | :           | 100%  |
| •                       |                                |            |         | PSP<br>PSP | Outlet - | Page 1       | 0            |          |                      |   |              |             |       |
|                         |                                |            |         | Ì          | ,        | ֝<br>֓֞֝֝֞֝֝ | •            |          |                      |   |              |             |       |

SAMPLE STREAM: ESP OUTLET

| Analyte                   | Analytical |        |   | Run      |   | Run             |   | Run             |          |         | <b>%96</b> | 占              |
|---------------------------|------------|--------|---|----------|---|-----------------|---|-----------------|----------|---------|------------|----------------|
| Specie                    | Method     | Units  |   | -        |   | 2               |   | 6               |          | Average | 5          | Ratio          |
|                           |            |        |   |          |   |                 |   |                 |          |         |            |                |
| Benzo(a)anthracene        | SW 8270    | ng/Nm3 | ٧ | 162      | v | 161             | v | 151             | v        | 158     | ;          | 100%           |
| Benzo(a)pyrene            | SW 8270    | ng/Nm3 | ٧ | 121      | ٧ | 119             | v | 174             | V        | 138     | ;          | 100%           |
| Benzo(b)fluoranthene      | SW 8270    | ng/Nm3 | ٧ | 179      | v | 171             | v | 305             | v        | 220     | ;          | 100%           |
| Benzo(g,h,l)perylene      | SW 8270    | ng/Nm3 | ٧ | 153      | ٧ | 152             | V | 343             | v        | 216     | :          | 100%           |
| Benzo(k)/luoranthene      | SW 8270    | ng/Nm3 | ٧ | 305      | ٧ | 302             | v | 336             | ٧        | 314     | 1          | 100%           |
| Benzoic acid              | SW 8270    | ng/Nm3 |   | 123,074  |   | 105,679         |   | 160,875         |          | 129,876 | 70,107     |                |
| Benzył alcohol            | SW 8270    | ng/Nm3 |   | 12,685   | ٧ | 337             | V | 205             |          | 4,319   | 18,001     | 7 <del>%</del> |
| Butylbenzylphthalate      | SW 8270    | ng/Nm3 |   | 409      |   | 324             |   | 274             |          | 336     | 170        |                |
| Chrysene                  | SW 8270    | ng/Nm3 | ٧ | 211      | v | 500             | V | 180             | v        | 200     | :          | 100%           |
| Di-n-octy/phthalate       | SW 8270    | ng/Nm3 | ٧ | 287      | ٧ | 284             | ٧ | 118             | v        | 230     | :          | 100%           |
| Dibenz(a,h)anthracene     | SW 8270    | ng/Nm3 | ٧ | 149      | ٧ | 148             | V | 272             | ٧        | 190     | :          | 100%           |
| Dibenz(a,j)acridine       | SW 8270    | ng/Nm3 | ٧ | 183      | ٧ | 181             | ٧ | 283             | •        | 216     | ;          | 100%           |
| Dibenzofuran              | SW 8270    | ng/Nm3 | v | 128      | ٧ | 127             | v | 180             | v        | 145     | :          | 100%           |
| Dibutyiphthalate          | SW 8270    | ng/Nm3 | V | 155      |   | 209             | ٧ | 109             | v        | 155     | ;          | 39%            |
| Diethyiphthalate          | SW 8270    | ng/Nm3 |   | 434      | v | 501             | ٧ | 173             |          | 191     | 525        | 24%            |
| Dimethylphenethylamine    | SW 8270    | ng/Nm3 | ٧ | 37,772   | v | 37,409          | v | 40,303          | v        | 38,494  | ;          | 100%           |
| Dimethylphthalate         | SW 8270    | ng/Nm3 | ٧ | 88       | ٧ | 87              | V | 113             | v        | 8       | ţ          | 100%           |
| Diphenylamine             | SW 8270    | ng/Nm3 | ٧ | 166      | ٧ | <del>2</del> 81 | V | 93              | ٧        | 141     | ;          | 100%           |
| Ethyl methanesulfonate    | SW 8270    | ng/Nm3 | ٧ | 158      | ٧ | 157             | v | 228             | •        | 181     | ;          | 100%           |
| Fluoranthene              | SW 8270    | ng/Nm3 | v | 201      | ٧ | 199             | v | 158             | •        | 186     | •          | 100%           |
| Fluorene                  | SW 8270    | ng/Nm3 | ٧ | 901      | ٧ | 501             | ٧ | 128             | V        | 113     | ;          | 100%           |
| Hexachlorobenzene         | SW 8270    | ng/Nm3 | ٧ | 74       | v | 73              | V | <del>1</del> 05 | <b>v</b> | 7       | ;          | 100%           |
| Hexachlorobutadiene       | SW 8270    | ng/Nm3 | ٧ | 220      | v | 218             | v | 172             | v        | 203     | ;          | 100%           |
| Hexachlorocyclopentadiene | SW 8270    | ng/Nm3 | ٧ | 2,808    | ٧ | 2,781           | v | 1,978           | v        | 2,522   | :          | 100%           |
| Hexachloroethane          | SW 8270    | ng/Nm3 | v | 187      | V | 185             | ٧ | 213             | ٧        | 195     | ;          | 100%           |
| Indeno(1,2,3-cd)pyrene    | SW 8270    | ng/Nm3 | ٧ | 391      | v | \$              | v | 447             | v        | 259     | ;          | 100%           |
| isophorone                | SW 8270    | ng/Nm3 | ٧ | 8        | ٧ | 8               | v | 207             | v        | 129     | :          | 100%           |
| Methyl methanesulfonate   | SW 8270    | ng/Nm3 | ٧ | 15,738   | ٧ | 15,587          | v | 16,793          | •        | 16,039  | ;          | 100%           |
| N-Nitroso-di-n-butylamine | SW 8270    | ng/Nm3 | ٧ | 412      | v | 408             | v | 211             | V        | 344     | :          | 100%           |
| N-Nitrosodimethylamine    | SW 8270    | ng/Nm3 | ٧ | 419      | ٧ | 415             | V | 26 <u>4</u>     | v        | 36c     | :          | 100%           |
| N-Nitrosodiphenylamine    | SW 8270    | ng/Nm3 | ٧ | 178      | ٧ | 176             | ٧ | 06              | v        | 148     | :          | 100%           |
|                           |            |        | Č | 7 101110 |   | 7               |   |                 |          |         |            |                |

ESP Outlet - Page 11

Gas Stream Data

SAMPLE STREAM: ESP OUTLET

| 占          | Ratio   | 100%                   | 9                | 3                       |                         | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    |                         | 100%                    | 100%                    | 100%                    | 100%                       | 100%                    | 100%                        |                            | 100%                    | 100 <b>%</b>              |                       | 100%                      | 100%                  | 100<br>%           | 100%               | 100%                | 100%               | 100%                | 100%                | 100%                | 100%               |               |
|------------|---------|------------------------|------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------------|-------------------------|-----------------------------|----------------------------|-------------------------|---------------------------|-----------------------|---------------------------|-----------------------|--------------------|--------------------|---------------------|--------------------|---------------------|---------------------|---------------------|--------------------|---------------|
| %96<br>8   | ਠ       | ;                      |                  | ; ;                     | 1,025                   | ;                       | •                       | :                       | ;                       | ;                       | ;                       | 14,959                  | :                       | :                       | ;                       | :                          | !                       | ;                           | 41,311                     | :                       | :                         | 84                    | :                         | :                     | ;                  | :                  | ;                   | ;                  | :                   | ;                   | ;                   | :                  |               |
|            | Average | 230                    | 790              | ţ :                     | 1,097                   | 502                     | <del>134</del>          | 587                     | 280                     | 156                     | 182                     | 8,541                   | 181                     | 143                     | 308                     | 185                        | 196                     | 241                         | 14,853                     | <b>30</b>               | 189                       | 289                   | 528                       | 528                   | 228                | 528                | 228                 | 528                | 528                 | 228                 | 528                 | 2,642              |               |
|            |         | ٧                      | •                | ,                       |                         | v                       | v                       | v                       | v                       | v                       | v                       |                         | v                       | v                       | ٧                       | v                          | v                       | v                           |                            | v                       | •                         |                       | ٧                         | v                     | v                  | ٧                  | v                   | V                  | ٧                   | v                   | v                   | v                  |               |
| Run        | 8       | 88                     | Ę                | 3                       | 1,562                   | 283                     | 126                     | <del>8</del>            | 533                     | <del>13</del>           | 157                     | 15,449                  | 18                      | 137                     | 197                     | <b>2</b> 6                 | 129                     | 768                         | 33,922                     | <del>22</del> 0         | 244                       | 806                   | 537                       | 537                   | 537                | 537                | 537                 | 537                | 537                 | 537                 | 537                 | 2,683              |               |
|            |         | ٧                      | ,                | ,                       |                         | v                       | ٧                       | ٧                       | v                       | v                       | ٧                       |                         | v                       | ٧                       | ٧                       | v                          | v                       | ٧                           |                            | v                       | •                         |                       | ٧                         | v                     | ٧                  | ٧                  | ¥                   | ٧                  | ٧                   | v                   | ٧                   | ¥                  |               |
| Run        | 2       | 334                    | į                | <b>t</b>                | 773                     | 165                     | 138                     | 645                     | 593                     | 168                     | <b>19</b>               | 2,767                   | 230                     | 146                     | 362                     | 175                        | 228                     | 226                         | 3,367                      | 174                     | 161                       | 269                   | 536                       | 236                   | 536                | 536                | 536                 | 536                | 536                 | 536                 | 536                 | 2,681              | 12            |
|            |         | ٧                      | ,                | ,                       |                         | v                       | V                       | ٧                       | v                       | v                       | ٧                       |                         | v                       | ٧                       | ٧                       | v                          | V                       | V                           |                            | v                       | ٧                         |                       | v                         | v                     | ٧                  | v                  | v                   | v                  | v                   | ٧                   | v                   | ٧                  | Page          |
| Run        | -       | 236                    | 2                | 167                     | 957                     | 166                     | 139                     | 652                     | 272                     | 170                     | 961                     | 4,407                   | 233                     | 147                     | 365                     | 171                        | 230                     | 522                         | 7,271                      | 176                     | 162                       | 757                   | 512                       | 512                   | 512                | 512                | 512                 | 512                | 512                 | 512                 | 512                 | 2,561              | Outlet - Page |
|            | 1       | ٧                      | ,                | ,                       |                         | ٧                       | ٧                       | ٧                       | ٧                       | v                       | v                       |                         | V                       | v                       | ٧                       | v                          | v                       | ٧                           |                            | v                       | ٧                         |                       | ٧                         | ٧                     | v                  | ٧                  | V                   | ٧                  | ٧                   | ٧                   | ٧                   | v                  | ESP           |
|            | Units   | 5mW/va                 |                  | SING                    | ng/Nm3                     | ng/Nm3                  | ng/Nm3                      | ng/Nm3                     | ng/Nm3                  | ng/Nm3                    | ng/Nm3                | ng/Nm3                    | ng/Nm3                | ng/Nm3             | ng/Nm3             | ng/Nm3              | ng/Nm3             | ng/Nm3              | ng/Nm3              | ng/Nm3              | ng/Nm3             |               |
| Analytical | Method  | SW 8270                | 0.000            | 0170 AAC                | SW 8270                    | SW 8270                 | SW 8270                     | SW 8270                    | SW 8270                 | SW 8270                   | SW 8240               | SW 8240                   | SW 8240               | SW 8240            | SW 8240            | SW 8240             | SW 8240            | SW 8240             | SW 8240             | SW 8240             | SW 8240            |               |
|            | Specie  | N_Nitroextinguation    |                  | N-INITIOSOPIDALIQUE     | Naphthalene             | Nitrobenzene            | Pentachlorobenzene      | Pentachtoronitrobenzene | Pentachlorophenol       | Phenacetin              | Phenanthrene            | Phenol                  | Pronamide               | Pyrene                  | Pyridine                | bis(2-Chloroethoxy)methane | bis(2-Chloroethyl)ether | bis(2-Chloraisopropyl)ether | bis(2-Ethylhexyl)phthalate | p-Chloroaniline         | p-Dimethylaminoazobenzene | 1,1,1-Trichloroethane | 1,1,2,2-Tetrachloroethane | 1,1,2-Trichloroethane | 1,1-Dichloroethane | 1,1-Dichloroethene | 1,2-Dichlorobenzene | 1,2-Dichloroethane | 1,2-Dichloropropane | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | 2-Butanone         |               |
| Analyte    | Group   | Occasion Comi Molatila | Cigamos, company | Organics, semi-voration | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile | Organics, Semi-Volatile    | Organics, Semi-Volatile | Organics, Semi-Volatile     | Organics, Semi-Volatile    | Organics, Semi-Volatile | Organics, Semi-Volatile   | Organics, Volatile    | Organics, Volatile        | Organics, Volatile    | Organics, Volatile | Organics, Volatile | Organics, Volatile  | Organics, Volatile | Organics, Volatile  | Organics, Volatile  | Organics, Volatile  | Organics, Volatile | ,             |

Gas Stream Data

SAMPLE STREAM: ESP OUTLET

| Analyte             |                           | Analytical |        |   | Run    |   | Run    |   | Run    |   |         | <b>86%</b> | 占     |
|---------------------|---------------------------|------------|--------|---|--------|---|--------|---|--------|---|---------|------------|-------|
| Group               | Specie                    | Method     | Units  |   | -      |   | 2      |   | 6      |   | Average | 5          | Ratio |
|                     |                           |            |        |   |        |   |        |   |        |   |         |            |       |
| Organics, Volatile  | 2-Hexanone                | SW 8240    | ng/Nm3 | ٧ | 2,561  | v | 2,681  | v | 2,683  | v | 2,642   | :          | 100%  |
| Organics, Volatile  | 4-Methyl-2-Pentanone      | SW 8240    | ng/Nm3 | v | 2,561  | ν | 2,681  | ٧ | 2,683  | ٧ | 2,642   | :          | 100%  |
| Organics, Volatile  | Acetone                   | SW 8240    | ng/Nm3 | ٧ | 2,561  | v | 2,681  | ٧ | 2,683  | v | 2,642   | ;          | 100%  |
| Organics, Volatile  | Benzene                   | SW 8240    | ng/Nm3 |   | 1,366  |   | 1,555  |   | 1,502  |   | 1,474   | 243        |       |
| Organics, Volatile  | Bromodichloromethane      | SW 8240    | ng/Nm3 | v | 512    | ٧ | 536    | v | 537    | v | 528     | ;          | 100%  |
| Organics, Volatile  | Bromoform                 | SW 8240    | ng/Nm3 | v | 512    | ٧ | 536    | v | 537    | v | 528     | :          | 100%  |
| Organics, Volatile  | Bromomethane              | SW 8240    | ng/Nm3 | v | 654    | ٧ | 536    | ٧ | 537    | v | 576     | ;          | 100%  |
| Organics, Volatile  | Carbon Disulfide          | SW 8240    | ng/Nm3 |   | 2,356  |   | 6,901  |   | 948    |   | 3,402   | 7,730      |       |
| Organics, Volatile  | Carbon Tetrachloride      | SW 8240    | ng/Nm3 | ٧ | 512    | v | 536    | v | 537    | v | 528     | ;          | 100%  |
| Organics, Volatile  | Chlorobenzene             | SW 8240    | ng/Nm3 | v | 512    | ٧ | 536    | v | 537    | v | 528     | ;          | 100%  |
| Organics, Volatile  | Chloroethane              | SW 8240    | ng/Nm3 | ٧ | 512    | ٧ | 536    | v | 537    | v | 528     | :          | 100%  |
| Organics, Volatile  | Chloroform                | SW 8240    | ng/Nm3 | ٧ | 512    | ٧ | 536    | ٧ | 537    | v | 528     | :          | 100%  |
| Organics, Volatile  | Chloromethane             | SW 8240    | ng/Nm3 | ٧ | 512    | v | 536    | v | 537    | v | 528     | :          | 100%  |
| Organics, Votatile  | Dibromochloromethane      | SW 8240    | ng/Nm3 | v | 512    | v | 536    | v | 537    | v | 528     | ;          | 100%  |
| Organics, Volatife  | Ethyl Benzene             | SW 8240    | ng/Nm3 | v | 512    | v | 536    | v | 537    | v | 528     | :          | 100%  |
| Organics, Volatile  | Methylene Chloride        | SW 8240    | ng/Nm3 |   | 18,300 |   | 47,739 |   | 31 659 |   | 32,566  | 36,621     |       |
| Organics, Volatile  | Styrene                   | SW 8240    | ng/Nm3 | v | 512    | ٧ | 536    | v | 537    | v | 528     | :          | 100%  |
| Organics, Volatile  | Tetrachloroethene         | SW 8240    | ng/Nm3 |   | 1,021  |   | 786    |   | 644    |   | 817     | 473        |       |
| Organics, Volatile  | Toluene                   | SW 8240    | ng/Nm3 |   | 688    |   | 1,341  |   | 1,502  |   | 1,177   | 1,071      |       |
| Organics, Volatile  | Trichloroethene           | SW 8240    | ng/Nm3 | ٧ | 512    | v | 536    | v | 537    | v | 528     | :          | 100%  |
| Organics, Volatile  | - Trichlorofluoromethane  | SW 8240    | ng/Nm3 | v | 512    |   | 679    | v | 537    | v | 537     | ;          | 44%   |
| Organics, Volatife  | Vinyf Acetate             | SW 8240    | ng/Nm3 | v | 2,561  | v | 2,681  | v | 2,683  | v | 2,642   | ;          | 100%  |
| Organics, Volatile  | Vinyt Chloride            | SW 8240    | ng/Nm3 | ٧ | 512    | v | 536    | v | 537    | v | 528     | ;          | 100%  |
| Organics, Volatile  | cis-1,3-Dichloropropene   | SW 8240    | ng/Nm3 | v | 512    | v | 536    | v | 537    | v | 528     | ;          | 100%  |
| Organics, Volatifie | m,p-Xylene                | SW 8240    | ng/Nm3 |   | 789    | v | 536    | v | 537    | v | 537     | :          | 40%   |
| Organics, Volatile  | o-Xylene                  | SW 8240    | ng/Nm3 | ٧ | 512    | v | 536    | v | 537    | v | 528     | ;          | 100%  |
| Organics, Volatile  | trans-1,2-Dichloroethene  | SW 8240    | ng/Nm3 | ٧ | 512    | ٧ | 536    | v | 537    | v | 528     | ;          | 100%  |
| Organics, Volatile  | trans-1,3-Dichloropropene | SW 8240    | ng/Nm3 | v | 512    | v | 536    | v | 537    | v | 528     | ;          | 100%  |

Vote: Shaded data has been invalidated due to high background in filter substrate. Shaded data is not included in "average" data calculation.

# ESP Outlet - Page 13

| Analyte              | i e             | Analytical       | Units         |      | Run 1        |             | Run     |          | Run      |            |   | Average | % T      | DL  |
|----------------------|-----------------|------------------|---------------|------|--------------|-------------|---------|----------|----------|------------|---|---------|----------|-----|
| Particulate Loading  |                 | Grav             | g/Nm3         |      | 0.0192       |             | 0.0118  |          | 0.0125   |            |   | 0.0145  | 0.0101   |     |
|                      | 14              | FOAC ACT         | C 11(4) C 1   |      | <b>18</b> 73 | ٥           | ď       | a        | 80       | а          |   | 5       | <b>.</b> |     |
| Reduced Species      | Ammonia as r    | 1.000            | CHINIS        |      | 10.12        | 0           |         | ٥        | 00<br>00 | 0          |   | 7.1.    | 70.01    |     |
| Reduced Species      | Cyanide         | SW 9012          | ug/Nm3        |      | 4.87         |             | 8.55    |          | 71.99    |            |   | 88      | 93.74    |     |
| Anions - Vapor Phase | Chloride        | EPA 300.0        | ug/Nm3        |      | 294          |             | 914     |          | 14       |            |   | 540     | 819      |     |
| Anions - Vapor Phase | Fluoride        | <b>EPA 340.2</b> | ug/Nm3        |      | 126          |             | 86      |          | 150      |            |   | 124     | 8        |     |
| Anions - Vapor Phase | Sulfate         | EPA 300.0        | ug/Nm3        | 7    | 754,933      |             | 633,232 |          | 650,180  |            |   | 679,449 | 163,764  |     |
| Anions - Particulate | Chloride        | EPA 300.0        | ug/Nm3        |      | 345.2        |             | 203.6   |          | 93.4     |            |   | 214     | 314      |     |
| Anions - Particulate | Fluoride        | <b>EPA 340.2</b> | ug/Nm3        |      | 0.057        |             | 0.063   |          | 0.032    |            |   | 0.051   | 0.041    |     |
| Anions - Particulate | Sulfate         | EPA 300.0        | ug/Nm3        |      | 9,961        | 80          | 4,121   | 80       | 3,633    | <b>6</b> 0 |   | 5,905   | 8,748    |     |
| Anions - Total       | Chloride        | EPA 300.0        | ug/Nm3        |      | 640          |             | 1,118   |          | 504      |            |   | 754     | 801      |     |
| Anions - Total       | Fluoride        | <b>EPA 340.2</b> | ug/Nm3        |      | 125.9        |             | 96.5    |          | 149.8    |            |   | 124     | 8        |     |
| Anions - Total       | Sulfate         | EPA 300.0        | ug/Nm3        | 2    | 54,894       |             | 637,353 |          | 653,814  |            |   | 685,353 | 172,349  |     |
| Radionuclides        | K-40 @ 1460 KeV | EPA 901.1        | pCi/g         | ٧    | 26           | v           | 8       |          | 29       |            | v | 82      | ı        | 47% |
| Part Metais by Wt    | Aluminum        | SW 6010          | 5/5n          |      | 9807         |             | 14,330  | æ        | 13,177   | œ          |   | 13,754  | 7,328    |     |
| Part Metals by Wit   | Antimony        | ICP-MS           | 6/ <b>6</b> n |      | \$           |             | 4.22    | œ        | 3.33     | <b>6</b>   |   | 3.77    | 5.66     |     |
| Part Metals by Wt    | Arsenic         | SW 7060          | 6/6n          |      | 96           | 8           | 87      | ∞        | 76       | 80         |   | ₩       | 7        |     |
| Part Metals by Wt    | Barium          | SW 6010          | 6/6n          | ¥    | 2            | 6           | 303     | <b>6</b> | 126      | 80         |   | 214     | 1,120    |     |
| Part Metals by Wt    | Beryllium       | SW 6010          | 6/6n          |      | 8            |             | 3.11    | ω        | 2.77     | <b></b>    |   | 2.94    | 2.12     |     |
| Part Metals by Wt    | Boron           | SW 6010          | ₿/Bn          | 1    |              | 3           | 1       |          | ŀ        |            |   | :       | :        |     |
| Part Metals by Wt    | Cadmium         | SW 7131          | ₿/Ĝn          | ¥    |              | ú           | 32      | æ        | 84       | <b>60</b>  |   | 4       | 79       |     |
| Part Metals by Wt    | Calcium         | SW 6010          | 6/6n          |      | 988          | 153         | 16,154  | 8        | 21,087   | ₩          |   | 18,621  | 31,343   |     |
| Part Metals by Wt    | Chromium        | SW 6010          | 6/6n          | v    |              | 6           | 93      | 60       | 265      | 8          |   | 329     | 2,995    |     |
| Part Metals by Wt    | Cobalt          | SW 6010          | 6/6n          |      |              | e           | 18      | 7        | < 37     | ပ          | v | 37      | ;        | 52% |
| Part Metals by Wt    | Copper          | SW 6010          | 6/6n          | ٠    |              |             | 8       | 8        | 52       | <b>6</b> 0 |   | 56      | 6        |     |
| Part Metals by Wt    | Iron            | SW 6010          | ₫/6n          |      | 8.478        | <b>14</b> 2 | 9,994   | æ        | 13,386   | œ          |   | 11,690  | 21,547   |     |
|                      |                 |                  |               | Stac | Stack - Page | e 1         |         |          |          |            |   |         |          |     |

| Analytical<br>Method |
|----------------------|
| SW 742               |
| SW 6010              |
| SW 7471              |
| SW 6010              |
| SW 6010              |
| SW 6010              |
| SW 6010              |
| SW 7740              |
| SW 6010              |
| ICP-MS               |
| SW 7060              |
| SW 6010              |
| SW 6010              |
|                      |
| SW 7131              |
| SW 6010              |
| SW 7421              |
| SW 6010              |
| SW 6010              |
| SW 7471              |
|                      |

| Analyte              |                  | Analytical |             |     | Run          |          |   | Run      |            |   | Run          |            |   |              | %96<br>8 | 占              |
|----------------------|------------------|------------|-------------|-----|--------------|----------|---|----------|------------|---|--------------|------------|---|--------------|----------|----------------|
| Group                | Specie           | Method     | Units       |     | -            |          |   | 2        |            |   |              |            |   | Average      | 5        | Ratio          |
|                      |                  | C14/ 6040  | (A) and     |     | į            | 0        |   | 9        | ٥          |   | 8            | α          |   | 6            | 284      |                |
| Fair Interals by Vol | Mickel           | SW 6010    | (A) (A) (A) |     |              | 1 0      |   |          | ם מ        |   | 3 5          | ) a        |   | 30 38        | <b>4</b> |                |
| Fair integris by Vol |                  | 344 0010   |             |     |              |          | , | 3 6      | י כ        | , | 7 6          | ، د        | , | 350          | F        | 4004           |
| Part Metals by Vol   | Phosphorus       | SW 6010    | LIGNAM3     |     |              |          | v | 7.<br>7. | ٠          | v | 8.5          | . ر        | v | 60.7         | : ;      | ę<br>S         |
| Part Metals by Vol   | Potassium        | SW 6010    | ug/Nm3      |     | E            | 0        |   | 36.01    | -,         |   | 44.37        | 7          |   | 40.19        | 53.13    |                |
| Part Metals by Vol   | Selenium         | SW 7740    | ug/Nm3      |     | 52.88        | <b>6</b> |   | 9.76     | 60         |   | 15.68        | <b>6</b> 0 |   | 26.11        | 58.07    |                |
| Part Metals by Vol   | Sodium           | SW 6010    | ug/Nm3      |     | 100          | •        |   | 48.23    | <b>6</b>   |   | 69.62        | œ          |   | 58.93        | 136      |                |
| Part Metals by Vol   | Strontium        | SW 6010    | ug/Nm3      |     | 980          | •        |   | 1.22     | 89         |   | 1.77         | 8          |   | 1.49         | 3.51     |                |
| Part Metals by Vol   | Titanium         | SW 6010    | ug/Nm3      |     | 50 11        | •        |   | 12.45    | <b>6</b> 0 |   | 12.55        | 80         |   | 12.50        | 0.59     |                |
| Part Metals by Vol   | Vanadium         | SW 6010    | ug/Nm3      |     | 1.469        | æ        |   | 1.55     | 8          |   | 1.83         | 8          |   | 1.61         | 0.468    |                |
| Part Metals by Vol   | Zinc             | SW 6010    | ug/Nm3      | ¥   | 36           | ٥        |   | 7.75     | 8          |   | 92'9         | 60         |   | 7.26         | 6.27     |                |
| Metale Varior        | Atuminam         | SW 6010    | EmN/pii     |     | 80           | æ        | ٧ | 8.70     | c          | ٧ | 7.59         | U          | ٧ | 8.70         | ;        | 20<br>20<br>20 |
| Metals Vanor         | Antimony         | ICP-MS     | ua/Nm3      |     | 0.012        | <u> </u> |   | 0.012    |            |   | 0.013        | - 60       |   | 0.012        | 0.0019   | !              |
| Metals, Vapor        | Arsenic          | SW 7060    | ug/Nm3      | ٧   | 0.156        | O        | v | 0.201    | ပ          | v | 0.176        | ပ          | ٧ | 0.178        | :        | 100%           |
| Metals, Vapor        | Barium           | SW 6010    | ug/Nm3      | v   | 0.126        | ပ        |   | 0.113    | _          | ٧ | 0.142        | ပ          | v | 0.142        | :        | 54%            |
| Metals, Vapor        | Beryflium        | SW 6010    | ug/Nm3      | ٧   | 0.131        | ပ        | v | 0.170    | ပ          |   | 0.032        | ~          | v | 0.170        | :        | 82%            |
| Metals, Vapor        | Boron            | SW 6010    | ug/Nm3      |     | 468          | 60       |   | 412      | 60         |   | <del>4</del> | 8          |   | <del>4</del> | 2        |                |
| Metals, Vapor        | Cadmium          | SW 7131    | ug/Nm3      | v   | 0.056        | ပ        | ٧ | 0.073    | ပ          | ٧ | 0.063        | ပ          | ٧ | 0.064        | :        | 100%           |
| Metals, Vapor        | Calcium          | SW 6010    | ug/Nm3      | v   | 35.09        | ပ        |   | 34.91    | ~          | v | 39.57        | ပ          | v | 39.57        | :        | 27%            |
| Metals, Vapor        | Chromium         | SW 6010    | ug/Nm3      | v   | 0.590        | ပ        | v | 0.763    | ပ          | v | 999.0        | ပ          | v | 0.673        | :        | 100%           |
| Metals, Vapor        | Cobalt           | SW 6010    | ug/Nm3      |     | 0.218        | 7        |   | 0.211    | _          |   | 0.751        | _          |   | 0.394        | 0.770    |                |
| Metals, Vapor        | Copper           | SW 6010    | ug/Nm3      |     | 2.32         | <b>6</b> |   | 0.910    | _          | v | 1.02         | ပ          |   | 1.25         | 2.36     | 14%            |
| Metals, Vapor        | lron             | SW 6010    | ug/Nm3      |     | 1.71         | 8        | v | 1.83     | ပ          | v | 1.59         | ပ          | v | 1.83         | ;        | %0%            |
| Metals, Vapor        | Lead             | SW 7421    | ug/Nm3      | ٧   | 0.190        | ပ        | v | 0.245    | ပ          | v | 0.214        | ပ          | ٧ | 0.216        | :        | 100%           |
| Metals, Vapor        | Magnesium        | SW 6010    | ug/Nm3      |     | 5.55         | 8        | v | 6.98     | ပ          |   | 5.27         | -,         | v | 86.98        | :        | 24%            |
| Metals, Vapor        | Manganese        | SW 6010    | ug/Nm3      | v   | 0.094        | ပ        | v | 0.121    | ပ          | v | 0.106        | ပ          | v | 0.107        | 1        | 400%           |
| Metals, Vapor        | Mercury          | CVAA       | ug/Nm3      |     | 2.92         | <b>6</b> |   | 3.13     | 8          |   | 3.07         | 8          |   | 3.04         | 0.269    |                |
| Metals, Vapor        | Molybdenum       | SW 6010    | ug/Nm3      |     | 0.12         | 7        |   | 0.13     | ~          |   | 0.10         | _          |   | 0.116        | 0.048    |                |
| Metals, Vapor        | Nickel<br>Nickel | SW 6010    | ug/Nm3      | v   | 2.34         | ပ        |   | 2.88     | _          | v | 2.64         | ပ          | v | 2.64         | ;        | 46%            |
| Metals, Vapor        | Phosphorus       | SW 6010    | ug/Nm3      | v   | 14.46        | ပ        | v | 18.68    | ပ          | ٧ | 16.31        | ပ          | v | 16.48        | ;        | 100%           |
| Metals, Vapor        | Potassium        | SW 6010    | ug/Nm3      |     | 32.28        | 6        | ٧ | 98.0     | ပ          |   | 77.56        | 8          |   | 36.76        | 96.28    | 0.4%           |
|                      |                  |            |             | Sta | Stack - Page | ge 3     |   |          |            |   |              |            |   |              |          |                |

| Analyte       |                   | Analytical |        |                                         | Run              |      |   | Run   |            |    | Run   |    |   |              | %96    | 占     |
|---------------|-------------------|------------|--------|-----------------------------------------|------------------|------|---|-------|------------|----|-------|----|---|--------------|--------|-------|
| Group         | Specie            | Method     | Units  |                                         | -                |      |   | ~     | 1          |    |       |    |   | Average      | 5      | Ratio |
| Metals, Vapor | Selenium          | SW 7740    | ug/Nm3 |                                         | 0.11             | 7    |   | 0.84  | 80         |    | 1.40  | æ  |   | 0.781        | 1.61   |       |
| Metals, Vapor | Sodium            | SW 6010    | ug/Nm3 | ٧                                       | 9.41             | ပ    | v | 12.16 | ပ          | v  | 10.61 | ပ  | v | 10.73        | :      | 100%  |
| Metals, Vapor | Stronfium         | SW 6010    | ug/Nm3 | ٧                                       | 0.0              | ပ    | ٧ | 9.05  | ပ          | v  | 0.04  | ပ  | ٧ | 0.045        | ;      | 100%  |
| Metals, Vapor | Titanium          | SW 6010    | ug/Nm3 | v                                       | 0.242            | ပ    |   | 0.190 | _          | v  | .273  | ပ  | v | 0.273        | :      | 58%   |
| Metals, Vapor | Vanadium          | SW 6010    | ug/Nm3 |                                         | 0.422            | 7    |   | 0.420 | 7          | 0  | .821  | 8  |   | 0.554        | 0.574  |       |
| Metals, Vapor | Zinc              | SW 6010    | ug/Nm3 |                                         | 1.1              | æ    |   | 373   | <b>6</b> 0 |    | 114   | 60 |   | 163          | 474    |       |
| Total Metals  | Aluminum          | SW 6010    | ug/Nm3 |                                         | 41.53            |      |   | 175   |            |    | 215   |    |   | 36           | 251    |       |
| Total Metals  | Antimony          | ICP-MS     | ug/Nm3 |                                         | 619              |      |   | 90.0  |            |    | 0.07  |    |   | 0.065        | 0.026  |       |
| Total Metals  | Arsenic           | SW 7060    | ug/Nm3 |                                         | 1.13             |      |   | 1.13  |            |    | 06.1  |    |   | 1.19         | 0.236  |       |
| Total Metals  | Barium            | SW 6010    | ug/Nm3 | V                                       | <b>9</b>         |      |   | 3.72  |            |    | 5.09  |    |   | 2.906        | 10.351 |       |
| Total Metals  | Beryllium         | SW 6010    | ug/Nm3 | ¥                                       | 930              |      |   | 0.12  |            |    | 90.0  |    |   | 0.099        | 0.288  |       |
| Total Metals  | Boron(vapor only) | SW 6010    | ug/Nm3 | 700000000000000000000000000000000000000 | <del>4</del> 68  |      |   | 412   |            |    | ₹     |    |   | <del>4</del> | 20     |       |
| Total Metals  | Cadmium           | SW 7131    | ug/Nm3 | v                                       | 011              |      |   | 0.46  |            |    | 0.79  |    |   | 0.625        | 2.152  |       |
| Total Metals  | Catcium           | SW 6010    | ug/Nm3 |                                         | 151              |      |   | 228   |            |    | 357   |    |   | 292          | 825    |       |
| Total Metals  | Chromium          | SW 6010    | ug/Nm3 | v                                       | 441              |      |   | 1.49  |            | -  | 9.37  |    |   | 5.431        | 50.05  |       |
| Total Metals  | Cobatt            | SW 6010    | ug/Nm3 |                                         | 88               |      |   | 0.42  |            |    | 50.   |    |   | 0.735        | 4.000  |       |
| Total Metals  | Copper            | SW 6010    | ug/Nm3 |                                         | 3                |      |   | 1.62  |            |    | 1.34  |    |   | 1.480        | 1.784  |       |
| Total Metals  | lron              | SW 6010    | ug/Nm3 |                                         | 93)              |      |   | 120   |            |    | 215   |    |   | <b>1</b> 68  | 603    |       |
| Total Metals  | Lead              | SW 7421    | ug/Nm3 | ٠                                       | 0.00             |      |   | 0.57  |            |    | 0.65  |    |   | 0.610        | 0.543  |       |
| Total Metals  | Magnesium         | SW 6010    | ug/Nm3 |                                         | 88               |      |   | 29.62 |            | •  | 3.32  |    |   | 44.97        | 233    |       |
| Total Metals  | Manganese         | SW 6010    | ug/Nm3 |                                         | 3.               |      |   | 3.46  |            | _  | 1.1   |    |   | 7.284        | 48.623 |       |
| Total Metals  | Mercury           | SW 7471    | ug/Nm3 |                                         | 282              |      |   | 3.14  |            |    | 3.07  |    |   | 3.107        | 0.439  |       |
| Total Metals  | Molybdenum        | SW 6010    | ug/Nm3 |                                         | 5 <del>4</del> 0 |      |   | 1.32  |            |    | 1.70  |    |   | 1.512        | 2.393  |       |
| Total Metals  | Nickel            | SW 6010    | ug/Nm3 |                                         | S                |      |   | 4.4   |            | -  | 5.52  |    |   | 41.48        | £3     |       |
| Total Metals  | Phosphorus        | SW 6010    | ug/Nm3 |                                         | 986              |      | v | 10.63 |            | v  | 9.45  |    | v | 10.04        | ;      | 100%  |
| Total Metals  | Potassium         | SW 6010    | ug/Nm3 |                                         | 85,              |      |   | 36.44 |            |    | 122   |    |   | 79.19        | 543    |       |
| Total Metals  | Selenium          | SW 7740    | ug/Nm3 |                                         | 52.99            |      |   | 10.60 |            | _  | 7.08  |    |   | 27           | 27     |       |
| Total Metals  | Sodium            | SW 6010    | ug/Nm3 |                                         | 271              |      |   | 54.31 |            | ,- | 4.93  |    |   | 64.62        | 131    |       |
| Total Metals  | Strontium         | SW 6010    | ug/Nm3 |                                         | 880              |      |   | 1.24  |            |    | 1.79  |    |   | 1.517        | 3.486  |       |
| Total Metals  | Titanium          | SW 6010    | ug/Nm3 |                                         | 79               |      |   | 12.64 |            | _  | 2.68  |    |   | 12.66        | 0.255  |       |
|               |                   |            |        | Sta                                     | Stack - Page 4   | ge 4 |   |       |            |    |       |    |   |              |        |       |

| Analyte                 |                    | Analytical |               |      | Ren            |      | •      | Run         |        | Run    | e          |            |           | <b>%96</b>  | 겁     |
|-------------------------|--------------------|------------|---------------|------|----------------|------|--------|-------------|--------|--------|------------|------------|-----------|-------------|-------|
| Group                   | Specie             | Method     | Units         |      | -              |      |        | 7           |        |        |            |            | Average   | 5           | Ratio |
| Total Metals            | Vanadium           | SW 6010    | ug/Nm3        |      | 1.89           |      | _      | 97          |        | 2.6    | ю          |            | 2.17      | 40.         |       |
| Total Metals            | Zinc               | SW 6010    | ug/Nm3        |      |                |      | 8      | 380.73      |        | 120.36 | 88         |            | <b>52</b> | <b>2</b> 8. |       |
| Hg Vapor, Bloom         | Mercury, Elemental | CVAFS      | ug/Nm3        |      | 2.98           |      | 63     | 8           |        | 22     | a          |            | 2.78      | 1.07        |       |
| Hg Vapor, Bloom         | Mercury II         | CVAFS      | ug/Nm3        |      | 0.33           |      |        | .47         |        | 0.60   | 0          |            | 0.468     | 0.335       |       |
| Hg Vapor, Bloom         | Mercury, Methyl    | CVAFS      | ug/Nm3        |      | 0.045          |      | O      | 061         |        | 0.0    | <b>9</b> 0 |            | 0.044     | 0.041       |       |
| Hg Vapor, Bloom         | Mercury, Total     | CVAFS      | ug/Nm3        |      | 3.36           |      | 60     | 3.62        |        | 2.9    | ~          |            | 3.30      | 0.88        |       |
| Hexavalent Chromium     | Chromium VI        | Cr(VI) BIF | ug/Nm3        | ٧    | 0.18           | v    | v      |             |        |        |            | ٧          | 0.190     | ;           | 100%  |
| Hexavalent Chromium     | Total Chromium     | SW 7191    | ug/Nm3        | ٧    | 0.52           | ပ    | v      | 0.57        | v<br>O | 0.59   | ပ          | ٧          | 0.560     | ;           | 100%  |
| Extract Metals, Nitric  | Antimony           | ICP-MS     | ₿/6n          |      |                |      | ιci    | 782         |        |        |            |            | 5.78      | :           |       |
| Extract Metals, Nitric  | Arsenic            | ICP-MS     | 8/ <b>6</b> n | ì    |                |      | -      | 2           |        |        |            | ***        | 3         | ;           |       |
| Extract Metals, Nitric  | Barium             | ICP-MS     | 6/ <b>6</b> n |      |                |      | (,)    | 7           |        |        |            | 200        | 354       | :           |       |
| Extract Metals, Nitric  | Beryllium          | ICP-MS     | 6/6n          |      |                |      | ţ      | 250         |        |        |            |            | 10.25     | ;           |       |
| Extract Metals, Nitric  | Boron              | ICP-MS     | 6/6n          |      |                |      | v      | 5           |        |        |            | v<br>****  | 15.34     | :           | 100%  |
| Extract Metals, Nitric  | Cadmium            | ICP-MS     | ₿/₿n          | ·    |                |      |        | 75          |        |        |            |            | 67.00     | :           |       |
| Extract Metals, Nitric  | Chromium           | ICP-MS     | 6/6n          |      |                |      | •      | 4           |        |        |            |            | 43.77     | :           |       |
| Extract Metals, Nitric  | Cobalt             | ICP-MS     | 6/6n          |      | λ              |      | o<br>v | 66          |        |        |            | v          | 06.0      | :           | 100%  |
| Extract Metals, Nitric  | Copper             | (CP-MS     | 6/Bn          |      |                |      |        | 24          |        |        |            | ***        | 124       | ;           |       |
| Extract Metals, Nitric  | Lead               | ICP-MS     | ₿/₿n          |      |                |      | -      | =           |        |        |            |            | 90.84     | ;           |       |
| Extract Metals, Nitric  | Manganese          | ICP-MS     | ₿/₿n          |      |                |      | (7)    | 8           |        | 44     |            |            | 328       | ;           |       |
| Extract Metals, Nitric  | Mercury            | ICP-MS     | 6/6n          |      |                |      | ۸ 7.   | 36          |        |        |            | v<br>****  | 7.14      | ;           | 100%  |
| Extract Metals, Nitric  | Molybdenum         | ICP-MS     | 6/6n          |      |                |      | •      | <del></del> |        | 7. Y   |            |            | 51.40     | ;           |       |
| Extract Metals, Nitric  | Nicket             | ICP-MS     | ₿/₿'n         |      |                |      | m      | 8           |        |        |            |            | 392       | :           |       |
| Extract Metals, Nitric  | Selenium           | (CP-MS     | <b>6</b> /6n  | ٠    | t.             |      | v      | 7           |        |        |            | v<br>***** | 86.88     | ;           | 100%  |
| Extract Metals, Nitric  | Vanadium           | ICP-MS     | ₿/₿n          |      | •              |      | 63     | ₽ <u>8</u>  |        |        |            |            | 382       | ;           |       |
| Extract Metals, Gastric | Antimony           | (CP-MS     | 6/6n          |      | 2850           |      | e,     | 294         |        | 2      |            | ****       | 3.37      | :           |       |
| Extract Metals, Gastric | Arsenic            | ICP-MS     | 6/6n          | ٧    | Š              |      | ۸ ک    | 2.465       |        |        |            | v<br>****  | 2.46      | ;           | 100%  |
| Extract Metals, Gastric | Barium             | ICP-MS     | 8/6n          |      | R              |      | 7      | 4.          |        |        |            | 333352     | 214       | ;           |       |
|                         |                    |            |               | Stac | Stack - Page 5 | je 5 |        |             |        |        |            |            |           |             |       |

Gas Stream Data

| Analyte                 |            | Analytical |                       | Run                                     | <b></b>       | re.                                   | Run      |            |              | <b>%</b> 96 | 占        |
|-------------------------|------------|------------|-----------------------|-----------------------------------------|---------------|---------------------------------------|----------|------------|--------------|-------------|----------|
| Group                   | Specie     |            | Units                 | -                                       | Į             | 2                                     | 60       | V          | Average      | 5           | Ratio    |
|                         |            |            | 8                     | \$4000000000000000000000000000000000000 |               | •                                     |          |            |              |             |          |
| Extract Metals, Gastric | Beryllum   | ICP-MS     |                       |                                         | 4             | 96                                    |          |            | 4.20         | :           |          |
| Extract Metals, Gastric | Boron      | ICP-MS     | 5/6n                  | 82                                      | •             | 147                                   | R        |            | 147          | :           |          |
| Extract Metals, Gastric | Cadmium    | ICP-MS     | 5,60                  | F. 5.                                   |               | 12                                    |          |            | 12.40        | :           |          |
| Extract Metals, Gastric | Chromium   | ICP-MS     | 5/6n                  | 7                                       |               | 85                                    | £        |            | 84.69        | :           |          |
| Extract Metals, Gastric | Cobalt     | ICP-MS     | 6/6n                  | 14.75                                   |               | 1                                     | 147      |            | 10.92        | :           |          |
| Extract Metals, Gastric | Copper     | ICP-MS     | <b>5/0</b> n          |                                         |               | 51                                    | X        |            | 51.26        | ;           |          |
| Extract Metals, Gastric | read       | ICP-MS     | 6, <b>6</b> n         | 2                                       |               | 99                                    | 97.7     |            | 65.75        | ;           |          |
| Extract Metals, Gastric | Manganese  | ICP-MS     | 6/ <b>6</b> n         | 87.                                     | .,            | 349                                   | ¥        |            | 340          | ;           |          |
| Extract Metals, Gastric | Mercuny    | ICP-MS     | B/Bn                  | 2200                                    | o<br>v        | 149                                   | 6500     | v          | 0.15         | :           | 100%     |
| Extract Metals, Gastric | Molybdenum | ICP-MS     | <i>5</i> /9n          | -                                       |               | €                                     |          |            | 48.58        | :           |          |
| Extract Metals, Gastric | Nickel     | ICP-MS     | 6/ <b>6</b> n         |                                         | •             | 8                                     | 9770     |            | 169          | ;           |          |
| Extract Metals, Gastric | Selenium   | ICP-MS     | 6/6n                  | 2                                       | •             | 5                                     | 278      |            | <del>1</del> | ;           |          |
| Extract Metals, Gastric | Vanadium   | ICP-MS     | 6/6n                  | 1986                                    | ۸<br><u>۱</u> | 304                                   | 975 0    | v          | 1.30         | ;           | 100%     |
|                         |            | :          | *                     |                                         | (             | , , , , , , , , , , , , , , , , , , , |          |            |              |             | į        |
| Extract Metals, Acetic  | Antimony   | ICP-MS     | <br>68                | 100                                     | o<br>v        | 4                                     | 2100     | v          | 0.03         | :           | 10%<br>% |
| Extract Metals, Acetic  | Arsenic    | ICP-MS     | <b>6</b> / <b>9</b> 1 | 97                                      | o<br>v        | 497                                   | 73.0     | v          | 0.50         | ;           | 100%     |
| Extract Metals, Acetic  | Barium     | ICP-MS     | 6/6n                  | 28                                      |               | 17                                    | æ        |            | 17.20        | ;           |          |
| Extract Metals, Acetic  | Beryllium  | ICP-MS     | 6/6n                  | 2.148                                   | 8             | .907                                  | 2.774    |            | 2.91         | ;           |          |
| Extract Metals, Acetic  | Boron      | ICP-MS     | <br>5/8n              | 450                                     | v             | .82                                   | ij       | v          | 0.82         | ;           | 100%     |
| Extract Metals, Acetic  | Cadmium    | ICP-MS     | 5/6n                  | 2326                                    | ιń            | 916                                   | 25.00    |            | 5.92         | :           |          |
| Extract Metals, Acetic  | Chromium   | ICP-MS     | 6/ <b>6</b> n         | 90                                      |               | 36                                    | 57       |            | 36.41        | :           |          |
| Extract Metals, Acetic  | Cobalt     | ICP-MS     | 6/6n                  | 127                                     | 7             | .465                                  | 404      |            | 7.47         | ;           |          |
| Extract Metals, Acetic  | Copper     | ICP-MS     | <b>6/6</b> n          | 2                                       |               | 2                                     | 7        |            | 63.85        | ;           |          |
| Extract Metals, Acetic  | read       | ICP-MS     | 5/ <b>6</b> n         | 5000                                    | ×             | .033                                  | c Other  |            | 20.03        | ;           |          |
| Extract Metals, Acetic  | Manganese  | ICP-MS     |                       | <b>25.</b>                              | •             | 470                                   | 62       |            | 470          | ;           |          |
| Extract Metals, Acetic  | Mercury    | ICP-MS     | 5/50                  | 7910                                    | ο<br>ν        | 384                                   | \$10 · · | v          | 0.38         | :           | 100%     |
| Extract Metals, Acetic  | Molybdenum | ICP-MS     | 6/6n                  | 2667                                    | m             | 454                                   | 6,267    |            | 3.45         | :           |          |
| Extract Metals, Acetic  | Nickel     | ICP-MS     | 5/6n                  | **                                      |               | 99                                    | R        |            | 66.17        | :           |          |
| Extract Metals, Acetic  | Selenium   | ICP-MS     | 6/ <b>6</b> n         |                                         |               | 61                                    |          |            | 61.21        | ;           |          |
| Extract Melals, Acetic  | Vanadium   | ICP-MS     | 6/6n                  | •                                       | v             | .185                                  | ••       | <b>v</b> , | 0.19         | ;           | 100%     |
|                         |            |            |                       |                                         |               |                                       |          |            |              |             |          |

SAMPLE STREAM: STACK

SAMPLE STREAM: STACK

| Analyte                  |                            | Analytical |        |     | Run            |   | Run    |     | Run             |   |                 | <b>%96</b> | ಕ     |
|--------------------------|----------------------------|------------|--------|-----|----------------|---|--------|-----|-----------------|---|-----------------|------------|-------|
| Group                    | Specie                     | Method     | Units  |     | +              |   | 2      |     | 60              |   | Average         | ᇙ          | Ratio |
| Aldehydes                | Acetaldehyde               | BIF-0011   | ug/Nm3 |     | 4.78           |   | 12.07  |     | 9.38            |   | 8.74            | 9.16       |       |
| Aldehydes                | Fomaldehyde                | BIF-0011   | ug/Nm3 |     | 40.43          |   | 17.04  |     | 14.79           |   | 24              | ક્ષ        |       |
| Organics, Semi-Volatiles | 1,2,4,5-Tetrachlorobenzene | SW 8270    | ng/Nm3 | ٧   | 192            | ٧ | 192    | ٧   | 621             | ٧ | 171             | ;          | 100%  |
| Organics, Semi-Volatiles | 1,2,4-Trichlorobenzene     | SW 8270    | ng/Nm3 | v   | 961            | v | 961    | v   | <del>2</del> 61 | v | 196             | ;          | 100%  |
| Organics, Semi-Volatiles | 1,2-Dichlorobenzene        | SW 8270    | ng/Nm3 | ٧   | 259            | v | 259    | ٧   | 211             | ٧ | 243             | ;          | 100%  |
| Organics, Semi-Volatiles | 1,2-Diphenylhydrazine      | SW 8270    | ng/Nm3 | ٧   | 33,190         | v | 33,190 | ٧   | 33,190          | ٧ | 33,190          | :          | 100%  |
| Organics, Semi-Volatiles | 1,3-Dichlorobenzene        | SW 8270    | ng/Nm3 | v   | 131            | v | 131    | ٧   | 238             | v | 167             | ;          | 100%  |
| Organics, Semi-Volatiles | 1,4-Dichlorobenzene        | SW 8270    | ng/Nm3 | ٧   | <b>568</b>     | v | 268    | V   | 561             | v | 244             | ;          | 100%  |
| Organics, Semi-Volatiles | 1-Chloronaphthalene        | SW 8270    | ng/Nm3 | ٧   | 214            | ٧ | 214    | . 🗸 | 178             | v | 202             | :          | 100%  |
| Organics, Semi-Volatiles | 1-Naphthylamine            | SW 8270    | ng/Nm3 | ٧   | 518            | v | 518    | ٧   | 674             | ٧ | 570             | :          | 100%  |
| Organics, Semi-Volatiles | 2,3,4,6-Tetrachiorophenol  | SW 8270    | ng/Nm3 | ٧   | 167            | v | 167    | ٧   | 154             | v | <del>1</del> 83 | ;          | 100%  |
| Organics, Semi-Volatiles | 2,4,5-Trichlorophenol      | SW 8270    | ng/Nm3 | v   | 110            | ٧ | 110    | ٧   | 169             | v | 129             | :          | 100%  |
| Organics, Semi-Volatiles | 2,4,6-Trichlorophenol      | SW 8270    | ng/Nm3 | ٧   | 116            | v | 116    | v   | 168             | v | 133             | :          | 100%  |
| Organics, Semi-Volatiles | 2,4-Dichlorophenol         | SW 8270    | ng/Nm3 | ٧   | 147            | ٧ | 147    | v   | 189             | • | 161             | ;          | 100%  |
| Organics, Semi-Volatiles | 2,4-Dimethytphenol         | SW 8270    | ng/Nm3 | ٧   | 365            | v | 365    | v   | 431             | v | 387             | ;          | 100%  |
| Organics, Semi-Volatiles | 2,4-Dinitrophenol          | SW 8270    | ng/Nm3 | ٧   | 2,323          | v | 2,323  | ٧   | 1,387           | v | 2,011           | ;          | 100%  |
| Organics, Semi-Volatiles | 2,4-Dinitrotoluene         | SW 8270    | ng/Nm3 | ٧   | 183            | ٧ | 183    | v   | 961             | v | 187             | :          | 100%  |
| Organics, Semi-Volatiles | 2,6-Dichlorophenol         | SW 8270    | ng/Nm3 | ٧   | 240            | ٧ | 240    | v   | 170             | v | 217             | ;          | 100%  |
| Organics, Semi-Votatiles | 2,6-Dinitrotoluene         | SW 8270    | ng/Nm3 | ٧   | 115            | v | 115    | ٧   | 286             | ٧ | 172             | :          | 100%  |
| Organics, Semi-Volatiles | 2-Chloronaphthalene        | SW 8270    | ng/Nm3 | ٧   | 108            | v | 108    | ٧   | 130             | v | 115             | :          | 100%  |
| Organics, Semi-Volatiles | 2-Chlorophenol             | SW 8270    | ng/Nm3 | ٧   | 254            | v | 254    | ٧   | 211             | ٧ | 239             | ;          | 100%  |
| Organics, Semi-Volatiles | 2-Methylnaphthalene        | SW 8270    | ng/Nm3 | ٧   | 219            | v | 219    | ٧   | 121             | v | 186             | :          | 100%  |
| Organics, Semi-Volatiles | 2-Methylphenol(o-cresol)   | SW 8270    | ng/Nm3 |     | 1,404          |   | 4,414  |     | 3,034           |   | 2,951           | 3,744      |       |
| Organics, Semi-Volatiles | 2-Naphthylamine            | SW 8270    | ng/Nm3 | v   | 647            | ٧ | 647    | v   | 53.             | ٧ | 808             | :          | 100%  |
| Organics, Semi-Volatiles | 2-Nitroanlline             | SW 8270    | ng/Nm3 | ٧   | 133            | v | 133    | ٧   | 230             | ٧ | 162             | :          | 100%  |
| Organics, Semi-Volatiles | 2-Nitrophenol              | SW 8270    | ng/Nm3 | v   | 146            | v | 146    | ٧   | 173             | v | 155             | :          | 100%  |
| Organics, Semi-Volatiles | 2-Picoline                 | SW 8270    | ng/Nm3 | ٧   | 362            | v | 362    | v   | 274             | v | 333             | ;          | 100%  |
| Organics, Semi-Volatiles | 3,3'-Dichlorobenzidine     | SW 8270    | ng/Nm3 | ٧   | <del>1</del> ය | ٧ | 163    | v   | 111             | v | 145             | ;          | 100%  |
| Organics, Semi-Volatiles | 3-Methylcholanthrene       | SW 8270    | ng/Nm3 | v   | <b>790</b>     | v | 200    | v   | <b>16</b> 6     | ٧ | 523             | :          | 100%  |
| Organics, Semi-Volatiles | 3-Nitroantline             | SW 8270    | ng/Nm3 | ٧   | 189            | ٧ | 169    | v   | 130             | v | <del>2</del> 5  | :          | 100%  |
|                          |                            |            |        | Sta | Stack - Page 7 |   |        |     |                 |   |                 |            |       |
| F                        |                            |            |        |     | •              |   |        |     |                 |   |                 |            |       |

SAMPLE STREAM: STACK

| Analyte                  |                                | Analytical |        |   | Run       |   | Run     |   | Run          |   |                 | 85%         | 占     |
|--------------------------|--------------------------------|------------|--------|---|-----------|---|---------|---|--------------|---|-----------------|-------------|-------|
| Group                    | Specie                         | Method     | Units  |   | +         |   | 2       |   | 6            |   | Average         | ਠ           | Ratio |
| Ordanics, Semi-Volatiles | 4,6-Dinitro-2-methylphenol     | SW 8270    | ng/Nm3 | v | 263       | v | 263     | v | 143          | v | 223             | :           | 400%  |
| Organics, Semi-Volatiles | 4-Aminobiphenyl                | SW 8270    | ng/Nm3 | ٧ | 248       | v | 248     | v | 395          | ٧ | 297             | :           | 100%  |
| Organics, Semi-Volatiles | 4-Bromophenyl phenyl           | SW 8270    | ng/Nm3 | v | 151       | v | 151     | v | 161          | • | 154             | ;           | 100%  |
| Organics, Semi-Volatiles | 4-Chioro-3-methylphenol        | SW 8270    | ng/Nm3 | v | 240       | v | 240     | v | 171          | v | 217             | ;           | 100%  |
| Organics, Semi-Volatiles | 4-Chlorophenyl phenyl ether    | SW 8270    | ng/Nm3 | ٧ | 175       | v | 175     | v | 40           | v | <del>1</del> හි | ;           | 100%  |
| Organics, Semi-Volatiles | 4-Methylphenol(p-cresol)       | SW 8270    | ng/Nm3 |   | 1,314     |   | 1,494   | v | 152          |   | 961             | 1,917       | 3%    |
| Organics, Semi-Volatiles | 4-Nitroaniline                 | SW 8270    | ng/Nm3 | ٧ | 161       | ٧ | 161     | v | 201          | V | 174             | :           | 100%  |
| Organics, Semi-Volatiles | 4-Nitrophenol                  | SW 8270    | ng/Nm3 | ٧ | 229       | v | 229     | v | 311          | v | 257             | :           | 100%  |
| Organics, Semi-Volatiles | 7,12-Dimethylbenz(a)anthracene | SW 8270    | ng/Nm3 | v | 637       | v | 637     | v | <del>1</del> | v | 572             |             | 100%  |
| Organics, Semi-Volatiles | Acenaphthene                   | SW 8270    | ng/Nm3 | ٧ | 159       | v | 159     | ٧ | <b>6</b> 6   | v | 136             | ;           | 100%  |
| Organics, Semf-Volatiles | Acenaphthylene                 | SW 8270    | ng/Nm3 | ٧ | 75        | v | 75      | v | 139          | v | 96              | :           | 100%  |
| Organics, Semi-Volatiles | Acetophenone                   | SW 8270    | ng/Nm3 |   | 2,967     |   | 3,518   |   | 3,385        |   | 3,290           | 714         |       |
| Organics, Semi-Volatiles | Aniline                        | SW 8270    | ng/Nm3 | ٧ | 310       | v | 310     | v | 204          | ٧ | 275             | ;           | 100%  |
| Organics, Semi-Volatiles | Anthracene                     | SW 8270    | ng/Nm3 | ٧ | 193       | v | 193     | v | 122          | v | 169             | :           | 100%  |
| Organics, Semi-Volatiles | Benzidine                      | SW 8270    | ng/Nm3 | v | 6,638     | v | 6,638   | v | 6,638        | v | 6,638           | :           | 100%  |
| Organics, Semi-Volatiles | Benzo(a)anthracene             | SW 8270    | ng/Nm3 | ٧ | 171       | v | 171     | ٧ | 149          | v | 164             | :           | 100%  |
| Organics, Semi-Volatiles | Benzo(a)pyrene                 | SW 8270    | ng/Nm3 | v | 127       | v | 127     | v | 172          | ٧ | 142             | ;           | 100%  |
| Organics, Semi-Volatiles | Benzo(b)fluoranthene           | SW 8270    | ng/Nm3 | v | 189       | v | 189     | v | 301          | v | 226             | ;           | 100%  |
| Organics, Semi-Volatiles | Benzo(g,h,i)perylene           | SW 8270    | ng/Nm3 | v | 162       | v | 162     | • | 339          | V | 521             | :           | 100%  |
| Organics, Semi-Volatiles | Benzo(k)fluoranthene           | SW 8270    | ng/Nm3 | v | 321       | v | 321     | v | 332          | v | 325             | ;           | 100%  |
| Organics, Semi-Volatiles | Benzoic acid                   | SW 8270    | ng/Nm3 |   | 120,481   |   | 116,498 |   | 118,821      |   | 118,600         | 4,970       |       |
| Organics, Semi-Volatiles | Benzyl alcohol                 | SW 8270    | ng/Nm3 |   | 8,098     | v | 358     | v | 202          |   | 2,793           | 11,415      | 3%    |
| Organics, Semi-Volatiles | Butylbenzytphthalate           | SW 8270    | ng/Nm3 |   | 325       |   | 335     |   | 243          |   | 301             | 52          |       |
| Organics, Semi-Volatiles | Chrysene                       | SW 8270    | ng/Nm3 | v | 222       | v | 222     | v | 178          | V | 207             | ;           | 100%  |
| Organics, Semi-Volatiles | Di-n-octylphthalate            | SW 8270    | ng/Nm3 | v | 302       | v | 302     | v | 117          | v | 241             | ;           | 100%  |
| Organics, Semi-Volatiles | Dibenz(a,h)anthracene          | SW 8270    | ng/Nm3 | v | 157       | v | 157     | v | 569          | ٧ | <del>2</del> 81 | :           | 100%  |
| Ordanics, Semi-Volatiles | Dibenz(a,j)acridine            | SW 8270    | ng/Nm3 | v | 193       | v | 193     | v | 279          | ٧ | 222             | ;           | 100%  |
| Organics, Semi-Volatiles | Dibenzofuran                   | SW 8270    | ng/Nm3 | v | 135       | v | 135     | v | 178          | v | 150             | :           | 100%  |
| Organics, Semi-Volatiles | DibutyAphthalate               | SW 8270    | ng/Nm3 |   | 253       |   | 208     | v | 901          |   | 172             | <b>5</b> 60 | 10%   |
| Organics, Semi-Volatiles | Diethylphthalate               | SW 8270    | ng/Nm3 |   | 298       |   | 194     |   | 213          |   | 235             | 137         |       |
| Organics, Semi-Volatiles | Dimethylphenethylamine         | SW 8270    | ng/Nm3 | v | 39,828    | v | 39,828  | v | 39,828       | v | 39,828          | ;           | 100%  |
|                          |                                |            |        | Ü | O AND AND |   |         |   |              |   |                 |             |       |

SAMPLE STREAM: STACK

| Analytical | - Air      |   | Run         |   | Run<br>2        |   | Run        | Average               | % E | Ratio        |
|------------|------------|---|-------------|---|-----------------|---|------------|-----------------------|-----|--------------|
|            |            |   | •           |   | 4               |   |            | Salar V               |     |              |
| SW 8270    | 270 ng/Nm3 | ٧ | 83          | v | 93              |   | 435        | 176                   | 222 | 18%          |
| SW 8270    |            | v | 175         | v | 175             | v | 92         | > 147                 | ;   | 100%         |
| SW 8270    | ng/Nm3     | v | 167         | v | 167             | v | <b>5</b> 2 | <ul><li>186</li></ul> | ;   | 100%         |
| SW 8270    | ng/Nm3     | ٧ | 212         | v | 212             | v | 156        | < 193                 | :   | 100%         |
| SW 8270    | ng/Nm3     | v | 112         | v | 112             | v | 82         | > 116                 | 1   | 100%         |
| SW 8270    | ng/Nm3     | v | 78          | v | 78              | v | 2          | > 87                  | :   | 100%         |
| SW 8270    | ng/Nm3     | v | 232         | v | 232             | v | 021        | < 211                 |     | 100%         |
| SW 8270    | ng/Nm3     | v | 2,961       | v | 2,961           | v | .955       | < 2,625               | ;   | 100%         |
| SW 8270    | ng/Nm3     | v | 197         | v | 197             | v | 211        | > 202                 |     | 100%         |
| SW 8270    | ng/Nm3     | ٧ | 174         | v | 174             | v | <b>4</b>   | > 263                 | ;   | 100%         |
| SW 8270    | ng/Nm3     | v | 8           | v | 88              | v | 204        | < 132                 |     | 100%         |
| SW 8270    | ng/Nm3     | v | 16,595      | v | 16,595          | v | 3,595      | < 16,595              | ;   | 100%         |
| SW 8270    | ng/Nm3     | v | 435         | v | 435             | v | 506        | < 359                 |     | 100%         |
| SW 8270    | ng/Nm3     | v | 4           | v | <del>1</del>    | v | 261        | > 381                 |     | 100%         |
| SW 8270    | ng/Nm3     | v | 188         | v | 188             | v | 68         | < 155                 | :   | 100%         |
| SW 8270    | ng/Nm3     | ٧ | 249         | v | 249             | v | 217        | < 239                 |     | 100%         |
| SW 8270    | ng/Nm3     | v | 313         | v | 313             | v | 96         | < 275                 |     | 100%         |
| SW 8270    | ng/Nm3     |   | 1,955       |   | 1,470           | _ | .175       | 1,533                 |     |              |
| SW 8270    | ng/Nm3     | v | 175         | v | 175             | v | 279        | < 210                 |     | 100%         |
| SW 8270    | ng/Nm3     | v | 147         | v | 147             | v | 124        | × 139                 |     | 100%         |
| SW 8270    | ng/Nm3     | v | 289         | v | 282             | v | 458        | < 611                 |     | 100%         |
| SW 8270    | ng/Nm3     | v | 287         | v | 287             | v | 295        | × 230                 |     | 100%         |
| SW 8270    | ng/Nm3     | v | 179         | v | 179             | v | 128        | × 162                 | :   | 100%         |
| SW 8270    | ng/Nm3     | v | <b>50</b> 6 | v | 206             | v | 35         | ×<br>\$               |     | 100%         |
| SW 8270    | ng/Nm3     |   | 5,277       | • | 11,417          | _ | 1,285      | 9,326                 | w   |              |
| SW 8270    | ng/Nm3     | ٧ | 245         | v | 245             | v | 80         | × 190                 | :   | 100%         |
| SW 8270    | ng/Nm3     | v | 155         | v | <del>1</del> 35 | v | 135        | ۰<br>149              | ;   | 100%         |
| SW 8270    | ng/Nm3     | v | 385         | v | 385             | v | 35         | < 322                 | :   | 100 <b>%</b> |
| SW 8270    | ng/Nm3     | v | 187         | v | 187             | v | 201        | < 191                 | ;   | 100%         |
| SW 8270    | na/Nm3     | v | 243         | v | 243             | v | 127        | ^<br>24               | ;   | 100%         |
| SW 8270    | ) b        | ٧ | 241         | v | 241             | v | 265        | < 249                 | :   | 100%         |
|            | ng/Nm3     |   |             |   |                 |   |            |                       |     |              |

| ξK     |
|--------|
| I: STA |
| IREAN  |
| PLE SI |
| SAM    |

| Analyte                  |                                                                   | Analytical |                      |     | Run                                     |     | Run     |     | Run        |     |           | %<br>306 | 占         |
|--------------------------|-------------------------------------------------------------------|------------|----------------------|-----|-----------------------------------------|-----|---------|-----|------------|-----|-----------|----------|-----------|
| Group                    | Specie                                                            | Method     | Units                |     | -                                       |     | 2       |     | 8          | ;   | Average   | ਹ        | Ratio     |
| aditaly/, imag animany   | hie(2,Fthulhewd)nhthalate                                         | SW R270    | pg/Nm3               |     | 2005                                    |     | 080     |     | 1.019      |     | 1.374     | 1360     |           |
| Ordenics, com-vomice     |                                                                   | CW 8270    | nd/Nm3               | ٧   | 86                                      | v   | 186     | ٧   | 247        | ٧   | 900       | :        | 100%      |
| Organics, Semi-Volatiles | p-Dimethylaminoazobenzene                                         | SW 8270    | ng/Nm3               | · v | 171                                     | v   | 171     | v   | 241        | v   | <u>\$</u> | ,        | 100%      |
|                          |                                                                   | 0700       | 6.4                  |     | ó                                       |     | Ē       | ,   | 572        |     | 673       | 807      | 74        |
| Organics, Volatile       | 1.1.1-Incincionalisme                                             | SVV 0240   | CHING                | ,   | - Se - Se - Se - Se - Se - Se - Se - Se | •   | 1.1     | , , | £ 55       | ٧   | 202       | 3 :      | 1004<br>W |
| Organics, volatile       | 1, 1, 2, 2-1 ett aci ikki vett lät lä<br>4, 4, 2, Trickforoathona | SW 8240    | Cillingian<br>SmM/po | / V | £ 64                                    | , v | 23 82   | · • | 545        | · • | 527       | ;        | 200       |
| Organics, Volatile       | 1.1-Dichloroethane                                                | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | 545        | v   | 527       | ;        | 100%      |
| Ordanics, Volatile       | 1,1-Dichloroethene                                                | SW 8240    | ng/Nm3               | ٧   | 497                                     | v   | 538     | v   | 545        | v   | 527       | ;        | 400%      |
| Organics, Volatile       | 1,2-Dichlorobenzene                                               | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | ٧   | 545        | ٧   | 227       | :        | 100%      |
| Organics, Volatile       | 1,2-Dichloroethane                                                | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | 545        | •   | 272       | :        | 100%      |
| Organics, Volatile       | 1,2-Dichlaropropane                                               | SW 8240    | ng/Nm3               | v   | 497                                     | ٧   | 538     | v   | 545        | •   | 527       | •        | 100%      |
| Organics, Volatile       | 1,3-Dichlorobenzene                                               | SW 8240    | ng/Nm3               | ٧   | 497                                     | v   | 538     | v   | 545        | v   | 27        | •        | 100%      |
| Organics, Volatile       | 1,4-Dichlorobenzene                                               | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | 545        | v   | 527       | ;        | 100%      |
| Organics, Volatile       | 2-Butanone                                                        | SW 8240    | ng/Nm3               | ٧   | 2,485                                   | v   | 2,690   | v   | 2,725      | v   | 2,633     | :        | 100%      |
| Organics, Volatile       | 2-Hexanone                                                        | SW 8240    | ng/Nm3               | ٧   | 2,485                                   | v   | 2,690   | v   | 2,725      | v   | 2,633     | :        | 100%      |
| Organics, Volatile       | 4-Methyl-2-Pentanone                                              | SW 8240    | ng/Nm3               | ٧   | 2,485                                   | v   | 2,690   | v   | 2,725      | v   | 2,633     | ;        | 100%      |
| Organics, Volatile       | Acetone                                                           | SW 8240    | ng/Nm3               |     | 2,965                                   | v   | 2,690   |     | 6,341      |     | 3,550     | 6,332    | 13%       |
| Organics, Volatile       | Benzene                                                           | SW 8240    | ng/Nm3               |     | 1,153                                   |     | 1,329   |     | 1,435      |     | 1,306     | 355      |           |
| Organics, Volatile       | Bromodichloromethane                                              | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | 545        | •   | 527       | :        | 100%      |
| Organics, Volatife       | Bromoform                                                         | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | 545        | v   | 272       | ;        | 100%      |
| Organics, Volatile       | Bromomethane                                                      | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | 545        | v   | 527       | :        | 100%      |
| Organics, Volatile       | Carbon Disulfide                                                  | SW 8240    | ng/Nm3               |     | 1,978                                   |     | 2,797   |     | 1,998      |     | 2,258     | 1,160    |           |
| Organics, Volatile       | Carbon Tetrachloride                                              | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | •   | 545        | •   | 27        | :        | 100%      |
| Organics, Volatile       | Chiorobenzene                                                     | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | <b>5</b> 2 | V   | 527       | ;        | 100%      |
| Organics, Volatile       | Chloroethane                                                      | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | 545        | v   | 527       | :        | 100%      |
| Organics, Volatile       | Chloroform                                                        | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | 545        | v   | 527       | ;        | 100%      |
| Organics, Volatile       | Chloromethane                                                     | SW 8240    | ng/Nm3               |     | 7,880                                   |     | 10,034  | v   | 545        |     | 6,062     | 12,741   | %         |
| Organics, Volatile       | Dibromochloromethane                                              | SW 8240    | ng/Nm3               | v   | 497                                     | v   | 538     | v   | 545        | v   | 27        | ;        | 100%      |
| Organics, Volatile       | Ethyl Benzene                                                     | SW 8240    | ng/Nm3               | ٧   | 497                                     | v   | 538     | v   | 545        | ¥   | 527       | ;        | 100%      |
| Organics, Volatile       | Methylene Chloride                                                | SW 8240    | ng/Nm3               |     | 242,946                                 |     | 110,653 |     | 22,912     |     | 125,503   | 275,181  |           |
|                          |                                                                   |            |                      | Sta | Stack - Page 10                         | _   |         |     |            |     |           |          |           |
|                          |                                                                   |            |                      |     |                                         |     |         |     |            |     |           |          |           |

SAMPLE STREAM: STACK

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | Analytical     |          |   | Run      |    |     | Run    |   | Run              |          |         | <b>%96</b> | 占     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|----------|---|----------|----|-----|--------|---|------------------|----------|---------|------------|-------|
| Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Specie                    | Method         | Units    |   | -        |    |     | 2      |   |                  |          | Average | ਹ          | Ratio |
| ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i                         |                |          | , |          |    | ,   | Ş      | , | Ų                | ,        | Ş       |            | 7004  |
| Organics, Volatife                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Styrene                   | SW 824U        | DQ/NH2   | v | ŧ,       |    | v   | 8      | , | 2                | •        | 75.     | :          | 8     |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tetrachloroethene         | SW 8240        | ng/Nm3   |   | 2,494    |    |     | 664    |   | 1,272            |          | 1,477   | 2,315      |       |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Toluene                   | SW 8240        | ng/Nm3   |   | 1,989    |    |     | 2,474  |   | 1,670            |          | 2,044   | 1,006      |       |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trichtoroethene           | SW 8240        | ng/Nm3   | v | 497      |    | v   | 538    | v | <b>3</b> 5       | ٧        | 527     | :          | 100%  |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trichlorofluoromethane    | SW 8240        | ng/Nm3   |   | 741      |    |     | 1,919  |   | 069              |          | 1,117   | 1,727      |       |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vinyl Acetate             | SW 8240        | ng/Nm3   | v | 2,485    |    | v   | 2,690  | ٧ | 2,725            | v        | 2,633   | ;          | 100%  |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vinyl Chloride            | SW 8240        | ng/Nm3   | ٧ | 497      |    | v   | 538    | ٧ | 545              | V        | 527     | :          | 100%  |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cis-1,3-Dichtoropropene   | SW 8240        | ng/Nm3   | ٧ | 497      |    | v   | 538    | ٧ | 545              | ٧        | 527     | :          | 100%  |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m,p-Xylene                | SW 8240        | ng/Nm3   | v | 544      |    | v   | 538    | ٧ | 545              | ٧        | 542     | :          | 100%  |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o-Xylene                  | SW 8240        | ng/Nm3   | v | 497      |    | v   | 538    | ٧ | 545              | V        | 527     | :          | 100%  |
| Organics, Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trans-1,2-Dichloroethene  | SW 8240        | ng/Nm3   | ٧ | 497      |    | v   | 538    | v | 545              | ٧        | 527     | i          | 100%  |
| Organics, Volatite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trans-1,3-Dichloropropene | SW 8240        | ng/Nm3   | v | 497      |    | v   | 538    | ٧ | 5 <del>7</del> 5 | ٧        | 527     | :          | 100%  |
| Ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000-01 8738 CC            | 0 <b>71</b> 00 | pa(Nim3  | • | 0.0067   |    | _   | 0.0656 | ٧ | 89000            | ٧        | 0.0364  | ;          | 100%  |
| Distribution of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of | 700-11 9537607            | 3400 an        | Curley . | į | 0.0067   |    |     | 0230   |   | 0.0034           | •        | 0.0330  |            | 5300  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12346/8-HpCDF             | HK-GCMS        | ng/Nm3   |   | 0.000    |    | ٠ ر | 0.020  |   | 0.0034           | V        | 0.0230  | :          | R S   |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123478-HxCDD              | HR-GCMS        | ng/Nm3   | ٧ | 0.0067   |    | v   | 0.0328 | ٧ | 0.0068           | <b>v</b> | 0.0154  | ;          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123478-HxCDF              | HR-GCMS        | ng/Nm3   |   | 0.0020   |    | v   | 0.0164 | v | 0.0034           | •        | 0.0164  | :          | 83%   |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1234789-HpCDF             | HR-GCMS        | ng/Nm3   | ٧ | 0.0067   |    | v   | .0328  | ٧ | 0.0068           | ٧        | 0.0154  | :          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123678-HxCDD              | HR-GCMS        | ng/Nm3   | v | 0.0034   |    | v   | .0230  | ٧ | 0.0034           | ٧        | 6600'0  | :          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123678-HxCDF              | HR-GCMS        | ng/Nm3   | v | 0.0020   |    | v   | 0.0131 | v | 0.0024           | v        | 0.0058  | ;          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12378-PeCDD               | HR-GCMS        | ng/Nm3   | v | 0.0020   |    | v   | 8600.  | ٧ | 0.0024           | ٧        | 0.0047  | ;          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12378-PeCDF               | HR-GCMS        | ng/Nm3   | v | 0.0013   |    | v   | 9900.0 | ٧ | 0.0017           | •        | 0.0032  | ;          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123789-HxCDD              | HR-GCMS        | ng/Nm3   | v | 0.0034   |    | v   | .0295  | v | 0.0034           | v        | 0.0121  | ;          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123789-HxCDF              | HR-GCMS        | ng/Nm3   | ٧ | 0.0034   |    | v   | .0197  | v | 0.0034           | ٧        | 0.0088  | ;          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 234678-HxCDF              | HR-GCMS        | ng/Nm3   |   | 0.0034   |    | v   | .0164  |   | 0.0030           | ٧        | 0.0164  | :          | 26%   |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23478-PeCDF               | HR-GCMS        | ng/Nm3   | v | 0.0013   |    | v   | 99001  | v | 0.0017           | v        | 0.0032  | ;          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2378-TCDD                 | HR-GCMS        | ng/Nm3   | v | 0.0017   |    | v   | 9900'0 | v | 0.0017           | •        | 0.0033  | :          | 100%  |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2378-TCDF                 | HR-GCMS        | ng/Nm3   |   | 0.0020   | Σ  | v   | 0.0033 |   | 0.0017           | ٧        | 0.0033  | :          | 31%   |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ocpo                      | HR-GCMS        | ng/Nm3   |   | 0.0168   |    | v   | 0.1313 | v | 0.0102           | ٧        | 0.1313  | ;          | 81%   |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OCDF                      | HR-GCMS        | ng/Nm3   |   | 0.0168   |    | v   | 0.1313 |   | 0.0136 M         | <b>v</b> | 0.1313  | ;          | %8%   |
| Dioxins/Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total HpCDD               | HR-GCMS        | ng/Nm3   | v | 0.0067   |    | v   | 0.0656 | ٧ | 0.0068           | ٧        | 0.0264  | :          | 100%  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                |          | 7 | A. D. C. | 77 |     |        |   |                  |          |         |            |       |

Stack - Page 11

| STACK     |
|-----------|
| STREAM: S |
| SAMPLE    |

| DL<br>Ratio          | 59%<br>60%<br>56%<br>100%<br>64%<br>31%                                    |
|----------------------|----------------------------------------------------------------------------|
| 36%                  |                                                                            |
| Average              | 0.0295<br>0.0263<br>0.0164<br>0.0067<br>0.0067<br>0.0063                   |
|                      | v v v v v                                                                  |
| Run<br>3             | 0.0034<br>0.0034<br>0.0030<br>0.0024<br>0.0068<br>0.0068                   |
|                      | v v <b>v</b>                                                               |
| Run<br>2             | 0.0295<br>0.0263<br>0.0164<br>0.0098<br>0.0066<br>0.0066                   |
|                      | v v v v v v                                                                |
|                      | Z Z Z                                                                      |
| Ran +                | 0.0067<br>0.0101<br>0.0034<br>0.0023<br>0.0101<br>0.0101                   |
| Units                | ng/Nm3 ng/Nm3 ng/Nm3 ng/Nm3 ng/Nm3 ng/Nm3                                  |
| Analytical<br>Method | HR-GCMS HR-GCMS HR-GCMS HR-GCMS HR-GCMS HR-GCMS                            |
| <u> </u>             | Total HpCDF Total HxCDD Total HxCDF Total PeCDD Total PeCDF Total TCDD     |
| Analyte              | Dioxins/Furans Dioxins/Furans Dioxins/Furans Dioxins/Furans Dioxins/Furans |

Note: Shaded data invalid due to high background in filter substrate. Shaded data not used in calculation of average. M= Maximum Estimated Concentration

| Group Specie Anions Chloride Anions Fluoride Metals Atuminum | Method  | Units         | -      | 8      | 3.8    | 9d                                    | Average  | 5     | Ratio |
|--------------------------------------------------------------|---------|---------------|--------|--------|--------|---------------------------------------|----------|-------|-------|
| •                                                            |         |               |        |        |        |                                       |          |       |       |
| ·                                                            |         | ļ             | 2560   | 644    | 0000   | e e e e e e e e e e e e e e e e e e e | 1 350    | 217   |       |
|                                                              |         | 3             | 85     | 2      | 8      | 3                                     | 200.     |       |       |
|                                                              | D3761   | 6/6n          | 120    | 140    | 110    | 120                                   | 123      | 8     |       |
|                                                              | NAA.    | na/a          | 12.847 | 15,153 | 14,863 | 13,778                                | 14,287   | 3,121 |       |
|                                                              |         | D/On          | 0,77   | 0.56   | 0.52   | 0.49                                  | 0.62     | 0.33  |       |
| •                                                            |         | 5/85          | 3.00   | 3.00   | 3.00   | 3.00                                  | 3.00     |       |       |
|                                                              |         | 0,00          | 120    | 901    | 106    | 110                                   | 112      | 6     |       |
|                                                              |         | na/a          | 120    | 1.10   | 1.10   | 1.10                                  | 1.13     | 0.14  |       |
|                                                              | CPES    | 5/60          | 110    | 120    | 100    | 6                                     | 110      | 52    |       |
| _                                                            |         | 0/80          | 7.16   | 7.89   | 7.20   | 6.89                                  | 7.42     | 102   |       |
|                                                              |         | 0,00          | 0.700  | 0.200  | 0.700  | 0.200                                 | 0.533    | 0.717 |       |
|                                                              | INAA    | o/on          | 2,793  | 3,611  | 2,624  | 2,677                                 | 3,010    | 1,311 |       |
|                                                              |         | 6/6n          | 15.18  | 16.56  | 16.60  | 15.81                                 | 16.11    | 2.01  |       |
|                                                              |         | 5/50          | 1.10   | 1.21   | 1.20   | 1.15                                  | 1.17     | 0.16  |       |
|                                                              |         | 6/6n          | 1,169  | 1,180  | 1,269  | 1,427                                 | 1,206    | 136   |       |
| _                                                            | T INAA  | 0,6n          | 25.66  | 25.92  | 25.67  | 23.57                                 | 25.75    | 0.37  |       |
|                                                              |         | 6/6n          | 3.99   | 4.12   | 4.13   | 3.80                                  | 4.08     | 0.19  |       |
|                                                              |         | 0/6n          | 23.58  | 63.57  | 38.73  | 38.93                                 | 41.96    | 50.15 |       |
|                                                              |         | 5/6n          | 0.300  | 0.294  | 0.305  | 0.306                                 | 0.299    | 0.014 |       |
|                                                              |         | 6/6n          | 0.667  | 0.652  | 0.696  | 0.728                                 | 0.672    | 0.056 |       |
|                                                              |         | v 6/6n        | 2.09   | 1.99   | 1.94   | 1.05                                  | < 2.09   | :     | 21%   |
|                                                              |         | B/Bn          | 12,989 | 13,405 | 12,074 | 11,827                                | 12,823   | 1,69, |       |
| Metals Lanthanum                                             | _       | 5/6n          | 6.53   | 7.37   | 6.39   | 6.41                                  | 6.76     | 1.31  |       |
| Metals Lead                                                  |         | 5/6n          | 8:00   | 8.00   | 11.00  | 9:00                                  | 00:6     | 4.30  |       |
| _                                                            |         | <b>5/6</b> n  | 0.119  | 0.121  | 0.121  | 0.101                                 | 0.120    | 0.003 |       |
| _                                                            | INAA II | 6/6n          | 653    | 641    | 989    | 630                                   | 099      | 57.87 |       |
|                                                              | Se INAA | 6/6n          | 22.05  | 24.41  | 26.78  | 24.63                                 | 24.41    | 5.88  |       |
|                                                              | DGACVAA | 5/ <b>0</b> n | 0.040  | 0.040  | 0.050  | 0.040                                 | 0.043    | 0.014 |       |
| 2                                                            | INAA mr | <b>5/6</b> n  | 20.29  | 21.36  | 13.53  | 21.63                                 | 18.39    | 10.54 |       |
| Metals Neodymium                                             | INAA mi | 5/6n          | 7.09   | 9.32   | 7.50   | 11.38                                 | 7.97     | 2.95  |       |
| Metals                                                       | INAA    | 5/60          | 39.21  | 46.03  | 34.57  | 25.89                                 | 39.94    | 14.32 |       |
| Metals Phosphorus                                            |         | 6/6n          | 20     | 150    | 8      | 76                                    | <b>%</b> | 118   |       |
|                                                              | INAA.   | 6/6n          | 2,940  | 2,182  | 4,034  | 3,125                                 | 3,052    | 2,313 |       |
| Metals Rubidium                                              |         | 6/6n          | 19.71  | 22.53  | 20.40  | 19.57                                 | 20.88    | 3.66  |       |
|                                                              |         | המים          | 54.1   | 1.54   | 1.30   | 1.27                                  | 1.43     | 0.31  |       |

Raw Coal - Page 1

Solid Stream Data

| Specie         Method         Unital         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your         Your                                                                                                                                                       |               |          |                       |     | !     |   |          |   |        |   | Ċ      |   |          | 966              | 2     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-----------------------|-----|-------|---|----------|---|--------|---|--------|---|----------|------------------|-------|
| NAM         ug/g         5.19         3.29         3.23         3.10         3.24         0.12           GFAA         ug/g         2.00         2.00         3.00         2.00         2.33         1.43           NAA         ug/g         6.74         7.17         646         6.62         6.04            NAA         ug/g         6.74         7.17         646         6.20         6.00         2.00           NAA         ug/g         6.37         6.42         84.97         6.25         6.04            NAA         ug/g         0.37         0.186         0.20         0.20         0.20         0.20           NAA         ug/g         0.17         0.186         0.177         0.20         0.20         0.00           NAA         ug/g         0.17         0.186         0.177         0.174         0.179         0.008           NAA         ug/g         1.64         1.75         2.65         2.74         1.678                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ecie          | Method   | Units                 |     | - F   |   | <b>7</b> |   | ee.    |   | 39     |   | Average  | ទី ច             | Ratio |
| NAM         ugg         319         329         320         012           GFAA         ugg         2.00         2.00         0.15         2.00         0.13         1.43           GFAA         ugg         6.74         777         646         6.25         6.04         1.43           NAA         ugg         674         777         646         625         679         68.78           NAA         ugg         673         0.13         0.13         0.13         0.174         0.173         0.174           NAA         ugg         0.17         0.196         0.177         0.174         0.179         0.178           NAA         ugg         0.17         0.196         0.174         0.174         0.179         0.178           NAA         ugg         0.12         0.13         0.13         0.174         0.178         0.18           NAA         ugg         0.15         0.20         0.20         0.20         0.20         0.178           NAA         ugg         0.15         0.20         0.24         0.24         0.20         0.20           NAA         ugg         0.15         0.25         0.24                                                                                                                                                                                                                                                                |               |          |                       |     |       |   |          |   |        |   |        |   |          |                  |       |
| GFAA         ugiq         2.00         2.00         3.00         2.00         2.33         1.43           INAA         ugiq         6.039         < 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ndium         | ¥W.      | 6/6n                  |     | 3.19  |   | 3.29     |   | 3.23   |   | 3.10   |   | 3.24     | 0.12             |       |
| INAA         ugg          0.39         <         0.15          0.41            INAA         ugg         674         777         945         6.25         679         843           INAA         ugg         637         9425         643         6207         679         878           INAA         ugg         620         0.196         0.196         0.201         0.201         0.01           INAA         ugg         6.26         0.74         0.177         0.174         0.179         0.178         0.01           INAA         ugg         6.148         6.148         6.146         6.177         0.176         0.178         0.01           INAA         ugg         6.28         6.175         6.28         6.28         6.03         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.178         0.1                                                                                                                                                                                                                                | enium         | GFAA     | 5/6n                  |     | 2.00  |   | 2.00     |   | 3.00   |   | 2.00   |   | 2.33     | 1.43             |       |
| INAA         ugg         674         717         646         625         679         687           INAA         ugg         637         9425         649         620         679         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687         687 <td>ilver</td> <th>NAA</th> <th></th> <td></td> <td>0.39</td> <td>v</td> <td>0.69</td> <td>v</td> <td>0.15</td> <td>v</td> <td>0.62</td> <td>v</td> <td>0.41</td> <td>;</td> <td>100%</td>         | ilver         | NAA      |                       |     | 0.39  | v | 0.69     | v | 0.15   | v | 0.62   | v | 0.41     | ;                | 100%  |
| INAA         ugg         63.77         94.25         64.97         64.97         64.97         64.95         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.25         14.40         14.25         14                                                                                                                 | odium         | NA<br>A  | 5/đn                  |     | 674   |   | 717      |   | 646    |   | 625    |   | 679      | 88.78            |       |
| INAA         ugg         0.20         0.196         0.201         0.205         0.201         0.010           INAA         ugg         0.17         0.194         0.177         0.174         0.179         0.010           INAA         ugg         c         16.48         c         17.35         c         16.49         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79         c         16.79 <td>rontium</td> <th>NAA</th> <th>6/6n</th> <td>_</td> <td>83.77</td> <td></td> <td>94.25</td> <td></td> <td>84.97</td> <td></td> <td>82.07</td> <td></td> <td>87.66</td> <td>14.25</td> <td></td> | rontium       | NAA      | 6/6n                  | _   | 83.77 |   | 94.25    |   | 84.97  |   | 82.07  |   | 87.66    | 14.25            |       |
| INAA         ugig         0.17         0.194         0.177         0.174         0.179         0.036           INAA         ugig         2.60         2.74         2.65         2.67         0.18           INAA         ugig         6.14.8         < 17.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | antatum       | NA<br>NA | <b>5</b> /5n          |     | 0.20  |   | 0.196    |   | 0.201  |   | 0.205  |   | 0.201    | 0.010            |       |
| INAA         ugg         2.60         2.74         2.65         2.65         2.67         0.18           INAA         ugg         < 16.48         < 17.55         < 16.31         < 15.48         < 16.78            INAA         ugg         < 16.48         < 17.55         < 16.31         < 15.48         < 16.78            INAA         ugg         < 16.48         < 17.76         40.34         < 1.56         1.70            INAA         ugg         1.57         1.78         40.34         < 1.56         1.60         0.37         0.08           INAA         ugg         0.77         0.78         0.78         0.79         0.74         0.78         0.79         0.73           INAA         ugg         0.77         0.78         0.70         0.74         0.76         0.74         0.78           INAA         ugg         0.77         0.78         0.78         0.74         0.74         0.78           INAA         ugg         0.78         0.78         0.78         0.79         0.78         0.74         0.78           D0215         3.6         0.78         0.78         0.76         0.79                                                                                                                                                                                                                                                                   | erbium        | INAA     | 5/6n                  |     | 0.17  |   | 0.194    |   | 0.177  |   | 0.174  |   | 0.179    | 0.036            |       |
| INAA         ug/g         < 16.48         < 17.55         < 16.31         < 15.48         < 16.78            INAA         ug/g         814         829         806         890         850         17097           INAA         ug/g         6.26         0.30         0.24         < 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | horium        | INAA     | 5/6n                  |     | 2.60  |   | 2.74     |   | 2.65   |   | 2.56   |   | 2.67     | 0.18             |       |
| INAA         ugg         814         829         806         890         850           INAA         ugg         0.26         0.30         0.24         < 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 重             | NA<br>NA |                       |     | 16.48 | v | 17.55    | v | 16.31  | ٧ | 15.48  | v | 16.78    | :                | 100%  |
| INAA         ugig         0.26         0.30         0.24         < 1.03         0.27         1.60           INAA         ugig         1.57         1.76         1.47         1.55         1.60           INAA         ugig         0.77         0.79         0.66         0.70         0.74           INAA         ugig         18.18         20.89         21.40         16.89         20.15           INAA         ugig         108.46         70.19         77.67         92.33         85.44           D3174         %         11         12.59         12.87         12.15         12.15           D3176         %         11,3         70.41         70.65         70.73         70.81           D3176         %         14.34         4.74         4.75         4.76         4.76           D3176         %         1.43         1.42         1.44         1.51         1.45           D3176         %         1.43         1.44         1.51         1.45         1.45           D3177         %         1.43         1.44         1.51         1.45         1.45           D3177         %         1.43         1.251         1.2                                                                                                                                                                                                                                                      | Fitanium      | NAA      | B/Bn                  |     | 814   |   | 626      |   | 808    |   | 068    |   | 920      | 170.97           |       |
| INAA         uyg         1.57         1.78         1.47         1.55         1.60           INAA         ugg         35.25         37.56         40.34         37.67         37.71           INAA         ugg         0.77         0.78         0.66         0.70         0.74         37.71           INAA         ugg         18.18         20.89         21.40         16.89         20.15           D3174         %         11         12.59         77.67         92.33         85.44           D3176         %         71.37         70.41         77.67         92.33         85.44           D3176         %         11.3         70.41         4.76         4.76         4.76           D3176         %         14.3         14.4         4.71         4.75         4.76         4.76           D3176         %         14.3         14.4         4.71         4.74         4.75         4.76           D3176         %         14.3         14.4         15.5         8.06         7.92           D3177         %         14.3         12.5         14.4         15.1         14.5         14.5           D2015         MAF Btu<                                                                                                                                                                                                                                                      | Tungsten      | INAA     | 5,61                  |     | 0.26  |   | 0:30     |   | 0.24   | v | 1.03   |   | 0.27     | 90.0             |       |
| INAA         ug/g         35.25         37.56         40.34         37.67         37.71           INAA         ug/g         0.77         0.79         0.66         0.70         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         0.74         <                                                                                                                                                         | Uranium       | INAA     | <b>6</b> / <b>6</b> n |     | 1.57  |   | 1.76     |   | 1.47   |   | 1.55   |   | <b>.</b> | 0.37             |       |
| INAA         ug/g         0.77         0.78         0.68         0.70         0.74           HNAA         ug/g         18.18         20.69         21.40         16.89         20.15           INAA         ug/g         16.18         70.19         77.67         92.33         20.15           D3174         %         11         12.59         12.87         12.11         12.15           D3176         %         71.37         70.41         70.65         70.73         70.81           D3176         %         12.7         4.74         4.71         4.75         4.76           D3177         %         12.7         11.2         11.2         11.3         11.70           D3176         %         1.43         1.47         4.71         4.75         4.76         4.76           D3176         %         1.43         1.47         1.44         1.51         1.45           D3176         %         8.3         7.92         7.55         8.06         7.92           D3177         %         51.03         50.44         50.68         51.5         50.72           D2015         MAF Btu         14,287         14,400         <                                                                                                                                                                                                                                                  | /anadium      | NA<br>NA | <b>6</b> /6n          | (7  | 35.25 |   | 37.56    |   | 40.34  |   | 37.67  |   | 37.71    | 6.33             |       |
| tNAA         ug/g         18.18         20.69         21.40         16.89         20.15           INAA         ug/g         108.46         70.19         77.67         92.33         20.15           D3174         %         11         12.59         12.87         12.71         12.15           D3176         %         71.37         70.41         70.65         70.73         70.81           D3176         %         12.7         14.2         4.71         4.75         4.76           D3176         %         12.7         14.2         11.3         11.70         11.70           D3176         %         1.43         1.47         1.44         1.51         11.70           D3176         %         1.43         1.47         1.44         1.51         1.45           D3176         %         1.43         1.44         1.51         1.45         1.45           D3176         %         1.30         2.87         2.74         2.90           D30175         %         1.2,15         12,541         12,544         12,541           D2017         %         14,287         14,313         14,400         14,289         14,333                                                                                                                                                                                                                                                     | Ytterbium     | NA<br>A  | 6/6n                  |     | 0.77  |   | 0.79     |   | 99'0   |   | 0.70   |   | 0.74     | 0.18             |       |
| INAA         ug/g         77.67         92.33         85.44           D3174         %         11         12.59         12.21         12.15           D3176         %         71.37         70.41         70.65         70.73         70.81           D3176         %         4.84         4.74         4.71         4.75         4.76           D3176         %         12.7         11.2         11.2         11.3         11.70           D3176         %         1.43         1.47         1.44         1.51         1.45           D3176         %         1.43         1.47         1.44         1.51         1.45           D3176         %         3.06         2.87         2.78         2.74         2.90           D4239         %         51.03         50.44         50.68         51.5         50.72           D2015         MAF Btu         14,287         14,400         14,289         14,333           D2015         MAF Btu         14,287         14,400         14,289         14,333           D3175         %         37,97         36.87         36.29         37.13                                                                                                                                                                                                                                                                                                     | Zinc          | *NA<br>A | 5/6n                  | •   | 18.18 |   | 20.89    |   | 21.40  |   | 16.89  |   | 20.15    | <del>4</del> .30 |       |
| D3174         %         11         12.59         12.81         12.11         12.15           D3176         %         71.37         70.41         70.65         70.73         70.81           D3176         %         4.84         4.74         4.71         4.75         4.76         4.76           D3173         %         12.7         11.2         11.2         11.3         11.70           D3176         %         1.43         1.47         1.44         1.51         1.45           D3176         %         8.3         7.92         7.55         8.06         7.92           D4239         %         3.06         2.87         2.78         2.74         2.90           D3172         %         51.03         50.44         50.68         51.5         50.72           D2015         Blumb         12,715         12,511         12,547         12,544         12,591           D2015         MAF Blu         14,287         14,400         14,289         14,333           D3175         %         37,97         36.45         36.45         36.29         37.13                                                                                                                                                                                                                                                                                                                      | Zirconium     | INAA     | D/0n                  | -   | 08.46 |   | 70.19    |   | 77.67  |   | 92.33  |   | 85.44    | 50.40            |       |
| D3176         %         71.37         70.41         70.65         70.73         70.81           D3176         %         4.84         4.74         4.71         4.75         4.76         4.76           D3176         %         12.7         11.2         11.2         11.3         11.70           D3176         %         1.43         1.47         1.44         1.51         1.45           D3176         %         8.3         7.92         7.85         8.06         7.92           D4239         %         3.06         2.87         2.74         2.90           D3172         %         51.03         50.44         50.68         51.5         50.72           D2015         Bluulb         12,715         12,511         12,547         12,544         12,591           D2015         MAF Btu         14,287         14,313         14,400         14,289         14,333           D3175         %         37,97         36.87         36.45         36.29         37.13                                                                                                                                                                                                                                                                                                                                                                                                                | % Ash         | D3174    | ×                     |     | =     |   | 12.59    |   | 12.87  |   | 12.21  |   | 12.15    | 2.51             |       |
| D3176         %         4.84         4.74         4.71         4.75         4.76           D3173         %         12.7         11.2         11.2         11.3         11.70           D3176         %         1.43         1.47         1.44         1.51         1.45           D3176         %         1.43         7.92         7.55         8.06         7.92           D4239         %         3.06         2.87         2.74         2.90           D3172         %         51.03         50.44         50.68         51.5         50.72           D2015         Blunh         12,715         12,511         12,547         12,544         12,591           D2015         MAF Btu         14,287         14,313         14,400         14,289         14,333           D3175         %         37,97         36.87         36.45         36.29         37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % Carbon      | D3176    | *                     | ,-  | 71.37 |   | 70.41    |   | 70.65  |   | 70.73  |   | 70.81    | 1.24             |       |
| 03173         %         12.7         11.2         11.2         11.3         11.70           03176         %         1.43         1.47         1.44         1.51         1.45           03176         %         8.3         7.92         7.55         8.06         7.92           04239         %         3.06         2.87         2.74         2.90           03172         %         51.03         50.44         50.68         51.5         50.72           02015         Blunh         12,715         12,511         12,547         12,544         12,591           02015         MAF Blu         14,287         14,313         14,400         14,289         14,333           03175         %         37,97         36.87         36.45         36.29         37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hydrogen      | D3176    | ¥                     |     | 4.84  |   | 4.74     |   | 4.71   |   | 4.75   |   | 4.76     | 0.17             |       |
| D3176         %         1.43         1.47         1.44         1.51         1.45           D3176         %         8.3         7.92         7.55         8.06         7.92           D4239         %         3.06         2.87         2.78         2.74         2.90           D3172         %         51.03         50.44         50.68         51.5         50.72           D2015         Blunlb         12,715         12,511         12,547         12,544         12,591           D2015         MAF Blu         14,287         14,313         14,400         14,289         14,333           D3175         %         37,97         36.87         36.45         36.29         37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 Moisture    | D3173    | ×                     |     | 12.7  |   | 11.2     |   | 11.2   |   | 11.3   |   | 11.70    | 2.15             |       |
| D3176         %         8.3         7.92         7.55         8.08         7.92           D4239         %         3.06         2.87         2.78         2.74         2.90           D3172         %         51.03         50.44         50.68         51.5         50.72           D2015         Bluff         12,715         12,511         12,547         12,544         12,591           D2015         MAF Blu         14,287         14,313         14,400         14,289         14,333           D3175         %         37,97         36.87         36.45         36.29         37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 Nitrogen    | D3176    | ×                     |     | 1.43  |   | 1.47     |   | 1.44   |   | 1.51   |   | 1.45     | 90.0             |       |
| D4239         %         3.06         2.87         2.78         2.74         2.90           D3172         %         51.03         50.44         50.68         51.5         50.72           D2015         Btu/h         12,715         12,511         12,547         12,544         12,591           D2015         MAF Btu         14,287         14,313         14,400         14,289         14,333           D3175         %         37,97         36.87         36.45         36.29         37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dxygen (diff) | D3176    | æ                     |     | 8.3   |   | 7.92     |   | 7.55   |   | 8.06   |   | 7.92     | 0.93             |       |
| D3172         %         51.03         50.44         50.88         51.5         50.72           D2015         Btu/lb         12,715         12,511         12,547         12,544         12,591           D2015         MAF Btu         14,287         14,313         14,400         14,289         14,333           D3175         %         37,97         36,97         36,45         36,29         37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | % Sulfur      | D4239    | *                     |     | 3.06  |   | 2.87     |   | 2.78   |   | 2.74   |   | 2.90     | 0.38             |       |
| D2015         Btulb         12,715         12,591         12,544         12,591           D2015         NAF Btu         14,287         14,313         14,400         14,289         14,333           D3175         %         37,97         36,97         36,45         36,29         37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed Carbon     | D3172    | ×                     | •,  | 51.03 |   | 50.44    |   | 50.68  |   | 51.5   |   | 50.72    | 0.74             |       |
| D2015 MAF Btu 14,287 14,313 14,400 14,289 14,333<br>D3175 % 37,97 36.97 36.45 36.29 37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heating Value | D2015    | Btu/lb                | -   | 2,715 |   | 12,511   |   | 12,547 |   | 12,544 |   | 12,591   | 271              |       |
| D3175 % 37,97 36.97 36.45 36.29 37.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g Value (MAF) | D2015    | MAF Btu               | -   | 4,287 |   | 14,313   |   | 14,400 |   | 14,289 |   | 14,333   | 147              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Volatile      | 03175    | <b>%</b>              | • • | 37.97 |   | 36.97    |   | 36.45  |   | 36.29  |   | 37.13    | 1.92             |       |

Sample Stream: Raw Coal

| Anaiyte |            | Analytical |               | Run    | Run    | Run    | Run    |                       | <b>%</b> 56 | 덛     |
|---------|------------|------------|---------------|--------|--------|--------|--------|-----------------------|-------------|-------|
| Group   | Specie     | Method     | Units         | -      | 2      | 6      | 3d     | Average               | ច           | Ratio |
| Anions  | Chloride   | 04208      | 5/07          | 1,410  | 1,430  | 1,360  | 1,400  | 1,400                 | 06          |       |
| Anions  | Fluoride   | D3761      | 5/6n          | 9      | 48     | 001    | 110    | 100                   |             |       |
| Metals  | Aluminum   | INAA       | 5/60          | 13,856 | 14,674 | 14,977 | 15,511 | 14,502                | 1,441       |       |
| Metals  | Antimony   | INAA       | 5/60          | 0.68   | 0.57   | 0.57   | 0.65   | 0.61                  | 0.16        |       |
| Metals  | Arsenic    | GFAA       | 5/60          | 2:00   | 3.00   | 2.00   | 3.00   | 2.33                  | 1.43        |       |
| Metals  | Barium     | INAA       | 5/60          | 66.1   | 70.3   | 103    | 89.1   | 79.9                  | 50.7        |       |
| Metals  | Benyllium  | ICPES      | 6/6n          | 1.10   | 1.10   | 1.10   | 1.20   | 1.10                  |             |       |
| Metals  | Boron      | ICPES      | 0/00          | 9      | 001    | 9      | 120    | 5                     |             |       |
| Metals  | Bromine    | INAA       | 6/60          | 7.25   | 7.67   | 7.38   | 8.24   | 7.44                  | 0.53        |       |
| Metals  | Cadmium    | ICPES      | 5/61          | 0.30   | 06.0   | 0.30   | 0.40   | 0.30                  |             |       |
| Metals  | Calcium    | INAA       | 6/60          | 1,764  | 1,941  | 2,717  | 2,365  | 2,141                 | 1,260       |       |
| Metals  | Cerium     | INAA       | 6/80          | 15.3   | 14.7   | 17.4   | 16.7   | 15.8                  | 3.5         |       |
| Metals  | Cesium     | INAA       | 6/60          | 1.16   | 104    | 1.31   | 1.13   | 1.17                  | 0.34        |       |
| Metals  | Chlorine   | INAA       | 6/60          | 1,220  | 1,293  | 1,222  | 1,266  | 1,245                 | <b>5</b> 0  |       |
| Metals  | Chromium   | NA<br>A    | 5/60          | 26.0   | 24.7   | 23.7   | 27.8   | 24.8                  | 2.9         |       |
| Metals  | Cobalt     | NAA        | 6/60          | 3.81   | 2.63   | 4.08   | 4.01   | 3.51                  | 1.92        |       |
| Metals  | Copper     | INAA       | 5/60          | 59.5   | 9.83   | 39.0   | < 23.0 | %<br><del>7</del> .   | 62.1        |       |
| Metals  | Europium   | NAA        | 5/ <b>5</b> n | 0.32   | 0.27   | 0.32   | 0.29   | 0.30                  | 0.08        |       |
| Metals  | Hafnium    | İNAA       | 6/60          | 99.0   | 99.0   | 0.78   | 0.83   | 0.70                  | 0.16        |       |
| Metals  | lodine     | INAA       | 5/60          | × 1.66 | 1.32   | 0.87   | 1.03   | ×<br>1.88             | ;           | 27%   |
| Metals  | kon        | NA         | 6/60          | 11,814 | 10,938 | 11,390 | 11,939 | 1.38                  | 1,089       |       |
| Metals  | Lanthanum  | INAA       | 6/60          | 6.76   | 7.02   | 7.15   | 7.44   | <b>9</b> 6.9 <b>9</b> | 0.49        |       |
| Metals  | Lead       | ICPES      | 5/60          | 9.00   | 8.00   | 7.00   | 9:00   | 8.00                  | 2.48        |       |
| Metals  | Lutetium   | ¥¥.        | 5/6n          | 0.13   | 0.11   | 0.11   | 0.12   | 0.12                  | 0.03        |       |
| Metals  | Magnesium  | INAA       | 6/60          | 286    | 489    | 626    | 705    | 267                   | 175         |       |
| Metals  | Manganese  | INAA       | 6/ôn          | 24.9   | 22.8   | 22.5   | 24.4   | 23.4                  | 3.3         |       |
| Metals  | Mercury    | DGA/CVAA   | 6/8n          | 0.09   | 0.07   | 0.07   | 60.0   | 90:0<br>0:08          | 0.03        |       |
| Metals  | Molybdenum | INAA       | 5/6n          | 23.6   | 19.5   | 23.8   | 21.8   | 22.3                  | 6.1         |       |
| Metals  | Neodymium  | INAA       | 5/6n          | 8.55   | 8.70   | 6.17   | 8.11   | 7.81                  | 3.53        |       |
| Metals  | Nickel     | INAA       | 6/60          | 59.9   | 32.7   | 27.5   | 46.4   | 30.0                  | 6.39        |       |
| Metals  | Phosphorus | ICPES      | 6/6n          | 77.0   | 87.0   | 0.69   | 0.68   | <b>94.</b> 3          | 16.0        |       |
| Metals  | Potassium  | INAA       | 6/60          | 3,395  | 3,538  | 2,982  | 2,594  | 3,305                 | 717         |       |
| Metals  | Rubidium   | INAA       | 5/6n          | 20.7   | 18.0   | 20.8   | 21.8   | 19.8                  | 3.92        |       |
| Metals  | Samarium   | INAA       | ₿/₿n          | 1.45   | 1.37   | 1.37   | 1.53   | 1.40                  | 0.12        |       |
| Metals  | Scandium   | INAA       | 6/6n          | 3.14   | 3.03   | 3.36   | 3.35   | 3.18                  | 0.42        |       |
| Motok   | Selenium   | GFAA       | 0/00          | 2:00   | 2.00   | 3.00   | 3.00   | 2.33                  | 1.43        |       |
|         |            |            | )             |        |        |        |        |                       |             |       |

Feed Coal - Page 1

| Coal    |
|---------|
| Feed    |
| Stream: |
| ample   |

| a         |
|-----------|
|           |
| 11        |
|           |
|           |
|           |
|           |
|           |
|           |
| -         |
| ⊆         |
|           |
| æ         |
|           |
| <u>دە</u> |
|           |
|           |
|           |
|           |
| ທ         |
|           |
|           |
| et)       |
| au .      |
|           |
|           |
|           |
|           |
|           |
|           |
| Ε         |
|           |
|           |
| ***       |
|           |
| v)        |
|           |
|           |

| Analyte            |                          | Analytical      |                  | Run    | Ŗ            | <u>=</u>       | u.       | 5              |   | Run     |         | 95%    |                |     |
|--------------------|--------------------------|-----------------|------------------|--------|--------------|----------------|----------|----------------|---|---------|---------|--------|----------------|-----|
| Group              | Specie                   | Method          | Units            | 1      | 2            |                |          | 3              |   | 30      | Average | 다<br>당 | Ratio          | ţ   |
| 4                  | Silver                   | MAA             | ,<br>e/c:        |        | V            | Ľ              | v        | 67             | v | 0.48    | A 0.57  |        | , 2001<br>2008 | %   |
| Signal             | 5 4 6                    |                 |                  |        |              | 2 5            |          | 2.0            |   | 643     | 25      |        |                |     |
| Metals             | Sodium                   | A .             | 6/6n             | 8 8    | 3 6          | 7 9            | ., ,     |                |   | 500     | 150     |        |                |     |
| Metals             | Etrontium                | A S             | D.               | , o, I | - 6          | o g            | - (      | 0.0            |   | 9.0     | 0.4.0   |        |                |     |
| Metals             | antalum                  | N S             | 5/60             | 5 C    | o (          | 2 (            | •        | - Y            |   | 0.20    | 9.0     |        |                |     |
| Metais             | Terblum                  | AAN :           | 6/6n             | 0.18   | S (          | و و            | <b>-</b> | 6.6            |   | <br>1.4 | 0.18    |        |                |     |
| Metals             | Thorium                  | NAA             |                  |        | 7.7          | 2              | ~        | <b>3</b> ;     |   | 2.77    | 7.60    |        |                | ;   |
| Metals             | Ę                        | NA<br>A         | ,<br>B/Bn        | × 15.6 | ۸<br>16      | <b>-</b> .     | ٧        | 6.2            | v | 17.2    | × 15.9  |        | •              | %   |
| Metals             | Titanium                 | INAA            | 5/5n             | 912    | <b>&amp;</b> | 80             | Ο,       | 53             |   | 732     | 894     |        |                |     |
| Metals             | Tungsten                 | NA<br>A         | 6/6n             | 0.44   | 0            | Q              | ۰<br>۲   | <b>8</b> 6.    |   | 0.29    | × 1.08  |        | •              | 46% |
| Metals             | Uranium                  | INAA            | 5/6n             | 2.03   | 7            | 92             | _        | <b>%</b>       |   | 2.04    | 1.76    |        |                |     |
| Metals             | Vanadium                 | NAN.            | ø/on             | 39.3   | 4            | 0.             | e        | 9.1            |   | 40.4    | 39.4    |        |                |     |
| Metals             | Ytterbium                | INAA            | 6/6n             | 0.71   | 0.           | ដ              | φ        | 584            |   | 0.73    | 2,195   |        |                |     |
| Metals             | Zinc                     | INAA            | B/Bn             | 18.1   | 8            | O.             | _        | 0.6            |   | 37.9    | 25.0    |        |                |     |
| Metals             | Zirconium                | INAA            |                  | < 61.8 | 147          | 9.             | -        | 7.3            |   | 111.6   | 85.3    |        | 12%            | *   |
| Illimate/Drovingto | %<br>Aeh                 | D3174           | ð                | 10.5   | 113          | er;            | _        | 11.6           |   | 12.2    | ¥.      | 4.     |                |     |
|                    | 1000                     | 23476           | 2 2              | 2 2    | : 2          | ! <del>-</del> | •        | - <del>-</del> |   | 7.3     | 72.0    |        |                |     |
| Offimate/Proximate |                          | 02176           | e a              | 7.7    |              | - 2            | . *      | 2 2            |   | 207     | 7       |        |                |     |
| Ultimate/Proximate | % Hydrogen               | 031/6           | <b>,e</b> ;      | 4.62   | ď            | 2 !            | •        | 3 4            |   | 50.4    | 50.4    |        |                |     |
| Ultimate/Proximate | % Nitrogen               | 03176           | *                | S.     | -            | Ω              | - '      | <u>C</u>       |   | 24.L    | 70.1    |        |                |     |
| Ultimate/Proximate | % Oxygen (diff)          | 03176           | *                | 8.03   | 7.6          | ×              | _        | 29             |   | 7.52    | 7.74    |        |                |     |
| Ultimate/Proximate | % Sulfur                 | D4239           | *                | 2.87   | 2.6          | ž.             | 8        | 8              |   | 2.66    | 2.74    |        |                |     |
| Ultimate/Proximate | Fixed Carbon             | 03172           | ×                | 51.4   | 49           | .7             | S.       | 1.4            |   | 50.8    | 50.8    |        |                |     |
| Ultimate/Proximate | Higher Heating Value     | D2015           | Btu/lb           | 12,721 | 12,6         | 660            | 5        | .670           |   | 12,673  | 12,697  |        |                |     |
| Ultimate/Proximate | Heating Value (MAF)      | D2015           | MAF Btu          | 14,217 | 14.3         | 14             | 7        | 339            |   | 14,436  | 14,290  |        |                |     |
| Ultimate/Proximate | Volatile                 | 03175           | *                | 38.1   | ፠            | O,             | က        | 6.9            |   | 37.0    | 37.0    |        |                |     |
| Radionuclides      | Actinium-228 @ 338 KeV   | EPA901.1        | S<br>S<br>S<br>S | 0.40   | ö            | 2              | 0        | .20            |   | 0.20    | 0.33    |        |                |     |
| Radionuclides      | Actinium-228 @ 911 KeV   | EPA901.1        | pCi/g            | 0.30   | 0.0          | 2              | •        | <del>Q</del>   |   | 0.30    | 0.33    |        |                |     |
| Radionuclides      | Actinium-228 @ 968 KeV   | EPA901.1        | pCi/g            | 9      | Z            | 0              | 0        | 20             |   | Q       | 0.07    |        |                |     |
| Radionuclides      | Bismuth-212 @ 727 KeV    | EPA901.1        | bCi/g            | 9      | Z            | _              | _        | 9              |   | 2       | 2       |        |                |     |
| Radionuclides      | Bismuth-214 @ 1120.4 KeV | EPA901.1        | bCiva            | 0.80   | -            | <u>o</u>       | 0        | 8              |   | 06:0    | 0.93    |        |                |     |
| Badionuclides      | Bismuth-214 @ 1764.7 KeV | EPA901.1        | pCi/g            | 9      | 0            | 2              | _        | ş              |   | 0.40    | 0.10    |        |                |     |
| Radionuclides      | Bismuth-214 @ 609.4 KeV  | EPA901.1        | pCi/g            | 0.70   | 0.           | R              | 0        | 2.0            |   | 0.60    | 0.67    |        |                |     |
| Radionuclides      | K-40 @ 1460 KeV          | EPA901.1        | bCl/g            | 1.20   | 2.5          | 2              | _        | 9              |   | 3.20    | 1.37    |        |                |     |
| Radionuclides      | Lead-210 @ 46 KeV        | <b>EPA901.1</b> | pCi/g            | 1.20   | ).<br> -     | 2              | _        | .70<br>07:     |   | 1.00    | 1.30    |        |                |     |
| Radionuclides      | Lead-212 @ 238 KeV       | EPA901.1        | pCi/g            | 0.20   | 0            | ຄ              | 0        | .20            |   | 0.20    | 0.20    |        |                |     |
| Radionuclides      | Lead-214 @ 295.2 KeV     | EPA901.1        | pCi/g            | 0.70   | ö            | æ              | 0        | 86             |   | 0.40    | 0.63    |        |                |     |
| Radionuclides      | Lead-214@ 352.0 KeV      | EPA901.1        | PC//g            | 0.70   | ŏ            | 2              | 0        | 8              |   | 0.50    | 0.63    |        |                |     |
|                    | )                        |                 | ı                | ı      | •            | (              |          |                |   |         |         |        |                |     |

Feed Coal - Page 2

Sample Stream: Feed Coal

| 95% DL<br>Average Cl Ratio |
|----------------------------|
| Run<br>3d                  |
| Run<br>3                   |
| Run<br>2                   |
| Run<br>1                   |
| Units                      |
| Analytical<br>Method Units |
| Specie                     |
| Analyte<br>Group           |

Solid Stream Data

Sample Stream: Pulverizer Rejects

| Analyte |            | Analytical      |       | Run      | Run          | Run      | Run            |         | 898    | 占                 |
|---------|------------|-----------------|-------|----------|--------------|----------|----------------|---------|--------|-------------------|
| Group   | Specie     | Method          | Units | -        | 2            | 6        | 34             | Average | ਹ      | Ratio             |
| Anjons  | Chloride   | D4208           | מאָפ  | 520      | 540          | 460      | 460            | 507     | 50     |                   |
| Anions  | Fluoride   | D3761           | 6/6n  | 330      | 310          | 330      | 340            | 323     | 82     |                   |
| Metals  | Aluminum   | INAA            | 5/5n  | 22,782   | 28,605       | 30,095   | 32,254         | 27,161  | 9,601  |                   |
| Metals  | Antimony   | INAA            | 6/6n  | 1.03     | 1.35         | <b>.</b> | 1.14           | 1.24    | 0.45   |                   |
| Metals  | Arsenic    | GFAA            | 6/6n  | 32.0     | 0.79         | 42.0     | 40.0           | 47.0    | 4.8    |                   |
| Metals  | Barium     | INAA            | g/gn  | 540      | 123          | 327      | 338            | 330     | 519    |                   |
| Metals  | Beryllium  | ICPES           | 6/6n  | 1.90     | 1.90         | 0.60     | 1.10           | 1.47    | 1.86   |                   |
| Metals  | Boron      | ICPES           | g/gn  | 8        | 170          | 75       | 57             | 115     | 122    |                   |
| Metals  | Bromine    | NAA             | 6/6n  | 4.85     | 4.42         | 3.65     | 4.98           | 4.31    | 1.51   |                   |
| Metals  | Cadmium    | ICPES           | 6/6n  | 1.00     | 7.80         | 3.40     | 1.80           | 4.07    | 8.57   |                   |
| Metałs  | Calcium    | INAA            | 5/6n  | 11,715   | 15,640       | 10,690   | 11,298         | 12,682  | 6,490  |                   |
| Metafs  | Cerinm     | INAA            | 5/6n  | 52.9     | 33.1         | 30.7     | 33.6           | 29.9    | 90.6   |                   |
| Metals  | Cesium     | INAA            | 6/6n  | 1.88     | 2.30         | 2.23     | 2.72           | 2.14    | 0.55   |                   |
| Metals  | Chlorine   | NAA             | B/Sin | 554      | 643          | 529      | 648            | 282     | 125    |                   |
| Metals  | Chromium   | NAA             | ₿øn   | 58.0     | 64.2         | 69.5     | 76.1           | 63.9    | 14.3   |                   |
| Metals  | Cobatt     | INAA            | 5/6n  | 7.41     | 8.02         | 7.87     | 8.38           | 17.7    | 0.80   |                   |
| Metals  | Copper     | INAA            | 6/6n  | 81.5     | 94.2         | < 59.0   | × 56.1         | 68.4    | 85.2   | <del>1</del><br>% |
| Metals  | Europium   | INAA            | ₿/₿n  | 0.59     | 0.65         | 0.67     | 0.67           | 0.64    | 0.1    |                   |
| Metals  | Hafnium    | INAA            | 6/6n  | 2.30     | 1.82         | 2.34     | 2.47           | 2.15    | 0.73   |                   |
| Metals  | lodine     | INAA            | ₿/₿n  | 4.       | 1.92         | 2.65     | 2.63           | 2:00    | 1.52   |                   |
| Metals  | Iron       | INAA            | 6/6n  | 133,094  | 126,965      | 119,458  | 112,069        | 126,506 | 16,967 |                   |
| Metals  | Lanthanum  | NAA             | 6,6n  | 14.5     | 17.4         | 16.5     | 16.6           | 16.2    | 3.7    |                   |
| Metals  | Lead       | ICPES           | ₫/ðn  | 41.0     | 48.0         | 23.0     | 33.0           | 37.3    | 32.0   |                   |
| Metals  | Lutetium   | INAA            | 6/6n  | 0.23     | 0.18         | 0.20     | 0.26           | 0.20    | 90.0   |                   |
| Metals  | Magnesium  | INAA            | B/Bin | 1,226    | 1,467        | 1,420    | 1,696          | 1,371   | 318    |                   |
| Metals  | Manganese  | INAA            | 6/6n  | 93.9     | <b>8</b> 0.1 | 122      | <del>1</del> 2 | 98.6    | 52.7   |                   |
| Metals  | Mercury    | <b>DGA/CVAA</b> | B/Bn  | 0.26     | 060:0        | 0.040    | 0.21           | 0.130   | 0.287  |                   |
| Metals  | Molybdenum | NA<br>NA        | 6/6n  | 18.36    | 17.3         | 4.07     | 4.17           | 13.2    | 19.8   |                   |
| Metafs  | Neodymium  | NAA             | 6/6n  | 19.56    | 50.6         | 16.3     | 30.3           | 18.8    | 5.6    |                   |
| Metafs  | Nickel     | INAA            | 6/6n  | <b>%</b> | < 115        | ^<br>ই   | 117            | < 115   | ;      | <b>%99</b>        |
| Metals  | Phosphorus | ICPES           | 6/6n  | 1,200    | 2,500        | 780      | 066            | 1,493   | 2,228  |                   |
| Metafs  | Potassium  | NAA             | 6/6n  | 2,707    | 5,303        | 8.54     | 4,558          | 2,673   | 6,577  |                   |
| Metals  | Rubidium   | INAA            | 6/6n  | 41.0     | 36.4         | 36.3     | 6.04           | 37.9    | 9.9    |                   |
| Metals  | Samarium   | INAA            | ₿/₿n  | 2.18     | 2.50         | 2.54     | 2.67           | 2.41    | 0.49   |                   |

Pulverizer Rejects - Page 1

Solid Stream Data

| Sample Stream: Pulverizer Rejects | erizer Rejects |            |       |              |              |             |     |      |    |            |         |   |            |      |
|-----------------------------------|----------------|------------|-------|--------------|--------------|-------------|-----|------|----|------------|---------|---|------------|------|
| Analyte                           |                | Analytical |       | Run          |              | Run         | _   | Run  | _  | Run        |         | 6 | 95%        | 겁    |
| Group                             | Specie         | Method     | Units | -            |              | 2           |     | 3    |    | 3d         | Average |   | 1          | atio |
|                                   |                |            |       |              | 1            | !           | ז   |      | •  |            | Š       |   | 5          |      |
| Metals                            | Scandium       | ¥¥         | 6/6n  | <b>6</b> .60 | ur)          | 23          |     | 5.22 | -  | 6.32       | 2.6     |   | 2          |      |
| Metals                            | Sefenium       | GFAA       | 5/6n  | 2.00         | o            | 90.         | _   | 00.0 |    | 2.00       | 8.6     |   | g<br>E     |      |
| Motale                            | Silver         | NAA        | no/a  | 06.1         | ٧            | .87         | v   | 1.94 | ٧  | <b>4</b> . | م<br>ب  |   |            | 29%  |
| Motole                            | Sodium         | INAA       | s/on  | 1.169        | 3)           | 964         | -   | ,160 | _  | 1,162      | 1.10    |   | <b>9</b>   |      |
|                                   | Stronting      | NAM        | 0/00  | 308          | (")          | 771         | _   | 658  |    | 297        | 4       |   | <u>.</u>   |      |
| Motors                            | Tantalsım      | INAA       | 6/DD  | 0.43         | 0            | 157         | _   | 0.55 | _  | 0.48       | 0.5     |   | 8          |      |
| Metals                            | Terbiim        | NAA        | na/a  | 0.32         | 0            | 1,29        | J   | 2.35 | -  | 0.40       | 0.3     |   | 88         |      |
| Motors                            | Thorium        | INAA       | na/a  | 3.79         | 4            | 1.41        | •   | 4.22 | •  | 5.43       | 4.4     |   | 2          |      |
| Metals                            | Ę              | INAA       | b/bn  | 31.9         | ۸            | 70.7        | v   | 29.5 | ٧  | 28.0       | 30.     |   |            | 49%  |
| Motole                            | Titanium       | INAA       | o/an  | 1,993        | _            | 936         | 7   | ,020 | •• | 2,028      | 96.     |   |            |      |
|                                   | Tundsten       | INAA       | 6/pn  | 0.30         | 0            | .49         | v   | 0.74 | ٧  | 1.05       | c 0.7.  |   |            | 2%   |
|                                   | Ilranium       | INAA       | 6/on  | 3.84         | ব            | .95         | ••• | 3.51 |    | 4.09       | 4.1     |   | 37         |      |
| Made                              | Vanadism       | INAA       | na/a  | 5.5          | ψ,           | 9.0         | ~   | 51.8 | -  | 66.2       | 26      |   | 7          |      |
| Motori                            | Viterhism      | ANI        | p/on  | 1.09         | -            | <b>8</b> 6. | •-  | 1.32 |    | 4.         | 4.      |   | 8          |      |
| Mobile                            | Zinc           | INAA       | p/pn  | 486          | <del>-</del> | 594         | _   | ,503 |    | 559        | 1,18    |   | 82         |      |
| Metals                            | Zirconium      | INAA       | 6/6n  | 294          | ••           | 251         | -   | 448  |    | 240        | 330     |   | <b>528</b> |      |
| ( Illimate/Organists              | e. Carton      | 03176      | *     | 39.5         | (4)          | 9.6         | **  | 36.6 |    | 38.4       | 8       |   | Ŋ          |      |
| Ultimate/Proximate                | % Sulfur       | D3176      | *     | 17.1         | -            | 5.3         | -   | 15.7 |    | 15.1       | 16.     |   | ω          |      |
|                                   |                |            |       |              |              |             |     |      |    |            |         |   |            |      |

Solid Stream Data

Sample Stream: Bottom Ash

| A state of         |                        | Analytical |               | Rus               |         | 5       | 2               | Run      |        |          | <b>%96</b>   | ಕ     |
|--------------------|------------------------|------------|---------------|-------------------|---------|---------|-----------------|----------|--------|----------|--------------|-------|
| Group              | Specie                 | Method     | Cnits         | -                 |         | 8       | m               | PE<br>3d |        | Average  | ច            | Ratio |
|                    |                        |            | ļ.            |                   |         |         |                 |          |        |          |              |       |
| Anions             | Chloride               | SM407C     | 5/6n          | 172               | v       | 8.66    | 163             | 9.66     |        | 128      | <del>2</del> | 13%   |
| Anions             | Fluoride               | EPA 340.2  | 6/ <b>6</b> n | 30.9              |         | 21.4    | 42.3            | 16.7     |        | 31.5     | 26.0         |       |
| 1644               | Alimimia               | SW 6010    | neafa         | 75 600            |         | 90.800  | 72.000          | 70.20    | •      | 76.133   | 10,991       |       |
| Metals             | Antimony               | CP-MS      | e pyon        | 1,21              |         | 1.15    | <del>.</del> 6. | 0.95     |        | 1.14     | 0.20         |       |
| Metals             | Arsenic                | SW 7060    | 5/80          | 4.28              |         | 8.67    | 8.49            | 4.92     |        | 7.15     | 6.17         |       |
| Metais             | Barium                 | SW 6010    | 5/On          | 428               |         | 481     | 461             | 460      |        | 457      | 98           |       |
| Metals             | Beryllium              | SW 6010    | ō/đn          | 8.47              |         | 8.17    | 6.30            | 6.51     |        | 7.65     | 2.92         |       |
| Metals             | Вогол                  | KCPES      | 6/6n          | 360               |         | 240     | 250             | 240      |        | 283      | 165          |       |
| Metats             | Cadmium                | SW 7131    | 5,6n          | 0.29 J            |         | 0.18 J  | 0.49            | 0.29     | -,     | 0.32     | 0.39         |       |
| Metals             | Calcium                | SW 6010    | D/do          | 21,800            |         | 19,900  | 19,100          | 18,60    | 0      | 20,267   | 3,445        |       |
| Metals             | Chromium               | SW 6010    | 5/Bn          | 961               |         | 197     | 184             | 182      |        | 192      | 8            |       |
| Metals             | Cobait                 | SW 6010    | 5/50          | 33.1              |         | 32.1    | 29.7            | 27.5     |        | 31.6     | ¥.           |       |
| Metals             | Copper                 | SW 6010    | 5/6m          | 84.0              |         | 76.9    | 9.69            | 68.3     |        | 76.8     | 17.9         |       |
| Metals             | ron                    | SW 6010    | 5/6n          | 144,000           | •       | 127,000 | 120,000         | 118,00   | Q      | 130,333  | 30,663       |       |
| Metals             | Lead                   | SW 7421    | 5/ <b>6</b> n | 20.2              |         | 21.2    | 18.2            | 18.3     |        | 19.9     | 3.8          |       |
| Metals             | Magnesium              | SW 6010    | 5/6n          | 3740              |         | 3850    | 3230            | 3070     |        | 3,607    | 822          |       |
| Metals             | Manganese              | SW 6010    | 6/6n          | 296               |         | 262     | 253             | 240      |        | 270      | <b>%</b>     |       |
| Metals             | Mercury                | SW 7471    | 5/6n          | 0.0048            | v       | 0.0109  | o.0114          | 0.004    | *<br>~ | < 0.0114 | :            | 70%   |
| Metals             | Molybdenum             | SW 6010    | 6,80          | 4.57              | v       | 2.89    | < 2.97          | 4.52     | •      | c 2.97   | :            | 36%   |
| Metals             | Nickel                 | SW 6010    | 5/8n          | 138               |         | 130     | 126             | 124      |        | 131      | 5            |       |
| Metais             | Phosphorus             | SW 6010    | ₿øn           | 906               |         | 413     | 470             | 420      |        | 396      | 202          |       |
| Metals             | Potasslum              | SW 6010    | B/Bn          | 14,200            |         | 14,600  | 13,700          | 13,20    | 0      | 14,167   | 1,120        |       |
| Metals             | Selenium               | SW 7740    | 5/6n          | < 1.13            | v       | 1.13    | < 1.16          | × 1.14   | •      | 1.14     | :            | 100%  |
| Metals             | Silicon                | SW 6010    | 6/6n          | 213,000           | ••      | 000,602 | 218,000         | 216,00   | 2      | 213,333  | 11,203       |       |
| Metals             | Sodium                 | SW 6010    | g/gin         | 3,850             |         | 3,610   | 3,380           | 3,300    | _      | 3,613    | <b>3</b> 2   |       |
| Metals             | Strontium              | SW 6010    | Ø/Øn          | 280               |         | 297     | 264             | 260      |        | 280      | Ŧ            |       |
| Metals             | Titanium               | SW 6010    | D/Bn          | 5,450             |         | 5,810   | 5,400           | 5,430    | _      | 5,553    | 226          |       |
| Metats             | Vanadium               | SW 6010    | 5/ôn          | 281               |         | 286     | 264             | 260      |        | 772      | 59           |       |
| Metals             | Zinc                   | SW 6010    | 5/6n          | 216               |         | 229     | 194             | 186      |        | 213      | 4            |       |
| Himete@coximate    | % Carbon               | D3176      | ¥             | 1.18              |         | 1.53    | 4.29            | 3.46     |        | 2.33     | 4.23         |       |
| Ultimate/Proximate | % Suffer               | D4239      | *             | 0.053             |         | 0.052   | 0.340           | 0.133    | _      | 0.148    | 0.412        |       |
| Radionuclides      | Actinium-228 @ 338 KeV | EPA 901.1  | pCi/g         | 2.1               |         | 2.1     | 2.1             | 2.2      |        | 2.1      | 0            |       |
|                    |                        |            |               | Rottom Ash - Page | Ash - P | 1 906   |                 |          |        |          |              |       |
|                    |                        |            |               |                   |         |         |                 |          |        |          |              |       |

H-51

| Ash    |
|--------|
| bottom |
| am:    |
| e Stre |
| Samp   |
|        |

| Analyte                 |                            | Anaivtical       |                       |   | Run             | 2            |   | Run       | Run  |          |            | 95%             | ដ     |
|-------------------------|----------------------------|------------------|-----------------------|---|-----------------|--------------|---|-----------|------|----------|------------|-----------------|-------|
| Group                   | Specie                     | Method           | Units                 |   | +               | 2            |   | 60        | 3d   | Av       | Average    | ច               | Ratio |
|                         |                            |                  |                       |   |                 |              |   |           | ,    |          |            | 1               |       |
| Radionuciides           | Actinium-228 @ 911 KeV     | EPA 901.1        | 200                   |   | 2.3             | 2.2          |   | 2.1       | 2.0  |          | 2.2        | 0.2             |       |
| Radionuclides           | Actinium-228 @ 968 KeV     | EPA 901.1        | <b>B</b> Cive         |   | 2.6             | 2.3          |   | 8.        | 2.4  |          | 2.2        | 0.<br>0.        |       |
| Radionuclides           | Bismuth-212 @ 727 KeV      | EPA 901.1        | PCI'd                 |   | 3.5             | 2.8          |   | 2.6       | 3.0  |          | 3.0        | 7               |       |
| Radionuclides           | Bismuth-214 @ 1120.4 KeV   | EPA 901.1        | SC/Q                  |   | 7.8             | 9.7          |   | 6.8       | 6.8  | •        | 4.7        | 1.3             |       |
| Radionuclides           | Bismuth-214 @ 1764.7 KeV   | EPA 901.1        | Š                     |   | 7.4             | 7.3          |   | 5.8       | 6.5  | _        | 6.8        | 2.2             |       |
| Radionuclides           | Bismuth-214 @ 609.4 KeV    | EPA 901.1        | Š                     |   | 7.7             | 7.1          |   | 6.5       | 6.7  | •        | 7.1        | 1.5             |       |
| Radionuclides           | K-40 @ 1460 KeV            | EPA 901.1        | D<br>Cito             |   | 16              | <b>6</b> 0   |   | <b>16</b> | 16   |          | 17         | <b>س</b>        |       |
| Radionuclides           | Lead-210 @ 46 KeV          | EPA 901.1        | D<br>S<br>S           |   | 1.2             | <del>L</del> |   | 1.6       | 1.6  |          | <b>4</b> . | 0.5             |       |
| Radionuclides           | Lead-212 @ 238 KeV         | EPA 901.1        | PCing                 |   | 1.7             | 2.2          |   | 2.2       | 2.1  | •        | 2.0        | 0.7             |       |
| Radionuclides           | Lead-214 @ 295.2 KeV       | <b>EPA 901.1</b> | Š                     |   | 8.1             | 7.3          |   | 6.6       | 7.0  |          | 7.3        | 6.1             |       |
| Radionuclides           | Lead-214@ 352.0 KeV        | EPA 901.1        | <b>b</b> Ci/g         |   | 8.2             | 7.8          |   | 6.8       | 7.1  |          | 7.6        | 1.8             |       |
| Radionuclides           | Radium-226 @ 186.0 KeV     | EPA 901.1        | bCi/g                 |   | =               | 2            |   | 6.6       | 10   |          | ₽          | <del>1</del> .  |       |
| Radionuclides           | Thallium-208 @ 583 KeV     | EPA 901.1        | DCI/G                 |   | 2.3             | 2.3          |   | 2.0       | 2.2  |          | 2.2        | 0.4             |       |
| Radionucides            | Thallium-208 @ 860 KeV     | <b>EPA 901.1</b> | DCI/G                 |   | 3.3             | 2.4          |   | 2         | 2.6  |          | 1.9        | 4.2             |       |
| Radionuclides           | Thorium-234 @ 63.3 KeV     | EPA 901.1        | Si<br>Od              |   | 6.1             | 5.53         |   | 5.7       | 5.0  |          | 5.8        | 9.0             |       |
| Radionuclides           | Thorium-234 @ 92.6 KeV     | EPA 901.1        | bC//d                 |   | 5.1             | 4.5          |   | 5.5       | 4.5  |          | 5.0        | <del>1</del> .3 |       |
| Radionuclides           | Uranium-235 @ 143 KeV      | EPA 901.1        | PC!                   |   | 0.26            | 0.28         |   | 0.38      | 0.25 | •        | ).31       | 0.16            |       |
|                         | ı                          |                  |                       |   |                 |              |   |           |      |          |            |                 |       |
| Organics, Semi-Volatile | 1,2,4,5-Tetrachlorobenzene | SW 8270          | <b>5</b> /0u          | v | 27.2            | 25.4         | ٧ | 16.9      |      | v        | 23.2       | :               | 100%  |
| Organics, Semi-Volatile | 1,2,4-Trichlorobenzene     | SW 8270          | <b>10/0</b>           | v | 27.8            | 25.9         | • | 25.6      |      | ٧        | 26.4       | :               | 400%  |
| Organics, Semt-Volatite | 1,2-Dichlorobenzene        | SW 8270          | B/G                   | v | 36.6            | 34.2         | • | 27.6      |      | ۷        | 32.8       | :               | 100%  |
| Organics, Semi-Volatile | 1,2-Diphenylhydrazine      | SW 8270          | <b>0</b> /6u          | v | 50              | <u>\$</u>    | v | <b>5</b>  |      | v        | <u>8</u>   | :               | 100%  |
| Organics, Semi-Volatile | 1,3-Dichlorobenzene        | SW 8270          | 0/6                   | v | 18.6            | 17.4         | • | 31.2      |      | v        | 22.4       | :               | 100%  |
| Organics, Semi-Volatile | 1,4-Dichlorobenzene        | SW 8270          | 0,6u                  | v | 38.0            | 35.5         | • | 25.6      |      | ۷        | 33.0       | :               | 100%  |
| Organics, Semi-Volatile | 1-Chloronaphthalene        | SW 8270          | 0,00                  | v | 30.3            | 28.3         | • | 23.3      |      | v        | 27.3       | :               | 100%  |
| Organics, Semi-Volatile | 1-Naphthylamine            | SW 8270          | 5/64                  | v | 73.3            | 68.5         | • | 88.2      |      | v        | 76.7       | :               | 100%  |
| Organics, Semi-Votatile | 2,3,4,6-Tetrachiorophenol  | SW 8270          | 90                    | v | 23.6            | 22.1         | • | 20.2      |      | ۷        | 22.0       | :               | 100%  |
| Organics, Semi-Volatile | 2,4,5-Trichlorophenol      | SW 8270          | ₿/Gu                  | v | 15.5            | 14.5         | • | 22.1      |      | ·        | 17.4       | :               | 100%  |
| Organics, Semi-Volatile | 2,4,6-Trichlorophenol      | SW 8270          | 9/64                  | v | 16.4            | 15.3         | • | 22.0      |      | <u> </u> | 67.1       | :               | 100%  |
| Organics, Semi-Volatile | 2.4-Dichlorophenol         | SW 8270          | Døu                   | v | 20.8            | 19.4         | • | 24.7      |      | v        | 9.13       | :               | 100%  |
| Organics, Semi-Volatile | 2,4-Dimethylphenol         | SW 8270          | <b>5</b> / <b>6</b> u | v | 51.7            | 48.3         | • | 56.5      |      | v        | 52.2       | ;               | 100%  |
| Ordanics, Semi-Volatile | 2,4-Dinitrophenol          | SW 8270          | ₽¢0                   | v | 329             | 307          | • | 182       |      | v        | 273        | ;               | 100%  |
| Organics, Semi-Volatile | 2,4-Dinitrololuene         | SW 8270          | 5/6u                  | v | 25.8            | 24.1         | v | 25.7      |      | ٧        | 25.2       | :               | 100%  |
| Organics, Semi-Volatile | 2,6-Dichlorophanol         | SW 8270          | D/Gu                  | v | 34.0            | 31.7         | • | 22.2      |      | ٧        | 29.3       | :               | 100%  |
| Organics, Semi-Volatile | 2,6-Dinitrololuene         | SW 8270          | ₿/Bu                  | v | 16.3            | 15.2         | v | 37.4      |      | ۷        | 23.0       | :               | 100%  |
|                         |                            |                  |                       |   | Dottom Ach Dogs | 0000         |   |           |      |          |            |                 |       |
|                         |                            |                  |                       |   |                 | a pRe L .    |   |           |      |          |            |                 |       |

Solid Stream Data

Sample Stream: Bottom Ash

100% 100% 100% 100% 100% 100% 800 8 8 8 80 8 **10%** 80 100% 100% 8 80 8 265 \* 8 Š 57% 겉 ខ្លុំ ច Average 39.9 24.0 23.4 22.6 20.7 82.2 20.9 45.0 19.7 21.1 30,7 20.8 29.4 22.1 34.5 77.4 18.4 12.9 22.0 25.5 20.0 39.5 44.3 43.4 37.2 19.1 5.5 88 E B 35.9 1,680 69.5 28.8 51.7 18.3 19.9 26.3 57.8 1.8 26.8 16.0 19.5 39.5 뙲 5.8 13.5 4.5 21.7 17.1 18.7 21.0 22.4 40.7 18.2 24.3 20.0 22.5 4.3 43.4 26.5 803 21.0 瀀 85.6 19.3 47.8 22.3 8 32.8 20.0 23.2 25.2 212 85.3 69 20.0 22.8 16.8 25.0 20.1 25.5 31.7 2.5 174 23.0 22.5 78.9 E 25.1 18.9 51.2 23.9 37.2 80.00 27.0 32.5 10.6 20.7 36.8 35.1 24.8 22.7 90.2 43.8 18.0 8 20.7 18.5 Š 8 ğ Š ğ Ş Ş Ş ş Š ş Š 5 Ş ş ş Š ş Ş Analytical SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 SW 8270 7,12-Dimethylbenz(a)anthracene 4-Chlorophenyl phenyl ether 4,6-Dinitro-2-methylphenol 4-Chloro-3-methylphanol 4-Methylphenol(p-cresol) 2-Methylphenol(o-cresol) 4-Bromophenyl phenyl 3,3'-Dichlorobenzidine 3-Methylcholanthrene 2-Methylnaphthalene Benzo(b)fluoranthene Benzo(k)fluoranthene Butylbenzylphthalate Benzo(g,h,i)penylene 2-Chloronaphthalene Benzo(a)anthracene 2-Naphthylamine 4-Aminobiphenyl Benzo(a)pyrene Acenaphthylene 2-Chlorophenol Benzył akcohol 4-Nitrophenol Acenaphthene 2-Nitrophenol 3-Nitroaniline 4-Nitroaniline Acetophenone 2-Nitroantline Benzoic acid Anthracene 2-Picoline Benzidine Specie Aniline Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Votatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Organics, Semi-Volatile Analyte Group

Bottom Ash - Page 3

| Analyte                  |                            | Analytical |                       |   | Run      |          | Run      |   | Run  | Run |          |         | 95% | ត            |
|--------------------------|----------------------------|------------|-----------------------|---|----------|----------|----------|---|------|-----|----------|---------|-----|--------------|
| Group                    | Specie                     | Method     | Cnits                 |   | _        |          | 2        |   | 8    | 3d  |          | Average | 5   | Ratio        |
|                          | dele Halanda e 10          | CIAI 0370  | e;                    | , | <b>4</b> | •        | <b>Q</b> | ١ | Ť.   |     | ٧        | 20.7    | :   | 7001         |
| Organics, Serni-Volatine | C-11-Octable in the second | 0.70 440   | 2                     | , | 4.4      | ,        | 2        | , | 2 1  |     | ,        | ;       |     |              |
| Organics, Semi-Volatile  | Dibenz(a,h)anthracene      | SW 8270    | Ş                     | ٧ | 22.3     | <b>v</b> | 20.8     | V | 35.2 |     | <b>v</b> | 26.1    | :   | 100%         |
| Organics, Semi-Volatile  | Dibenz(a_))acridine        | SW 8270    | ₽/Gu                  | v | 27.3     | v        | 25.5     | V | 36.6 |     | v        | 29.8    | ;   | 100%         |
| Organics, Serni-Votatife | Dibenzofuran               | SW 8270    | ₿/Bu                  | v | 19.2     | •        | 17.9     | ٧ | 23.3 |     | •        | 20.1    | :   | 100%         |
| Organics, Semi-Volatile  | Dibutytphthalate           | SW 8270    | 0/Bu                  | v | 23.2     | v        | 21.6     | • | 14.1 |     | •        | 19.6    | :   | 100%         |
| Organics, Semi-Volatile  | Diethylphthalate           | SW 8270    | 5/6u                  | v | 15.8     | ٧        | 14.7     | v | 22.4 |     | v        | 17.6    | :   | 100%         |
| Organics, Semi-Volatile  | Dimethylphenethylamine     | SW 8270    | 6/6u                  | ٧ | 120      | ٧        | 120      | • | 120  |     | v        | 120     | ;   | 100<br>%     |
| Organics, Semi-Votatile  | Dimethylphthalate          | SW 8270    | 6/Bu                  | v | 13.2     | v        | 12.3     | • | 14.6 |     | ٧        | 13.4    | :   | 100%         |
| Organics, Semi-Volatile  | Diphenylamine              | SW 8270    | 6/6u                  | v | 24.8     | v        | 23.2     | ٧ | 12.0 |     | v        | 20.0    | :   | 100%         |
| Organics, Semi-Volatile  | Ethyl methanesulfonate     | SW 8270    | 6/Bu                  | ٧ | 23.6     | v        | 22.1     | v | 29.5 |     | v        | 25.1    | :   | 100%         |
| Organics, Semi-Volatile  | Fluoranthene               | SW 8270    | 5/Bu                  | v | 30.0     | v        | 28.0     | • | 20.5 |     | v        | 26.2    | :   | 100%         |
| Organics, Semi-Volatile  | Fluorene                   | SW 8270    | ₿/Đu                  |   | 11.3     | v        | 14.7     | • | 16.5 |     | v        | 16.5    | :   | 58%          |
| Organics, Semi-Volatile  | Hexachlorobenzene          | SW 8270    | 6/ <b>6</b> u         | v | 11.0     | ٧        | 10.3     | • | 13.6 |     | •        | 11.6    | ;   | 100%         |
| Organics, Semi-Volatile  | Hexachlorobutadiene        | SW 8270    | 5/ <b>6</b> L         | v | 32.8     | v        | 30.6     | v | 22.2 |     | ٧        | 28.5    | :   | 100<br>%     |
| Organics, Semi-Volatile  | Hexachlorocyclopentadiene  | SW 8270    | <b>6/6</b> u          | ٧ | 419      | ٧        | 391      | • | 256  |     | •        | 355     | ;   | 100%         |
| Organics, Semi-Volatile  | Hexachloroethane           | SW 8270    | ₿/Bu                  | v | 27.9     | v        | 26.1     | ٧ | 27.6 |     | •        | 27.2    | ;   | 100 <b>%</b> |
| Organics, Semi-Votatile  | Indeno(1,2,3-cd)pyrene     | SW 8270    | 0/6u                  | v | 24.7     | v        | 23.0     | • | 57.8 |     | <b>v</b> | 35.2    | ;   | 100%         |
| Organics, Semi-Volatile  | Sophorone                  | SW 8270    | 5/6u                  | v | 13,5     | v        | 12.6     | v | 26.8 |     | V        | 17.6    | :   | <b>1</b> 00% |
| Organics, Semi-Volatile  | Methyl methanesulfonate    | SW 8270    | 5/60                  | v | 50.0     | ٧        | 20.0     | • | 20.0 |     | v        | 20.0    | :   | 100%         |
| Organics, Semi-Volatile  | N-Nitroso-di-n-butylamine  | SW 8270    | <b>5/6</b> u          | ٧ | 61.6     | v        | 57.5     | • | 27.3 |     | <b>v</b> | 48.8    | ;   | 100%         |
| Organics, Semi-Volatile  | N-Nitrosodimethylamine     | SW 8270    | 6/ <b>6</b> u         | v | 62.5     | v        | 58.4     | • | 34.2 |     | <b>v</b> | 51.7    | :   | 100%         |
| Organics, Semi-Volatile  | N-Nitrosodiphenylamine     | SW 8270    | <b>6/6</b> u          | v | 26.6     | ٧        | 24.8     | • | 11.7 |     | ٧        | 21.0    | :   | 100<br>%     |
| Organics, Semi-Volatile  | N-Nitrosodipropylamine     | SW 8270    | 5/6u                  | v | 35.3     | v        | 33.0     | v | 28.4 |     | v        | 32.2    | :   | 100%         |
| Organics, Semi-Volatile  | N-Nitrosopiperidine        | SW 6270    | ₿/Ĝu                  | v | 6.44     | v        | 41.4     | • | 25.9 |     | v        | 37.2    | :   | 100%         |
| Organics, Semi-Volatile  | Naphthalene                | SW 8270    | <b>6</b> / <b>6</b> u |   | 52.2     | v        | 32.0     | v | 20.8 |     | <b>v</b> | 32.0    | :   | 34.8<br>8    |
| Organics, Semi-Volatile  | Nitrobenzene               | SW 8270    | 8/6u                  | v | 24.8     | v        | 23.2     | • | 36.6 |     | v        | 28.2    | :   | 100%         |
| Organics, Semi-Volatile  | Pentachlorobenzene         | SW 8270    | 5/64                  | v | 20.8     | ٧        | 19.4     | ٧ | 16.3 |     | v        | 18.8    | ;   | 100<br>%     |
| Organics, Semi-Votatile  | Pentachloronitrobenzene    | SW 8270    | 6/6u                  | v | 97.3     | ٧        | 8.06     | • | 0.09 |     | v        | 82.7    | :   | 100%         |
| Organics, Semi-Volatile  | Pentachlorophenol          | SW 8270    | B/Bu                  | ٧ | 40.6     | ٧        | 37.9     | v | 38.6 |     | •        | 39.0    | :   | 100%         |
| Organics, Semi-Volatile  | Phenacetin                 | SW 8270    | ₿ø.                   | v | 25.4     | •        | 23.7     | • | 16.8 |     | ٧        | 22.0    | :   | 100%         |
| Organics, Semi-Volatile  | Phenanthrene               | SW 8270    | <b>6/6</b> u          |   | 31.1     | V        | 27.3     | v | 20.3 |     | v        | 27.3    | :   | 43%          |
| Organics, Semi-Volatile  | Phenol                     | SW 8270    | ₿/Bu                  | v | 18.7     | ٧        | 17.5     | v | 38.4 |     | ٧        | 24.9    | ;   | 100%         |
| Organics, Semi-Votatile  | Pronamide                  | SW 8270    | ₿/Bu                  | v | 34.7     | v        | 32.4     | • | 10.5 |     | V        | 25.9    | ;   | 100%         |
| Organics, Semi-Votatile  | Pyrene                     | SW 8270    | ₿/Ĝu                  | v | 22.0     | v        | 20.5     | • | 17.7 |     | ٧        | 20.1    | :   | 100%         |
| Organics, Semi-Volatile  | Pyridine                   | SW 8270    | 6/Bu                  | v | 54.5     | •        | 50.9     | ٧ | 25.6 |     | v        | 43.7    | :   | 100%         |
|                          |                            |            |                       |   |          |          |          |   |      |     |          |         |     |              |

Bottom Ash - Page 4

| Sample Stream: Bottom Asn | Asn                                         |                      |            |   |          |   |          |          |      |           |   |         |          |              |
|---------------------------|---------------------------------------------|----------------------|------------|---|----------|---|----------|----------|------|-----------|---|---------|----------|--------------|
| Analyte                   | Specie                                      | Analyticat<br>Method | Units      | 1 | Run<br>1 |   | Run<br>2 |          | Run  | Run<br>3d |   | Average | 0 %<br>C | Or.<br>Ratio |
|                           |                                             |                      |            |   |          |   |          |          |      |           |   |         |          |              |
|                           | Ling Orlandamathana                         | CV ROTO              | שטים       | v | 26.4     | ٧ | 24.7     | ٧        | 26.3 |           | v | 25.8    | :        | 100%         |
| Organics, Semi-Volatie    | OIS(Z-CIIIOCOERITOXY)/IIIEIIIII             | SW 8270              | R.A.       |   | 34.4     | ٧ | 32.1     | ٧        | 16.6 |           | v | 27.7    | :        | 100%         |
| Organics, Semi-Volatile   |                                             | SW 8270              | A 0/00     |   | 34.1     | ٧ | 31.9     | ٧        | 34.7 |           | ٧ | 33.6    | :        | 100%         |
| Organics, Semi-Volatile   | DIS(2-Chiorosophopy) Surial                 | CM 8270              | <b>3</b> 5 |   | 280      |   | 157.0    | ٧        | 25.2 |           | v | 86.0    | :        | <b>76%</b>   |
| Organics, Sermi-Volatile  | bis(z-Etnyinexyi)pyruhaiate                 | SW 8270              | 2 0        |   | 26.3     | ٧ | 24.5     | v        | 32.4 |           | • | 27.7    | :        | 100%         |
| Organics, Semi-Volatile   | p-Cinicipalities  o-Dimethylaminoazobenzene | SW 8270              | o/bu       | v | 24.2     | ٧ | 22.6     | <b>v</b> | 31.5 |           | ٧ | 26.1    | :        | 100%         |
| Organica, Connection      |                                             |                      | ,          |   |          |   |          |          |      |           |   |         |          |              |

Sample Stream: Sluiced Fly Ash

| Analyte            |            | Analytical |               | Run     | Run      | Run         | Run      |         | 85%      | 占     |
|--------------------|------------|------------|---------------|---------|----------|-------------|----------|---------|----------|-------|
| Group              | Specie     | Method     | Units         | -       | 2        | 80          | 3d       | Average |          | Ratio |
|                    |            |            | į             |         |          | ,           | Ş        |         |          | ,     |
| Anions             | Chlorine   | 0.04₹0     | 600           | 8       | 3        | 3           | 455      | 3       | :        | Š     |
| Anions             | Fluorine   | EPA 350.2  | 6/6n          | 77.2    | 129      | 91.0        | <b>V</b> | 99.1    | 9.99     |       |
|                    |            | 0100       | ,             | 468     | 90       | 101 600     | 9        | 7008    | 7 003    |       |
| MCLAIS             |            | 00000      | 3             | 904,400 | 600      | SOC'101     | 20.10    | 36.6    | 100      |       |
| Metals             | Antimony   | CP-MS      | <b>0</b>      | 3.28    | 4.26     | 2.63        | 2.74     | 3.39    | 2.04     |       |
| Metals             | Arsenic    | SW 7060    | <b>6/6</b> n  | 53.1    | 6.77     | 50.9        | 50.8     | 9.09    | 37.2     |       |
| Metals             | Barium     | SW 6010    | B/Bn          | 456     | 522      | 209         | 510      | 496     | 87.4     |       |
| Metals             | Beryllium  | SW 6010    | ₿/Bn          | 11.1    | 12.4     | <u>ග</u>    | 10.1     | 11.1    | 3.09     |       |
| Metals             | Boron      | ICPES      | 5/5n          | 280     | 410      | 430         | 450      | 473     | 231      |       |
| Metals             | Cadmium    | SW 7131    | ₿/₿n          | 3.89    | 5.41     | 3.07        | 3.26     | 4.12    | 2.95     |       |
| Metals             | Calcium    | SW 6010    | 5/61          | 14,285  | 12,877   | 14,185      | 13,709   | 13,782  | 1,952    |       |
| Metals             | Chromium   | SW 6010    | 5/ôn          | 186     | 193      | 176         | 174      | 185     | 21.4     |       |
| Metals             | Cobaff     | SW 6010    | 6/6n          | 38.8    | 37.6     | 34.3        | 35.7     | 36.9    | 5.82     |       |
| Metais             | Copper     | SW 6010    | 6/6n          | 110     | 110      | 93.4        | 88.7     | ş       | 23.4     |       |
| Metals             | iron       | SW 6010    | ₿/₿'n         | 96,371  | 79,073   | 92,353      | 83,968   | 89,266  | 22,491   |       |
| Metals             | Lead       | SW 7421    | ₿/₿n          | 81.4    | <u>5</u> | 68.2        | 8.69     | 83.2    | 39.8     |       |
| Metals             | Magnesium  | SW 6010    | ₿/6n          | 4,778   | 4,829    | 5,040       | 5,010    | 4,882   | 345      |       |
| Metals             | Manganese  | SW 6010    | 6/6n          | 262     | 225      | 248         | 231      | 245     | 45.5     |       |
| Metals             | Mercury    | SW 7471    | ₽⁄ôn          | 0.091   | 0.188    | 0.156       | 0.181    | 0.145   | 0.122    |       |
| Metals             | Molybdenum | SW 6010    | đ/đn          | < 14.3  | 13.2     | 3.9         | 2.59     | < 14.3  | ;        | 29%   |
| Metals             | Nickel     | SW 6010    | 6/6n          | 151     | 149      | 128         | 151      | 143     | 35       |       |
| Metals             | Phosphorus | SW 6010    | 6/6n          | 8.53    | J 72.5   | 124         | 0.86     | 68.3    | 143      |       |
| Metals             | Potassium  | SW 6010    | 6∕6n          | 18,208  | 18,611   | 17,807      | 17,539   | 18,209  | 666<br>6 |       |
| Metals             | Selenium   | SW 7740    | 6/6n          | 8.14    | 16.7     | 11.2        | 11.0     | 12.0    | 10.8     |       |
| Metais             | Silicon    | SW 6010    | 6/6n          | 218,294 | 222,330  | 216,296     | 213,699  | 218,973 | 7,636    |       |
| Metals             | Sodium     | SW 6010    | 6/6n          | 5,422   | 5,231    | 4,507       | 4,334    | 5,053   | 1,199    |       |
| Metals             | Strontium  | SW 6010    | 6/6n          | 315     | 336      | 315         | 313      | 322     | 30.3     |       |
| Metals             | Titanium   | SW 6010    | 6/ <b>6</b> n | 6,277   | 6,650    | 950'9       | 6,209    | 6,328   | 745      |       |
| Metals             | Vanadium   | SW 6010    | 6/6n          | 335     | 345      | 301         | 293      | 327     | 97.6     |       |
| Metals             | Zinc       | SW 6010    | ₿/₿n          | 209     | 601      | 427         | 431      | 512     | 216      |       |
| •                  |            | 02478      | 6             | o c     | 7        | ŭ           | 7        |         | 9        |       |
| Ultimate/Proximate | % Carbon   | 93.50      | ę             | 9       | 8.*      | t<br>n<br>n | ī,       | ř       | 6.00     |       |

Sluiced Fly Ash - Page 1

| £  |
|----|
| *  |
| ä  |
| >  |
| 芷  |
| 73 |
| ñ  |
| ŭ  |
| =  |
| 2  |
| v  |
| •• |
| Ε  |
| ā  |
| Ü  |
| ₽  |
| Ø  |
| 4  |
| 7  |
| Ē  |
| 5  |
|    |

| 댶          |
|------------|
| Ą          |
| 준          |
| Ç          |
| 3          |
| <b>v</b> > |
| ream       |
| Ī          |
| ė          |
| Samp       |

| Analyte                 |                            | Analytical       |               |   | Run             | Run    |   | Run   | _       | Run   |         | 95%        |   | 占    |
|-------------------------|----------------------------|------------------|---------------|---|-----------------|--------|---|-------|---------|-------|---------|------------|---|------|
| Group                   | Specie                     | Method           | Units         |   | -               | 2      |   |       |         | 3d    | Average |            |   | 뜮    |
|                         |                            |                  |               |   |                 |        |   | !     | •       | į     | •       |            |   |      |
| Ultimate/Proximate      | % Sulfur                   | D3176            | *             |   | 0.115           | 0.146  |   | 0.140 | o o     | 0.141 | 0.134   | 0.041      | - |      |
| Radionuclides           | Actinium-228 @ 338 KeV     | EPA 901.1        | pCi/g         |   | 2.3             | 2.4    |   | 2.4   | •       | 2.2   | 2.4     | 0.14       | _ |      |
| Radionuclides           | Actinium-228 @ 911 KeV     | <b>EPA 901.1</b> | ₽Ċ!⁄g         |   | 2.3             | 2.3    |   | 2.4   |         | 2.4   | 2.3     | 0.14       | _ |      |
| Radionuclides           | Actinium-228 @ 968 KeV     | EPA 901.1        | pCi/g         |   | 2.5             | 2.4    |   | 2.6   | •       | 2.3   | 2.5     | 0.25       |   |      |
| Radionuclides           | Bismuth-212 @ 727 KeV      | EPA 901.1        | <b>5</b>      |   | 2.2             | 3.0    |   | 2.6   | •       | 3.0   | 2.6     | 36.O       | _ |      |
| Radionuclides           | Bismuth-214 @ 1120.4 KeV   | EPA 901.1        | g/j           |   | 7.2             | 6.9    |   | 5.4   | _       | 5.4   | 6.5     | 2.40       | _ |      |
| Radionuclides           | Bismuth-214 @ 1764.7 KeV   | <b>EPA 901.1</b> | PC//g         |   | 6.7             | 5.4    |   | 5.5   | -       | 5.8   | 5.9     | <u>8</u> . | _ |      |
| Radionuclides           | Bismuth-214 @ 609.4 KeV    | <b>EPA 901.1</b> | pCi/g         |   | 7.1             | 6.4    |   | 6.0   | _       | 3.0   | 6.5     | 138        | _ |      |
| Radionuclides           | K-40 @ 1460 KeV            | EPA 901.1        |               |   | 61              | 18     |   | 17    |         | 16    | 18.0    | 2.48       | _ |      |
| Radionuclides           | Lead-210 @ 46 KeV          | <b>EPA 901.1</b> | bCi/d         |   | 6.2             | 7.6    |   | 5.5   | ·       | 9.1   | 6.4     | 2.66       |   |      |
| Radionuclides           | Lead-212 @ 238 KeV         | EPA 901.1        | DCI/O         |   | 2.3             | 2.2    |   | 2.1   |         | 2.1   | 2.2     | 0.25       |   |      |
| Radionuclides           | Lead-214 @ 295.2 KeV       | EPA 901.1        | PC<br>PC      |   | 7.0             | 6.7    |   | 5.9   | -       | 6.9   | 6.5     | 14.        |   |      |
| Radionuclides           | Lead-214@ 352.0 KeV        | EPA 901.1        | DÇ!\Q         |   | 7.1             | 6.7    |   | 6.1   | _       | 3.2   | 9.9     | 1.25       |   |      |
| Radionuclides           | Radium-226 @ 186.0 KeV     | EPA 901.1        | DCI/O         |   | 9.9             | =      |   | 8.7   |         | 9.3   | 6.6     | 2.86       |   |      |
| Radionuclides           | Thallium-208 @ 583 KeV     | EPA 901.1        | Š.            |   | 2.3             | 2.3    |   | 2.1   | •       | 2.2   | 2.2     | 0.29       | _ |      |
| Radionuclides           | Thallium-208 @ 860 KeV     | EPA 901.1        | PC!/g         |   | 3.0             | 2.9    |   | 3.0   |         | 9.5   | 3.0     | 0.14       | _ |      |
| Radionuclides           | Thorium-234 @ 63.3 KeV     | <b>EPA 901.1</b> | PCI/g         |   | 6.0             | 8,5    |   | 5.2   |         | 5.3   | 6.6     | 4.28       |   |      |
| Radionuclides           | Thorium-234 @ 92.6 KeV     | <b>EPA 901.1</b> | <b>5</b> /0   |   | 5.7             | 4.0    |   | 5.3   |         | 1.2   | 5.0     | 2.21       |   |      |
| Radionuclides           | Uranium-235 @ 143 KeV      | EPA 901.1        | bC//g         |   | 0.16            | 0.23   |   | 0.28  | o<br>v  | 013   | 0.22    | 0.15       |   |      |
| Organics, Semi-volatife | 1,2,4,5-Tetrachlorobenzene | SW 8270          | <b>6/6</b> u  | v | 27.5            | 25.7   | v | 17.4  | v       | 17.5  | < 23.5  | ;          | 5 | 100% |
| Organics, Semi-votatile | 1,2,4-Trichlorobenzene     | SW 8270          | 0/Bu          | v | 28.1            | 26.3   | v | 26.2  | ۷       | 6.3   | < 26.9  | 1          | 5 | %0   |
| Organics, Semi-volatile | 1,2-Dichlorobenzene        | SW 8270          | 0/6u          | v | 37.0            | 34.6   | v | 28.3  | ۸       | 8.5   | < 33.3  | ;          | ₽ | %0   |
| Organics, Semi-volatile | 1,2-Diphenylhydrazine      | SW 8270          | 5/6u          | v | <del>1</del> 00 | 0      | v | \$    | v       | 8     | ۰<br>5  | ,          | ₽ | %    |
| Organics, Semi-volatile | 1,3-Dichlorobenzene        | SW 8270          | ₿øu           | v | 18.8            | : 17.6 | v | 31.9  | v       | 2.1   | < 22.8  | ;          | 5 | %    |
| Organics, Semi-volatile | 1,4-Dichlorobenzene        | SW 8270          | 6/6u          | v | 38.4            | 35.9   | v | 26.2  | ۷       | 6.3   | < 33.5  | ;          | ₽ | %    |
| Organics, Semi-volatile | 1-Chloronaphthalene        | SW 8270          | <b>6/6</b> ⊔  | v | 30.6            | 28.6   | v | 23.9  | ۸       | 4.1   | < 27.7  | ;          | ō | %    |
| Organics, Semi-volatile | 1-Naphthylamine            | SW 8270          | 8/Bu          | ٧ | 74.2            | 69.3   | v | 90.4  | υ,<br>V | 4.0   | < 78.0  | ;          | ₽ | %    |
| Organics, Semi-volatile | 2,3,4,6-Tetrachtorophenol  | SW 8270          | 6/6u          | v | 23.9            | 22.4   | v | 20.7  | v       | 9.0   | < 22.3  | ;          | ₽ | %    |
| Organics, Semi-votatile | 2,4,5-Trichlorophenol      | SW 8270          | ₿/gu          | v | 15.7            | 14.7   | v | 22.7  | v       | 2.8   | < 17.7  | ;          | 5 | %0   |
| Organics, Semi-volatile | 2,4,6-Trichlorophenol      | SW 8270          | 6/ <b>6</b> u | v | 16.6            | . 15.5 | v | 22.5  | v       | 2.7   | < 18.2  | ;          | ₽ | %    |
|                         |                            |                  |               |   |                 |        |   |       |         |       |         |            |   |      |

## Sluiced Fly Ash - Page 2

Solid Stream Data

Sample Stream: Sluiced Fly Ash

| Specie         Method         Units         1         2         35         34         Average           2,4-Dichtcrophenol         SW 8270         rigg         < 21.1         < 18.7         < 25.3         < 25.5         < 22.0           2,4-Dichtcrophenol         SW 8270         rigg         < 33.3         < 18.9         < 57.9         < 89.2         < 22.4           2,4-Dichtcrophenol         SW 8270         rigg         < 34.4         < 24.4         < 26.3         < 25.8         < 25.8           2,6-Dichtcrophenol         SW 8270         rigg         < 34.4         < 24.4         < 22.1         < 22.9         < 22.9         < 25.8           2,6-Dichtcrophenol         SW 8270         rigg         < 18.4         < 22.1         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9           2,Chlorrosphrihatene         SW 8270         rigg         < 18.4         < 14.4         < 17.5         < 17.7         < 18.8         < 22.4           2,Altropalities         SW 8270         rigg         < 23.1         < 4.4         < 17.5         < 17.7         < 17.7         < 18.8           2,Altropalities         SW 8270         rigg         < 23.1         < 24.4         < 17.8         < 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyte                 |                                | Analytical |                       |   | Run  | æ               | E          |   | Ren  |   | Run  |   |         | 95% | 占                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|------------|-----------------------|---|------|-----------------|------------|---|------|---|------|---|---------|-----|------------------|
| 2,4-Dichtorophenol         SW 8270         rigin         < 21,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Group                   | Specie                         | Method     | Units                 |   | 1    | 2               |            | ľ |      | ļ | 3d   |   | Average | ಶ   | Ratio            |
| 2,4-Dichlorophenol         SW 8270         ngg          < 21.1         < 19.7         < 25.3         < 25.3         < 25.3         < 25.3         < 24.0         < 25.3         < 24.0         < 25.3         < 24.0         < 25.3         < 24.0         < 25.3         < 24.0         < 25.3         < 24.0         < 25.3         < 24.0         < 25.3         < 26.0         < 25.0         < 25.0         < 25.0         < 26.0         < 25.0         < 26.0         < 25.0         < 26.0         < 26.0         < 25.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0         < 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                                |            |                       |   |      |                 |            |   |      |   |      |   |         |     |                  |
| 2.4-Dimentiyaphenol         SW 8270         ngg         < 52.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organics, Semi-volatile | 2,4-Dichlorophenol             | SW 8270    | 0/ <b>6</b> u         | v | 21.1 | , 19            | <b>-</b>   | v | 25.3 | ٧ | 25.5 | V | 22.0    | :   | 100 <b>%</b>     |
| 2,4-Dinkrophenol         SW 8270         ngg          333         < 311         < 186         < 187            2,4-Dinkrophenol         SW 8270         ngg         < 26.1         < 24.4         < 26.3         < 22.9            2,6-Dinkrophenol         SW 8270         ngg         < 16.4         < 15.4         < 28.3         < 22.9         < 22.9           2,6-Dinkrophenol         SW 8270         ngg         < 15.4         < 11.5         < 22.9         < 22.9           2,Chlorophenol         SW 8270         ngg         < 15.4         < 29.3         < 17.5         < 22.9           2,Authyphenolic-creaol         SW 8270         ngg         < 34.0         < 29.3         < 17.5         < 17.5         < 17.5           2,Authyphenolic-creaol         SW 8270         ngg         < 23.7         < 13.8         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5         < 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Organics, Semi-votatile | 2,4-Dimethylphenol             | SW 8270    | ₿/B⊔                  | v | 52.3 | × 48            | O)         | v | 57.9 | v | 58.2 | v | 53.0    | ;   | 100%             |
| 2,4-Dinitrotokeree         SW 8270         ng/g         < 26.1         < 24.4         < 26.3         < 26.5         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.9         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0         < 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organics, Semi-volatile | 2,4-Dinitrophenol              | SW 8270    | D/0u                  | v | 333  | < 31            | _          | v | 186  | v | 187  | v | 277     | ;   | 100%             |
| 2,6-Dichlorophenol         SW 8270         ng/g         < 34.4         < 22.1         < 22.8         < 22.9           2,6-Dichlorophenol         SW 8270         ng/g         < 16.4         < 17.4         < 28.3         < 28.9         < 22.9           2-Chlorophenol         SW 8270         ng/g         < 16.4         < 14.4         < 17.5         < 17.8         < 17.8           2-Chlorophenol         SW 8270         ng/g         < 36.3         < 29.3         < 16.2         < 17.6         < 17.8         < 17.8         < 17.8         < 17.8         < 17.8         < 17.8         < 17.8         < 17.8         < 17.9         < 29.5         < 29.5         < 29.5         < 29.5         < 18.9         < 17.9         < 18.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9         < 17.9 <td>Organics, Semi-volatile</td> <td>2,4-Dinitrotoluene</td> <th>SW 8270</th> <th>5/6u</th> <td>v</td> <td>26.1</td> <td>&lt; 24</td> <td>4</td> <td>v</td> <td>26.3</td> <td>٧</td> <td>26.5</td> <td>٧</td> <td>25.6</td> <td>;</td> <td>100%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Organics, Semi-volatile | 2,4-Dinitrotoluene             | SW 8270    | 5/6u                  | v | 26.1 | < 24            | 4          | v | 26.3 | ٧ | 26.5 | ٧ | 25.6    | ;   | 100%             |
| 2.6 Dinitrotoluene         SW 8270         righ         < 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organics, Semi-volatile | 2,6-Dichlorophenol             | SW 8270    | 5/50                  | v | 34.4 | 32              | -          | v | 22.8 | v | 22.9 | v | 29.8    | 1   | 100 <b>%</b>     |
| 2-Chlororaphthalene         SW 8270         ngg         4         4         17.5         6         17.6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Organics, Semi-volatile | 2,6-Dinitrotoluene             | SW 8270    | 6/60                  | v | 16.4 | د<br>15         | ₹.         | v | 38.3 | v | 38.6 | v | 23.4    | ;   | 100%             |
| 2-Chilotophenal         SW 8270         ngg         < 36.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Organics, Semi-volatile | 2-Chloronaphthatene            | SW 8270    | <b>6/6</b> u          | v | 15.4 | × 14            | 4          | v | 17.5 | ٧ | 17.6 | v | 15.8    | ;   | 100<br>%         |
| 2-Methylphenolic-reaol)         SW 8270         ngg         c         31.4         c         29.3         c         16.2         c         16.3         c           2-Methylphenolic-reaol)         SW 8270         ngg         c         25.4         c         23.7         c         13.8         c         13.9         c           2-Mathylphenol         SW 8270         ngg         c         20.9         c         18.8         c         29.5         c         29.7         c         29.7         c         13.9         c         29.7         c         29.7         c         13.9         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c         29.7         c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Organics, Semi-volatile | 2-Chlorophenol                 | SW 8270    | ₽<br>6                | v | 36.3 | <b>र्ड</b><br>४ | 0          | v | 28.3 | v | 28.5 | v | 32.9    | ;   | 100%             |
| 2-Methylphenol(o-cread)         SW 8270         ng/g         < 25.4         < 23.7         < 13.8         < 13.9         < 13.9         < 2.4         < 13.7         < 13.9         < 13.9         < 2.4         < 23.7         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9         < 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Organics, Semi-volatile | 2-Methytnaphthalena            | SW 8270    | 0/Bu                  | v | 31.4 | > 29            | e          | v | 16.2 | v | 16.3 | ٧ | 25.6    | ;   | 100%             |
| 2-Nitroanline SW 8270 ng/g < 92.7 < 86.7 < 71.2 < 71.7 < 71.7 < 71.1 c. 2.1 introanline SW 8270 ng/g < 19.1 < 17.9 < 29.5 < 29.5 < 29.7 < 29.5 < 29.5 < 29.7 < 29.5 c. 29.5 < 29.7 < 29.5 c. 29.5 < 29.7 < 29.5 c. 29.5 c. 29.4 < 2.2 c. 2.4 introanline SW 8270 ng/g < 20.9 < 19.1 < 148.4 < 29.5 c. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29.4 < 2.2 d. 29 | Organics, Semi-volatile | 2-Methylphenol(o-cresol)       | SW 8270    | <b>6</b> / <b>6</b> u | v | 25.4 | × 23            | <b>-</b>   | v | 13.8 | ٧ | 13.9 | ٧ | 21.0    | :   | 100%             |
| 2-Nitrophenol SW 8270 ng/g < 19.1 < 17.9 < 29.5 < 29.7 < 29.7 < 2-Nitrophenol SW 8270 ng/g < 20.9 < 19.8 < 23.2 < 23.4 < 23.4 < 22-Nitrophenol SW 8270 ng/g < 20.9 < 19.8 < 23.2 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4 < 23.4  | Organics, Semi-volatile | 2-Naphthylamine                | SW 8270    | DØ/Bu                 | v | 92.7 | 88              | 7          | v | 71.2 | v | 71.7 | v | 83.5    | :   | 100 <b>%</b>     |
| 2-Picoline SW 8270 ng/g < 51.8 < 48.4 < 36.8 < 37.4 < 53.4 < 5.4    2-Picoline SW 8270 ng/g < 51.8 < 48.4 < 36.8 < 37.1 < 44.9    3.3-Dehloroberaddine SW 8270 ng/g < 23.3 < 21.8 < 48.4 < 36.8 < 37.1 < 14.9    3.4-Dintrochemy phenyl SW 8270 ng/g < 37.2 < 24.2 < 24.2 < 24.2 < 14.8 < 14.9    4.6-Dintrochemy phenyl SW 8270 ng/g < 37.6 < 37.2 < 19.1 < 19.3    4.4-Minobibreny phenyl SW 8270 ng/g < 37.6 < 37.2 < 19.1 < 19.3    4.4-Minophenyl phenyl Phenyl SW 8270 ng/g < 37.6 < 37.2 < 19.1 < 19.3    4.4-Minophenyl phenyl Phenyl SW 8270 ng/g < 37.6 < 37.2 < 19.1 < 19.3    4.4-Minophenyl phenyl Phenyl SW 8270 ng/g < 37.1 < 20.3 < 21.5 < 21.5 < 21.7 < 19.3    4.4-Minophenyl phenyl Phenyl SW 8270 ng/g < 21.7 < 25.8 < 21.5 < 21.5 < 21.7 < 22.9 < 21.7 < 21.7 < 4.0    4.4-Minophenyl phenyl Phenyl Phenyl SW 8270 ng/g < 21.7 < 22.9 < 21.5 < 21.7 < 22.9 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 21.7 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < 22.0 < | Organics, Semi-volatile | 2-Nitroaniline                 | SW 8270    | 5/Bu                  | ٧ | 19.1 | < 17            | <b>O</b> . | v | 29.5 | v | 29.7 | ٧ | 22.2    | ;   | 700              |
| 2-Picoline SW 8270 ng/g < 51.8 < 48.4 < 36.8 < 37.1 < 4.8   3.3-Dichloroberacidine SW 8270 ng/g < 23.3 < 21.8 < 14.8 < 14.9 < 14.9 < 14.9 < 14.8   3.4-Dichloroberacidine SW 8270 ng/g < 37.2 < 21.8 < 14.8 < 14.9 < 14.9 < 14.9 < 14.8   3.4-Dichloroberacidine SW 8270 ng/g < 24.2 < 22.6 < 17.5 < 17.6 < 17.6 < 17.6 < 17.6 < 17.5 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17.6 < 17. | Organics, Semi-volatile | 2-Nitrophenof                  | SW 8270    | 6/6u                  | ٧ | 20.9 | × 19            | 9          | v | 23.2 | v | 23.4 | v | 21.2    | :   | 100 <b>%</b>     |
| 3.3-Dichloroberzidine         SW 8270         ng/g         < 23.3         < 14.8         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9         < 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Organics, Semi-volatile | 2-Picoline                     | SW 8270    | <b>6</b> / <b>6</b> u | v | 51.8 | ۸<br>48         | ₹.         | v | 36.8 | ٧ | 37.1 | ٧ | 45.7    | ;   | 100<br>%         |
| 3-Methylcholanthrene         SW 8270         ng/g         < 37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Organics, Semi-volatile | 3,3'-Dichlorobenzidine         | SW 8270    | 6/6u                  | v | 23.3 | < 21.           | 80         | ٧ | 14.8 | ٧ | 14.9 | v | 20:0    | :   | 100%             |
| 3-Nitroaniline SW 8270 ng/g < 24.2 < 22.6 < 17.5 < 17.6 < 4.6 Colorable SW 8270 ng/g < 24.2 < 22.6 < 17.5 < 17.5 < 17.6 < 4.6 Colorable SW 8270 ng/g < 37.6 < 35.2 < 19.1 < 19.3 < 19.3 < 4.6 Colorable SW 8270 ng/g < 21.7 < 20.3 < 21.5 < 21.7 < 20.3 < 21.5 < 21.7 < 4.6 Colorable SW 8270 ng/g < 21.7 < 20.3 < 21.5 < 21.7 < 21.7 < 21.7 < 21.5 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21.7 < 21. | Organics, Semi-volatile | 3-Methylcholanthrene           | SW 8270    | D/0u                  | v | 37.2 | ₹<br>•          | æ          | v | 22.3 | V | 22.4 | ٧ | 31.4    | ;   | 100 <b>%</b>     |
| 4,6-Dinitro-2-methylphenol         SW 8270         ng/g          37.6          45.0          19.1          19.3            4-Aminobiphenyl         SW 8270         ng/g          35.6          33.2          53.0          53.3            4-Bromophenyl phenyl         SW 8270         ng/g          21.7          20.3          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7          21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organics, Semi-volatile | 3-Nitroaniline                 | SW 8270    | 5/04                  | v | 24.2 | × 22            | ω.         | v | 17.5 | v | 17.6 | v | 21.4    | 1   | 100<br>%         |
| 4-Aminobiphenyl SW 8270 ng/g < 21.7 < 20.3 < 53.0 < 53.3 < 4.4 4.4 A-minobiphenyl SW 8270 ng/g < 21.7 < 20.3 < 21.5 < 21.7 < 21.7 < 4.Chloro-3-methyphenol SW 8270 ng/g < 21.7 < 20.3 < 21.5 < 21.7 < 21.7 < 22.9 < 21.7 < 4.Chloro-3-methyphenol SW 8270 ng/g < 25.1 < 25.6 < 22.9 < 22.9 < 23.1 < 4.Chloro-phenyl phenyl ether SW 8270 ng/g < 25.1 < 25.6 < 20.4 < 20.4 < 20.6 < 20.6 < 4.Chlorophenyl phenyl ether SW 8270 ng/g < 23.0 < 21.5 < 21.5 < 27.0 < 27.2 < 4.Chlorophenyl phenyl ether SW 8270 ng/g < 23.0 < 21.5 < 21.5 < 27.0 < 27.2 < 20.6 < 27.2 < 4.Chlorophenol SW 8270 ng/g < 22.7 < 21.5 < 27.0 < 27.0 < 27.2 < 27.0 < 27.2 < 4.Chlorophenol SW 8270 ng/g < 22.7 < 21.2 < 12.1 < 12.1 < 12.1 < 12.2 < 4.Chlorophenol SW 8270 ng/g < 22.7 < 21.2 < 12.1 < 12.1 < 12.2 < 12.1 < 12.1 < 12.2 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 12.1 < 1 | Organics, Semi-volatile | 4,6-Dinitro-2-methylphenol     | SW 8270    | DØ/Gu                 | v | 37.6 | ۰<br>ج          | 8          | v | 19.1 | v | 19.3 | v | 30.6    | ;   | 10%              |
| 4-Bromophenyl phenyl       SW 8270       ng/g       < 21.7       < 20.3       < 21.5       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7       < 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Organics, Semi-volatile | 4-Aminobiphenyl                | SW 8270    | ō/ōu                  | ٧ | 35.6 | , 33<br>33      | 2          | v | 53.0 | ٧ | 53.3 | ٧ | 40.6    | ;   | 100%             |
| 4-Chloro-3-methylphenol         SW 8270         ng/g         < 25.1         < 22.9         < 23.1         < 23.1         < 23.1         < 23.1         < 23.1         < 23.1         < 23.1         < 23.1         < 23.1         < 23.1         < 23.1         < 23.1         < 23.1         < 20.4         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6         < 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Organics, Semi-volatile | 4-Bromophenyl phenyl           | SW 8270    | <b>0,0</b> u          | v | 21.7 | × 20            | e          | v | 21.5 | ٧ | 21.7 | v | 21.2    | ;   | 100%             |
| 4-Chlorophenyl phenyl ether SW 8270 ng/g < 25.1 < 23.5 < 18.7 < 18.9 < 4.4. Methylphenol(p-cresol) SW 8270 ng/g < 27.3 < 25.6 < 20.4 < 20.6 < 20.6 < 4.4.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 20.6 < 4.5.7 < 4.5.7 < 4.5.0 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 < 4.5.7 | Organics, Semi-volatile | 4-Chioro-3-methylphenol        | SW 8270    | 6/6u                  | v | 34.4 | 8               | <u>-</u>   | v | 22.9 | v | 23.1 | v | 29.8    | •   | 100 <del>%</del> |
| 4-Methylphenolip-cresol)         SW 8270         ng/g         < 27.3         < 25.6         < 20.4         < 20.6         < 4.05           4-Nitroanline         SW 8270         ng/g         < 23.0         < 21.5         < 27.0         < 27.2         < 42.0           7,12-Dimethylberz(a)anthracene         SW 8270         ng/g         < 91.3         < 85.3         < 59.2         < 59.6         < 42.0           Acenaphthylene         SW 8270         ng/g         < 10.7         < 10.0         < 18.6         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2         < 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Organics, Semi-volatile | 4-Chlorophenyl phenyl ether    | SW 8270    | B/Bu                  | v | 25.1 | × 23            | ıΩ         | v | 18.7 | v | 18.9 | v | 22.4    | :   | 100%             |
| 4-Nitroaniline         SW 8270         ng/g         < 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Organics, Semi-volatile | 4-Methylphenol(p-cresol)       | SW 8270    | D/0u                  | v | 27.3 | × 25            | 9          | ٧ | 20.4 | v | 20.6 | ٧ | 24.4    | :   | 100%             |
| 4-Nitrophenol         SW 8270         ng/g         < 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Organics, Semi-volatile | 4-Nitroaniline                 | SW 8270    | 5/00                  | v | 23.0 | < 21.           | S)         | v | 27.0 | ٧ | 27.2 | ٧ | 23.8    | ;   | 100%<br>%        |
| 7,12-Dimethylberiz(a)anthracene       SW 8270       ng/g       < 91.3       < 85.3       < 59.2       < 59.6       < 4.6         Acenaphthrene       SW 8270       ng/g       < 22.7       < 12.2       < 12.1       < 12.2       < 4.2         Acetopherone       SW 8270       ng/g       < 21.8       < 20.4       < 24.9       < 25.0       < 4.9         Aniline       SW 8270       ng/g       < 44.4       < 41.5       < 27.4       < 27.6       < 47.6         Anthracene       SW 8270       ng/g       < 27.6       < 25.8       < 16.4       < 16.5       < 46.5         Benzidire       SW 8270       ng/g       < 20       < 20       < 20       < 20       < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organics, Semi-volatile | 4-Nitrophenol                  | SW 8270    | ₿/Bu                  | v | 32.8 | g<br>v          | 7          | v | 41.7 | ٧ | 42.0 | v | 35.1    | :   | 100 <b>%</b>     |
| Acenaphthene         SW 8270         ng/g         < 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organics, Semi-volatile | 7,12-Dimethylbenz(a)anthracene | SW 8270    | 6/64                  | v | 91.3 | ۰<br>88         | ဗ          | v | 59.2 | ٧ | 59.6 | ٧ | 78.6    | ;   | 100<br>%         |
| Aceraphthylene         SW 8270         ng/g         < 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Organics, Semi-volatile | Acenaphthene                   | SW 8270    | B/Bu                  | v | 22.7 | ^ 21            | 7          | v | 12.1 | ٧ | 12.2 | v | 18.7    | :   | 100%             |
| Acetopherione         SW 8270         ng/g         < 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Organics, Semi-volatile | Acenaphthylene                 | SW 8270    | ₿/Bu                  | v | 10.7 | ۰<br>5          | 0          | v | 18.6 | ٧ | 18.7 | v | 13.1    | ;   | 100<br>X         |
| Aniline SW 8270 ng/g < 44.4 < 41.5 < 27.4 < 27.6 < Anthracene SW 8270 ng/g < 27.6 < 25.8 < 16.4 < 16.5 < 84.4 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Organics, Semi-volatile | Acetophenone                   | SW 8270    | 5/6u                  | v | 21.8 | g<br>v          | 4          | v | 24.9 | v | 25.0 | v | 22.4    | ;   | 100%             |
| Anthracene SW 8270 ng/g < 27.6 < 25.8 < 16.4 < 16.5 < Berzidire SW 8270 ng/g < 20 < 20 < 20 < 20 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Organics, Semi-votatile | Aniline                        | SW 8270    | 6/Bu                  | v | 44.4 | < 4t.           | 2          | v | 27.4 | ٧ | 27.6 | ٧ | 37.8    | :   | 100%             |
| Berzidine SW 8270 ng/g < 20 < 20 < 20 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Organics, Semi-volatile | Anthracene                     | SW 8270    | 0/6u                  | v | 27.6 | ۸<br>کځ         | 80         | v | 16.4 | ٧ | 16.5 | v | 23.3    | :   | 100%             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Organics, Semi-volatile | Benzidine                      | SW 8270    | 5/6                   | v | 20   | ×               | _          | v | 20   | v | 20   | v | 20      | ;   | 100%             |

Sluiced Fly Ash - Page 3

Solid Stream Data

| £: |
|----|
| 7  |
| à  |
| _  |
| 2  |
| Ī. |
| =  |
| ×  |
| ж. |
| 2  |
| 3  |
| 77 |
| ٧, |
|    |
| ~  |
| 됴  |
| 20 |
| Ľ  |
|    |
| V) |
| æ  |
| ž  |
| 맠  |
| E  |
| ã  |
| ñ  |

| Analyte                 |                           | Analytical | 1                     |   | Run  |   | Run         |   | Run<br>* |          | Run   | • | Average | 95%<br>C | 드<br>호       |
|-------------------------|---------------------------|------------|-----------------------|---|------|---|-------------|---|----------|----------|-------|---|---------|----------|--------------|
| Group                   | Specie                    | Method     |                       |   | -    |   |             |   | ?        |          | 35    |   | and and | 5        | Sale         |
|                         |                           |            |                       |   | !    |   | j           |   | į        |          | ,     |   | 1       |          | i d          |
| Organics, Semi-volatile | Benzo(a)anthracene        | SW 8270    | B/Gu                  | v | 24.5 | v | 22.9        | v | 20.0     | v        | 70.7  | v | C.77    | :        | <u>\$</u>    |
| Organics, Semi-volatile | Benzo(a)pyrene            | SW 8270    | <b>5/6</b> u          | ٧ | 18.2 | v | 17.0        | v | 23.1     | v        | 23.2  | v | 19.4    | :        | 100%         |
| Organics, Semi-volatile | Benzo(b)fluoranthene      | SW 8270    | 6/6u                  | v | 27.0 | v | 25.3        | v | 40.4     | ٧        | 40.7  | v | 30.9    | :        | 100%         |
| Organics, Semi-volatile | Benzo(g,h,i)perylene      | SW 8270    | 5/Bu                  | v | 23.1 | v | 91.6        | v | 45.4     | v        | 45.7  | v | 30.0    | :        | 100%         |
| Organics, Semi-volatile | Benzo(k)fluoranthene      | SW 8270    | 6/6u                  | v | 46.0 | v | 13.0        | v | 44.5     | v        | 44.8  | v | 44.5    | ;        | 100%         |
| Organics, Semi-volatile | Benzoic acid              | SW 8270    | <b>0</b> / <b>0</b> u | v | 188  | v | 176         | v | 1,720    | v        | 1,730 | v | 695     |          | 100%         |
| Organics, Semi-volatile | Benzył alcohoł            | SW 8270    | 5/6u                  | v | 51.3 | v | 18.0        | v | 27.2     | v        | 27.3  | v | 42.2    | :        | 100%         |
| Organics, Semi-volatile | Butylbenzylphihalate      | SW 8270    | ₿/Bu                  | v | 18.7 | v | 17.5        | v | 27.8     | v        | 28.0  | v | 21.3    | ;        | 100%         |
| Organics, Semi-volatile | Chrysene                  | SW 8270    | 0,60                  | v | 31.8 | v | 7.6         | v | 23.9     | •        | 24.1  | v | 28.5    | ;        | 100%         |
| Organics, Semi-volatile | Di-n-octyfphthalate       | SW 8270    | 6/Bu                  | v | 43.3 | v | 10.5        | v | 15.7     | <b>v</b> | 15.8  | v | 33.2    | :        | 100%         |
| Organics, Semi-volatile | Dibenz(a,h)anthracene     | SW 8270    | 5/6u                  | v | 22.5 | v | 7.1         | v | 36.1     | v        | 36.3  | v | 26.6    | :        | 100 <b>%</b> |
| Organics, Semi-volatile | Dibenz(a,j)acridine       | SW 8270    | 6/Bu                  | v | 27.6 | v | 25.8        | ٧ | 37.5     | v        | 37.7  | v | 30.3    | :        | 100%         |
| Organics, Semi-volatile | Dibenzofuran              | SW 8270    | 5/BL                  | v | 19.4 | v | 18.1        | v | 23.9     | ٧        | 24.1  | v | 20.5    | :        | 100%         |
| Organics, Semi-volatile | DibutyIphthalate          | SW 8270    | 5/64                  | v | 23.4 | v | 1.9         | v | 14.4     | v        | 14.5  | v | 19.9    | :        | 100%         |
| Organics, Semi-volatile | Diethylphthalate          | SW 8270    | ₿/6u                  | v | 16.0 | v | 4.9         | ٧ | 22.9     | v        | 23.1  | v | 17.9    | :        | 100%         |
| Organics, Semi-volatile | Dimethylphenethylamine    | SW 8270    | ₿/Bu                  | v | 120  | v | 120         | v | 120      | ٧        | 120   | ٧ | 120     | ;        | 100%         |
| Organics, Semi-volatile | Dimethylphthalate         | SW 8270    | <b>6</b> /6u          | v | 13.3 | v | 12.4        | v | 15.0     | ٧        | 15.1  | v | 13.6    | :        | 100%         |
| Organics, Semi-volatile | Diphenylamine             | SW 8270    | 5/Bu                  | v | 25.1 | v | 3.5         | ٧ | 12.3     | v        | 12.4  | v | 20.3    | :        | 100%         |
| Organics, Semi-volatile | Ethyl methanesulfonate    | SW 8270    | D/01                  | v | 23.9 | v | 12.4        | v | 30.2     | v        | 30.4  | v | 25.5    | :        | 100%         |
| Organics, Semi-volatile | Fluoranthene              | SW 8270    | B/Bu                  | ٧ | 30.3 | v | 28.4        | v | 21.0     | <b>v</b> | 21.1  | v | 26.6    | ;        | 100%         |
| Organics, Semi-votatile | Fluorene                  | SW 8270    | 6/6u                  | v | 16.0 | v | 14.9        | v | 16.9     | v        | 17.0  | v | 15.9    | ;        | 100%         |
| Organics, Semi-volatile | Hexachlorobenzene         | SW 8270    | D/Du                  | v | 11.1 | v | 10.4<br>4.0 | v | 14.0     | v        | 14.1  | v | 11.8    | :        | 100<br>%     |
| Organics, Semi-volatile | Hexachlorobutadiene       | SW 8270    | D/Du                  | v | 33.2 | v | 31.0        | v | 22.8     | v        | 22.9  | v | 29.0    | ;        | 100%         |
| Organics, Semi-volatile | Hexachlorocyclopentadiene | SW 8270    | 6/6u                  | v | 424  | v | 386         | v | 262      | v        | 264   | v | 36      | :        | 10%          |
| Organics, Semi-volatile | Hexachloroethane          | SW 8270    | <b>5/6</b> u          | v | 28.2 | v | 26.4        | v | 28.3     | v        | 28.5  | v | 27.6    | ;        | 100%         |
| Organics, Semi-volatile | Indeno(1,2,3-cd)pyrene    | SW 8270    | <b>5</b> /6u          | v | 25.0 | v | 23.3        | v | 59.2     | ٧        | 59.6  | v | 35.8    | ;        | 100%         |
| Organics, Semi-volatile | Isophorone                | SW 8270    | 6/Su                  | v | 13.6 | v | 12.8        | v | 27.4     | ٧        | 27.6  | v | 17.9    | :        | 100%         |
| Organics, Semi-volatile | Methyl methanesulfonate   | SW 8270    | ₿/Ĝu                  | v | 8    | v | 20          | v | 8        | v        | 20    | v | යි      | :        | 100%         |
| Organics, Semi-volatile | N-Nitroso-di-n-butylamine | SW 8270    | ₿/Bu                  | v | 62.3 | v | 38.2        | v | 28.0     | ٧        | 28.2  | v | 49.5    | :        | 100%         |
| Organics, Semi-volatile | N-Nitrosodimethylamine    | SW 8270    | <b>6/8</b> u          | ٧ | 63.2 | v | 99.1        | v | 35.0     | v        | 35.2  | v | 52.4    | ;        | 100%         |
| Organics, Semi-volatile | N-Nitrosodiphenylamine    | SW 8270    | B/Gu                  | v | 26.9 | v | 25.2        | v | 12.0     | ٧        | 12.1  | v | 21.4    | ;        | 100%         |
| Organics, Semi-volatile | N-Nitrosodipropylamine    | SW 8270    | 5/Gu                  | v | 35.7 | v | 33.4        | v | 29.1     | v        | 29.3  | v | 32.7    | :        | 100%         |

### Sluiced Fly Ash - Page 4

Sample Stream: Sluiced Fly Ash

| Analyte                 |                             | Analytical |                       |   | Run  |   | Run  |   | Run  |   | Ru   |          |         | 95% | 占     |
|-------------------------|-----------------------------|------------|-----------------------|---|------|---|------|---|------|---|------|----------|---------|-----|-------|
| Group                   | Specie                      | Method     | Units                 |   | 1    |   | 2    |   | 9    |   | 3d   |          | Average | ច   | Ratio |
|                         |                             |            |                       |   |      |   |      |   |      |   |      |          |         |     |       |
| Organics, Semi-volatile | N-Nitrosopheridine          | SW 8270    | 5/6u                  | v | 44.8 | v | 41.9 | v | 56.6 | V | 26.7 | <b>v</b> | 37.8    | :   | 100%  |
| Organics, Semi-volatile | Naphthalene                 | SW 8270    | 0/6u                  | v | 34.7 | v | 32.4 | v | 21.3 | v | 21.4 | v        | 29.5    | ;   | 100%  |
| Organics, Semi-volatile | Nitrobenzene                | SW 8270    | <b>6</b> / <b>6</b> L | v | 25.1 | v | 23.5 | ٧ | 37.5 | v | 37.7 | v        | 28.7    | ;   | 100%  |
| Organics, Semi-volatile | Pentachtorobenzena          | SW 8270    | <b>5</b> / <b>6</b> L | v | 21.1 | v | 19.7 | ٧ | 16.6 | v | 16.8 | v        | 19.1    | :   | 100%  |
| Organics, Semi-volatile | Pentachloronitrobenzene     | SW 8270    | 6/64                  | v | 98.4 | v | 92.0 | ٧ | 61.4 | v | 61.8 | v        | 83.9    | ;   | 100%  |
| Organics, Semi-volatile | Pentachlorophenol           | SW 8270    | <b>5</b> / <b>6</b> L | v | 41.1 | v | 38.4 | ٧ | 39.6 | v | 39.8 | v        | 39.7    | :   | 100%  |
| Organics, Semi-volatile | Phenacetin                  | SW 8270    | 5/64                  | v | 25.7 | v | 24.0 | v | 17.2 | v | 17.3 | v        | 22.3    | ;   | 100%  |
| Organics, Semi-volatile | Phenanthrene                | SW 8270    | g/gn                  | v | 29.6 | v | 27.6 | ٧ | 20.8 | v | 21.0 | v        | 26.0    | :   | 100%  |
| Organics, Semi-volatile | Phenol                      | SW 8270    | 6/6u                  | v | 19.0 | v | 17.7 | ٧ | 39.3 | v | 39.6 | v        | 25.3    | :   | 100%  |
| Organics, Semi-votatile | Pronamide                   | SW 8270    | D/Ou                  | v | 35.1 | v | 32.8 | v | 10.7 | ٧ | 10.8 | ٧        | 26.2    | ;   | 100%  |
| Organics, Semi-volatile | Pyrene                      | SW 8270    | D/Du                  | v | 22.2 | v | 20.8 | ٧ | 18.2 | v | 18.3 | v        | 20.4    | :   | 100%  |
| Organics Semi-volatile  | Pyridine                    | SW 8270    | <b>5/6</b> L          | v | 55.1 | v | 51.6 | ٧ | 26.2 | v | 26.3 | v        | 44.3    | :   | 100%  |
| Organics, Semi-volatile | bis(2-Chloroethoxy)methane  | SW 8270    | 5/Su                  | v | 26.7 | v | 25.0 | v | 27.0 | v | 27.2 | v        | 26.2    | ;   | 100%  |
| Organics, Semi-volatile | bis(2-Chloroethyl)ether     | SW 8270    | 5/Su                  | v | 34.8 | v | 32.5 | ٧ | 17.0 | v | 17.2 | ٧        | 28.1    | :   | 100%  |
| Organics Semi-volatile  | bis(2-Chloroisopropyt)ether | SW 8270    | 6/6u                  | v | 34.5 | v | 32.3 | v | 35.5 | ٧ | 35.8 | v        | 34.1    | ;   | 100%  |
| Organics, Semi-volatile | bis(2-Ethylhexyl)phthalate  | SW 8270    | <b>5/6</b> u          |   | 431  |   | 259  | ٧ | 25.9 | v | 26.0 |          | 234     | 522 | 2%    |
| Organics, Semi-volatile | p-Chloroaniline             | SW 8270    | g/gu                  | v | 56.6 | v | 24.8 | v | 33.2 | v | 33.4 | v        | 28.2    | 1   | 10%   |
| Organics, Semi-volatile | p-Dimethylaminoazobenzene   | SW 8270    | 5/Gu                  | v | 24.5 | v | 22.9 | ٧ | 32.3 | ٧ | 32.5 | v        | 26.6    | ;   | 100%  |
|                         |                             |            |                       |   |      |   |      |   |      |   |      |          |         |     |       |

Sample Stream: ESP Hopper Ash-Field 1

| Analyte       |                        | Analytical |               | Run       | Run                               | Run             | Run     |         | 95%          | 占     |
|---------------|------------------------|------------|---------------|-----------|-----------------------------------|-----------------|---------|---------|--------------|-------|
| Group         | Specie                 | Method     | Units         | -         | 2                                 | 6               | PE      | Average | ਹ            | Ratio |
| Anione        | Chloride               | SM407C     | o/on          | 474       | 523                               | 08<br>66<br>v   | 665     | 349     | 846          | 2%    |
| Anions        | Fluoride               | EPA 340.2  | <b>6</b> /6n  | 70.8      | 87.7                              | 110             | Ħ       | 89.5    | 64           | ļ     |
|               |                        |            | 1             |           |                                   |                 |         |         | ;            |       |
| Metals        | Aluminum               | SW 6010    | 5/60          | 104,000   | 113,224                           | 74,047          | 102,201 | 97,091  | 50,884       |       |
| Metals        | Antimony               | ICP-MS     | 5/6n          | 3.42      | 2.94                              | 2.61            | 2.50    | 2,99    | <u>1</u>     |       |
| Metals        | Arsenic                | SW 7060    | 6/6n          | 50.0      | 41.0                              | 45.6            | 48.3    | 45.5    | 11.2         |       |
| Metais        | Barium                 | SW 6010    | B/Bn          | 461       | 564                               | 456             | 505     | 494     | 152          |       |
| Metals        | Beryllium              | SW 6010    | B/Bn          | 10.8      | 12.2                              | 9.60            | 15.9    | 10.9    | 3.26         |       |
| Metals        | Cadmium                | SW 7131    | 5/67          | 3.59      | 3.06                              | 3.14            | 3.29    | 3.26    | 0.72         |       |
| Metals        | Calcium                | SW 6010    | 6/ <b>6</b> n | 19,900    | 18,837                            | 15,030          | 18,737  | 17,922  | 6,362        |       |
| Metals        | Chromium               | SW 6010    | 6/60          | 182       | 196                               | 171             | 181     | 183     | 31.2         |       |
| Metals        | Cobalt                 | SW 6010    | ₿/₿n          | 33.8      | 35.8                              | 32.5            | 33.9    | 34.0    | 4.13         |       |
| Metals        | Copper                 | SW 6010    | 6/6n          | 104.0     | 104.2                             | 86.3            | 88.8    | 98.2    | 25.6         |       |
| Metals        | Iron                   | SW 6010    | <b>6/6</b> n  | 97,800    | 88,275                            | 84,268          | 88,975  | 90,114  | 17,269       |       |
| Metaks        | Lead                   | SW 7421    | <b>5/6</b> n  | 75.2      | 67.3                              | 74.5            | 67.8    | 72.4    | 10.8         |       |
| Metals        | Magnesium              | SW 6010    | 6/6n          | 5,400     | 5,010                             | 3,337           | 5,080   | 4,582   | 2,723        |       |
| Metals        | Manganese              | SW 6010    | 6/6n          | 243       | 211                               | 203             | 215     | 219     | 52.0         |       |
| Metałs        | Mercury                | SW 7471    | <b>6/6</b> n  | 60.0      | 0.12                              | 0.16            | 0.15    | 0.12    | 0.09         |       |
| Metals        | Molybdenum             | SW 6010    | 6/6n          | 25.3      | 32.8                              | 17.6            | 22.8    | 25      | 18.8         |       |
| Metals        | Nickel                 | SW 6010    | 6/6n          | 140       | 118                               | 124             | 124     | 127     | 27.9         |       |
| Metals        | Phosphorus             | SW 6010    | 6/6n          | \$        | < 71.7                            | <del>15</del> 0 | < 69.7  | 26.7    | <b>1</b> 43  | 12%   |
| Metals        | Potassium              | SW 6010    | 0/60          | 18,600    | 17,535                            | 16,132          | 18,136  | 17,422  | 3,075        |       |
| Metals        | Selenium               | SW 7740    | 6/5n          | 8.60      | 7.88                              | 11.4            | 10.4    | 9.30    | <b>4</b> .68 |       |
| Metals        | Silicon                | SW 6010    | 6/6n          | 217,000   | 238,472                           | 212,423         | 200,395 | 222,632 | 34,552       |       |
| Metals        | Sodium                 | SW 6010    | 5/6n          | 5,630     | 5,361                             | 4,679           | 4,870   | 5,223   | 1,217        |       |
| Metals        | Strontium              | SW 6010    | 5/6n          | 330       | 368                               | 272             | 325     | 323     | 52           |       |
| Metals        | Fitanium               | SW 6010    | 6/ <b>6</b> n | 6,120     | 6,042                             | 6,192           | 5,932   | 6,118   | 187          |       |
| Metals        | Vanadium               | SW 6010    | ₿/₿n          | 322       | 302                               | 283             | 298     | 305     | 37.4         |       |
| Metals        | Zinc                   | SW 6010    | 6/6n          | 472       | 406                               | 422             | 394     | 433     | 85.8         |       |
| Radionuclides | Actinium-228 @ 338 KeV | EPA 901.1  | ğ<br>Ö        | 2.3       | 2.1                               | 2.0             | 9.      | 2.1     | 4.0          |       |
| Radionuclides | Actinium-228 @ 911 KeV | EPA 901.1  | ₽Ci∕g         | 2.3       | 2.0                               | 2.0             | 2.3     | 2.1     | 0.4          |       |
| Radionuclides | Actinium-228 @ 968 KeV | EPA 901.1  | PĊi/g         | 2.8       | 2.4                               | 2.1             | 1.8     | 2.4     | 6.0          |       |
| Н             |                        |            | ESP           | Hopper As | ESP Hopper Ash (Field 1) - Page 1 | age 1           |         |         |              |       |

Solid Stream Data

| 0        |
|----------|
| ~        |
| <u>•</u> |
| ī        |
| Ι        |
| Ę        |
| œ.       |
| α,       |
| -        |
| Ψ        |
| ₽.       |
| ₽.       |
| 9        |
| E        |
|          |
| 7        |
| "        |
|          |
|          |
| €        |
| 듶        |
|          |
| 9        |
| =        |
| 9        |
| di.      |
| =        |
| •        |
| 롣        |
| 늘        |
| ā        |

| Analyte                 |                            | Analytical       |               |   | Run                            | Run         |        | Run  |   | Run            |   |         | 85%      | 占            |
|-------------------------|----------------------------|------------------|---------------|---|--------------------------------|-------------|--------|------|---|----------------|---|---------|----------|--------------|
| Group                   | Specie                     | Method           | Units         | Ì | -                              | 2           |        | e    |   | 8              | Ā | Average | 히        | Ratio        |
|                         |                            |                  | į             |   | ,                              | ć           |        | č    |   | 7              |   | 0       | 4        |              |
| Radionuclides           | Bismuth-212 @ 727 KeV      | EPA 901.1        | Ş<br>Ş        |   | 4.0                            | 7.8         |        | 7.   |   | 1.7            |   | 6.0     | <u> </u> |              |
| Radionuclides           | Bismuth-214 @ 1120.4 KeV   | EPA 901.1        | ğ             |   | 7.3                            | 5.8         |        | 5.3  |   | 5.5            |   | 6.1     | 2.6      |              |
| Radionuclides           | Bismuth-214 @ 1764.7 KeV   | EPA 901.1        | pCl/g         |   | 6.9                            | 5.1         |        | 5.6  |   | 5.2            |   | 5.9     | 2.3      |              |
| Radionuclides           | Bismuth-214 @ 609.4 KeV    | EPA 901.1        | g/IQd         |   | 7.2                            | 5.6         |        | 9.0  |   | 5.5            |   | 6.2     | 2.1      |              |
| Radionuclides           | K-40 @ 1460 KeV            | <b>EPA 901.1</b> | b<br>Q        |   | 6                              | 16          |        | 9    |   | 19             |   | 17      | 4.3      |              |
| Radionuclides           | Lead-210 @ 46 KeV          | <b>EPA 901.1</b> | pCi/g         |   | 5.6                            | 5.1         |        | 5.6  |   | 3.7            |   | 5.4     | 0.7      |              |
| Radionuclides           | Lead-212 @ 238 KeV         | EPA 901.1        | pCiva         |   | 2.4                            | 1.8         |        | 2.1  |   | 2.0            |   | 2.1     | 0.7      |              |
| Radionuclides           | Lead-214 @ 295.2 KeV       | EPA 901.1        | pCI/g         |   | 6.8                            | 5.7         |        | 5.9  |   | 5.8            |   | 6.1     | 1.5      |              |
| Radionuclides           | Lead-214@ 352.0 KeV        | <b>EPA 901.1</b> | pCI/g         |   | 7.2                            | 5.6         |        | 5.9  |   | 6.0            |   | 6.2     | 2.1      |              |
| Radionuclides           | Radium-226 @ 186.0 KeV     | <b>EPA 901.1</b> | pCl/g         |   | 5                              | 8.8         |        | 8.3  |   | 9.3            |   | 9.0     | 2.2      |              |
| Radionuclides           | Thallium-208 @ 583 KeV     | EPA 901.1        | Š             |   | 2.2                            | 2.0         |        | 2.0  |   | 2.1            |   | 2.1     | 6.0      |              |
| Radionuclides           | Thallium-208 @ 860 KeV     | EPA 901.1        | pCi/g         |   | 2.7                            | 2.3         |        | 1,2  |   | 2.7            |   | 2.1     | 6.       |              |
| Radionuclides           | Thorium-234 @ 63.3 KeV     | EPA 901.1        | 6/i2d         |   | 6.3                            | 5.8<br>8.0  |        | 4.6  |   | 5.4            |   | 5.8     | 2.2      |              |
| Radionuciides           | Thorium-234 @ 92.6 KeV     | EPA 901.1        | pCI/g         |   | 4.6                            | 3.6         |        | 8.4  |   | 3.8            |   | 4.3     | 1.6      |              |
| Radionuclides           | Uranium-235 @ 143 KeV      | EPA 901.1        | pCi/g         |   | 0.24                           | 0.3         |        | 0.1  |   | 0.3            |   | 0.2     | 0.2      |              |
| Organice Semi-volatile  | 1 2 4 5-Tetrachlorobenzene | SW 8270          | Da/a          | v | 19.2                           | 13.0        | •      | 12.9 | V | 13.0           | v | 15.0    | :        | 100%         |
| Organics, Semi-volatile | 1,2,4-Trichlorobenzene     | SW 8270          | g/gr          | v | > 19.6                         | 19.6        | v      | 19.5 | V | 19.6           | v | 19.6    | 1        | 100%         |
| Organics, Semi-volatile | 1,2-Dichlorobenzene        | SW 8270          | 6/Bu          | v | 25.9 <                         | 21.2        | ٧      | 21.1 | ٧ | 21.2           | v | 72.7    | :        | 100%         |
| Organics, Semi-volatife | 1,2-Diphenythydrazine      | SW 8270          | 5/Bu          | v | 9 <u>1</u>                     | 5           | •      | \$   | ٧ | <del>0</del> 0 | v | 5       | ;        | 100%         |
| Organics, Semi-volatile | 1,3-Dichlorobenzene        | SW 8270          | 5/6u          | v | 13.2                           | 23.9        | v      | 23.8 | v | 23.9           | v | 20.3    | :        | 100%         |
| Organics, Semi-volatile | 1,4-Dichlorobenzene        | SW 8270          | <b>5/6</b> u  | ٧ | 26.8                           | 19.6        | v      | 19.5 | ٧ | 19.6           | v | 22.0    | ;        | 100 <b>%</b> |
| Organics, Semi-votatile | 1-Chloronaphthalene        | SW 8270          | 6/6u          | v | 21,4 <                         | 17.9        | v      | 17.8 | ٧ | 17.9           | v | 19.0    | ;        | 100%         |
| Organics, Semi-volatile | 1-Naphthylamine            | SW 8270          | 6/64          | v | 51.8                           | 67.7        | v      | 67.4 | ٧ | 67.7           | v | 62.3    | :        | 100%         |
| Organics, Semi-volatile | 2,3,4,6-Tetrachiorophenol  | SW 8270          | 5/64          | v | 16.7                           | 15.5        | •      | 15.4 | v | 15.5           | v | 15.9    | :        | 400%         |
| Organics, Semi-volatile | 2,4,5-Trichlorophenol      | SW 8270          | 0/ <b>0</b> L | ٧ | 11.0                           | 17.0        | v      | 16.9 | ٧ | 17.0           | v | 15.0    | ;        | 100%         |
| Organics, Semi-volatile | 2,4,6-Trichlorophenol      | SW 8270          | 5/64          | v | 11.6                           | 16.9        | •      | 16.8 | ٧ | 16.9           | v | 15.1    | :        | 100%         |
| Organics, Semi-volatile | 2,4-Dichlorophenol         | SW 8270          | B/Bu          | v | 14.7                           | 19.0        | v      | 18.9 | v | 19.0           | v | 17.5    | :        | 100%         |
| Organics, Semi-volatile | 2,4-Dimethylphenol         | SW 8270          | Ø/Bu          | v | 36.5                           | 43.3        | v      | 43.1 | ٧ | 43.3           | v | 41.0    | :        | 100%         |
| Organics, Semi-volatile | 2,4-Dinitrophenol          | SW 8270          | 5/6           | v | 233                            | 139         | v      | 139  | ٧ | 139            | v | 170     | ;        | 100%         |
| Organics, Semi-volatile | 2,4-Dinitrotoluene         | SW 8270          | 5/Bu          | v | 18.3                           | 19.7        | v      | 19.6 | ٧ | 19.7           | v | 19.2    | ;        | 100%         |
| Organics, Semi-volatile | 2,6-Dichlorophenot         | SW 8270          | ₿/Bu          | v | 24.0                           | 17.1        | v      | 17.0 | V | 17.1           | v | 19.4    | :        | 100%         |
| Organics, Semi-volatile | 2,6-Dinitrotoluene         | SW 8270          | 0/00          | v | 1.5                            | 28.7        | •      | 28.6 | v | 28.7           | v | 22.9    | ;        | 100%         |
|                         |                            |                  | U.            | 7 | ESD Honner Ash (Field 1). Page | ield 1) - [ | Jane 2 |      |   |                |   |         |          |              |
|                         |                            |                  | j             | ? |                                |             | i<br>D |      |   |                |   |         |          |              |

Solid Stream Data

Sample Stream: ESP Hopper Ash-Field 1

| Analyte                  |                                | Analytical |               |      | Run                      |      | Run   |        | Run   |          | Run   |   |         | 95% | 占        |
|--------------------------|--------------------------------|------------|---------------|------|--------------------------|------|-------|--------|-------|----------|-------|---|---------|-----|----------|
| Group                    | Specie                         | Method     | Units         |      | 1                        |      | 2     |        | 60    |          | 34    |   | Average | ਠ   | Ratio    |
|                          |                                |            |               |      |                          |      |       |        |       |          |       |   | ,       |     | ,        |
| Organics, Semi-volatile  | 2-Chtoronaphthalene            | SW 8270    | <b>5/6</b> u  | v    | 10.8                     | v    | 13.1  | v      | 13.0  | v        | 13.1  | V | 12.3    | :   | 100%     |
| Organics, Semi-volatile  | 2-Chlorophenol                 | SW 8270    | 5/Bu          | v    | 25.4                     | v    | 21.2  | ٧      | 21.1  | v        | 21.2  | V | 22.6    | ;   | 100%     |
| Organics, Semi-volatile  | 2-Methylnaphthalene            | SW 8270    | 6/6u          | ٧    | 21.9                     | v    | 12.1  | v      | 12.1  | v        | 12.1  | v | 15.4    | ;   | 100%     |
| Organics, Semi-volatile  | 2-Methylphenol(o-cresol)       | SW 8270    | ng/g          | v    | 17.7                     | ٧    | 10.3  | v      | 10.3  | v        | 10.3  | V | 12.8    | :   | 100%     |
| Organics, Semi-votatile  | 2-Naphthylamine                | SW 8270    | 6/6u          | v    | 64.8                     | v    | 53.3  | v      | 53.1  | ٧        | 53.3  | ¥ | 57.1    | ;   | 100%     |
| Organics, Semi-volatile  | 2-Nitroaniline                 | SW 8270    | <b>5/8</b> u  | ٧    | 13.4                     | v    | 22.1  | v      | 22.0  | ٧        | 22.1  | v | 19.2    | ;   | 400%     |
| Organics, Semi-volatile  | 2-Nitrophenol                  | SW 8270    | ₿/Bu          | v    | 14.6                     | ٧    | 17.4  | v      | 17.3  | ٧        | 17.4  | v | 16.4    | :   | 100%     |
| Organics, Semi-volatile  | 2-Picoline                     | SW 8270    | 9/8           | ٧    | 36.2                     | ٧    | 27.6  | ٧      | 27.4  | v        | 27.6  | v | 30.4    | :   | 100%     |
| Organics, Semi-volatile  | 3,3'-Dichlorobenzidine         | SW 8270    | ogu           | v    | 16.3                     | v    | 11.1  | v      | 11.1  | v        | 11.1  | v | 12.8    | ;   | 100%     |
| Organics, Semi-volatile  | 3-Methylcholanthrene           | SW 8270    | 6/ <b>6</b> u | ٧    | 26.0                     | ٧    | 16.7  | ٧      | 16.6  | v        | 16.7  | v | 19.8    | ;   | 100%     |
| Organics, Semi-volatile  | 3-Nitroaniline                 | SW 8270    | B/Su          | v    | 16.9                     | v    | 13.1  | v      | 13.0  | v        | 13.1  | v | 14.3    | ;   | 100%     |
| Organics, Semi-votatile  | 4,6-Dinitro-2-methylphenol     | SW 8270    | 6/6u          | v    | 26.3                     | ٧    | 14.3  | ٧      | 14.3  | v        | 14.3  | V | 18.3    | ;   | 100%     |
| Organics, Semi-volatile  | 4-Aminobiphenyl                | SW 8270    | g/gu          | ٧    | 24.8                     | v    | 39.7  | ٧      | 39.5  | •        | 39.7  | v | 34.7    | ;   | 100%     |
| Organics, Semi-volatile  | 4-Bromophenyl phenyl           | SW 8270    | 6/6u          | ٧    | 15.1                     | ٧    | 16.1  | ٧      | 16.1  | v        | 16.1  | v | 15.8    | ;   | 100%     |
| Organics, Semi-volatile  | 4-Chtoro-3-methylphenol        | SW 8270    | B/Su          | v    | 24.0                     | v    | 17.2  | v      | 17.1  | v        | 17.2  | v | 19.4    | :   | 100%     |
| Organics, Semi-volatile  | 4-Chlorophenyl phenyl ether    | SW 8270    | ₽/gn          | ٧    | 17.5                     | v    | 14.0  | v      | 14.0  | •        | 14.0  | v | 15.2    | ;   | 100%     |
| Organics, Semi-volatile  | 4-Methylphenol(p-cresol)       | SW 8270    | D/6u          | v    | 19.1                     | v    | 15.3  | ٧      | 15.2  | v        | 15.3  | v | 16.5    | ;   | 100%     |
| Organics, Semi-volatile  | 4-Nitroaniline                 | SW 8270    | ₽⁄g⊓          | ٧    | 16.1                     | ٧    | 20.2  | v      | 20.1  | v        | 20.2  | v | 18.8    | ;   | 100%     |
| Organics, Semi-volatile  | 4-Nitrophenol                  | SW 8270    | 6/ <b>6</b> u | v    | 23.0                     | ٧    | 31.2  | v      | 31.1  | v        | 31.2  | v | 28.4    | ;   | 100%     |
| Organics, Semi-volatile  | 7,12-Dimethylbenz(a)anthracene | SW 8270    | B/Bu          | ٧    | 63.8                     | v    | 44.3  | ٧      | 1.7   | v        | 44.3  | v | 50.7    | :   | 100%     |
| Organics, Semi-volatile  | Acenaphthene                   | SW 8270    | 6/6u          | ٧    | 15.9                     | •    | 200   | ٧      | 9.03  | <b>v</b> | 9.07  | v | 11.3    | ;   | 100%     |
| Organics, Semi-volatile  | Acenaphthylene                 | SW 8270    | ₿/gu          | ٧    | 7.5                      | ٧    | 13.9  | v      | 13.9  | v        | 13.9  | v | 11.8    | ;   | 100%     |
| Organics, Semi-volatile  | Acetophenone                   | SW 8270    | 5/6L          | v    | 15.2                     | •    | 18.6  | v      | 18.6  | v        | 18.6  | v | 17.5    | ;   | 100%     |
| Organics, Servi-volatife | Anlline                        | SW 8270    | 0/6u          | v    | 31.0                     | •    | 20.5  | v      | 20.4  | v        | 20.5  | V | 24.0    | :   | 100%     |
| Organics, Semi-volatile  | Anthracene                     | SW 8270    | 6/6u          | v    | 19.3                     | v    | 12.3  | v      | 12.2  | v        | 12.3  | v | 14.6    | ;   | 100%     |
| Organics, Semi-volatile  | Benzidine                      | SW 8270    | 6/6u          | v    | 8                        | v    | 8     | v      | 20    | v        | 2     | v | 8       | ;   | 100%     |
| Organics, Semi-volatile  | Benzo(a)anthracene             | SW 8270    | ng/g          | v    | 17.1                     | v    | 15.0  | v      | 6.4   | v        | 15.0  | v | 15.7    | :   | 100<br>% |
| Organics, Semi-volatife  | Benzo(a)pyrene                 | SW 8270    | 5/ <b>6</b> u | v    | 12.7                     | v    | 17.3  | v      | 17.2  | v        | 17.3  | ¥ | 15.7    | ;   | 100%     |
| Organics, Semi-volatile  | Benzo(b)fluoranthene           | SW 8270    | 6/6u          | v    | 18.9                     | v    | 30.3  | ٧      | 30.1  | v        | 30.3  | V | 26.4    | :   | 100%     |
| Organics, Serni-volatile | Benzo(g,h,i)perylene           | SW 8270    | ₿/Bu          | v    | 16.2                     | ٧    | 34.0  | v      | 33.9  | v        | 34.0  | V | 28.0    | ;   | 100%     |
| Organics, Semi-volatile  | Benzo(k)fluoranthene           | SW 8270    | 6/60          | v    | 32.2                     | v    | 33.3  | v      | 33.2  | v        | 33.3  | v | 32.9    | ;   | 100%     |
| Organics, Semi-volatile  | Benzoic acid                   | SW 8270    | <b>0/6</b> u  | v    | 132                      | v    | 1,290 | v      | 1,280 | v        | 1,290 | v | 901     | :   | 100%     |
| Organics, Semi-volatile  | Benzyl alcohol                 | SW 8270    | 6/6u          | v    | 35.9                     | v    | 20.3  | v      | 20.2  | v        | 20.3  | v | 25.5    | :   | 100<br>% |
| H-0                      |                                |            | ES            | P Ho | ESP Hopper Ash (Field 1) | (Fie |       | Page 3 |       |          |       |   |         |     |          |

Solid Stream Data

| -        |
|----------|
| 0        |
| Ť.       |
| =        |
| 4        |
| ÷        |
| -        |
| -        |
| •        |
| <u></u>  |
| ğ        |
| ×        |
| ×        |
| ¥        |
| _        |
| ₾.       |
| <u> </u> |
| ī.       |
| _        |
| ••       |
| Ë        |
| ਨ        |
| ŭ        |
| =        |
| 7        |
| υ,       |
| Φ        |
| ₹        |
| ×        |
| Ἐ        |
| æ        |
| S)       |

| Analyte                 |                           | Analytical |              |   | Run      |          | Run            |      | Run        |   | Run  |   |         | 95% | 占            |
|-------------------------|---------------------------|------------|--------------|---|----------|----------|----------------|------|------------|---|------|---|---------|-----|--------------|
| Group                   | Specie                    | Method     | Units        |   | -        |          | 2              |      | 6          |   | 34   |   | Average | 5   | Ratio        |
|                         |                           |            |              |   | ,<br>!   |          |                |      |            | 1 | (    | , | ,       |     | i            |
| Organics, Semi-volatile | Butylbenzylphthalate      | SW 8270    | <u>8</u>     | ٧ | 13.1     | v        | 20.8           | v    | <b>8</b> . | ٧ | 20.8 | v | 78.2    | ;   | Š            |
| Organics, Semi-volatile | Chrysene                  | SW 8270    | 6/Bu         | v | 22.2     | <b>v</b> | 17.9           | v    | 17.8       | v | 17.9 | v | 19.3    | ;   | 100%         |
| Organics, Semi-volatile | Di-n-octylphthalate       | SW 8270    | 5/6          | v | 30.3     | v        | 11.7           | v    | 11.7       | v | 11.7 | v | 17.9    | :   | 100%         |
| Organics, Semi-votatile | Dibenz(a,h)anthracene     | SW 8270    | <b>5/6</b> L | v | 15.7     | v        | 27.0           | v    | 26.9       | v | 27.0 | v | 23.2    | ÷   | 100%         |
| Organics, Semi-volatile | Dibenz(a,j)acridine       | SW 8270    | 6/8u         | v | 19.3     | v        | 28.1           | v    | 27.9       | v | 28.1 | v | 25.1    | ;   | 100%         |
| Organics, Semi-volatile | Dibenzofuran              | SW 8270    | B/Bu         | v | 13.6     | v        | 17.9           | v    | 17.8       | v | 17.9 | v | 16.4    | ;   | 100%         |
| Organics, Semi-volatile | Dibutylphthalate          | SW 8270    | 0/Bu         | v | 16.4     | v        | 10.8           | v    | 10.8       | v | 10.8 | v | 12.7    | ;   | 100%         |
| Organics, Semi-volatile | Diethylphthalate          | SW 8270    | Ø/Bu         | v | 11.2     | v        | 17.2           | ٧    | 17.1       | v | 17.2 | ٧ | 15.2    | ;   | 100%         |
| Organics, Semi-volatile | Dimethylphenethylamine    | SW 8270    | 5/6u         | v | 120      | v        | 120            | ٧    | 120        | v | 120  | v | 120     | ;   | 100%         |
| Organics, Semi-volatile | Direthylphthalate         | SW 8270    | 5/6u         | v | 9.3      | v        | 11.2           | v    | 11.2       | v | 11.2 | v | 10.6    | :   | 100%         |
| Organics, Semi-volatile | Diphenylamine             | SW 8270    | DØ/đ         | v | 17.5     | v        | 9.2            | v    | 9.2        | ٧ | 9.2  | v | 12.0    | ;   | 100%         |
| Organics, Semi-volatile | Ethyt methanesulfonate    | SW 8270    | g/gn         | v | 16.7     | v        | 22.6           | v    | 22.5       | v | 22.6 | v | 20.6    | ;   | 100%         |
| Organics, Semi-volatife | Fluoranthene              | SW 8270    | 6/6u         | ٧ | 21.2     | v        | 15.7           | v    | 15.6       | v | 15.7 | ٧ | 17.5    | ;   | 100%         |
| Organics, Semi-volatile | Fluorene                  | SW 8270    | ₫/gu         | v | 11.2     | v        | 12.7           | v    | 12.6       | v | 12.7 | v | 12.2    | ;   | 100%         |
| Organics, Semi-volatile | Hexachiorobenzene         | SW 8270    | 0/Bu         | v | 7.8      | v        | 10.5           | ٧    | 10.4       | v | 10.5 | v | 9.6     | ;   | 100%         |
| Organics, Semi-votatile | Hexachlorobutadiene       | SW 8270    | 6/64         | v | 23.2     | v        | 17.1           | ٧    | 17.0       | v | 17.1 | ٧ | 19.1    | ;   | 100%         |
| Organics, Semi-volatile | Hexachlorocyclopentadiene | SW 8270    | 6/64         | v | 296      | v        | 196            | v    | 195        | v | 96   | v | 229     | 1   | 100%         |
| Organics, Semi-volatile | Hexachloroethane          | SW 8270    | D/0          | v | 19.7     | v        | 21.2           | v    | 21.1       | v | 21.2 | v | 20.7    | ;   | 100%         |
| Organics, Semi-volatile | Indeno(1,2,3-cd)pyrene    | SW 8270    | ₿/Ĝu         | v | 17.4     | v        | 44.3           | ٧    | 44.1       | v | 44.3 | v | 35.3    | ;   | 100%         |
| Organics, Semi-volatile | Isophorone                | SW 8270    | ₿/Bu         | ٧ | 9.5      | v        | 20.5           | v    | 20.4       | ٧ | 20.5 | ٧ | 16.8    | ;   | 100%         |
| Organics, Semi-volatile | Methyl methanesulfonate   | SW 8270    | ō/ōu         | v | 20       | v        | 20             | v    | S          | ٧ | 20   | v | ଛ       | ;   | 100%         |
| Organics, Semi-volatile | N-Nitroso-di-n-butylamine | SW 8270    | 6/6u         | v | 43.5     | v        | 21.0           | v    | 20.9       | v | 21.0 | v | 28.5    | ;   | 100%         |
| Organics, Semi-volatife | N-Nitrosodimethytamine    | SW 8270    | 0/64         | v | 44.2     | v        | 26.2           | ٧    | 26.1       | ٧ | 26.2 | v | 32.2    | ;   | 100%         |
| Organics, Semi-volatile | N-Nitrosodiphenylamine    | SW 8270    | 0/Bu         | v | 18.8     | v        | 0.6            | v    | 8.9        | v | 9.0  | ٧ | 12.2    | 1   | 100%         |
| Organics, Semi-volatile | N-Nitrosodipropylamine    | SW 8270    | <b>0</b> /6u | v | 24.9     | v        | 21.8           | v    | 21.7       | v | 21.8 | ٧ | 22.8    | :   | 100%         |
| Organics, Semi-volatile | N-Nitrosopiperidine       | SW 8270    | 6/Bu         | v | 34.3     | v        | 19.9           | v    | 19.8       | v | 19.9 | • | 23.7    | ;   | 100 <b>%</b> |
| Organics, Semi-volatile | Naphthalene               | SW 8270    | 5/6u         | v | 24.2     | v        | 15.9           | ٧    | 15.9       | v | 15.9 | ٧ | 18.7    | ;   | 100%         |
| Organics, Semi-volatile | Nitrobenzene              | SW 8270    | <b>5/6</b> u | v | 17.5     | v        | 28.1           | v    | 27.9       | v | 28.1 | ٧ | 24.5    | ;   | 100%         |
| Organics, Semi-volatile | Pentachlorobenzene        | SW 8270    | 6/6u         | v | 14.7     | v        | 12.5           | v    | 12.4       | ٧ | 12.5 | v | 13.2    | ;   | 100%         |
| Organics, Semi-volatile | Pentachloronitrobenzene   | SW 8270    | B/Bu         | ٧ | 68.8     | v        | 46.0           | v    | 45.8       | v | 46.0 | v | 53.5    | ;   | 100%         |
| Organics, Semi-volatile | Pentachlorophenol         | SW 8270    | 6/6u         | v | 28.7     | v        | 29.6           | v    | 29.5       | ٧ | 29.6 | v | 29.3    | ;   | 100%         |
| Organics, Semi-volatile | Phenacetin                | SW 8270    | g/gu         | ٧ | 17.9     | v        | 12.9           | v    | 12.8       | v | 12.9 | v | 14.5    | ;   | 100%         |
| Organics, Semi-votatile | Phenanthrene              | SW 8270    | 6/6u         | v | 20.7     | v        | 15.6           | v    | 15.5       | ٧ | 15.6 | v | 17.3    | ;   | 100%         |
|                         |                           |            | Ш            | ב | nner Ach | /Fiel    | Field 11 . Day | A 01 |            |   |      |   |         |     |              |

# ESP Hopper Ash (Field 1) - Page 4

Sample Stream: ESP Hopper Ash-Field 1

|                             | Analytical |              |   | Run         |   | Run  |   | Run  |   | Run  |   |         | 95% | 占     |
|-----------------------------|------------|--------------|---|-------------|---|------|---|------|---|------|---|---------|-----|-------|
| Specie                      | Method     | Units        |   | 1           |   | 2    |   | 8    |   | PE   |   | Average | ਹ   | Ratio |
| Phenol                      | SW 8270    | 5/Bu         | v | 13.3        | ٧ | 29.4 | ٧ | 29.3 | V | 29.4 | ٧ | 24.0    | :   | 100%  |
| Pronamide                   | SW 8270    | D/Gu         | v | 24.6        | ٧ | 8.03 | ٧ | 8.00 | ٧ | 8.03 | v | 13.5    | ;   | 100%  |
| Pyrene                      | SW 8270    | ₿/Bu         | v | 15.5        | ٧ | 13.6 | ٧ | 13.5 | ٧ | 13.6 | ٧ | 14.2    | ;   | 100%  |
| Pyridine                    | SW 8270    | 6/Bu         | ٧ | 38.5        | v | 19.6 | ٧ | 19.5 | ٧ | 19.6 | ٧ | 25.9    | :   | ±00%  |
| bis(2-Chloroethoxy)methane  | SW 8270    | 0/64         | ٧ | 18.7        | ٧ | 20.2 | ٧ | 20.1 | ٧ | 20.2 | V | 19.7    | :   | 100%  |
| bis(2-Chloroethyl)ether     | SW 8270    | <b>8</b> /8u | ٧ | 24.3        | v | 12.8 | V | 12.7 | ٧ | 12.8 | V | 16.6    | :   | 100%  |
| bis(2-Chloroisopropyl)ether | SW 8270    | ₿/gu         | ٧ | 24.1        | ٧ | 26.6 | ٧ | 26.5 | ٧ | 26.6 | ٧ | 25.7    | :   | 100%  |
| bis(2-Ethythexyl)phthalate  | SW 8270    | 6/04         |   | <b>3</b> 20 | ٧ | 19.4 | ٧ | 19.3 | ٧ | 19.4 |   | 190     | 775 | 3%    |
| p-Chloroaniline             | SW 8270    | D/Bu         | ٧ | 18.6        | ٧ | 24.8 | ٧ | 24.7 | v | 24.8 | V | 22.7    | :   | 100%  |
| p-Dimethyfaminoazobenzene   | SW 8270    | 6/60         | v | 17.1        | ٧ | 24.2 | ٧ | 24.1 | ٧ | 24.2 | V | 21.8    | ;   | 100%  |
|                             |            |              |   |             |   |      |   |      |   |      |   |         |     |       |

Sample Stream: ESP Hopper Ash-Field 2

| Analyte       |                         | Analytical |               | Run         | 2              | Run     | œ             | Run        | Run            |   |            | 82%          | 占     |
|---------------|-------------------------|------------|---------------|-------------|----------------|---------|---------------|------------|----------------|---|------------|--------------|-------|
| Group         | Specie                  | Method     | Units         |             |                | 2       |               | 3          | 34             |   | Average    | 5            | Ratio |
| eccina        | Chlodde                 | SIM407C    | υ/ <b>σ</b> ε | 6<br>8<br>v | 8              | 02 08   | 8<br>v        | 08.66      | 08.68          | ٧ | 866        | :            | 100%  |
| 200           | ) i                     |            |               |             | }              |         |               |            | ,              |   |            | 8            | :     |
| Anions        | Fluoride                | EPA 340.2  | ō/ōn          | 139         | 8              | 152.00  | <del>20</del> | 0          | 45.40          |   | 124.8      | C<br>050     |       |
| 1-4-4-        | Alternion               | 0109 700   | 4/400         | 82 768      | 9              | 00      | S             | 92 400     | 68 200         |   | 88 558     | 10 691       |       |
| Metals        |                         |            |               | }           | 3 ,            | 20,00   | 9             | 3          |                |   | 300        |              |       |
| Metals        | Antimony                | CP-MS      | ğ             | 4           | 2              | 3.87    | 77            | 8          | 3.78           |   | 4<br>5     | 8.<br>8.     |       |
| Metals        | Arsenic                 | SW 7060    | <b>5/6</b> n  | 74          | .2             | 67.4    | 2             | 4.2        | 61.1           |   | 71.9       | 8.6          |       |
| Metais        | Barium                  | SW 6010    | <b>6/6</b> n  | 4           | 6              | 203     | ιΩ            | 26         | 467            |   | <b>493</b> | <b>88</b> .3 |       |
| Metals        | Beryllium               | SW 6010    | D/Bn          | \$          | 7.             | 16.5    | ÷             | 5.3        | 19.2           |   | 17.2       | 3.36         |       |
| Metals        | Cadmium                 | SW 7131    | 5/ <b>6n</b>  | ່ວ່         | 5              | 5.20    | ι.            | 33         | 5.03           |   | 5.42       | 0.69         |       |
| Metals        | Calcium                 | SW 6010    | ō/ān          | 15,         | 30             | 16,000  | 15            | 92,        | 14,800         | _ | 15,643     | <b>9</b> 6   |       |
| Metals        | Chromium                | SW 6010    | 5/6n          | *           | 7              | 193     | 2             | 71         | <u>6</u>       |   | 219        | 11           |       |
| Metals        | Cobatt                  | SW 6010    | 6/6n          | 4           | <b>ω</b> .     | 45.5    | 4             | 1.3        | 38.8           |   | 42.7       | 6.04         |       |
| Metals        | Copper                  | SW 6010    | ø/øn          | 77          | 9              | 85      | 2             | 18         | 107            |   | 151        | 146          |       |
| Metals        | fron                    | SW 6010    | 6/6n          | 83,         | 898            | 78,500  | 77            | 009        | 74,600         |   | 80,023     | 8,562        |       |
| Metals        | Lead                    | SW 7421    | 6/6n          | ₽           | 9              | 87.0    | Ō             | 7.7        | 97.3           |   | 0.96       | 20.5         |       |
| Metals        | Magnesium               | SW 6010    | 6/8n          | 9,6         | 27             | 4,170   | ₹             | 420        | 2,620          |   | 4,072      | 1,007        |       |
| Metals        | Manganese               | SW 6010    | 6/6n          | 23          | 2              | 212     | 7             | 8          | 206            |   | 216        | 24.6         |       |
| Metals        | Mercury                 | SW 7471    | 6/6n          | 0.0         | 96             | 0.202   | Ö             | 235        | 0.258          |   | 0.178      | 0.181        |       |
| Metals        | Molybdenum              | SW 6010    | 6/ <b>6</b> n | 4           | <del>-</del> - | 35.5    | 9             | 4.         | 38.1           |   | 48.7       | 32.2         |       |
| Metals        | Nickel                  | SW 6010    | 6/6n          | #           | 9              | 166     | -             | 4          | <del>1</del> 5 |   | 158        | 31.1         |       |
| Metals        | Phosphorus              | SW 6010    | 6/6n          | < 72        | 6.             | 71.4    | <b>~</b>      | 1.3        | < 72.7         | v | 71.9       | :            | 100%  |
| Metals        | Potassium               | SW 6010    | 5/6n          | 17.         | 36             | 17,800  | 8             | 909        | 16,000         |   | 18,112     | 1,064        |       |
| Metals        | Selenium                | SW 7740    | 5/6n          | \$          | -              | 17.3    | -             | 7.5        | 16.2           |   | 16.6       | 3.27         |       |
| Metals        | Silkon                  | SW 6010    | 6/6n          | 221         | 443            | 215,000 | 208           | 000'       | 218,00         | • | 215,148    | 15,459       |       |
| Metals        | Sodium                  | SW 6010    | 6/6n          | 9,9         | 83             | 5,660   | ้เก๋          | 290        | 5,750          |   | 5,951      | 1,406        |       |
| Metals        | Strontium               | SW 6010    | <b>5/6</b> n  | *           | Ø.             | 333     | e             | <b>\$</b>  | 900            |   | 327        | 4            |       |
| Metals        | Titanium                | SW 6010    | <b>6/6</b> n  | 6,5         | 83             | 6,410   | Ġ             | 980        | 6,650          |   | 6,451      | 291          |       |
| Metals        | Vanadium                | SW 6010    | 5/Sn          | 8           | 2              | 347     | n             | 41         | 348            |   | 357        | 32           |       |
| Metals        | Zinc                    | SW 6010    | 6/6n          | 8           | 2              | 570     | S.            | 98         | 909            |   | 296        | 122          |       |
| :<br>:        | Velt 900 & 900 military | + 100 AGE  | Ç             | 6           | ~              | c       | r             | č          | 7.6            |   | c          | 7            |       |
| Kadionicides  | Activities (6.530 Nev   | 17 A 201.1 |               | ic          | , •            | ) (     |               | įç         | i c            |   | ;          |              |       |
| Radionuclides | Actinium-228 @ 911 KeV  | EPA 901.1  | Š             | 7           | •              | 7.7     | •             | 7.U        | 6.3            |   | 7.7        | n            |       |
| Radionuclides | Actinhum-228 @ 968 KeV  | EPA 901.1  | <u>0</u>      | <b>6</b>    | မ              | 2.6     | 2             | <u>.</u> . | 2.7            |   | 2.6        | <u>.</u>     |       |
|               |                         |            | Ì             | :: 1        |                |         |               |            |                |   |            |              |       |

ESP Hopper Ash (Field 2) - Page 1

Solid Stream Data

| 9      |
|--------|
| ā      |
| Ē      |
| Ł      |
| 9      |
| Q.     |
| lopper |
| _      |
| S      |
| fream: |
| Ŋ      |
| •      |
| Samp   |
|        |

| Analyte                 |                            | Analytical       |                     |   | Run                             | _      | Run      |   | Run  | Run |         | 95%       | 占     |
|-------------------------|----------------------------|------------------|---------------------|---|---------------------------------|--------|----------|---|------|-----|---------|-----------|-------|
| Group                   | Specie                     | Method           | Units               |   | 1                               |        | 2        |   | 8    | 3d  | Average | ច         | Ratio |
|                         |                            |                  |                     |   |                                 |        |          |   |      |     |         |           |       |
| Radionuclides           | Bismuth-212 @ 727 KeV      | EPA 901.1        | g<br>Ö              |   | 3.4                             | ••     | 2.4      |   | 2.7  | 2.7 | 2.8     | <u>د.</u> |       |
| Radionuclides           | Bismuth-214 @ 1120.4 KeV   | EPA 901.1        | <u>8</u>            |   | 6.6                             | •      | 3.2      |   | 6.0  | 6.0 | 6.3     | 0.8       |       |
| Radionuclides           | Bismuth-214 @ 1764.7 KeV   | EPA 901.1        | D/Od                |   | 6.1                             | •      | 5.6      |   | 5.4  | 9.6 | 5.7     | 6.0       |       |
| Radionuclides           | Bismuth-214 @ 609.4 KeV    | EPA 901.1        | ğ                   |   | 6.9                             | •      | 5.5      |   | 5.7  | 6.2 | 6.0     | 1.9       |       |
| Radionuclides           | K-40 @ 1460 KeV            | <b>EPA 901.1</b> | DCI/d               |   | 18                              |        | 17       |   | 17   | 19  | 4       | 1.4       |       |
| Radionuclides           | Lead-210 @ 46 KeV          | EPA 901.1        | pCi/g               |   | 7.8                             | •      | ř.3      |   | 8.4  | 7.6 | 7.8     | 1.4       |       |
| Radionuclides           | Lead-212 @ 238 KeV         | <b>EPA 901.1</b> | pCi/g               |   | 1.8                             | •      | 9.       |   | 2.2  | 1.9 | 1.9     | 0.8       |       |
| Radionuclides           | Lead-214 @ 295.2 KeV       | EPA 901.1        | g<br>Q              |   | 9.9                             |        | 5.8      |   | 5.7  | 6.0 | 6.0     | 1.2       |       |
| Radionuclides           | Lead-214@ 352.0 KeV        | <b>EPA 901.1</b> | <b>2</b>            |   | 6.6                             |        | 5.7      |   | 6.0  | 6.4 | 6.1     | 77        |       |
| Radionuclides           | Radium-226 @ 186.0 KeV     | EPA 901.1        | S<br>S<br>S<br>S    |   | -                               | •,     | 9.2      |   | 8.9  | 9.5 | 9.7     | 2.8       |       |
| Radionuclides           | Thallium-208 @ 583 KeV     | <b>EPA 901 1</b> | p<br>Si<br>Si<br>Si |   | 2.3                             | ••     | 7        |   | 2.0  | 2.2 | 2.2     | 0.4       |       |
| Radionuclides           | Thallium-208 @ 860 KeV     | EPA 901.1        | PC.                 |   | 3.6                             | _      | NO<br>NO |   | 3.1  | 2.6 | 2.2     | 4.8       |       |
| Radionuclides           | Thorium-234 @ 63.3 KeV     | EPA 901.1        | PČ.                 |   | 6.2                             | •      | 5.1      |   | 5.1  | 5.8 | 5.5     | 1.6       |       |
| Radionuclides           | Thorium-234 @ 92.6 KeV     | EPA 901.1        | pCi/g               |   | 4.3                             | •      | 9.1      |   | 5.5  | 4.3 | 4.8     | 1.6       |       |
| Radionuclides           | Uranium-235 @ 143 KeV      | EPA 901.1        | pCi/g               |   | 0.28                            | Ī      | 0.3      |   | 2.2  | 0.2 | 60      | 2.8       |       |
| Organics, Semi-volatile | 1,2,4,5-Tetrachlorobenzene | SW 8270          | <b>6/6</b> u        | v | 19.3                            | ~<br>v | 3.0      | v | 13.0 |     | < 15.1  | ;         | 100%  |
| Organics, Semi-volatile | 1,2,4-Trichlorobenzene     | SW 8270          | D/Bu                | v | 19.7                            | ~      | 19.6     | v | 19.6 |     | > 19.6  | :         | 100%  |
| Organics, Semi-volatile | 1,2-Dichlorobenzene        | SW 8270          | ₿/Bu                | v | 26.0                            | ۷      | 1.1      | v | 21.1 |     | < 22.7  | ;         | 100%  |
| Organics, Semi-volatile | t,2-Diphenylhydrazine      | SW 8270          | ₿/Bu                | ٧ | <u>8</u>                        | v      | 100      | v | 100  |     | ^<br>5  | ;         | 100%  |
| Organics, Semi-volatile | 1,3-Dichlorobenzene        | SW 8270          | ₿/Bu                | ٧ | 13.2                            | 2      | 23.9     | v | 23.9 |     | × 20.3  | ;         | 100%  |
| Organics, Semi-volatile | 1,4-Dichlorobenzene        | SW 8270          | D/Gu                | v | 27.0                            | ۸      | 19.6     | v | 19.6 |     | < 22.1  | ;         | 100%  |
| Organics, Semi-volatile | 1-Chloronaphthalene        | SW 8270          | <b>10</b> /0        | v | 21.5                            | ۸      | 17.9     | v | 17.9 |     | × 19.1  | :         | 100%  |
| Organics, Semi-volatile | 1-Naphthylamine            | SW 8270          | <b>0</b> /6u        | v | 52.1                            | v      | 67.6     | v | 97.9 |     | < 62.4  | :         | 100%  |
| Organics, Semi-volatile | 2,3,4,6-Tetrachlorophenol  | SW 8270          | <b>D</b> / <b>D</b> | v | 16.8                            | ۰<br>۲ | 15.5     | v | 15.5 |     | < 15.9  | ;         | 100%  |
| Organics, Semi-volatile | 2,4,5-Trichlorophenol      | SW 8270          | g/gr                | v | 11.0                            | ۸      | 16.9     | v | 16.9 |     | < 14.9  | :         | 100%  |
| Organics, Semi-volatile | 2,4,6-Trichlorophenol      | SW 8270          | ₿/Bu                | v | 11.7                            | ۸      | 16.8     | v | 16.8 |     | < 15.1  | :         | 100%  |
| Organics, Semi-volatile | 2,4-Dichlorophenol         | SW 8270          | 6/6u                | v | 14.8                            | ~      | 18.9     | v | 18.9 |     | < 17.5  | :         | 100%  |
| Organics, Semi-volatile | 2,4-Dimethylphenol         | SW 8270          | ₿/Bu                | v | 36.7                            | 4      | 13.3     | v | 43.3 |     | < 41.1  | 1         | 100%  |
| Organics, Semi-volatile | 2,4-Dinitrophenol          | SW 8270          | B/Gu                | v | 234                             | ٧      | 139      | v | 139  |     | × 171   | ;         | 100%  |
| Organics, Semi-volatile | 2,4-Dinitrotoluene         | SW 8270          | <b>5/6</b> 2        | v | 18.4                            | ۸      | 19.7     | v | 19.7 |     | < 19.3  | :         | 100%  |
| Organics, Semi-volatile | 2,6-Dichlorophenol         | SW 8270          | B/Bu                | v | 24.1                            | ۸      | 17.0     | v | 17.0 |     | × 19.4  | ;         | 100%  |
| Organics, Semi-volatile | 2,6-Dinitrotoluene         | SW 8270          | D/Bu                | v | 11.6                            | v      | 8.7      | v | 28.7 |     | × 23.0  | ;         | 100%  |
|                         |                            |                  | Ц                   | 1 | ESP Honner Ash (Field 2) - Page | (Fiel  | 72). Pan | 6 |      |     |         |           |       |
|                         |                            |                  | )<br>1              | • |                                 | -      | 7        |   |      |     |         |           |       |

Solid Stream Data

Sample Stream: ESP Hopper Ash-Field 2

| Analyte                   |                                | Analytical |                |   | Run  |   | Run   |   | Run   | Run |   |         | 95% | 占     |
|---------------------------|--------------------------------|------------|----------------|---|------|---|-------|---|-------|-----|---|---------|-----|-------|
| Group                     | Specie                         | Method     | Chits          |   | -    |   | 2     |   | 8     | 34  |   | Average | 5   | Ratio |
|                           | 444                            | 02.00      | 1              | , | 9    | , | •     | ١ | •     |     | ` | ţ       | i   | 306   |
| Organics, Seriil-Votatile |                                | 0170 140   | 7<br>2         | , | 0.2  | , |       | , | -     |     | • |         | •   | 3     |
| Organics, Semi-volatile   | 2-Chlorophenol                 | SW 8270    | ₽ <b>6</b> /61 | v | 25.5 | v | 21.1  | ٧ | 21.1  |     | V | 22.6    | ;   | 100%  |
| Organics, Semi-volatile   | 2-Methylnaphthalene            | SW 8270    | ₿/Ĝu           | v | 22.0 | • | 12.1  | v | 12.1  |     | ٧ | 15,4    | :   | 100%  |
| Organics, Semi-volatile   | 2-Methyiphenol(o-cresol)       | SW 8270    | ₿/Bu           | v | 17.8 | v | 10.3  | v | 10.3  |     | ٧ | 12.8    | ;   | 100%  |
| Organics, Semi-volatile   | 2-Naphthylamine                | SW 8270    | 5/6            | v | 65.1 | v | 53.3  | v | 53.3  |     | ٧ | 57.2    | ;   | 100%  |
| Organics, Semi-volatile   | 2-Nitroaniline                 | SW 8270    | 5/64           | ٧ | 13.4 | v | 22.1  | ٧ | 22.1  |     | v | 19.2    | ;   | 100%  |
| Organics, Semi-volatile   | 2-Nitrophenol                  | SW 8270    | 9/0            | v | 14.7 | v | 17.4  | v | 17.4  |     | V | 16.5    | :   | 100%  |
| Organics, Semi-volatile   | 2-Picoline                     | SW 8270    | <b>6</b> /6u   | v | 36.4 | v | 27.5  | v | 27.5  |     | ٧ | 30.5    | :   | 100%  |
| Organics, Semi-volatile   | 3,3'-Dichlorobenzidine         | SW 8270    | 96             | v | 16.4 | ٧ | 11.1  | ٧ | 11.1  |     | ٧ | 12.9    | :   | 100%  |
| Organics, Semi-volatile   | 3-Methylcholanthrene           | SW 8270    | 6/6u           | v | 26.2 | v | 16.6  | v | 16.6  |     | ٧ | 19.8    | :   | 100%  |
| Organics, Semi-votatile   | 3-Nitroaniline                 | SW 8270    | 5/60           | ٧ | 17.0 | v | 13.1  | ٧ | 13.1  |     | V | 14.4    | ;   | 100%  |
| Organics, Semi-volatile   | 4,6-Dinitro-2-methylphenol     | SW 8270    | 6/6u           | v | 26.5 | v | 14.3  | v | 14.3  |     | ٧ | 18.4    | ;   | 100%  |
| Organics, Semi-volatile   | 4-Aminobiphenyl                | SW 8270    | 0,04           | v | 25.0 | v | 39.6  | v | 39.6  |     | v | 34.7    | ;   | 100%  |
| Organics, Semi-volatile   | 4-Bromophenyl phenyl           | SW 8270    | 5,62           | v | 15.2 | ٧ | 16.1  | v | 16.1  |     | ٧ | 15.8    | ;   | 100%  |
| Organics, Semi-volatile   | 4-Chloro-3-methylphenol        | SW 8270    | 5/64           | v | 24.1 | v | 17.1  | v | 17.1  |     | ٧ | 19.4    | ;   | 100%  |
| Organics, Semi-volatile   | 4-Chlorophenyl phenyl ether    | SW 8270    | 5/6u           | ٧ | 17.6 | v | 14.0  | v | 14.0  |     | ٧ | 15.2    | :   | 100%  |
| Organics, Semi-volatile   | 4-Methylphenol(p-cresol)       | SW 8270    | 8/6u           | v | 19.2 | v | 15.3  | v | 15.3  |     | ٧ | 16.6    | :   | 100%  |
| Organics, Semi-volatile   | 4-Nitroaniline                 | SW 8270    | מאָסָר         | v | 16.2 | v | 20.2  | v | 20.2  |     | V | 18.9    | :   | 100%  |
| Organics, Semi-volatile   | 4-Nitrophenol                  | SW 8270    | <b>6</b> /6u   | v | 23.1 | v | 31.2  | ٧ | 31.2  |     | ٧ | 28.5    | ;   | 100%  |
| Organics, Semi-votatile   | 7,12-Dimethylbenz(a)anthracene | SW 8270    | 0/Su           | v | 64.1 | v | 44.3  | ٧ | 44.3  |     | ٧ | 50.9    | ;   | 100%  |
| Organics, Semi-volatile   | Acenaphihene                   | SW 8270    | 5/61           | v | 16.0 | v | 90.6  | ٧ | 90.6  |     | ٧ | 11.4    | :   | 100%  |
| Organics, Semi-volatife   | Acenaphthylene                 | SW 8270    | 5/ <b>5</b> u  | ٧ | 7.55 | ٧ | 13.9  | v | 13.9  |     | V | 11.8    | ;   | 100%  |
| Organics, Semi-volatile   | Acetophenone                   | SW 8270    | g/gr           | ٧ | 15.3 | v | 18.6  | ٧ | 18.6  |     | V | 17.5    | i   | 100%  |
| Organics, Semi-volatile   | Aniline                        | SW 8270    | B∕G⊔           | v | 31.2 | v | 20.5  | ٧ | 20.5  |     | V | 24.1    | ;   | 100%  |
| Organics, Semi-votatile   | Anthracene                     | SW 8270    | ₿øu            | ٧ | 19.4 | v | 12.3  | v | 12.3  |     | V | 14.7    | :   | 100%  |
| Organics, Semi-volatile   | Benzidine                      | SW 8270    | 6/6u           | v | 20.0 | v | 20.0  | v | 20.0  |     | v | 20.0    | :   | 100%  |
| Organics, Semi-volatile   | Benzo(a)anthracene             | SW 8270    | 6/60           | v | 17.2 | v | 15.0  | v | 15.0  |     | V | 15.7    | :   | 100%  |
| Organics, Semi-volatile   | Benzo(a)pyrene                 | SW 8270    | ₿ø.            | v | 12.8 | ٧ | 17.2  | v | 17.2  |     | V | 15.7    | ;   | 100%  |
| Organics, Semi-votatile   | Benzo(b)fluoranthene           | SW 8270    | ₽¢             | v | 19.0 | v | 30.2  | ٧ | 30.2  |     | ٧ | 26.5    | ;   | 100%  |
| Organics, Semi-votatile   | Benzo(g,h,i)perylene           | SW 8270    | ₿/₿u           | ٧ | 16.3 | v | 34.0  | v | 34.0  |     | V | 28.1    | ;   | 100%  |
| Organics, Semi-volatile   | Benzo(k)fluoranthene           | SW 8270    | <b>6/6</b> u   | v | 32.3 | v | 33.3  | v | 33.3  |     | V | 33.0    | ;   | 100%  |
| Organics, Semi-votatile   | Benzoic acid                   | SW 8270    | Dø4            | v | 132  | v | 1,290 | ٧ | 1,290 |     | ٧ | 9       | ;   | 100%  |
| Organics, Semi-volatile   | Benzyl alcohol                 | SW 8270    | B/Gu           | v | 36.1 | v | 20.3  | ٧ | 20.3  |     | V | 25.6    | í   | 100%  |
|                           |                                |            | Ì              | : |      | į | •     | • | 1     |     |   |         |     |       |

ESP Hopper Ash (Field 2) - Page 3

Solid Stream Data

| 8  |
|----|
| Ð  |
| 4  |
| 正  |
| I  |
| 늏  |
| ä  |
| _  |
| Ψ  |
| 믕  |
| ਨ  |
| T  |
| •  |
| Ø  |
| ш  |
|    |
| E  |
| ₹  |
| 9  |
| == |
| v) |
| 프  |
| ₽  |
| Ē  |
| ĕ  |
| S  |
|    |

| Analyte                 |                           | Analytical |                       |   | Run         |        | Run  |   | Run   | Run   |   |         | 95% | 占     |
|-------------------------|---------------------------|------------|-----------------------|---|-------------|--------|------|---|-------|-------|---|---------|-----|-------|
| Group                   | Specie                    | Method     | Units                 |   | -           |        | 2    |   | 3     | PE PE |   | Average | 5   | Ratio |
|                         | D. 4. A                   | otro Mo    | 701                   | , | 100         | ,      | 8    | , | a Cc  |       | • | 4<br>C  | ;   | 100%  |
| Organics, semi-votatile | DutyiDenzyiphthalate      | 200 000    | 2                     | , | - 2         | ,      | O.   | , | 70.0  |       | , | 4 :     | ;   | 3     |
| Organics, Semi-volatile | Chrysene                  | SW 8270    | ₿⁄gu                  | ٧ | 22.3        | ·<br>v | 17.9 | v | 17.9  |       | v | 19.4    | :   | 100%  |
| Organics, Semi-volatile | Di-n-octylphthalate       | SW 8270    | ₫/gu                  | v | 30.4        | v      | 11.7 | v | 11.7  |       | v | 17.9    | ;   | 100%  |
| Organics, Semi-volatile | Dibenz(a,h)anthracene     | SW 8270    | ₿/Ĝu                  | v | 15.8        | v      | 27.0 | v | 27.0  |       | v | 23.3    | ;   | 100%  |
| Organics, Semi-volatile | Dibenz(a,j)acridine       | SW 8270    | <b>5</b> / <b>6</b> L | ٧ | 19.4        | v      | 28.0 | v | 28.0  |       | v | 25.1    | :   | 100%  |
| Organics, Semi-volatile | Dibenzofuran              | SW 8270    | B/Su                  | ٧ | 13.6        | v      | 17.9 | ٧ | 17.9  |       | v | 16.5    | ;   | 100%  |
| Organics, Semi-volatile | Dibutylphthalate          | SW 8270    | <b>5/5</b> u          | v | 16.5        | v      | 10.8 | v | 10.8  |       | v | 12.7    | :   | 100%  |
| Organics, Semi-volatile | Diethylphthalate          | SW 8270    | ₿/Bu                  | v | 11.2        | v      | 17.1 | v | 17.1  |       | v | 15.1    | :   | 400%  |
| Organics, Semi-volatile | Dimethylphenethylamine    | SW 8270    | g/gu                  | v | 120.0       | ^      | 20.0 | v | 120.0 |       | v | 120     | ;   | 400%  |
| Organics, Semi-volatile | Dimethylphthalate         | SW 8270    | <b>6</b> /6u          | v | 9.6         | v      | 11.2 | v | 11.2  |       | ٧ | 10.6    | ;   | 100%  |
| Organics, Semi-volatile | Diphenylamine             | SW 8270    | B/Bu                  | v | 17.6        | v      | 9.22 | v | 9.22  |       | ٧ | 12.0    | :   | 100%  |
| Organics, Semi-volatile | Ethyl methanesulfonate    | SW 8270    | ₽/g⊓                  | v | 16.8        | v      | 22.6 | ٧ | 22.6  |       | ٧ | 20.7    | ;   | 100%  |
| Organics, Semi-volatile | Fluoranthene              | SW 8270    | ng/g                  | ٧ | 21.3        | v      | 15.7 | v | 15.7  |       | v | 17.6    | ;   | 100%  |
| Organics, Semi-volatile | Fluorene                  | SW 8270    | ng/g                  | ٧ | 11.2        | v      | 12.7 | v | 12.7  |       | v | 12.2    | ;   | 100%  |
| Organics, Semi-volatile | Hexachlorobenzene         | SW 8270    | ₽¢/gn                 | ٧ | 7.82        | v      | 10.5 | v | 10.5  |       | v | 9.6     | :   | 100%  |
| Organics, Semi-volatile | Hexachlorobutadiene       | SW 8270    | ₿/Ĝu                  | v | 23.3        | v      | 17.0 | ν | 17.0  |       | ٧ | 19.1    | ;   | 100%  |
| Organics, Semi-volatile | Hexachiorocyclopentadiene | SW 8270    | 6/6u                  | ٧ | 298         | v      | 196  | v | 196   |       | v | 230     | :   | 100%  |
| Organics, Semi-volatile | Hexachloroethane          | SW 8270    | 6/6u                  | v | 19.8        | v      | 21.1 | v | 21.1  |       | ٧ | 20.7    | ;   | 100%  |
| Organics, Semi-volatile | Indeno(1,2,3-cd)pyrene    | SW 8270    | 6/6u                  | v | 17.5        | v      | 44.3 | v | 44.3  |       | v | 35.4    | ;   | 100%  |
| Organics, Semi-volatile | Isophorone                | SW 8270    | <b>6/6</b> u          | v | 9.58        | v      | 20.5 | v | 20.5  |       | v | 16.9    | ;   | 100%  |
| Organics, Semi-volatile | Methyl methanesulfonate   | SW 8270    | 5/6u                  | ٧ | 50.0        | v      | 20.0 | v | 50.0  |       | v | 20.0    | ;   | 100%  |
| Organics, Semi-volatile | N-Nitroso-dl-n-butylamine | SW 8270    | 6/6u                  | ٧ | 43.8        | v      | 20.9 | v | 20.9  |       | ٧ | 28.5    | ;   | 100%  |
| Organics, Semi-volatile | N-Nitrosodimethylamine    | SW 8270    | 5/64                  | v | 44.4        | v      | 26.2 | v | 26.2  |       | ٧ | 32.3    | ;   | 100%  |
| Organics, Semi-volatile | N-Nitrosodiphenylamine    | SW 8270    | <b>6</b> /6u          | v | 18.9        | v      | 9.96 | v | 8.96  |       | ٧ | 12.3    | :   | 100%  |
| Organics, Semi-volatile | N-Nitrosodipropylamine    | SW 8270    | ₽⁄ga                  | v | 25.1        | v      | 21.8 | v | 21.8  |       | ٧ | 22.9    | ;   | 100%  |
| Organics, Semi-volatile | N-Nitrosopiperidine       | SW 8270    | <b>6/6</b> L          | v | 31.5        | v      | 19.9 | v | 19.9  |       | ٧ | 23.8    | ;   | 100%  |
| Organics, Semi-votatile | Naphthalene               | SW 8270    | 6/6u                  | v | 24.3        | v      | 15.9 | v | 15.9  |       | v | 18.7    | ;   | 100%  |
| Organics, Semi-volatile | Nitrobenzene              | SW 8270    | ₿/Bu                  | v | 17.6        | v      | 28.0 | v | 28.0  |       | v | 24.5    | ;   | 100%  |
| Organics, Semi-volatile | Pentachlorobenzene        | SW 8270    | 5/0u                  | ٧ | 14.8        | v      | 12.5 | v | 12.5  |       | v | 13.3    | ;   | 100%  |
| Organics, Semi-volatile | Pentachloronitrobenzene   | SW 8270    | 6/6u                  | ٧ | 69.1        | v      | 46.0 | v | 46.0  |       | v | 53.7    | ;   | 100%  |
| Organics, Semi-volatile | Pentachlorophenol         | SW 8270    | 0,60                  | v | 28.9        | v      | 9.62 | v | 29.6  |       | v | 29.4    | ;   | 100%  |
| Organics, Semi-volatile | Phenacetin                | SW 8270    | 5/Su                  | v | 18.0        | v      | 12.9 | ٧ | 12.9  |       | ٧ | 14.6    | ;   | 100%  |
| Organics, Semi-volatile | Phenanthrene              | SW 8270    | B/Bu                  | ٧ | 20.8        | v      | 15.6 | v | 15.6  |       | ٧ | 17.3    | :   | 100%  |
|                         |                           |            | Ĭ                     |   | John Action | (5)    |      | 7 |       |       |   |         |     |       |

ESP Hopper Ash (Field 2) - Page 4

| 占           | Ratio   | 100% | 100% | 100% |
|-------------|---------|------|------|------|
| <b>%\$6</b> | 5       | :    | ;    | ;    |
|             | Average | 24.0 | 13.6 | t 9+ |
|             |         | v    | ٧    | ٧    |
| Run         | 34      |      |      |      |

Solid Stream Data

Sample Stream: Raw Limestone

| Analyte |            | Analytical |               | Run     |        | Run      |   | 2            | _         | Rus          |   |   |              | <b>%96</b> | 占          |
|---------|------------|------------|---------------|---------|--------|----------|---|--------------|-----------|--------------|---|---|--------------|------------|------------|
| Group   | Specie     | Method     | Units         | -       |        | 2        |   | 6            |           | 34           |   |   | Average      | ਹ          | Ratio      |
| Anions  | Chloride   | SM407C     | B/Sn          | 157     |        | 189      |   | 6            | _         | <del>2</del> |   |   | 179          | 47         |            |
| Anions  | Fluoride   | EPA 340.2  | 6/6n          | 52.5    |        | 56.5     |   | 67.4         | 4         | 40.20        | 8 |   | 8.88         | 19.2       |            |
| Metals  | Aluminum   | SW 6010    | B/Bn          | 913     |        | 976      |   | \$           | Q         | 1,015        |   |   | 916          | 158        |            |
| Metals  | Antimony   | ICP-MS     | 6/6n          | 0.00885 |        | 0.01048  |   | 0.00         | <b>35</b> | 0.0064       |   |   | 0.00729      | 0.01042    |            |
| Metals  | Arsenic    | SW 7060    | 5/6n          | 0.342   | v      | 0.327    | • | . 0.3        | £         | < 0.327      |   | ٧ | 0.334        | :          | 100%       |
| Metals  | Barium     | SW 6010    | 6/6n          | 4.77    |        | 5.14     |   | 4            |           | 4.66         |   |   | 4.87         | 0.59       |            |
| Metals  | Beryllium  | SW 6010    | ₿/₿'n         | 0.145   |        | 0.141    |   | 0.1          | 24        | 0.140        |   |   | 0.137        | 0.028      |            |
| Metals  | Boron      | SW 6010    | ₿/₿n          | 3.71    |        | 3.97     |   | 2.9          | 60        | 3.95         |   |   | 3.54         | <u>¥</u>   |            |
| Metals  | Cadmium    | SW 7131    | 6/6n          | 0.339   |        | 0.332    |   | 0.3          | æ         | 0.325        |   |   | 0.332        | 0.016      |            |
| Metals  | Calcium    | SW 6010    | 6/6n          | 392,000 |        | 394,000  |   | 399,(        | 8         | 408,333      | _ |   | 395,000      | 8,957      |            |
| Metals  | Chromium   | SW 6010    | 6/ <b>6</b> n | 9.64    |        | 29.6     |   | 0.           | -         | 10.0         |   |   | 9.80         | 0.64       |            |
| Metals  | Cobalt     | SW 6010    | 6/6n          | 1.38    |        | 5.       |   | <del>-</del> | ~         | 1.32         |   |   | 1.30         | 0.62       |            |
| Metals  | Copper     | SW 6010    | 6/6n          | 1.01    |        | 1.57     |   | <b>4</b> .8  | ဖ         | 1.81         |   |   | 1.48         | 1.07       |            |
| Metals  | Iron       | SW 6010    | <b>6/6</b> n  | 1760    |        | 1800     |   | 180          | 0         | 1,865        |   |   | 1,787        | 24         |            |
| Metals  | Lead       | SW 7421    | 5/6n          | 1.18    |        | 2        |   | 0.1          | ₩.        | 1.07         |   |   | 1.09         | 0.20       |            |
| Metals  | Magnesium  | SW 6010    | 6/6n          | 1220    |        | 1240     |   | 124          | 8         | 1,281        |   |   | 1,233        | 82         |            |
| Metals  | Manganese  | SW 6010    | 6/6n          | 208     |        | 506      |   | ର୍ଷ          | ₩         | 215          |   |   | 202          | 7          |            |
| Metals  | Mercury    | SW 7471    | 6/6n          | 0.005   | _      | 0.0<br>L | • | 0.0          | 2         | 0.01         | ~ |   | 0.01         | 0.0        | <b>40%</b> |
| Metals  | Molybdenum | SW 6010    | 6/6n          | 0.219   | v<br>_ | 0.211    | • | . 0.2        | 23        | 0.126        | 7 | ٧ | 0.222        | :          | 20%        |
| Metals  | Nickel     | SW 6010    | 5/6n          | 3.34    |        | 2.75     |   | 3.3          | a         | 3.50         |   |   | 3.16         | 0.88       |            |
| Metals  | Phosphorus | SW 6010    | 6/ <b>6</b> n | 112     |        | 35       |   | Ξ            | 60        | 84.17        |   |   | <b>5</b> 0   | સ          |            |
| Metaks  | Potassium  | SW 6010    | 6/ <b>6</b> n | 342     |        | 372      |   | 37.          | **        | 386          |   |   | 363          | <b>₹</b>   |            |
| Metals  | Selenium   | SW 7740    | 6/6n          | 3.12    |        | 4.74     |   | 3.9          | e         | 4.73         |   |   | 3.93         | 2.01       |            |
| Metals  | Silicon    | SW 6010    | 6/6n          | 479     |        | 392      |   | ₹            | "         | 466          |   |   | 436          | 90         |            |
| Metals  | Sodium     | SW 6010    | 6/6n          | ਖ਼      |        | 8.02     |   | 8            |           | 20.31        |   |   | 50.9         | 2.5        |            |
| Metals  | Stronfium  | SW 6010    | 6/6n          | 108     |        | 60       |   | 5            | ~         | Ŧ            |   |   | <del>5</del> | 7          |            |
| Metals  | Titanium   | SW 6010    | 6/6n          | 75      | v      | 0.148    | • | 0.15         |           | < 0.15       |   |   | ĸ            | 107        | 0.2%       |
| Metals  | Vanadium   | SW 6010    | 6/6n          | 8.11    |        | 7.98     |   | 8.3          | _         | 8.14         |   |   | 8.13         | 0.41       |            |
| Metals  | Zinc       | SW 6010    | 6/6n          | 8.65    |        | 8.75     |   | 8.8          | 6         | 90.6         |   |   | 8.74         | 27.0       |            |

Raw Limestone - Page 1

Solid Stream Data

| <b>ime</b> stone |
|------------------|
| am: Raw Li       |
| Sample Stre      |

| Analyte            |                          | Analytical |       | Run  | Run        | Run  | Run      |         | <b>%96</b> | 占     |
|--------------------|--------------------------|------------|-------|------|------------|------|----------|---------|------------|-------|
| Group              | Specie                   | Method     | Units | 4-   | 2          | 6    | PE PE    | Average | 5          | Ratio |
|                    |                          |            |       |      |            |      |          |         |            |       |
| Ultimate/Proximate | Percent Moisture         | D3173      | % %   | 00:6 | 9.00       | 8.00 | 9.00     | 8.67    | 1.43       |       |
| Radionuclides      | Actinium-228 @ 338 KeV   | EPA 901.1  | bCVg  | 0.26 | 0.39       | 0.26 | 0.33     | 0:30    | 0.19       |       |
| Radionuclides      | Actinium-228 @ 911 KeV   | EPA 901.1  | bCl/g | 0.2  | Q          | 0.3  | QN       | 0.2     | 4.0        |       |
| Radionuclides      | Actinium-228 @ 968 KeV   | EPA 901.1  | pCi/g | Q    | Q          | 2    | QV       | QN      | :          |       |
| Radionuclides      | Bismuth-212 @ 727 KeV    | EPA 901.1  | pCi/g | Q.   | QN         | QN   | Q<br>Q   | QN      | :          |       |
| Radionuclides      | Bismuth-214 @ 1120.4 KeV | EPA 901.1  | pCl/g | 9    | S          | 2    | <b>Q</b> | Q       | :          |       |
| Radionuclides      | Bismuth-214 @ 1764.7 KeV | EPA 901.1  | bcitg | 0.17 | 0.41       | 0.37 | 2        | 0.32    | 0.32       |       |
| Radionuclides      | Bismuth-214 @ 609.4 KeV  | EPA 901.1  | bCNg  | 0.21 | <b>0.1</b> | 0.14 | 0.10     | 0.15    | 0.14       |       |
| Radionuclides      | K-40 @ 1460 KeV          | EPA 901.1  | bCi/d | 99.0 | Š          | 0.51 | Q        | 0.39    | 98.0       |       |
| Radionuclides      | Lead-210 @ 46 KeV        | EPA 901.1  | pCi/g | 2    | Q          | 0.74 | <b>Q</b> | 0.25    | 96.        |       |
| Radionuclides      | Lead-212 @ 238 KeV       | EPA 901.1  | pCi/g | 0.11 | 0.1        | 0.13 | 0.16     | 0.11    | 0.0        |       |
| Radionuclides      | Lead-214 @ 295.2 KeV     | EPA 901.1  | bÇiQd | 0.14 | 0.2        | 0.23 | 0.12     | 0.19    | 0.11       |       |
| Radionuclides      | Lead-214@ 352.0 KeV      | EPA 901.1  | pCi/g | 0.21 | 0.16       | 0.21 | 0.18     | 0.19    | 20.0       |       |
| Radionuclides      | Radium-226 @ 186.0 KeV   | EPA 901.1  | pCi/g | 9.0  | 99.0       | Q    | 0.48     | 0.42    | 0.91       |       |
| Radionuclides      | Thallium-208 @ 583 KeV   | EPA 901.1  | bCl/g | 0.21 | Q          | Q    | 0.12     | 0.07    | 0.30       |       |
| Radionuclides      | Thallium-208 @ 860 KeV   | EPA 901.1  | pCi/g | 9    | g          | Q    | 2        | Q       | :          |       |
| Radionuclides      | Thorium-234 @ 63.3 KeV   | EPA 901.1  | pCi/g | QN   | QN         | 0.37 | 0.46     | 0.12    | 0.53       |       |
| Radionuclides      | Thorium-234 @ 92.6 KeV   | EPA 901.1  | bCi/g | Ş    | 0.25       | S    | 2        | 0.08    | 0.36       |       |
| Radionuclides      | Uranlum-235 @ 143 KeV    | EPA 901.1  | pCI/g | Q    | Q          | QN   | Q        | ON.     | ;          |       |

ND= Not Detected, (no detection limit specified)

Solid Stream Data

Sample Stream: Limestone Slurry Solids

| Analyte |            | Analytical |       | Run     |   | -           | Run   | Run       |   |    | Run     |   |             | <b>%96</b> | 4           |
|---------|------------|------------|-------|---------|---|-------------|-------|-----------|---|----|---------|---|-------------|------------|-------------|
| Group   | Specie     | Method     | Units | -       |   |             | 2     | 6         |   |    | 34      |   | Average     | 5          | Ratio       |
| Anions  | Chloride   | SM407C     | 6/6n  | 5,270   |   | 6           | 096   | 2,950     |   |    | 5,590   |   | 4,057       | 2891       |             |
| Anions  | Fluoride   | EPA 340.2  | 6/6n  | 99.50   |   | Ψ           | 4.10  | 92.00     |   |    | 98.00   |   | 85.20       | 46.34      |             |
| Metals  | Aluminum   | SW 6010    | 6/6n  | 814     |   | -           | 609   | 845       |   |    | 965     |   | 756         | 318        |             |
| Metals  | Antimony   | SW 6010    | ₿/₿n  | 0.020   |   | 0           | 020   | 0.018     |   |    | 0.014   |   | 0.019       | 0.003      |             |
| Metals  | Arsenic    | SW 7060    | 6/6n  | o.34    |   | v           | 3.32  | < 0.34    |   | v  | 0.36    | v | 0.33        | ;          | 100%        |
| Metals  | Barium     | SW 6010    | 6/6n  | 5.67    |   | 4'          | 5.15  | 5.33      |   |    | 5.22    |   | 5.39        | 99.0       |             |
| Metals  | Beryllium  | SW 6010    | 6/6n  | 0.15    |   | _           | 7.13  | 0.15      |   |    | 0.14    |   | 0.14        | 0.02       |             |
| Metaks  | Boron      | SW 6010    | 6/6n  | 241     |   | -           | 194   | 172       |   |    | 258     |   | 202         | 88         |             |
| Metals  | Cadmium    | SW 7131    | ₿/₿n  | 0.61    |   | _           | .59   | 0.62      |   |    | 0.63    |   | 0.61        | 0.04       |             |
| Metals  | Calcium    | SW 6010    | 5/Sn  | 382,490 |   | 4           | 4,082 | 390,244   |   | ., | 377,174 |   | 392,272     | 27,173     |             |
| Metafs  | Chromium   | SW 6010    | 5/Sn  | 13.39   |   | -           | 2.45  | 14.30     |   |    | 13.70   |   | 13.38       | 2.30       |             |
| Metals  | Cobalt     | SW 6010    | 6/6n  | 1.72    |   | -           | 1.38  | 1.35      |   |    | 1.52    |   | <del></del> | 0.51       |             |
| Metals  | Copper     | SW 6010    | 6/6n  | 3.75    |   | .,,         | 3.50  | 3.88      |   |    | 3.62    |   | 3.71        | 0.48       |             |
| Metals  | ron        | SW 6010    | 6/6n  | 2,571   |   | 2           | 214   | 2,738     |   |    | 2,620   |   | 2,508       | 965        |             |
| Metals  | Lead       | SW 7421    | 6/6n  | 96.0    |   | •           | 1.94  | 1.03      |   |    | 1.09    |   | 96.0        | 0.11       |             |
| Metals  | Magnesium  | SW 6010    | ₿/Bn  | 1,456   |   | -           | 306   | 1,397     |   |    | 1,457   |   | 1,386       | 187        |             |
| Metals  | Manganese  | SW 6010    | 6/6n  | 424     |   | 7           | 419   | <b>44</b> |   |    | 417     |   | 429         | 8          |             |
| Metals  | Mercury    | SW 7471    | ₿/6n  | 0.01    | 7 | <b>&gt;</b> | 10.0  | 0.01      | 7 |    | 0.01    | v | 0.0         | :          | <b>%6</b> % |
| Metals  | Molybdenum | SW 6010    | ₫/ɓn  | 0.24    |   | J           | 38    | 90.0      | 7 | v  | 0.22    |   | 0.23        | 0.40       |             |
| Metals  | Nickel     | SW 6010    | 6/6n  | 3.88    |   | w           | 60    | 5.12      |   |    | 3.63    |   | 4.03        | 2.54       |             |
| Metats  | Phosphorus | SW 6010    | 6/6n  | 106     |   | •           | 10    | 114       |   |    | 11      |   | 110         | <b>6</b>   |             |
| Metals  | Potassium  | SW 6010    | 6/Bn  | 355     |   | ••          | 867   | 360       |   |    | 350     |   | 338         | 98         |             |
| Metals  | Selenium   | SW 7740    | 6/6n  | 8.11    |   | -           | .46   | 9.63      |   |    | 10.67   |   | 8.40        | 2.77       |             |
| Metals  | Silicon    | SW 6010    | 6/6n  | 398     |   | ••          | 563   | 435       |   |    | 491     |   | 365         | 224        |             |
| Metais  | Sodium     | SW 6010    | ₿/ɓn  | 62.37   |   | ΐ           | 5.20  | 47.12     |   |    | 61.52   |   | 54.90       | 18.95      |             |
| Metals  | Strontium  | SW 6010    | 6/6n  | 113     |   | •-          | 601   | 113       |   |    | 110     |   | 112         | 5.29       |             |
| Metals  | Titanium   | SW 6010    | 6/6n  | < 0.17  |   | ۷           | .16   | < 0.16    |   | v  | 0.16    | v | 0.16        | :          | 100%        |
| Metals  | Vanadium   | SW 6010    | 6/6n  | 7.83    |   | 4           | 1.72  | 7.63      |   |    | 7.65    | , | 6.73        | 4.32       |             |
| Metals  | Zinc       | SW 6010    | ₿/ϐn  | 10.04   |   | w           | 1.82  | 10.51     |   |    | 9.95    |   | 9.79        | 2.17       |             |

Limestone Slurry Solids - Page 1

Solid Stream Data

Sample Stream: JBR Underflow Sturry Solids

| Analyte |            | Analytical  |               |     | Run    | æ            | <u> </u>   | Run       |   | Run     |   |         | <b>35%</b>     | 占     |
|---------|------------|-------------|---------------|-----|--------|--------------|------------|-----------|---|---------|---|---------|----------------|-------|
| Group   | Specie     | Method      | Units         |     | -      |              |            | 60        | į | 34      |   | Average | 5              | Ratio |
| Anions  | Chloride   | SM407C      | 5/6n          |     | 9,310  | Q.           | 02         | 9,870     |   | 9,840   |   | 9,550   | 717            |       |
| Anions  | Fluoride   | EPA 340.2   | D/On          |     | 684    | 77           | 7          | 789       |   | 594     |   | 750     | 143            |       |
| Anions  | Sulfate    | EPA 300.0   | b/bn          | LC) | 000'00 | 493          | 000        | 496,000   |   | 495,000 |   | 496,333 | 8,725          |       |
| Anions  | Sulfite    | EPRI-FGD-M2 | 6/6n          | v   | 240    | < 240        | v<br>Q     | 240       | V | 240     | V | 240     | :              | 100%  |
| Metals  | Afuminum   | SW 6010     | 6/5n          |     | 1,031  | Ξ.           | 2          | 1,081     |   | 1,064   |   | 1,099   | <del>1</del> 0 |       |
| Metals  | Antimony   | ICP-MS      | 6/ <b>6</b> n |     | 0.067  | 0.0          | 98         | 0.066     |   | 0.073   |   | 0.073   | 0.028          |       |
| Metals  | Arsenic    | SW 7060     | 5/6n          | ٧   | 0.40   | ò<br>v       | ۷ ۷        | 0.36      | ٧ | 0.39    | v | 0.41    | :              | 100%  |
| Metals  | Barium     | SW 6010     | 6/dn          |     | 3.61   | 4            | Š          | 80.4      |   | 4 08    |   | 4.02    | 0 94           |       |
| Metals  | Beryllium  | SW 6010     | ₿/B'n         |     | 0.10   | Ö            | 91         | 0.13      |   | 0.19    |   | 0.13    | 0.07           |       |
| Metals  | Boron      | SW 6010     | 5/6n          |     | 417    | 4            | υ          | 413       |   | 422     |   | 425     | £              |       |
| Metals  | Cadmium    | SW 7131     | 5/6n          |     | 0.26   | 0            | 24         | 0.24      |   | 0.23    |   | 0.25    | 0.04           |       |
| Metals  | Calcium    | SW 6010     | 6/6n          | 7   | 60,714 | 256          | 627        | 248,786   |   | 231,317 |   | 255,376 | 15,059         |       |
| Metals  | Chromium   | SW 6010     | 0/0n          |     | 10.39  | 12           | 41         | 11.10     |   | 11.07   |   | 11.30   | 2.54           |       |
| Metals  | Cobalt     | SW 6010     | 5/5n          |     | 06.0   | <del>-</del> | 6          | 0.87      |   | 1.23    |   | 66.0    | 0.43           |       |
| Metals  | Copper     | SW 6010     | ₿/₿n          |     | 2.48   | ė            | 2          | 2.61      |   | 2.70    |   | 2.73    | 0.81           |       |
| Metais  | lron       | SW 6010     | ₿/₿'n         |     | 2,060  | 2,3          | 49         | 2,148     |   | 2,112   |   | 2,186   | <b>3</b> 69    |       |
| Metals  | Lead       | SW 7421     | 6/6n          |     | 0.86   | ö            | 1          | 0.75      |   | 0.87    |   | 0.84    | 0.21           |       |
| Metals  | Magnesium  | SW 6010     | 6∕6n          |     | 785    | æ            | Q          | 795       |   | 96/     |   | 813     | 102            |       |
| Metals  | Manganese  | SW 6010     | <b>6/6</b> n  |     | 100    | ¥            | 90         | <u>\$</u> |   | 5       |   | 103     | 11.08          |       |
| Metals  | Mercury    | SW 7471     | 6/6n          |     | 0.19   | Ö            | <u>5</u> 2 | 0.19      |   | 0.16    |   | 0.18    | 90.0           |       |
| Metals  | Motybdenum | SW 6010     | <b>5/6</b> 0  |     | 1.23   | -            | ĸ          | 1.58      |   | 1.2     |   | 1.48    | 0.56           |       |
| Metals  | Nickel     | SW 6010     | ₿/ôn          |     | 2.32   | Ö            | 92         | 2.79      |   | 2.70    |   | 2.82    | 1.29           |       |
| Metals  | Phosphorus | SW 6010     | 6/6n          |     | 74.76  | 92           | 17         | 96.48     |   | 74.26   |   | 87.80   | 28.57          |       |
| Metals  | Potassium  | SW 6010     | ₿/6n          |     | 238    | 9            | o          | 312       |   | 319     |   | 307     | \$             |       |
| Metals  | Selenium   | SW 7740     | 6/6n          |     | 25.71  | 25           | 06         | 25.00     |   | 20.40   |   | 25.54   | 1.18           |       |
| Metals  | Silicon    | SW 6010     | 6/6n          |     | 469    | 4            | <b>o</b>   | 414       |   | 447     |   | 447     | 72.50          |       |
| Metals  | Sodium     | SW 6010     | B/6n          |     | 82.62  | 87           | 7          | 82.04     |   | 89.21   |   | 84.12   | 7.75           |       |
| Metals  | Strontium  | SW 6010     | 6/6n          |     | 73.21  | 76           | 66         | 71.12     |   | 72.60   |   | 73.77   | 7.39           |       |
| Metals  | Titanium   | SW 6010     | 5/5n          |     | 20.12  | 24           | 10         | 18.57     |   | 23.37   |   | 20.93   | 7.08           |       |
| Metals  | Vanadium   | SW 6010     | 6/6n          |     | 9.01   | 5            | 73         | 9.85      |   | 8.90    |   | 9.85    | 2.14           |       |
| Metals  | Zinc       | SW 6010     | 5/5n          |     | 7.86   | αö           | 8          | 8.33      |   | 66:6    |   | 8.36    | 1.30           |       |

JBR Underflow Slurry Solids - Page 1

Solid Stream Data

| Analyte |        | Analytical |       | Run | Run | Run | Run |
|---------|--------|------------|-------|-----|-----|-----|-----|
| Group   | Specie | Method     | Units | *   | 7   | en  | 34  |

| Analyte        |                            | Analyticai       |                    |    | Run          |    | Run          |   | Run             |    | Run            |     |          | 95%  | 占        |
|----------------|----------------------------|------------------|--------------------|----|--------------|----|--------------|---|-----------------|----|----------------|-----|----------|------|----------|
| Group          | Specie                     | Method           | Units              |    | 1            |    | 2            |   | 3               |    | 3d             |     | Average  | ច    | Ratio    |
|                |                            |                  |                    |    |              |    |              |   |                 |    |                |     |          |      |          |
| Radionuclides  | Actinium-228 @ 338 KeV     | EPA 901.1        | pCi/g              |    | Q            |    | <del>2</del> |   | 9               |    | 2              |     |          |      |          |
| Radionuclides  | Actinium-228 @ 911 KeV     | EPA 901.1        | ₽<br>Q             |    | Q.           |    | Q            |   | 0.16            |    | Q              |     | 0.05     | 0.23 |          |
| Radionuclides  | Actinium-228 @ 968 KeV     | EPA 901.1        | Ď<br>Š             |    | Q            |    | <del>Q</del> |   | 9               |    | Q              |     |          |      |          |
| Radionuclides  | Bismuth-212 @ 727 KeV      | EPA 901.1        | pCi/g              |    | Q            |    | <del>S</del> |   | QN              |    | Q              |     |          |      |          |
| Radionuclides  | Bismuth-214 @ 1120.4 KeV   | EPA 901.1        | DC//d              |    | 0.40         |    | Q            |   | 0.35            |    | Q <sub>N</sub> |     | 0.25     | 0.54 |          |
| Radionuclides  | Bismuth-214 @ 1764.7 KeV   | EPA 901.1        | B <sub>C</sub> /Od |    | 0.11         |    | Q            |   | 0.22            |    | 0.35           |     | 0.11     | 0.27 |          |
| Radionuclides  | Bismuth-214 @ 609.4 KeV    | EPA 901.1        | PC/g               |    | 0.14         |    | <u>Q</u>     |   | 0.18            |    | 0.25           |     | 0.11     | 0.23 |          |
| Radionuciides  | K-40 @ 1460 KeV            | EPA 901.1        | pCi/g              |    | Q            |    | Q            |   | QN              |    | 0.79           |     |          |      |          |
| Radionuclides  | Lead-210 @ 46 KeV          | EPA 901.1        | pCi/g              |    | 62.0         |    | ₽            |   | Q               |    | Q              |     | 0.26     | 1.13 |          |
| Radionuclides  | Lead-212 @ 238 KeV         | EPA 901.1        | ₽Ç<br>Ç            |    | 70.0         |    | 60.0         |   | 0.11            |    | 0.13           |     | 0.09     | 90.0 |          |
| Radionuclides  | Lead-214 @ 295.2 KeV       | EPA 901.1        | pCi/g              |    | Q            |    | 0.16         |   | Q.              |    | 0.16           |     | 0.05     | 0.23 |          |
| Radionuclides  | Lead-214@ 352.0 KeV        | <b>EPA 901.1</b> | pCi/g              |    | 0.17         |    | 0.11         |   | 0.14            |    | 0.16           |     | 0.14     | 0.07 |          |
| Radionuclides  | Radium-226 @ 186.0 KeV     | EPA 901.1        | PC<br>Sign         |    | 0.54         |    | <del>Q</del> |   | 0.45            |    | ON             |     | 0.33     | 0.72 |          |
| Radionuclides  | Thallium-208 @ 583 KeV     | EPA 901.1        | pCi/g              |    | 0.15         |    | 0.30         |   | 0.16            |    | 0.14           |     | 0.20     | 0.21 |          |
| Radionuclides  | Thallium-208 @ 860 KeV     | EPA 901.1        | pCI/g              |    | QN           |    | Q            |   | QN              |    | 0.92           |     |          |      |          |
| Radionuclides  | Thorium-234 @ 63.3 KeV     | EPA 901.1        | pCi/g              |    | Q            |    | 0.56         |   | Q               |    | Q.             |     | 0.19     | 0.80 |          |
| Radionuclides  | Thorium-234 @ 92.6 KeV     | EPA 901.1        | pCi/g              |    | Q            |    | 0.28         |   | 0.33            |    | 0.21           |     | 0.20     | 0.44 |          |
| Radionuclides  | Uranium-235 @ 143 KeV      | EPA 901.1        | pCi/g              |    | ₽            |    | Q            |   | Q               |    | 9              |     | Q        |      |          |
| Aldohudee      | Acetaldehyde               | SW 8315          | D/OIL              | v  | 5            | ٧  | o c          | ٧ | 010             | ٧  | 9              | v   | ç        | ;    | 100%     |
| Automyces      |                            | 0141 0245        | ָ<br>ה<br>ה        | ٠, | 9 6          | ٠, | 9 6          | , | 9 0             | ٠, |                | . , | 9 6      |      | 200      |
| Aldenydes      | Formaldenyde               | CICS MS          | 6/6n               | v  | 2<br>∂       | v  | 5.0          | v | <u>⊇</u>        | v  | <u>2</u>       | v   | 5        | ;    | <b>%</b> |
| Semi-Volatiles | 1,2,4,5-Tetrachlorobenzene | SW 8270          | 6/60               | v  | 29           | v  | S            | v | 8               |    |                | v   | 56       | :    | 100%     |
| Semi-Volatiles | 1,2,4-Trichlorobenzene     | SW 8270          | 6/60               | v  | 29           | v  | 31           | v | 30              |    |                | v   | စ္က      | ;    | 100%     |
| Semi-Volatiles | 1,2-Dichlorobenzene        | SW 8270          | 0/64               | v  | 38           | v  | 40           | v | 32              |    |                | v   | 37       | :    | 100%     |
| Semi-Volatiles | 1,2-Diphenylhydrazine      | SW 8270          | ₿/gu               | v  | 50           | v  | 901          | v | <del>1</del> 00 |    |                | v   | <b>₽</b> | ;    | 100%     |
| Semi-Volatiles | 1,3-Dichlorobenzene        | SW 8270          | 6/6u               | v  | 20           | v  | 21           | v | 36              |    |                | v   | 52       | ;    | 100%     |
| Semi-Volatiles | 1,4-Dichlorobenzene        | SW 8270          | 6/6u               | v  | <del>4</del> | v  | 42           | v | 90              |    |                | v   | 37       | :    | 100%     |
| Semi-Volatites | 1-Chloronaphthalene        | SW 8270          | 0/6u               | v  | 32           | v  | 33           | v | 27              |    |                | v   | 31       | :    | 100%     |
| Semi-Votatiles | 1-Naphthylamine            | SW 8270          | 6/6u               | v  | 77           | v  | 81           | v | 102             |    |                | v   | 87       | ;    | 100%     |
| Semi-Volatifes | 2,3,4,6-Tetrachiorophenol  | SW 8270          | 0/60               | v  | 25           | ٧  | <b>5</b> 8   | v | 23              |    |                | v   | 25       | :    | 100%     |

JBR Underflow Slurry Solids - Page 2

Solid Stream Data

Sample Stream: JBR Underflow Slurry Solids

| Analyte        |                                 |         |               |   |     |   |               |   | ij  |     |          |         |   | 3           |
|----------------|---------------------------------|---------|---------------|---|-----|---|---------------|---|-----|-----|----------|---------|---|-------------|
| Group          | Specie                          | Method  | Units         |   | -   |   | 2             |   | 60  | PE. |          | Average | 5 | Ratio       |
| Somi Volatilae | 2.4 S. Trichlorophonol          | SW 8270 | ojou          | v | 5   | ٧ | 17            | v | 26  |     | •        | 8       | : | 100%        |
|                | Paralle and Paralle and Paralle | 2000    | <b>3</b>      |   | : ! | , | : ;           |   | : 8 |     |          | 1 8     |   |             |
| Semi-Volatiles | 2,4,6-Trichlorophenol           | SW 8270 | ₿/ðu          | ٧ | 1,  | v | <del>5</del>  | v | £   |     | <b>v</b> | 2       | : | \$00L       |
| Semi-Volatiles | 2,4-Dichlorophenol              | SW 8270 | ₽/g⊓          | v | 22  | v | ន             | • | 59  |     | v        | 52      | : | 100%        |
| Semi-Volatiles | 2,4-Dimethylphenol              | SW 8270 | 5/ <b>0</b> u | v | Ŗ   | v | 22            | • | 85  |     | ٧        | 29      | • | 100%        |
| Semi-Volatiles | 2,4-Dinitrophenol               | SW 8270 | <b>5/6</b> U  | v | 346 | v | 363           | ٧ | 210 |     | v        | 306     | : | 100%        |
| Semi-Volatiles | 2,4-Dinitrotoluene              | SW 8270 | D/Gu          | v | 27  | v | 8             | • | 8   |     | •        | 28      | : | 100%        |
| Semi-Volatiles | 2,6-Dichlorophenol              | SW 8270 | 6/6u          | v | 36  | v | 88            | ٧ | 26  |     | v        | 33      | : | <b>100%</b> |
| Semi-Volatiles | 2,6-Dinitrotoluene              | SW 8270 | 0/Bu          | ٧ | 17  | ٧ | 18            | v | 43  |     | v        | 26      | : | 100%        |
| Semi-Votatiles | 2-Chloronaphthalene             | SW 8270 | ₽g/gr         | ٧ | 16  | v | 17            | ٧ | 20  |     | v        | 18      | : | 100%        |
| Semi-Volatiles | 2-Chlorophenol                  | SW 8270 | <b>5/6</b> u  | v | 88  | v | <del>\$</del> | ٧ | 32  |     | v        | 98      | : | 100%        |
| Semi-Volatiles | 2-Methylnaphthalene             | SW 8270 | B/Bu          | v | 33  | v | 34            | • | 18  |     | ٧        | 28      | : | 100%        |
| Semi-Volatiles | 2-Methytphenol(o-cresol)        | SW 8270 | 6/6u          | ٧ | 92  | ٧ | 82            | ٧ | 16  |     | v        | 23      | ; | 100%        |
| Semi-Votatiles | 2-Naphthylamine                 | SW 6270 | B/6u          | v | 8   | ٧ | 101           | v | 80  |     | v        | 93      | ; | 4001        |
| Semi-Volatiles | 2-Nitroaniline                  | SW 8270 | 0/6u          | ٧ | 20  | ٧ | ₽.            | v | 33  |     | v        | 52      | ; | 100%        |
| Semi-Volatiles | 2-Nitrophenol                   | SW 8270 | 5/04          | v | 22  | ٧ | 23            | v | 26  |     | v        | 24      | : | 100%        |
| Semi-Volatiles | 2-Picoline                      | SW 8270 | B/GL          | v | 75  | v | 24            | v | 42  |     | v        | 51      | : | 100%        |
| Semi-Volatiles | 3,3'-Dichlorobenzidine          | SW 8270 | 5/Bu          | ٧ | 24  | v | 82            | ٧ | 17  |     | v        | .22     | • | 100%        |
| Semi-Volatiles | 3-Methylcholanthrene            | SW 8270 | 5/Su          | v | 33  | v | 4             | v | 22  |     | v        | 35      | : | 100%        |
| Semi-Volatiles | 3-Nitroanifine                  | SW 8270 | 5/6u          | v | 52  | v | 8             | v | 20  |     | v        | 24      | : | 100%        |
| Semi-Volatiles | 4,6-Dinttro-2-methylphenol      | SW 8270 | 0/64          | v | 39  | ٧ | 4             | v | 22  |     | ٧        | ¥       | : | 100%        |
| Semi-Volatiles | 4-Aminobiphenyl                 | SW 8270 | D/6u          | v | 37  | v | କ୍ଷ           | v | 8   |     | v        | 45      | ; | 100%        |
| Semi-Volatiles | 4-Bromophenyl phenyl            | SW 8270 | D/Bu          | v | 23  | v | 24            | v | 24  |     | •        | 23      | : | 100%        |
| Semi-Votatiles | 4-Chloro-3-methylpheno          | SW 8270 | B/Bu          | v | 88  | v | 8             | ٧ | 26  |     | v        | 33      | ; | 100%        |
| Semi-Volatiles | 4-Chlorophenyl phenyl ether     | SW 8270 | 5/Su          | v | 56  | ٧ | 22            | ٧ | 21  |     | v        | 25      | ; | 100%        |
| Semi-Volatiles | 4-Methylphenol(p-cresol)        | SW 8270 | <b>6/6</b> L  | v | 28  | v | ଚ             | v | 23  |     | v        | 27      | : | 100%        |
| Semi-Volatiles | 4-Nitroaniline                  | SW 8270 | B/B∪          | v | 24  | ٧ | 123           | ٧ | 30  |     | v        | 56      | ; | 100%        |
| Semi-Volatiles | 4-Nitrophenol                   | SW 8270 | B/Bu          | v | 34  | v | 8             | v | 47  |     | v        | 38      | : | 100%        |
| Semi-Volatiles | 7,12-Dimethylbenz(a)anthracen   | SW 8270 | 5/6u          | v | 88  | v | 8             | v | 29  |     | ٧        | 87      | : | 100%        |
| Semi-Volatiles | Acenaphthene                    | SW 8270 | 6/Bu          | v | 54  | v | ĸ             | v | 14  |     | v        | 21      | ; | 100%        |
| Semi-Volatiles | Acenaphthylene                  | SW 8270 | ₿/gu          | v | =   | v | 12            | ٧ | 21  |     | v        | 5       | : | 100%        |
| Semi-Volatiles | Acetophenone                    | SW 8270 | 6/6U          | v | 23  | v | 24            | v | 28  |     | v        | 25      | : | 100%        |
|                |                                 |         | ,             |   |     |   |               |   |     |     |          |         |   |             |

JBR Underflow Slurry Solids - Page 3

Solid Stream Data

Sample Stream: JBR Underflow Sturry Solids

| Analyte             |                           | Analytical |              |   | Run          |   | RG  |   | Run   | Run |   |         | 95% | 占        |
|---------------------|---------------------------|------------|--------------|---|--------------|---|-----|---|-------|-----|---|---------|-----|----------|
| Group               | Specie                    | Method     | Units        |   | -            |   | 2   |   | 3     | 3d  |   | Average | ច   | Ratio    |
| Security Velletings | 44-4                      | 0700       | qui          | , | ç            | ` | ç   | • | ç     |     | ٧ | ģ       | ;   | 4004     |
| Serni-Volaines      |                           | 0/70 440   | 3            | , | 67           | , | 3   | , | 2     |     | , | 3       | ,   |          |
| Semi-Volatifes      | Benzidine                 | SW 8270    | B/Bu         | v | 29           | v | 8   | v | 20    |     | V | 20      | :   | 100%     |
| Semi-Volatiles      | Benzo(a)anthracene        | SW 8270    | ₿/Bu         | ٧ | 56           | v | 27  | v | 23    |     | v | 52      | ;   | 100%     |
| Semi-Volatiles      | Benzo(a)pyrene            | SW 8270    | ₽/gu         | v | <del>6</del> | v | 20  | v | 26    |     | ٧ | 23      | ;   | 100<br>% |
| Serni-Volatiles     | Benzo(b)fluoranthene      | SW 8270    | ng/g         | ٧ | 28           | ٧ | 30  | v | 46    |     | v | ŧ       | ;   | 100%     |
| Semi-Volatiles      | Benzo(g,h,l)perylene      | SW 8270    | ₫/gu         | ٧ | 24           | ٧ | 25  | ٧ | 51    |     | ٧ | ₹<br>8  | :   | 100%     |
| Semi-Volatiles      | Benzo(k)fluoranthene      | SW 8270    | a/gu         | v | 84           | ٧ | 20  | ٧ | 9     |     | ٧ | 49      | ;   | 100%     |
| Semi-Volatiles      | Benzoic acid              | SW 8270    | 6/6u         | v | <del>2</del> | v | 205 | ٧ | 1,940 |     | ٧ | 780     | :   | 100%     |
| Semi-Volatiles      | Benzył alcohol            | SW 8270    | g/gu         | ٧ | 23           | v | 26  | v | 31    |     | v | 47      | :   | 400%     |
| Semi-Volatiles      | Butylbenzylphthalate      | SW 8270    | g/gu         | v | 6            | v | 20  | ٧ | 31    |     | v | 24      | ;   | 100%     |
| Serni-Volatiles     | Chrysene                  | SW 8270    | g/gu         | v | 33           | ٧ | 35  | v | 27    |     | v | 32      | :   | 100%     |
| Semi-Volatiles      | Di-n-octy/phthalate       | SW 8270    | 9/84         | ٧ | 45           | v | 47  | v | 18    |     | v | 37      | :   | 100%     |
| Semi-Volatiles      | Dibenz(a,h)anthracene     | SW 8270    | 6/64         | v | 23           | ٧ | 25  | v | 41    |     | ٧ | ස       | :   | 100%     |
| Serni-Volatiles     | Dibenz(a,j)acridine       | SW 8270    | 6/6u         | ν | 53           | v | 99  | ٧ | 42    |     | v | 34      | ;   | 100%     |
| Serni-Volatiles     | Dibenzofuran              | SW 8270    | 9/00         | v | 20           | ٧ | 21  | v | 27    |     | V | 23      | ;   | 100%     |
| Semi-Volatiles      | Dibutyiphthalate          | SW 8270    | ₿⁄₿u         | v | 24           | v | 26  | v | 16    |     | v | 23      | ;   | 100%     |
| Semi-Volatifes      | Diethylphthalate          | SW 8270    | g/gu         | v | 11           | v | 17  | v | 26    |     | v | 8       | :   | 100%     |
| Semi-Volatiles      | Dimethylphenethylamine    | SW 8270    | ₫/đu         | v | 120          | v | 120 | v | 120   |     | v | 120     | :   | 100%     |
| Serni-Volatiles     | Dimethylphthalate         | SW 8270    | ₽¢           | v | 4            | v | 15  | v | 17    |     | ٧ | 15      | :   | 100%     |
| Semi-Volatiles      | Diphenylamine             | SW 8270    | Øøu          | v | 92           | v | 27  | ٧ | 14    |     | V | 22      | ;   | 100%     |
| Semi-Volatiles      | Ethyl methanesulfonate    | SW 8270    | 5/6u         | v | 52           | v | 26  | v | 34    |     | v | 28      | ;   | 100%     |
| Semi-Votatiles      | Fluoranthene              | SW 8270    | B/Gu         | ٧ | 32           | v | 33  | v | 24    |     | v | 59      | ;   | 100%     |
| Serni-Volatiles     | Fluorene                  | SW 8270    | <b>0</b> /6u | ٧ | 17           | v | 17  | v | 19    |     | v | 18      | :   | 100%     |
| Semi-Volatiles      | Hexachlorobenzene         | SW 8270    | B/Bu         | v | 12           | v | 12  | v | 16    |     | v | 13      | :   | 100%     |
| Serni-Volatiles     | Hexachtorobutadiene       | SW 8270    | g/gu         | v | 35           | v | 36  | v | 26    |     | v | 32      | :   | 100%     |
| Semi-Volatiles      | Hexachlorocyclopentadiene | SW 8270    | 6/60         | v | <del>1</del> | ٧ | 462 | v | 296   |     | V | 400     | :   | 100%     |
| Serni-Volatiles     | Hexachloroethane          | SW 8270    | 8/Bu         | ٧ | 82           | v | 31  | v | 32    |     | v | સ       | :   | 100%     |
| Semi-Volatites      | Indeno(1,2,3-cd)pyrene    | SW 8270    | B/Bu         | v | 56           | ٧ | 27  | v | 29    |     | v | 40      | ;   | 100%     |
| Serni-Volatiles     | Isophorone                | SW 8270    | 5/6u         | v | 4            | ٧ | 15  | v | 31    |     | v | 20      | :   | 100%     |
| Semi-Volatiles      | Methyl methanesulfonate   | SW 8270    | ₿/Bu         | v | ଜ            | v | 8   | ٧ | 20    |     | v | ଜ       | :   | 100%     |
| Semi-Votatiles      | N-Nitroso-di-n-butylamine | SW 8270    | 6/6u         | v | 8            | v | 88  | ٧ | 32    |     | v | 55      | :   | 100%     |
| Semi-Volatiles      | N-Nitrosodimethylamine    | SW 8270    | b/bu         | v | 8            | v | 69  | v | 40    |     | ٧ | 58      | :   | 100%     |
|                     |                           |            | )<br>}       |   |              |   |     |   |       |     |   |         |     |          |

JBR Underflow Slurry Solids - Page 4

#### Solid Stream Data

Sample Stream: JBR Underflow Slurry Solids

| 占          | Ratio   | 100%                   | 100%                   | 100%                | 100%           | 100%           | 100%               | 100%                    | 100%              | 100%           | 100%           | 100%           | 100%           | 100%           | 100%           | 100%                       | 100%                    | 100%                        | 19%                        | 100%            | 100%                      | 400 |
|------------|---------|------------------------|------------------------|---------------------|----------------|----------------|--------------------|-------------------------|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------------------|-------------------------|-----------------------------|----------------------------|-----------------|---------------------------|-----|
| 95%        | ਠ       | ;                      | :                      | :                   | :              | :              | :                  | :                       | :                 | :              | ;              | :              | :              | :              | :              | :                          | :                       | :                           | 334                        | :               | :                         |     |
|            | Average | 77                     | 88                     | 42                  | 33             | 32             | 21                 | 66                      | 44                | 52             | 53             | <b>58</b>      | 58             | 23             | 6              | <del>0</del>               | 59                      | 31                          | \$                         | 6               | 31                        |     |
|            |         | v                      | ٧                      | v                   | v              | v              | v                  | v                       | v                 | v              | v              | v              | v              | v              | ٧              | v                          | v                       | ٧                           |                            | ٧               | ٧                         | ,   |
| Run        | PE      |                        |                        |                     |                |                |                    |                         |                   |                |                |                |                |                |                |                            |                         |                             |                            |                 |                           |     |
| Run        | 3       | <del>4</del>           | 33                     | 8                   | 24             | 42             | 19                 | 69                      | 45                | 19             | 24             | 4              | 12             | 21             | 8              | 29                         | æ                       | 19                          | 29                         | 29              | 37                        | ;   |
|            |         | v                      | v                      | ٧                   | •              | •              | •                  | •                       | •                 | •              | v              | •              | •              | v              | •              | v                          | v                       | v                           | v                          | v               | •                         |     |
| Run        | 2       | 82                     | ဓ္ဌ                    | 6                   | 88             | 27             | 23                 | 107                     | 45                | <b>78</b>      | 32             | ₽              | æ              | 24             | 8              | 8                          | 83                      | 88                          | 83                         | 8               | 59                        |     |
|            |         | v                      | v                      | v                   | v              | v              | ٧                  | ٧                       | ٧                 | ٧              | ٧              | v              | ٧              | ٧              | ٧              | ٧                          | ٧                       | ٧                           | ٧                          | v               | ٧                         |     |
| Run        | -       | 28                     | 37                     | 47                  | 8              | <b>5</b> 6     | 22                 | 102                     | 43                | 27             | 31             | 2              | 37             | 23             | 22             | 0                          | <b>58</b>               | 98                          | 262                        | 0.03            | 28                        | +   |
|            |         | ٧                      | v                      | v                   | v              | v              | v                  | v                       | v                 | v              | v              | •              | ٧              | v              | v              | v                          | v                       | v                           |                            | v               | v                         |     |
|            | Units   | ם/סנ                   | 0/04                   | <b>6/6</b> L        | 6/64           | 6/60           | 0/6u               | ₿/đu                    | <b>1</b> 0/g      | ₫/đu           | ₿/Bu           | 6/6u           | 6/6u           | 0/04           | 6/ <b>6</b> u  | 0/Bu                       | 6/6u                    | 6/6u                        | <b>5/8</b> u               | 6/Bu            | 6/6u                      |     |
| Analytical | Method  | SW 8270                | SW 8270                | SW 8270             | SW 8270        | SW 8270        | SW 8270            | SW 8270                 | SW 8270           | SW 8270        | SW 8270        | SW 8270        | SW 8270        | SW 8270        | SW 8270        | SW 8270                    | SW 8270                 | SW 8270                     | SW 8270                    | SW 8270         | SW 8270                   |     |
|            | Specie  | N-Nitrosodiphenylamine | N-Nitrosodipropytamine | N-Nitrosopiperidine | Naphthalene    | Nitrobenzene   | Pentachlorobenzene | Pentachloronitrobenzene | Penlachlorophenol | Phenacetin     | Phenanthrene   | Phenol         | Pronamide      | Pyrene         | Pyridine       | bis(2-Chloroethoxy)methane | bis(2-Chloroethyf)ether | bis(2-Chloroisopropyl)ether | bis(2-Ethylhexyl)phthalate | p-Chloroaniline | p-Dimethylaminoazobenzene |     |
| Analyte    | Group   | Semi-Volatiles         | Semi-Volatiles         | Semi-Volatiles      | Semi-Volatiles | Semi-Volatiles | Semi-Volatiles     | Semi-Volatiles          | Semi-Volatiles    | Semi-Volatiles | Semi-Volatiles | Semi-Volatiles | Semi-Volatiles | Semi-Volatiles | Semi-Volatiles | Semi-Volatiles             | Semi-Volatiles          | Semi-Volatiles              | Semi-Volatiles             | Semi-Volatiles  | Semi-Volatiles            |     |

ND= Not Detected, (no detection limit specified).

| _      |
|--------|
| ĕ      |
| Ħ      |
| ₹      |
| puo    |
| 듶      |
| Asi    |
| tream: |
| Ñ      |
| 흦      |
| Ē      |

| Analyte         |              | Analytical |       |   | Run      |          | Run                     |              |   | Run      |          |        | Run      |   |   |         | 32%     | 占           |
|-----------------|--------------|------------|-------|---|----------|----------|-------------------------|--------------|---|----------|----------|--------|----------|---|---|---------|---------|-------------|
| Group           | Specie       | Method     | Units |   | -        |          | 7                       |              |   | 3a       |          |        | ρę       |   | • | Average | ច       | Ratio       |
| Reduced Species | Cyanide      | SW 9012    | lm/gn |   | 0.0024   | 7        | 0.0026                  | ~<br>~       |   | 0.00084  | 7        | J      | 0.0015   | ~ |   | 0.0019  | 0.0024  |             |
| Reduced Species | Ammonia as N | EPA 350.1  | m/gn  |   | 0.194    |          | 0.255                   |              |   | 0.164    |          | _      | 0.151    |   |   | 0.204   | 0.115   |             |
| Anions          | Chloride     | EPA 300    | m/bn  |   | 9.28     |          | 9.37                    |              |   | 7.99     |          |        | 6        |   |   | 8.88    | 1.92    |             |
| Anions          | Fluoride     | EPA 340.2  | m/dn  |   | 0.377    |          | 0.461                   |              |   | 0.443    |          | -      | 0.441    |   |   | 0.427   | 0.110   |             |
| Anions          | Phosphate    | EPA 365.2  | m/6n  | v | 0.02     |          | < 0.002                 |              | ٧ | 0.02     |          | 0      | 0.00176  | 7 | v | 0.014   | :       | 100%        |
| Anions          | Sulfate      | EPA 300.0  | m/gn  |   | 108      |          | 115                     |              |   | 117      |          |        | 120      |   |   | 113     | 12      |             |
| Metals, Soluble | Aluminum     | SW 6010    | jw/dn |   | 0.0167   | <b>-</b> | 0.0172                  | -3           |   | 0.00881  | 7        | 0      | 0.00481  | 7 |   | 0.014   | 0.012   |             |
| Metals, Soluble | Antimony     | SW 6010    | m/dn  | v | 0.0241   |          | < 0.0241                |              | ٧ | 0.0241   |          | v      | 0.0241   |   | v | 0.024   | 1       | 100%        |
| Metals, Soluble | Arsenic      | SW 7060    | im/go | ٧ | 0.000657 |          | < 0.000657              | <u>!=</u>    | v | 0.000657 |          | ő      | 0.000657 |   | v | 99000:0 | :       | 100%        |
| Metals, Soluble | Barium       | SW 6010    | lm/gn |   | 0.147    |          | 0.168                   |              |   | 0.151    |          |        | 0.15     |   |   | 0.155   | 0.028   |             |
| Metals, Soluble | Beryllium    | SW 6010    | m/gn  | v | 0.000554 |          | 0.00058                 | 80           |   | 0.00005  | <b>-</b> | 0      | 0.00018  | - | v | 0.00055 | :       | 31%         |
| Metals, Soluble | Boron        | SW 6010    | μ/gn  |   | 1.14     |          | 0.97                    |              |   | 1.12     |          |        | 1.06     |   |   | 1.08    | 0.23    |             |
| Metals, Soluble | Cadmium      | SW 7131    | m/gn  |   | 0.0012   |          | 0.00058                 | <b>~</b>     |   | 0.00137  |          | O      | 0.00196  |   |   | 0.0011  | 0.0010  |             |
| Metals, Soluble | Calcium      | SW 6010    | m/dn  |   | 31.4     |          | 32.8                    |              |   | 34.2     |          |        | 33.6     |   |   | 32.8    | 3.478   |             |
| Metals, Soluble | Chromium     | SW 6010    | m/on  | v | 0.00249  |          | < 0.00249               | •            |   | 0.00218  | _        | o<br>v | 0.00249  |   | ٧ | 0.0025  | :       | 53%         |
| Metals, Soluble | Cobalt       | SW 6010    | m/gn  | v | 0.0034   |          | × 0.0034                | _            |   | 0.00228  | _        | 0      | 0.00164  | _ | v | 0.0034  | 1       | <b>%</b> 09 |
| Metals, Soluble | Copper       | SW 6010    | lm/gu |   | 0.00364  | _        | 0.00297                 | ~<br>_       |   | 0.00667  |          | o      | 0.00397  |   |   | 0.0044  | 0.0049  |             |
| Metals, Soluble | Iron         | SW 6010    | m/on  |   | 3.76     |          | 5.63                    |              |   | 6.75     |          |        | 6.67     |   |   | 5.38    | 3.75    |             |
| Metals, Soluble | Lead         | SW 7421    | m/gn  |   | 0.0115   |          | 0.0035                  |              |   | 9600.0   |          | Ų      | 0.0132   |   |   | 0.0083  | 0.010   |             |
| Metals, Soluble | Magnesium    | SW 6010    | m/6n  |   | 3.06     |          | 3.09                    |              |   | 3.19     |          |        | 3.15     |   |   | 3.11    | 0.17    |             |
| Metals, Soluble | Manganese    | SW 6010    | m/gu  |   | 0.458    |          | 0.606                   |              |   | 0.603    |          | _      | 0.593    |   |   | 0.556   | 0.210   |             |
| Metals, Soluble | Mercury      | SW 7470    | m/dn  |   | 0.00005  |          | 0.00008                 | <b>6</b> 0   |   | 0.00005  |          | Ö      | 0.00002  | _ | _ | 900000  | 0.00004 |             |
| Metals, Soluble | Motybdenum   | SW 6010    | m/gn  |   | 0.0447   |          | 0.0319                  | _            |   | 0.0284   |          | J      | 0.0248   |   |   | 0.035   | 0.021   |             |
| Metals, Soluble | Nickel       | SW 6010    | m/gn  |   | 0.0213   |          | 0.0172                  |              |   | 0.0207   |          | J      | 0.0191   |   |   | 0.020   | 0.0055  |             |
| Metals, Soluble | Phosphorus   | SW 6010    | m/6n  |   | 0.147    |          | > 0.061                 |              |   | 0.0179   | _        | v      | 0.061    |   |   | 0.065   | 0.177   | 16%         |
| Metals, Soluble | Potassium    | SW 6010    | m/m   |   | 5.29     |          | 90'9                    |              |   | 5.68     |          |        | 5.38     |   |   | 5.34    | 0.78    |             |
| Metals, Soluble | Selenium     | SW 7740    | ug/mi |   | 0.0003   | _        | 0.002                   |              |   | 0.0033   |          | J      | 0.0016   |   |   | 0.0019  | 0.0037  |             |
| Metals, Soluble | Silicon      | SW 6010    | m/gn  |   | 3.77     |          | 3.34                    |              |   | 3.24     |          |        | 3.2      |   |   | 3.45    | 0.70    |             |
| Metals, Soluble | Sodium       | SW 6010    | m/gu  |   | 12.7     |          | 12.4                    |              |   | 12.1     |          |        | 12       |   |   | 12.4    | 0.7     |             |
| Metals, Soluble | Strontium    | SW 6010    | m/gn  |   | 0.334    |          | 0.343                   |              |   | 0.35     |          | _      | 0.346    |   |   | 0.342   | 0.020   |             |
| Metals, Soluble | 둗            | SW 6010    | m/dn  | v | 0.0144   |          | 0.0028                  | <del>-</del> | ٧ | 0.0144   |          | v      | 0.0144   |   | v | 0.014   | :       | 84%         |
| I.              |              |            |       |   | Ash Po   | \ pu     | Ash Pond Water - Page 1 | Page         | _ |          |          |        |          |   |   |         |         |             |

H-98-98-sample Stream: Ash Pond Water

| Analyte         |            | Analytical |       | Run      |   | Run       |   | Run      |   | Run      |          |   |         | %S6        | 占     |
|-----------------|------------|------------|-------|----------|---|-----------|---|----------|---|----------|----------|---|---------|------------|-------|
| Group           | Specie     | Method     | Chits | -        |   | 7         |   | 39       |   | 39       |          |   | Average | ច          | Ratio |
| Metals, Soluble | Ttanium    | SW 6010    | m/gn  | 0.00042  | _ | < 0.00236 |   | 0.00031  |   | 0.00024  | 7        | ٧ | 0.0024  | ;          | 62%   |
| Metals, Soluble | Vanadium   | SW 6010    | m/gn  | 0.00019  | 7 | 0.0118    |   | 0.00167  |   | 0.00116  | -        |   | 0.0046  | 0.016      |       |
| Metals, Soluble | Zinc       | SW 6010    | m/6n  | 0.0109   |   | 0.00881   | ~ | 0.00995  |   | 0.0102   |          |   | 0.010   | 0.0026     |       |
| Metals, Total   | Aluminum   | SW 6010    | ш/бn  | 0.0708   |   | 0.355     |   | 0.102    |   | 0.123    |          |   | 0.176   | 0.387      |       |
| Metals, Total   | Antimony   | SW 6010    | m/gu  | 0.0146   | 7 | 0.0166    | 7 | 0.0241   |   | 0.0131   | <b>-</b> |   | 0.018   | 0.012      |       |
| Metals, Total   | Arsenic    | SW 7060    | m/gn  | 0.0004   | 7 | 0.0004    | 7 | 0.0014   |   | 0.0014   |          | _ | 0.00073 | 0.0014     |       |
| Metals, Total   | Barium     | SW 6010    | E/dn  | 0.144    |   | 0.168     |   | 0.148    |   | 0.144    |          |   | 0.153   | 0.032      |       |
| Metals, Total   | Beryllium  | SW 6010    | ım/gn | 0.00013  | 7 | 9E-05     | ~ | 0.000554 | ٧ | 0.000554 |          | • | 0.00026 | 0.000639   |       |
| Metals, Total   | Boron      | SW 6010    | lm/gu | 0.976    |   | 1.02      |   | 1.1      |   | 966.0    |          |   | 1.03    | 0.16       |       |
| Metals, Total   | Cadmium    | SW 7131    | lm/gu | 0.00079  |   | 0.0036    |   | 0.00105  |   | 0.00083  |          |   | 0.0018  | 0.0039     |       |
| Metals, Total   | Calcium    | SW 6010    | m/dn  | 32.6     |   | 34.8      |   | 33.8     |   | 32.7     |          |   | 33.7    | 2.7        |       |
| Metals, Total   | Chromium   | SW 6010    | m/dn  | 0.00111  | _ | 0.0018    | 7 | 0.00194  |   | 0.00175  |          |   | 0.0016  | 0.0011     |       |
| Metals, Total   | Cobatt     | SW 6010    | m/gn  | 0.00674  |   | 0.00622   |   | 0.00619  |   | 0.00411  |          |   | 0.0064  | 0.00077    |       |
| Metals, Total   | Copper     | SW 6010    | m/gn  | 0.00832  |   | 0.00866   |   | 0.00493  |   | 0.00869  |          |   | 0.0073  | 0.0051     |       |
| Metals, Total   | Iron       | SW 6010    | m/gn  | 8.28     |   | 12.6      |   | 9.8      |   | 9.71     |          |   | 10.2    | 5.4        |       |
| Metals, Total   | Lead       | SW 7421    | m/gn  | < 0.0008 |   | 0.0435    |   | 0.0079   |   | 0.0039   |          |   | 0.017   | 0.057      | %     |
| Metals, Total   | Magnesium  | SW 6010    | j⊞/ßn | 3.11     |   | 3.26      |   | 3.13     |   | 3.02     |          |   | 3.17    | 0.20       |       |
| Metals, Total   | Manganese  | SW 6010    | m/gn  | 0.487    |   | 0.647     |   | 0.531    |   | 0.497    |          |   | 0.555   | 0.205      |       |
| Metals, Total   | Mercury    | SW 7470    | m/6n  | 7E-05    |   | 6E-05     |   | 2E-05    |   | 1E-05    | 7        |   | 5E-05   | 7E-05      |       |
| Metals, Total   | Molybdenum | SW 6010    | m/gn  | 0.0761   |   | 0.1       |   | 0.0761   |   | 0.0736   |          |   | 0.084   | 0.034      |       |
| Metals, Total   | Nickel     | SW 6010    | m/gu  | 0.0296   |   | 0.0195    |   | 0.022    |   | 0.0269   |          |   | 0.024   | 0.013      |       |
| Metals, Total   | Phosphorus | SW 6010    | m/gu  | 0.0038   | _ | 0.0326    | 7 | 0.0446   | ٧ | 0.061    |          |   | 0.027   | 0.052      |       |
| Metals, Total   | Potassium  | SW 6010    | m/gn  | 5.87     |   | 5.99      |   | 5.36     |   | 5.4      |          |   | 5.74    | 0.83       |       |
| Metals, Total   | Selenium   | SW 7740    | m/gn  | 900:0    |   | 0.0043    |   | 0.0041   |   | 0.0042   |          |   | 0.0048  | 0.0026     |       |
| Metals, Total   | Silicon    | SW 6010    | m/gn  | 4.03     |   | 3.58      |   | 3.48     |   | 3.34     |          |   | 3.697   | 0.728      |       |
| Metals, Total   | Sodium     | SW 6010    | m/gu  | 13       |   | 13.5      |   | 12       |   | 11.7     |          |   | 12.8    | <b>6</b> . |       |
| Metals, Total   | Strontium  | SW 6010    | m/gn  | 0.329    |   | 0.35      |   | 0.337    |   | 0.326    |          |   | 0.339   | 0.026      |       |
| Metals, Total   | ם          | SW 6010    | m/6n  | < 0.0144 |   | < 0.0144  |   | 0.0144   | ٧ | 0.0144   |          | v | 0.014   | :          | 20%   |
| Metals, Total   | Titanium   | SW 6010    | m/gn  | 0.00024  | _ | 0.0008    | - | 0.001    |   | 0.00041  | -        | Ĭ | 9,00068 | 0.0010     |       |
| Metals, Total   | Vanadium   | SW 6010    | μ/βn  | 0.0286   |   | 0.0227    |   | 0.0202   |   | 0.0239   |          |   | 0.024   | 0.011      |       |
| Metals, Total   | Zinc       | SW 6010    | m/gn  | 0.0128   |   | 0.0124    |   | 0.0107   |   | 0.011    |          |   | 0.012   | 0.0028     |       |
|                 |            |            |       |          |   |           |   |          |   |          |          |   |         |            |       |

Ash Pond Water - Page 2

Sample Stream: Ash Pond Water

| Analytical    |
|---------------|
| Method        |
| SW 8315       |
| SW 8315 ug/ml |
| SW 8270 ug/l  |
| SW 8270 ug/L  |
| SW 8270 ug/l  |
| SW 8270 ug/l  |
| SW 8270 ug/l  |
| SW 8270 ug/l  |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| SW 8270 ug/l  |
| SW 8270 ug/L  |
|               |
| SW 8270 ug/L  |
|               |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| _             |
| SW 8270 ug/L  |
|               |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
| SW 8270 ug/l  |
| SW 8270 ug/L  |
| SW 8270 ug/L  |
|               |

Liquid Stream Data Summary

H-88-Sample Stream: Ash Pond Water

| ᆸ          | Ratio   |              | 100%                    | 100%                    | 100%                        | 100%                     | 100%                    | 100%                    | 100%                           | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | <b>100%</b>               | 100%                    | 100%                    | 34%                      | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                     | 100%                    | 100%                    | 100 <b>%</b>            | 100%                    | 100%                    |                       |
|------------|---------|--------------|-------------------------|-------------------------|-----------------------------|--------------------------|-------------------------|-------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------------------|
| 82%        | ច       |              | :                       | :                       | :                           | :                        | ;                       | :                       | :                              | :                       | :                       | :                       | ;                       | •                       | :                       | :                       | :                       | ;                       | :                       | :                         | ;                       | :                       | :                        | :                       | :                       | :                       | ;                       | :                       | ;                       | :                        | ;                       | :                       | :                       | ;                       | :                       |                       |
|            | Average | )            | 0.453                   | 0.636                   | 0.479                       | 0.522                    | 0.512                   | 0.754                   | 1.68                           | 0.398                   | 0.283                   | 0.480                   | 0.804                   | 0.496                   | 8                       | 0.480                   | 0.418                   | 999.0                   | 0.650                   | 0.953                     | 15.3                    | 0.898                   | 0.619                    | 0.608                   | 0.703                   | 0.573                   | 0.652                   | 0.440                   | 0.425                   | 0.39                     | 120                     | 0.291                   | 0.432                   | 0.548                   | 0.566                   |                       |
|            |         |              | ٧                       | v                       | ٧                           | ٧                        | ٧                       | ٧                       | ٧                              | ٧                       | ٧                       | ٧                       | ٧                       | ν                       | ٧                       | ٧                       | v                       | ٧                       | ٧                       | ٧                         | ٧                       | •                       | ٧                        | ٧                       | ٧                       | <b>v</b>                | ٧                       | ٧                       | ٧                       | <b>v</b>                 | v                       | ٧                       | V                       | ٧                       | •                       |                       |
| Run        | B       |              | 0.461                   | 0.49                    | 0.401                       | 0.437                    | 0.577                   | 0.892                   | 1.27                           | 0.259                   | 0.398                   | 0.532                   | 0.587                   | 0.35                    | 8                       | 0.428                   | 0.493                   | 0.865                   | 0.971                   | 0.951                     | 36.8                    | 0.581                   | 0.595                    | 0.511                   | 0.335                   | 0.772                   | 0.802                   | 0.511                   | 0.308                   | 0.49                     | 129                     | 0.32                    | 0.264                   | 0.647                   | 0.449                   |                       |
|            |         |              | ٧                       | ٧                       | ٧                           | ٧                        | V                       | ٧                       | ٧                              | ٧                       | ٧                       | ٧                       | ٧                       | ٧                       | <b>v</b>                | V                       | ٧                       | ٧                       | V                       | ٧                         | V                       | ٧                       | V                        | V                       | v                       | ٧                       | ٧                       | V                       | V                       | ٧                        | V                       | v                       | V                       | ٧                       | ٧                       |                       |
| Run        | 38      |              | 0.479                   | 0.51                    | 0.417                       | 0.454                    | 9.0                     | 0.928                   | 1.32                           | 0.269                   | 0.414                   | 0.553                   | 0.61                    | 0.364                   | 20                      | 0.445                   | 0.513                   | 0.899                   | <u>5</u>                | 0.989                     | 38.2                    | 0.604                   | 0.619                    | 0.532                   | 0.349                   | 0,803                   | 0.834                   | 0.532                   | 0.321                   | 0.51                     | 120                     | 0.333                   | 0.274                   | 0.672                   | 0.466                   |                       |
|            |         |              | ٧                       | ٧                       | v                           | v                        | v                       | v                       | v                              | ٧                       | ٧                       | v                       | v                       | ٧                       | v                       | v                       | v                       | ٧                       | v                       | ٧                         | ٧                       | ٧                       | ٧                        | ٧                       | ٧                       | v                       | ٧                       | ٧                       | ٧                       | v                        | ٧                       | v                       | v                       | v                       | v                       | 4                     |
| _          |         |              | <b>9</b> 2              | ĸ                       | ø                           | 22                       | Š                       | ¥                       | D.                             | 9                       |                         | <u>=</u>                | 76                      | 9                       |                         | υ                       | <b>8</b> 2              | 1                       | <b>9</b> 2              | =                         | _                       | ₹                       | ٦<br>2                   | <u>8</u>                | 9                       | g                       | 6                       | 2                       | <b>.</b>                | 65                       | _                       | g,                      | 8                       | 7                       | က္                      | - Page                |
| 2          | 7       |              | 0.438                   | 900                     | 0.508                       | 0.553                    | 0.465                   | 0.66                    | 1.8                            | 0.4                     | 0.2                     | <br>4.0                 | 0.86                    | 0.559                   | 8                       | 0.45                    | 0.36                    | 0.5                     | 0.4                     | 0.93                      | 3.8                     | 0.1                     | 0.25                     | 0.64                    | 0.87                    | 0.45                    | 0.5                     | 0.35                    | 0.474                   | 0.3                      | 120                     | 0.26                    | 0.50                    | 0.484                   | 0.6                     | later.                |
|            |         |              | •                       | •                       | ٧                           | •                        | •                       | ٧                       | v                              | ٧                       | •                       | v                       | •                       | ٧                       | •                       | V                       | •                       | •                       | ٧                       | v                         | ٧                       | •                       | _                        | v                       | ٧                       | •                       | ٧                       | ٧                       | V                       | ٧                        | •                       | •                       | •                       | •                       | •                       | M puc                 |
| Run        | -       |              | 0.443                   | 0.702                   | 0.513                       | 0.558                    | 0.47                    | 0.671                   | 1.86                           | 0.464                   | 0.219                   | 0.446                   | 906.0                   | 0.564                   | 20                      | 0.5                     | 0.372                   | 0.552                   | 0.473                   | 0.94                      | 3.84                    | £.                      | 0.305                    | 0.65                    | 0.884                   | 0.46                    | 0.564                   | 0.396                   | 0.479                   | 0.326                    | 120                     | 0.272                   | 0.513                   | 0.488                   | 0.619                   | Ash Pond Water - Page |
|            |         |              | •                       | ٧                       | ٧                           | v                        | v                       | ٧                       | ٧                              | ٧                       | v                       | V                       | v                       | v                       | v                       | v                       | ٧                       | v                       | ٧                       | ٧                         | ٧                       | •                       |                          | ٧                       | v                       | ٧                       | ٧                       | ٧                       | v                       | v                        | ٧                       | ٧                       | v                       | ٧                       | ٧                       |                       |
|            | Units   |              | ug/L                    | ug/L                    | ug/L                        | J/gn                     | ug/L                    | ug/L                    | ug/L                           | 76                      | ug/L                    | ug/L                    | √gn                     | √gn                     | ug/L                    | ng/L                    | ng/L                    | ng/L                    | ug/L                    | √gn                       | √gn                     | √gn                     | ug/L                     | ₽,Gn                    | ₩                       | ng/L                    | UQ/L                    | ug/L                    | √g,                     | ng/L                     | √gn                     | ug/L                    | ug/L                    | η/βn                    | ₽/Gn                    |                       |
| Analytical | Method  |              | SW 8270                 | SW 8270                 | SW 8270                     | SW 8270                  | SW 8270                 | SW 8270                 | SW 8270                        | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                   | SW 8270                 | SW 8270                 | SW 8270                  | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                  | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 |                       |
|            | Specie  | <del>-</del> | 4-Bromophenyl phenyl    | 4-Chloro-3-methylphenol | 4-Chlorophenyl phenyl ether | 4-Methylphenol(p-cresol) | 4-Nitroaniline          | 4-Nitrophenol           | 7,12-Dimethyfbenz(a)anthracene | Acenaphthene            | Acenaphthylene          | Acetophenone            | Aniline                 | Anthracene              | Benzidine               | Benzo(a)anthracene      | Benzo(a)pyrene          | Benzo(b)fluoranthene    | Benzo(g,h,i)perylene    | Benzo(k)fluoranthene      | Benzoic acid            | Benzył ałcohoł          | Butylbenzylphthalate     | Chrysene                | Di-n-octylphthalate     | Dibenz(a,h)anthracene   | Dibenz(a,j)acridine     | Dibenzofuran            | Dibutylphthalate        | Diethylphthalate         | Dimethylphenethylamine  | Dimethylphthalate       | Diphenylamine           | Ethyl methanesulfonate  | Fluoranthene            |                       |
| Analyte    | Grado   |              | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile     | Organics, Semi-volatife  | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-votatile        | Organics, Semi-volatile | Organics, Semi-volatite | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatite | Organics, Semi-volatife | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Serni-volatifie | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatifle | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-votatile | Organics, Semi-volatile | Organics, Semi-votatile | Organics, Semi-volatifie | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatife |                       |

Ash Pond Water - Page 4

Sample Stream: Ash Pond Water

| Analyte                 |                             | Analyticat |              |   | Run      |       | Run                   |          | Run   |   | Run   |   |         | 82% | 占            |
|-------------------------|-----------------------------|------------|--------------|---|----------|-------|-----------------------|----------|-------|---|-------|---|---------|-----|--------------|
| Group                   | Specie                      | Method     | <b>Units</b> |   | •        |       | 7                     |          | 38    |   | 34    | ⋖ | Average | ច   | Ratio        |
|                         |                             |            |              |   |          |       |                       |          |       |   | ,     |   |         |     | :            |
| Organics, Semi-volatile | Fluorene                    | SW 8270    | 7g5          | ٧ | 0.326    | v     | 0.323                 | v        | 0.376 | ٧ | 0.362 | v | 0.342   | :   | 80           |
| Organics, Semi-volatile | Hexachlorobenzene           | SW 8270    | ug/L         | v | 0.227    | ٧     | 0.225                 | v        | 0.311 | v | 0.299 | v | 0.254   | :   | 100%         |
| Organics, Semi-volatile | Hexachlorobutadiene         | SW 8270    | √gu          | v | 0.678    | ٧     | 0.671                 | v        | 0.507 | v | 0.488 | v | 0.619   | :   | 100%         |
| Organics, Semi-votatile | Hexachtorocyclopentadiene   | SW 8270    | ng/L         | v | 8.66     | ٧     | 8.58                  | ٧        | 5.83  | v | 5.61  | v | 69.7    | ;   | 100%         |
| Organics, Semi-volatile | Hexachloroethane            | SW 8270    | ug/L         | v | 0.577    | V     | 0.571                 | v        | 0.629 | ٧ | 909.0 | v | 0.592   | :   | 100%         |
| Organics, Semi-volatile | Indeno(1,2,3-cd)pyrene      | SW 8270    | ug/L         | ٧ | 0.51     | V     | 0.505                 | ٧        | 1.32  | ٧ | 1.27  | v | 0.78    | ;   | 100%         |
| Organics, Semi-volatile | Isophorone                  | SW 8270    | ug/L         | ٧ | 0.279    | v     | 0.276                 | v        | 0.61  | v | 0.587 | v | 0.388   | ;   | 100%         |
| Organics, Semi-volatile | Methyt methanesulfonate     | SW 8270    | γģη          | v | <b>8</b> | ٧     | 20                    | ٧        | 28    | v | 8     | v | ଝ       | ;   | 100%         |
| Organics, Semi-volatile | N-Nitroso-di-n-butylamine   | SW 8270    | rø/F         | ٧ | 1.27     | v     | 1.26                  | ٧        | 0.623 | v | 0.599 | v | 1.051   | :   | 100%         |
| Organics, Semi-volatile | N-Nitrosodimethytamine      | SW 8270    | ug/L         | ٧ | 1.29     | ٧     | 1.28                  | •        | 0.778 | v | 0.749 | v | 1,116   | :   | 100%         |
| Organics, Semi-volatile | N-Nitrosodiphenylamine      | SW 8270    | ug/L         | v | 0.55     | v     | 0.544                 | ٧        | 0.266 | v | 0.256 | v | 0.453   | :   | 100%         |
| Organics, Semi-volatile | N-Nitrosodipropylamine      | SW 8270    | ug/L         | v | 0.729    | v     | 0.722                 | v        | 0.648 | v | 0.623 | v | 0.700   | :   | 100%         |
| Organics, Semi-votatile | N-Nitrosopiperidine         | SW 8270    | ug/L         | v | 0.916    | ٧     | 0.907                 | v        | 0.591 | v | 0.569 | v | 0.805   | :   | 100%         |
| Organics, Semi-volatile | Naphthalene                 | SW 8270    | ng/L         | v | 0.708    | ν     | 0.701                 | v        | 0.473 | v | 0.455 | v | 0.627   | :   | 100%         |
| Organics, Semi-volatile | Nitrobenzene                | SW 8270    | ng/L         | v | 0.513    | v     | 0.508                 | v        | 0.834 | v | 0.802 | v | 0.618   | ;   | 100%         |
| Organics, Semi-volatile | Pentachlorobenzene          | SW 8270    | ng/L         | v | 0.43     | V     | 0.426                 | •        | 0.37  | v | 0.356 | v | 0.409   | :   | 100%         |
| Organics, Semi-volatile | Pentachloronitrobenzene     | SW 8270    | ug/L         | v | 2.01     | V     | 1.99                  | v        | 1.37  | ٧ | 1.31  | v | 1.79    | :   | 100%         |
| Organics, Semi-volatile | Pentachlorophenol           | SW 8270    | ug/L         | v | 0.839    | ٧     | 0.831                 | v        | 0.88  | v | 0.847 | v | 0.850   | ;   | 100%         |
| Organics, Semi-volatile | Phenacetin                  | SW 8270    | rg/L         | v | 0.524    | ٧     | 0.519                 | v        | 0.382 | v | 0.368 | v | 0.475   | :   | 100%         |
| Organics, Semi-volatile | Phenanthrene                | SW 8270    | UQ/L         | ٧ | 0.604    | V     | 0.598                 | v        | 0.463 | ¥ | 0.446 | v | 0.555   | :   | 100%         |
| Organics, Semi-volatile | Phenol                      | SW 8270    | ug/L         | v | 0.387    | v     | 0.384                 | v        | 0.874 | v | 0.841 | v | 0.548   | :   | 100<br>%     |
| Organics, Semi-volatile | Pronamide                   | SW 8270    | ug/L         | ٧ | 0.717    | ٧     | 0.711                 | v        | 0.239 | v | 0.23  | v | 0.556   | :   | 100%         |
| Organics, Semi-volatile | Pyrene                      | SW 8270    | ug/L         | v | 0.454    | ٧     | 0.45                  | v        | 0.404 | v | 0.389 | v | 0.436   | :   | 100%         |
| Organics, Semi-volatile | Pyridine                    | SW 8270    | ₩<br>V       | v | 1.13     | V     | 1.12                  | v        | 0.582 | v | 0.56  | v | 0.944   | ;   | 100%         |
| Organics, Semi-volatile | bis(2-Chloroethoxy)methane  | SW 8270    | ug/L         | v | 0.546    | v     | 0.54                  | <b>v</b> | 9.0   | v | 0.577 | v | 0.56    | :   | 100%         |
| Organics Semi-volatile  | bis(2-Chloroethyl)ether     | SW 8270    | √g/L         | v | 0.711    | v     | 0.704                 | v        | 0.379 | v | 0.365 | v | 0.598   | :   | 100%         |
| Organics, Semi-volatile | bis(2-Chloroisopropyl)ether | SW 8270    | ng/L         | v | 0.705    | ٧     | 0.698                 | v        | 0.79  | v | 0.76  | v | 0.731   | :   | 100%         |
| Organics, Semi-volatile | bis(2-Ethylhexyt)phthalate  | SW 8270    | ηgη          | v | 1.78     | V     | 1.76                  | v        | 0.575 |   | 447   | v | 1.37    | ;   | 100 <b>%</b> |
| Organics, Semi-volatile | p-Chloroaniline             | SW 8270    | ug/L         | ٧ | 0.543    | v     | 0.537                 | v        | 0.738 | v | 0.71  | v | 909'0   | ;   | 100%         |
| Organics, Semi-volatile | p-Dimethylaminoazobenzene   | SW 8270    | ng/L         | v | 0.5      | v     | 0.495                 | v        | 0.719 | v | 0.691 | v | 0.571   | ;   | 100%         |
| Organice Volatile       | 1 1 1-Trichforoethane       | SW 8240    | uo/L         | v | ιΩ       | v     | က                     | ٧        | ស     | v | S     | ٧ | S.      | ;   | 100%         |
| Organics, Volatile      | 1,1,2,2-Tetrachloroethane   | SW 8240    | UQ/L         | ٧ | ស        | ٧     | Ŋ                     | v        | ις    | v | S.    | v | ς.      | :   | 100%         |
| · F                     |                             |            |              |   | Ash Por  | nd Wa | Ash Pond Water - Page | 9        |       |   |       |   |         |     |              |

Liquid Stream Data Summary

H-06-H Sample Stream: Ash Pond Water

| 占          | Ratio   | 100%                  | 100%               | 100%               | 100%               | 100%                       | 100%                | 100%               | 100%               | 100%                        | 28%                | 100%               | 4004                 | 100%               | 100%               | 100%               | 100%                 | 100%               | 100%               | 100%               | 100%               | 100%                 | 100%               | 19%                | 100%               | 100%               | 100%               | 100%               | 100%               | 100%               | 100%               | 100%                    | 100%                      |
|------------|---------|-----------------------|--------------------|--------------------|--------------------|----------------------------|---------------------|--------------------|--------------------|-----------------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------------|---------------------------|
| 95%        | ច       | ;                     | :                  | ;                  | :                  | :                          | :                   | :                  | :                  | :                           | :                  | ;                  | :                    | :                  | :                  | ;                  | ;                    | ;                  | :                  | :                  | :                  | ;                    | ;                  | :                  | :                  | ;                  | :                  | :                  | :                  | ;                  | ;                  | •                       | :                         |
|            | Average | ĸ                     | ις.                | ۲C                 | ស                  | က                          | က                   | 5                  | 우                  | 9                           | 2                  | ıO                 | ιc                   | ĸ                  | 우                  | ın                 | ъ                    | വ                  | 우                  | ഹ                  | 9                  | ĸ                    | ß                  | ß                  | ĸ                  | ري<br>م            | ĸ                  | ιΩ                 | 9                  | <del>1</del>       | ĸ                  | ιΩ                      | ഹ                         |
|            |         | ٧                     | •                  | v                  | v                  | v                          | v                   | v                  | v                  | ٧                           | v                  | V                  | •                    | ٧                  | v                  | ٧                  | V                    | •                  | V                  | ٧                  | v                  | V                    | ٧                  | v                  | V                  | •                  | v                  | v                  | ٧                  | V                  | v                  | ٧                       | •                         |
| _          |         |                       |                    |                    |                    |                            |                     |                    |                    |                             | 7                  |                    |                      |                    |                    |                    |                      |                    |                    |                    |                    |                      |                    |                    |                    |                    |                    |                    |                    |                    |                    |                         |                           |
| Æ          | 39      | ιΩ                    | S                  | S                  | S.                 | S                          | ស                   | \$                 | 5                  | 5                           | 9                  | 3                  | ĸ                    | 9                  | 5                  | ιC                 | S.                   | 2                  | 9                  | ĸ                  | 9                  | ľ                    | ß                  | 7.7                | S)                 | S                  | ιΩ.                | 5                  | 5                  | 9                  | വ                  | ιΩ<br>Ω                 | r.                        |
|            |         | ٧                     | ٧                  | ٧                  | v                  | ٧                          | ٧                   | V                  | ٧                  | ٧                           |                    | ٧                  | v                    | ٧                  | v                  | v                  | ٧                    | ٧                  | V                  | ٧                  | ٧                  | ٧                    | ٧                  |                    | ٧                  | ٧                  | v                  | ٧                  | ٧                  | ٧                  | ٧                  | ٧                       | ٧                         |
| Ren        | 88      | က                     | ß                  | Ŋ                  | ĸ                  | S.                         | z,                  | 9                  | 6                  | 5                           | 9.7                | ς.                 | ω.                   | ໝ                  | 6                  | ດ                  | Ŋ                    | ı,                 | <b>t</b>           | ហ                  | 5                  | ស                    | r.                 | 6.2                | 2                  | Ω.                 | ស                  | ın                 | 5                  | <b>6</b>           | ស                  | ĸ                       | 2                         |
|            |         | v                     | v                  | v                  | v                  | v                          | v                   | v                  | v                  | v                           |                    | v                  | v                    | v                  | v                  | v                  | v                    | v                  | v                  | v                  | v                  | v                    | v                  |                    | v                  | v                  | v                  | v                  | v                  | v                  | v                  | ٧                       | v                         |
| _          |         |                       |                    |                    |                    |                            |                     |                    |                    |                             | 7                  |                    |                      |                    |                    |                    |                      |                    |                    |                    |                    |                      |                    | 7                  |                    |                    |                    |                    |                    |                    |                    |                         |                           |
| æ          | 7       | ഗ                     | S                  | ιC                 | 2                  | 5                          | £                   | 5                  | 5                  | 9                           | 3.3                | Ŋ                  | တ                    | ĸ                  | <b>t</b>           | ĸ                  | ιΩ                   | c                  | 5                  | ß                  | 9                  | ß                    | ß                  | 4.2                | t)                 | r.                 | ro<br>O            | ഹ                  | 6                  | 5                  | ß                  | လ                       | ro.                       |
|            |         | ٧                     | ٧                  | ٧                  | ٧                  | ٧                          | ٧                   | ¥                  | ٧                  | ٧                           |                    | ٧                  | ٧                    | ٧                  | ٧                  | ٧                  | ٧                    | V                  | V                  | ٧                  | V                  | ٧                    | ٧                  |                    | ٧                  | ٧                  | ٧                  | ٧                  | ٧                  | ٧                  | ٧                  | ٧                       | <b>v</b>                  |
| Rus        | -       | ĸ                     | 2                  | ស                  | ဌ                  | S.                         | S.                  | 6                  | 9                  | 우                           | 6                  | ъ                  | ហ                    | വ                  | 5                  | r,                 | 2                    | ဌ                  | 5                  | ß                  | 9                  | ß                    | Ω                  | ល                  | co                 | S                  | r.                 | rc<br>Or           | 우                  | 9                  | D.                 | ĸ                       | ro<br>O                   |
|            |         | ٧                     | ٧                  | ٧                  | ٧                  | v                          | ٧                   | v                  | v                  | v                           | v                  | v                  | v                    | ٧                  | ٧                  | v                  | v                    | v                  | v                  | ٧                  | ٧                  | ٧                    | v                  | v                  | v                  | v                  | ٧                  | v                  | v                  | ٧                  | v                  | v                       | v                         |
|            | Units   | 1/8<br>1/8            | J/gn               | ₩,                 | ď,                 | ųg/L                       | ug/L                | √g/L               | ng/L               | ug/L                        | ug/L               | ug/L               | ug/L                 | ug/L               | ug/L               | ug/L               | J/Bn                 | √g/L               | 7/6n               | ₽g/L               | √g/L               | ug/L                 | ug/L               | ug/L               | √gn                | ug/L               | ug/L               | ₽/gu               | ug/L               | ug/L               | ug/L               | ug/L                    | ug/L                      |
| Analytical | Method  | SW 8240               | SW 8240            | SW 8240            | SW 8240            | SW 8240                    | SW 8240             | SW 8240            | SW 8240            | SW 8240                     | SW 8240            | SW 8240            | SW 8240              | SW 8240            | SW 8240            | SW 8240            | SW 8240              | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240              | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240                 | SW 8240                   |
|            | Specie  | 1,1,2-Trichloroethane | 1,1-Dichloroethane | 1,1-Dichloroethene | 1,2-Dichloroethane | 1,2-Dichloroethene (total) | 1,2-Dichloropropane | 2-Butanone (MEK)   | 2-Hexanone         | 4-Methyl-2-pentanone (MIBK) | Acetone            | Benzene            | Bromodichloromethane | Bromoform          | Bromomethane       | Carbon Disulfide   | Carbon Tetrachloride | Chlorobenzene      | Chloroethane       | Chloroform         | Chloromethane      | Dibromochloromethane | Ethylbenzene       | Methylene Chloride | Styrene            | Tetrachioroethene  | Toluene            | Trichloroethene    | Vinyl acetate      | Vinyl chloride     | Xylenes            | cis-1,3-Dichloropropene | trans-1,3-Dichloropropene |
| Analyte    | Group   | Organics, Volatile    | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile         | Organics, Volatile  | Organics, Volatile | Organics, Volatile | Organics, Volatile          | Organics, Volatile | Organics, Volatile | Organics, Volatile   | Organics, Volatile | Organics, Volatile | Organics, Votatile | Organics, Volatile   | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile   | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile      | Organics, Volatile        |

Ash Pond Water - Page 6

Sample Stream: Bottom Ash Sluice Filtrate

| Analyte         |              | Anatytical |       | Run             |          | Run      |   | Run        |   | Sun<br>Un   |   |          | <b>%</b> 56  | 占            |
|-----------------|--------------|------------|-------|-----------------|----------|----------|---|------------|---|-------------|---|----------|--------------|--------------|
| Group           | Specie       | Method     | Units | -               |          | 2        |   | 38         | [ | PE 3d       |   | Average  | 5            | Ratio        |
| Bedured Species | Cvanide      | SW 9012    | ua/ml | 0,0025          | 7        | 0.0017   | 7 | 0.0017     | _ | 0.0025      | _ | 0.0020   | 0.0011       |              |
| Reduced Species | Ammonia as N | EPA 350.1  | ng/m  | 0.293           |          | 0.421    |   | 0.638      |   | 0.402       |   | 0.451    | 0.433        |              |
| Anione          | Chloride     | EPA 300    | lm/bn | 8.39            |          | 7.74     |   | 7.55       |   | 7.62        |   | 7.89     | 1.09         |              |
| Anions          | Fluoride     | EPA 340.2  | E/go  | 0.272           |          | 0.268    |   | 0.302      |   | 0.302       |   | 0.281    | 0.046        |              |
| Anions          | Phosphate    | EPA 365.2  | E/do  | 0.0396          | ٧        | 0.02     |   | 0.0264     |   | 0.0235      |   | 0.0253   | 0.0368       | 13%          |
| Anions          | Sulfate      | EPA 300.0  | lm/bn | 67.5            |          | <b>8</b> |   | 82         |   | 79.1        |   | 80.5     | 34.4         |              |
| Metals Solutie  | Atuminum     | SW 6010    | m/mn  | 0.182           |          | 0.302    |   | 0.431      |   | 0.399       |   | 0.305    | 0.309        |              |
| Metals Soluble  | Antimony     | SW 6010    | m/gn  | < 0.0241        | •        | 0.0241   | Ĭ | 0.0241     | v | 0.0241      | ٧ | 0.0241   | :            | 100%         |
| Metals, Soluble | Arsenic      | SW 7060    | μ/gn  | 0.0028          |          | 0.0646   |   | 0.0031     |   | 0.004       |   | 0.024    | 0.088        |              |
| Metals, Soluble | Barium       | SW 6010    | m/gn  | 0.0744          |          | 0.14     |   | 0.0927     | _ | 0.0919      |   | 0.102    | 0.084        |              |
| Metals, Soluble | Benyllium    | SW 6010    | lm/dn | < 0.000554      | ٧        |          | • | < 0.000554 | v | 0.000554    | ٧ | 0.000554 | ;            | 100%         |
| Metals, Soluble | Boron        | SW 6010    | m/dn  | 0.624           |          | 1.14     |   | 0.849      |   | 0.936       |   | 0.871    | 0.643        |              |
| Metals, Soluble | Cadmium      | SW 7131    | m/gn  | < 0.000237      |          | 0.00173  |   | 0.00131    | Ü | 0.00179     |   | 0.00105  | 0.00208      | 4%           |
| Metals, Soluble | Calcium      | SW 6010    | m/6n  | 29.1            |          | 38       |   | 47.4       |   | 44.5        |   | 38.5     | 22.8         |              |
| Metals, Soluble | Chromium     | SW 6010    | lm/gu | 0.00211         | _        | 0.00419  |   | 0.00301    | J | 0.00318     |   | 0.00310  | 0.00259      |              |
| Metals, Soluble | Cobalt       | SW 6010    | m/gn  | <b>c</b> 0.0034 | •        | 0.0034   | • | 0.0034     | v | 0.0034      | ٧ | 0.0034   | ;            | 100 <b>%</b> |
| Metals, Soluble | Copper       | SW 6010    | m/bn  | 0.00355         | <b>-</b> | 0.0116   |   | 0.0393     | J | 0.00533     |   | 0.0182   | 0.0466       |              |
| Metals, Soluble | Iron         | SW 6010    | m/on  | 0.0199          |          | 0.0439   |   | 0.0212     | _ | 0.0059      |   | 0.0283   | 0.0335       |              |
| Metals, Soluble | Lead         | SW 7421    | lm/gu | 600.0           |          | 900'0    |   | 0.016      |   | 0.017       |   | 0.010    | 0.013        |              |
| Metals, Soluble | Magnesium    | SW 6010    | lm/gu | 2.07            |          | 2.98     |   | 1.71       |   | 4.8         |   | 2.25     | <del>.</del> |              |
| Metals, Soluble | Manganese    | SW 6010    | m/bn  | 0.07            |          | 0.0918   |   | 0.00172    | 0 | 0.00257     |   | 0.0545   | 0.1168       |              |
| Metals, Soluble | Mercury      | SW 7470    | E/6n  | 0.00007         |          | 0.00002  | _ | 0.00003    | 0 | 0.00007     |   | 0.00004  | 0.00007      |              |
| Metals, Soluble | Molybdenum   | SW 6010    | m/gn  | 0.0472          |          | 0.11     |   | 0.0587     |   | 0.0593      |   | 0.0720   | 0.0831       |              |
| Metals, Soluble | Nickel       | SW 6010    | lm/gu | 0.00016         | _        | 0.011    |   | 0.00466    | _ | 0.0026      |   | 0.0053   | 0.0135       |              |
| Metals, Soluble | Phosphorus   | SW 6010    | m/bn  | 0.0872          |          | 0.172    |   | 0.0791     |   | 0.197       |   | 0.113    | 0.128        |              |
| Metals, Soluble | Potassium    | SW 6010    | lm/gu | 3.67            |          | 5.64     |   | 3.85       |   | 3.83        |   | 4.39     | 2.71         |              |
| Metals, Soluble | Selenium     | SW 7740    | m/dn  | 0.0038          |          | 0.0036   |   | 0.0043     | _ | 0.0035      |   | 0.0039   | 0.0009       |              |
| Metals, Soluble | Silicon      | SW 6010    | m/gn  | 4.63            |          | 4.61     |   | 4.97       |   | <b>4</b> .8 |   | 4.74     | 0.50         |              |
| Metals, Soluble | Sodium       | SW 6010    | Jw/Bn | 9.05            |          | 10.4     |   | 8.69       |   | 8.69        |   | 9.38     | 2.24         |              |
| Metals, Soluble | Strontium    | SW 6010    | lm/gu | 0.194           |          | 0.423    |   | 0.225      |   | 0.22        |   | 0.281    | 0.309        |              |
| Metals, Soluble | 重            | SW 6010    | m/gn  | 0.00499         | ٠<br>-   | 0.0144   |   | 0.00446    | Ü | 0.00236     | ٧ | 0.0144   | :            | 43%          |
| •               |              |            |       | •               |          |          | ( | •          |   |             |   |          |              |              |

Bottom Ash Sluice Filtrate - Page 1

Liquid Stream Data Summary

H-65 Sample Stream: Bottom Ash Sluice Filtrate

| Analyte                 |                            | Analytical | ;            |       | Run              |       | Run             |     | Run      |   | Run          |   | •       | 95%    | 占 ;      |
|-------------------------|----------------------------|------------|--------------|-------|------------------|-------|-----------------|-----|----------|---|--------------|---|---------|--------|----------|
| Group                   | Specie                     | Method     | Chilts       |       | -                |       | 2               |     | 33       |   | 30           |   | Average | ច      | Ratio    |
| Metais, Soluble         | Titanium                   | SW 6010    | m/gn         |       | 0.00101 J        |       | 0.00226         | ٧   | 0.00102  |   | 0.00076<br>J |   | 0.0013  | 0.0022 | 13%      |
| Metals, Soluble         | Vanadium                   | SW 6010    | E/ga         |       | 0.0349           |       | 0.00712         |     | 0.0453   |   | 0.0444       |   | 0.0291  | 0.0490 |          |
| Metals, Soluble         | Zinc                       | SW 6010    | lm/gu        |       | 0.00339          |       | 0.0162          |     | 0.00565  |   | 0.00342      |   | 0.0084  | 0.0170 |          |
| Aldehydes               | Acetaldehyde               | SW 8315    | E/go         |       | 9000             |       | 60:0            |     | 0.134    |   | 60:0         |   | 0.077   | 0.162  |          |
| Aldehydes               | Formaldehyde               | SW 8315    | lm/gu        |       | 900'0            |       | 0.032           |     | 0.03     |   | 0.026        |   | 0.023   | 0.036  |          |
| Organics, Semi-volatile | 1,2,4,5-Tetrachlorobenzene | SW 8270    | ng/L         | v     | 0.556            | ٧     | 0.578           | ٧   | 0.402    | v | 0.373        | ٧ | 0.512   | ;      | 100%     |
| Organics, Semi-volatile | 1,2,4-Trichlorobenzene     | SW 8270    | <b>1/6</b> n | ٧     | 0.568            | V     | 0.591           | ٧   | 909:0    | v | 0.563        | ٧ | 0.588   | :      | 100%     |
| Organics, Semi-volatite | 1,2-Dichlorobenzene        | SW 8270    | ng/L         | v     | 0.749            | •     | 0.779           | ٧   | 0.655    | v | 909'0        | ٧ | 0.728   | ;      | 100%     |
| Organics, Semi-volatife | 1,2-Diphenythydrazine      | SW 8270    | ng/L         | v     | 5                | ٧     | 0 <u>0</u> 1    | ٧   | <u>5</u> | v | 5            | ٧ | 100     | :      | 100%     |
| Organics, Semi-volatile | 1,3-Dichlorobenzene        | SW 8270    | ng/L         | ٧     | 0.381            | ٧     | 0.396           | V   | 0.739    | v | 0.686        | ٧ | 0.505   | :      | 100%     |
| Organics, Semi-votatile | 1,4-Dichlorobenzene        | SW 8270    | ng/L         | v     | 0.777            | ٧     | 0.808           | ٧   | 909'0    | v | 0.563        | ٧ | 0.730   | ;      | 100%     |
| Organics, Semi-votatile | 1-Chloronaphthalene        | SW 8270    | J/6n         | v     | 0.619            | v     | 0.644           | ٧   | 0.554    | v | 0.514        | ٧ | 909'0   | :      | 100%     |
| Organics, Semi-volatile | 1-Naphthylamine            | SW 8270    | √gv<br>Mg/L  | v     | 1.5              | ٧     | 1.56            | ٧   | 2.09     | v | 1.94         | V | 1.72    | ;      | 100%     |
| Organics, Semi-volatile | 2,3,4,6-Tetrachlorophenol  | SW 8270    | ng/L         | ٧     | 0.484            | ٧     | 0.503           | ٧   | 0.479    | V | 0.445        | ٧ | 0.489   | :      | 100%     |
| Organics, Semi-volatile | 2,4,5-Trichlorophenol      | SW 8270    | ng/L         | v     | 0.317            | •     | 0.33            | ٧   | 0.525    | v | 0.487        | ٧ | 0.391   | ;      | 100%     |
| Organics, Semi-volatile | 2,4,6-Trichlorophenol      | SW 8270    | ng/L         | ٧     | 0.336            | v     | 0.349           | ٧   | 0.522    | ٧ | 0.484        | V | 0.402   | ;      | 100%     |
| Organics, Semi-votatile | 2,4-Dichlorophenol         | SW 8270    | ng/L         | v     | 0.426            | v     | 0.443           | ٧   | 0.587    | v | 0.544        | ٧ | 0.485   | ;      | 100%     |
| Organics, Semi-volatile | 2,4-Dimethylphenol         | SW 8270    | ug/L         | v     | 99:              | •     | 1.1             | ٧   | 1.34     | v | 1.24         | ٧ | 1.17    | ;      | 100%     |
| Organics, Semi-volatile | 2,4-Dinitrophenol          | SW 8270    | ng/L         | v     | 6.73             | v     | 7               | v   | 4.31     | ٧ | 4            | ٧ | 6.01    | :      | 100%     |
| Organics, Semi-volatile | 2,4-Dinitrotoluene         | SW 8270    | ug/L         | v     | 0.529            | ٧     | 0.55            | V   | 609.0    | ٧ | 0.566        | ٧ | 0.563   | ;      | 100%     |
| Organics, Semi-volatife | 2,6-Dichlorophenol         | SW 8270    | ng/L         | v     | 0.695            | v     | 0.723           | v   | 0.528    | ٧ | 0.49         | ٧ | 0.649   | ;      | 100%     |
| Organics, Semi-volatile | 2,6-Dinitrotoluene         | SW 8270    | ug/L         | v     | 0.333            | ٧     | 0.346           | V   | 0.888    | ٧ | 0.824        | ٧ | 0.522   | :      | 100%     |
| Organics, Semi-volatite | 2-Chloronaphthalene        | SW 8270    | <b>7</b> 6n  | v     | 0.312            | v     | 0.324           | ٧   | 0.404    | ٧ | 0.375        | ٧ | 0.347   | :      | 100%     |
| Organics, Semi-volatife | 2-Chlorophenol             | SW 8270    | √gn          | v     | 0.735            | v     | 0.764           | v   | 0.655    | v | 909.0        | ٧ | 0.718   | :      | 100%     |
| Organics, Semi-volatile | 2-Methylnaphthalene        | SW 8270    | ug/L         | v     | 0.635            | •     | 99.0            | ٧   | 0.375    | v | 0.348        | V | 0.557   | ;      | 100<br>% |
| Organics, Semi-volatile | 2-Methylphenol(o-cresol)   | SW 8270    | ug/L         | v     | 0.513            | v     | 0.534           | ٧   | 0.32     | v | 0.297        | ٧ | 0.456   | :      | 100%     |
| Organics, Semi-volatile | 2-Naphthylamine            | SW 8270    | ng/L         | v     | 1.87             | v     | 1.95            | v   | 1.65     | ٧ | 1.53         | ٧ | 1.82    | :      | 100%     |
| Organics, Semi-volatile | 2-Nitroaniline             | SW 8270    | ng/L         | v     | 0.387            | ٧     | 0.402           | ٧   | 0.684    | v | 0.634        | ٧ | 0,491   | :      | 100%     |
| Organics, Semi-volatife | 2-Nitrophenal              | SW 8270    | ug/L         | v     | 0.423            | v     | 0.44            | ٧   | 0.538    | v | 0.5          | V | 0.467   | ;      | 100%     |
| Organics, Semi-volatife | 2-Picoline                 | SW 8270    | ng/L         | v     | <del>.</del> 6   | •     | 1.09            | ٧   | 0.853    | v | 0.791        | ٧ | 0.998   | :      | 100%     |
| Organics, Semi-volatile | 3,3'-Dichlorobenzidine     | SW 8270    | ug/L         | v     | 0.471            | v     | 0.49            | ٧   | 0.343    | • | 0.319        | v | 0.435   | :      | 100%     |
|                         |                            |            | _            | Botte | ottom Ash Sluice | Inice | Filtrate - Page | Pag | e 2      |   |              |   |         |        |          |
|                         |                            |            |              |       |                  |       |                 |     |          |   |              |   |         |        |          |

Sample Stream: Bottom Ash Sluice Fittrate

| Analyte                 | ,                              | Analyticas | 17.11        |   | Run   |   | Rgm<br>0 |   | Run   |   | Run   |   |         | 95%    | ႕ ;   |
|-------------------------|--------------------------------|------------|--------------|---|-------|---|----------|---|-------|---|-------|---|---------|--------|-------|
| Group                   | Specie                         | Method     |              |   | -     |   | 2        | 1 | 2a    |   | 30    |   | Average | 5      | Katio |
|                         |                                |            |              |   |       |   |          |   |       |   |       |   |         |        |       |
| Organics, Semi-volatile | 3-Methylcholanthrene           | SW 8270    | ng/L         | ٧ | 0.753 | v | 0.783    | v | 0.515 | v | 0.478 | v | 0.684   | :      | 100%  |
| Organics, Semi-volatile | 3-Nitroaniline                 | SW 8270    | γģη          | v | 0.489 | v | 0.509    | v | 0.405 | v | 0.376 | v | 0.468   | ;      | 100%  |
| Organics, Semi-volatile | 4,6-Dinitro-2-methylphenol     | SW 8270    | ng/L         | v | 0.762 | v | 0.792    | v | 0.443 | v | 0.411 | ٧ | 999.0   | ;      | 100%  |
| Organics, Semi-volatile | 4-Aminobiphenyl                | SW 8270    | ng/L         | ٧ | 0.719 | • | 0.748    | v | 1.23  | v | 1.14  | v | 0.899   | ;      | 100%  |
| Organics, Semi-volatile | 4-Bromophenyl phenyl           | SW 8270    | -do/-        | v | 0.438 | ٧ | 0.456    | v | 0.499 | v | 0.463 | v | 0.464   | :      | 400%  |
| Organics, Semi-volatile | 4-Chloro-3-methylphenol        | SW 8270    | ng/L         | v | 0.695 | v | 0.723    | v | 0.531 | v | 0.493 | v | 0.650   | ;      | 100%  |
| Organics, Semi-volatile | 4-Chlorophenyl phenyl ether    | SW 8270    | ng/L         | v | 0.508 | ٧ | 0.528    | v | 0.434 | v | 0.403 | v | 0.490   | ;      | 100%  |
| Organics, Semi-volatile | 4-Methylphenoi(p-cresol)       | SW 8270    | ng/L         | ٧ | 0.553 | ٧ | 0.575    | v | 0.473 | ٧ | 0.439 | v | 0.534   | ;      | 100%  |
| Organics, Semi-volatile | 4-Nitroaniline                 | SW 8270    | ng/L         | ٧ | 0.465 | v | 0.484    | v | 0.625 | v | 0.58  | v | 0.525   | ;      | 100%  |
| Organics, Semi-volatile | 4-Nitrophenol                  | SW 8270    | ug/L         | ٧ | 0.664 | v | 0.691    | v | 996.0 | v | 0.897 | V | 0.774   | ;      | 100%  |
| Organics, Semi-volafile | 7,12-Dimethylbenz(a)anthracene | SW 8270    | ŋ∕gv         | v | 1.85  | v | 1.92     | v | 1.37  | v | 1.27  | v | 1.71    | :      | 100%  |
| Organics, Semi-volatile | Acenaphthene                   | SW 8270    | ng/L         | ٧ | 0.46  | v | 0.478    | v | 0.28  | v | 0.26  | v | 0.406   | :      | 100%  |
| Organics, Semi-volatile | Acenaphthylene                 | SW 8270    | ng/L         | v | 0.217 | v | 0.226    | ٧ | 0.431 | v | 9.4   | v | 0.291   | ;      | 100%  |
| Organics, Semi-volatile | Acetophenone                   | SW 8270    | <b>7</b> /6n | v | 0.441 | v | 0.459    | v | 0.576 | v | 0.535 | v | 0.492   | ;      | 100%  |
| Organics, Semi-volatile | Aniline                        | SW 8270    | rg/L         | v | 0.897 | v | 0.933    | v | 0.635 | v | 0.589 | v | 0.822   | ;      | 100%  |
| Organics, Semi-volatile | Anthracene                     | SW 8270    | ng/L         | v | 0.559 | ٧ | 0.581    | v | 0.379 | v | 0.352 | v | 0.506   | ;      | 100%  |
| Organics, Semi-volatile | Benzidine                      | SW 8270    | ng/L         | v | 20    | v | 20       | v | 20    | ٧ | 20    | ٧ | 20      | ;      | 100%  |
| Organics, Semi-volatife | Benzo(a)anthracene             | SW 8270    | ₽g/L         | v | 0.495 | v | 0.515    | v | 0.463 | v | 0.43  | v | 0.491   | :      | 100%  |
| Organics, Semi-volatife | Benzo(a)pyrene                 | SW 8270    | ng/L         | v | 0.368 | ٧ | 0.383    | v | 0.534 | v | 0.496 | ٧ | 0.428   | ;      | 100%  |
| Organics, Semi-volatife | Benzo(b)fluoranthene           | SW 8270    | ng/L         | v | 0.547 | v | 0.569    | v | 0.936 | ٧ | 0.869 | ٧ | 0.684   | ;      | 100%  |
| Organics, Semi-volatife | Benzo(g,h,i)perylene           | SW 8270    | ng∕L         | v | 0.468 | v | 0.487    | v | 1.05  | v | 9260  | ٧ | 0.668   | :      | 100%  |
| Organics, Semi-volatife | Benzo(k)fluoranthene           | SW 6270    | ng√L         | v | 0.931 | ٧ | 996.0    | v | 1.03  | ٧ | 956.0 | v | 926.0   | ;      | 100%  |
| Organics, Semi-volatife | Benzoic acid                   | SW 8270    | ng/L         | v | 3.81  | v | 3.96     | v | 39.8  | ٧ | 36.9  | ٧ | 15.86   | ;      | 100%  |
| Organics, Semi-volatile | Benzył alcohol                 | SW 8270    | ng/L         | v | 1.04  | v | 1.08     | v | 0.629 | v | 0.584 | ٧ | 0.916   | ;      | 100%  |
| Organics, Semi-volatile | Butylbenzylphthalate           | SW 8270    | ug/L         | v | 0.378 | ٧ | 0.393    | v | 0.644 | v | 0.598 | v | 0.472   | ;      | 100%  |
| Organics, Semi-volatile | Chrysene                       | SW 8270    | ng/L         | v | 0.643 | ٧ | 0.669    | v | 0.554 | v | 0.514 | v | 0.622   | :      | 100%  |
| Organics, Semi-volatile | Di-n-octylphthalate            | SW 8270    | ng/L         | v | 0.876 | ٧ | 0.911    | v | 0.363 | v | 0.337 | v | 0.717   | ;      | 100%  |
| Organics, Semi-volatile | Dibenz(a,h)anthracene          | SW 8270    | ug/L         | v | 0.456 | ٧ | 0.474    | v | 0.836 | v | 0.776 | ٧ | 0.589   | :      | 100%  |
| Organics, Semi-volatile | Dibenz(a,j)acridine            | SW 8270    | ng/L         | v | 0.559 | ٧ | 0.581    | v | 0.868 | v | 0.806 | v | 0.669   | :      | 100%  |
| Organics, Semi-volatile | Dibenzofuran                   | SW 8270    | ng/L         | v | 0.392 | v | 0.408    | v | 0.554 | v | 0.514 | v | 0.451   | ;      | 100%  |
| Organics, Semi-volatile | DibutyIphthalate               | SW 8270    | rgv<br>L     | v | 0.474 | v | 0.493    | v | 0.334 | v | 0.31  | ٧ | 0.434   | :      | 100%  |
| Organics, Semi-volatife | Diethyfphthalate               | SW 8270    | ng/L         | v | 0.323 | v | 0.336    |   | 1.06  | v | 0.493 |   | 0.463   | 1.2841 | 24%   |
| Organics, Semi-volatile | Dimethylphenethylamine         | SW 8270    | ug/L         | v | 120   | v | 120      | v | 120   | v | 120   | ٧ | 120     | ;      | 100%  |
|                         |                                |            |              |   |       | , |          |   | •     |   |       |   |         |        |       |

Bottom Ash Sluice Filtrate - Page 3

H-6-5 Sample Stream: Bottom Ash Sluice Filtrate

| Analyte                  |                             | Analytical |              |   | Run        |          | Run        |      | Run       |          | Run   |   |         | 95% | 占        |
|--------------------------|-----------------------------|------------|--------------|---|------------|----------|------------|------|-----------|----------|-------|---|---------|-----|----------|
| Group                    | Specie                      | Method     | Units        |   | -          |          | 2          |      | 38        |          | 34    |   | Average | อ   | Ratio    |
| alfalou-imon ecinemy     | Dimethylphibalate           | CW 8270    | <b>[/6</b> ] | v | 0.269      | ٧        | 0.28       | v    | 0.346     | ٧        | 0.322 | v | 0.298   | :   | ,00t     |
| Organica, Semi-volatile  | Diohendamine                | SW 8270    | 1/on         | v | 0.508      | ٧        | 0.528      |      | 0.608     | V        | 0.265 | ٧ | 0.528   | :   | 46%      |
| Organics, Semi-volatile  | Ethyl methanesulfonate      | SW 8270    | ng/L         | ٧ | 0.484      | ٧        | 0.503      | v    | 0.7       | •        | 0.65  | v | 0.562   | ;   | 100%     |
| Organics, Semi-volatife  | Fluoranthene                | SW 8270    | ng/L         | v | 0.613      | v        | 0.638      |      | 0.19<br>J | <b>v</b> | 0.451 | ٧ | 0.638   | ;   | 77%      |
| Organics, Semi-volatile  | Fluorene                    | SW 8270    | ng/L         | ٧ | 0.323      | V        | 0.336      | v    | 0.392     | ٧        | 0.364 | v | 0.350   | ;   | 100%     |
| Organics, Semi-volatile  | Hexachlorobenzene           | SW 8270    | ug/L         | v | 0.225      | ٧        | 0.234      | v    | 0.324     | ٧        | 0.3   | ٧ | 0.261   | :   | 100%     |
| Organics, Semi-volatile  | Hexachlorobutadiene         | SW 8270    | ug/L         | ٧ | 0.671      | v        | 0.698      | V    | 0.528     | v        | 0.49  | V | 0.632   | :   | 100%     |
| Organics, Semi-volatile  | Hexachlorocyclopentadiene   | SW 8270    | ug/L         | v | 8.58       | v        | 8.92       | v    | 6.07      | v        | 5.64  | ٧ | 7.86    | ;   | 100%     |
| Organics, Semi-volatile  | Hexachloroethane            | SW 8270    | ₩,           | ٧ | 0.571      | V        | 0.594      | v    | 0.655     | v        | 0.608 | v | 0.607   | :   | 100%     |
| Organics, Semi-volatile  | Indeno(1,2,3-cd)pyrene      | SW 8270    | ng/L         | v | 0.505      | ٧        | 0.525      | v    | 1.37      | ٧        | 1.27  | ٧ | 0.800   | :   | 100%     |
| Organics, Semi-volatile  | Isophorone                  | SW 8270    | ug/L         | v | 0.276      | <b>v</b> | 0.287      | v    | 0.635     | ٧        | 0.589 | ٧ | 0.399   | :   | 100%     |
| Organics, Semi-volatile  | Methyl methanesulfonate     | SW 8270    | ug/L         | v | <b>2</b> 2 | ٧        | 8          | ٧    | ଝ         | ٧        | 20    | v | 8       | ;   | 100%     |
| Organics, Semi-volatile  | N-Nitroso-di-n-butylamine   | SW 8270    | ng/L         | v | 1.26       | •        | 1.31       | v    | 0.648     | v        | 0.602 | v | 1.07    | :   | 100%     |
| Organics, Semi-volatile  | N-Nitrosodimethyłamine      | SW 8270    | ng/L         | v | 1.28       | V        | 1.33       | v    | 0.81      | ٧        | 0.752 | v | 1.14    | :   | 100%     |
| Organics, Semi-volatile  | N-Nitrosodiphenylamine      | SW 8270    | ng/L         | v | 0.544      | •        | 0.566      |      | 0.621     | v        | 0.257 | V | 0.566   | ;   | 47%      |
| Organics, Semi-volatile  | N-Nitrosodipropylamine      | SW 8270    | ug/L         | v | 0.722      | v        | 0.751      | V    | 0.674     | ٧        | 0.626 | v | 0.716   | ;   | 100%     |
| Organics, Semi-volatile  | N-Nitrosopiperidine         | SW 8270    | ug/L         | ٧ | 0.907      | V        | 0.943      | v    | 0.615     | V        | 0.571 | v | 0.822   | ;   | 100%     |
| Organics, Semi-volatile  | Naphthatene                 | SW 8270    | √J/gn        | ٧ | 0.701      | v        | 0.729      | v    | 0.493     | ٧        | 0.457 | • | 0.641   | :   | 100%     |
| Organics, Semi-volatile  | Nitrobenzene                | SW 8270    | ug/L         | v | 0,508      | v        | 0.528      | v    | 0.868     | ٧        | 0.806 | ٧ | 0.635   | :   | 100%     |
| Organics, Semi-volatifie | Pentachlorobenzene          | SW 8270    | J/gn         | v | 0.426      | v        | 0.443      | •    | 0.386     | ٧        | 0.358 | ٧ | 0.418   | :   | 100%     |
| Organics, Semi-volatife  | Pentachloronitrobenzene     | SW 8270    | ug/L         | v | 8.         | v        | 2.07       | v    | 1.42      | v        | 1.32  | v | 1.83    | :   | 100%     |
| Organics, Semi-volatife  | Pentachlorophenol           | SW 8270    | ng/L         | v | 0.831      | v        | 0.864      | v    | 0.916     | v        | 0.851 | ٧ | 0.870   | :   | 100%     |
| Organics, Semi-volatile  | Phenacetin                  | SW 8270    | J/gu         | У | 0.519      | •        | 0.54       | ٧    | 0.398     | v        | 0.369 | ٧ | 0.486   | :   | 100%     |
| Organics, Semi-volatile  | Phenanthrene                | SW 8270    | ug/L         | ٧ | 0.598      | v        | 0.622      | •    | 0.482     | v        | 0.448 | V | 0.567   | :   | 100%     |
| Organics, Semi-volatite  | Phenol                      | SW 8270    | ng/L         | v | 0.384      | V        | 0.399      | ٧    | 0.91      | V        | 0.845 | v | 0.564   | :   | 100%     |
| Organics, Semi-volatile  | Pronamide                   | SW 8270    | √bn          | ٧ | 0.711      | v        | 0.739      | ٧    | 0.248     | v        | 0.231 | v | 0.566   | :   | 100<br>% |
| Organics, Semi-volatile  | Pyrene                      | SW 8270    | ug/L         | v | 0.45       | v        | 0.468      |      | 0.501     | v        | 0.39  | v | 0.468   | ;   | 48%      |
| Organics, Semi-volatile  | Pyridine                    | SW 8270    | ug/L         | ٧ | 1.12       | v        | 1.16       | v    | 909.0     | •        | 0.563 | ٧ | 0.962   | ;   | 100%     |
| Organics, Semi-volatile  | bis(2-Chloroethoxy)methane  | SW 8270    | rg/L         | v | 0.54       | v        | 0.562      | v    | 0.625     | v        | 0.58  | ٧ | 0.576   | :   | 100%     |
| Organics, Semi-volatile  | bis(2-Chloroethyl)ether     | SW 8270    | ug/L         | v | 0.704      | v        | 0.732      | v    | 0.395     | ٧        | 0.367 | ٧ | 0.610   | :   | 100%     |
| Organics, Semi-volatile  | bis(2-Chloroisopropyl)ether | SW 8270    | ug/L         | v | 0.698      | v        | 0.726      | ٧    | 0.823     | v        | 0.764 | ٧ | 0.749   | :   | 100%     |
| Organics, Semi-volatile  | bis(2-Ethylhexyl)phthalate  | SW 8270    | ng/L         | v | 1.76       |          | 1.37       | v    | 0.599     |          | 1.03  | v | 1.76    | :   | 46%      |
| Organics, Semi-volatile  | p-Chloroaniline             | SW 8270    | ng/L         | v | 0.537      | ٧        | 0.559      | v    | 0.768     | ٧.       | 0.713 | ٧ | 0.621   | ;   | 100%     |
|                          |                             |            | -            | 1 | Hom Ach    | Stuice   | Filtrate . | Dage | 7         |          |       |   |         |     |          |

### Bottom Ash Sluice Filtrate - Page 4

Sample Stream: Bottom Ash Sluice Filtrate

| Analyte<br>Group         | Specie                      | Analytical<br>Method | Units        |   | Run<br>1 |    | Run<br>2 |   | Run<br>3a       |          | Run<br>3d | E 70           |   | Average | 95%<br>C | PL<br>Ratio |
|--------------------------|-----------------------------|----------------------|--------------|---|----------|----|----------|---|-----------------|----------|-----------|----------------|---|---------|----------|-------------|
| Organics, Serni-volatile | p-Dimethylaminoazobenzene   | SW 8270              | ng/L         | v | 0.495    | ٧  | 0.515    | ٧ | 0.748           | ٧        | 0.695     | 8              | ٧ | 0.586   | ;        | 4001        |
| Organics, Volatile       | 1,1,1-Trichloroethane       | SW 8240              | ug/t         | v | r.       |    |          | ٧ | 2.88            | V        | 2.88      | ø              | v | ю       | ;        | 100%        |
| Organics, Votatile       | 1,1,2,2-Tetrachloroethane   | SW 8240              | J/gn         | ٧ | Ŋ        |    |          | v | 1.67            | ٧        | <u>+</u>  | 71             | v | ιΩ      | :        | 100%        |
| Organics, Volatile       | 1,1,2-Trichloroethane       | SW 8240              | νg/          | v | 5        |    |          | v | 0.932           | ٧        | 0.9       | 32             | v | ю       | ;        | 100%        |
| Organics, Volatile       | 1,1-Dichloroethane          | SW 8240              | ηQη          | v | c)       |    |          | v | 1.64            | ٧        | ÷         | <b>.</b>       | v | ın      | ;        | 100%        |
| Organics, Volatile       | 1,1-Dichloroethene          | SW 8240              | ng/L         | ٧ | ω        |    |          | ٧ | 2.09            | ٧        | 2         | <b>2</b> 2     | v | ıçı     | ;        | 100%        |
| Organics, Volatile       | 1,2-Dichloroethane          | SW 8240              | ug/L         | ٧ | 2        |    |          | v | 1.07            | ٧        | Ξ         | 11             | v | 5       | :        | 100%        |
| Organics, Volatile       | 1,2-Dichloroethene (total)  | SW 8240              | J/On         | v | Ω.       |    |          | v | ¥               | ٧        | Z         | ~              | v | 10      | ;        | 100%        |
| Organics, Volatile       | 1,2-Dichloropropane         | SW 8240              | <b>1/6</b> n | v | S.       |    |          | v | 0.602           | ٧        | 9.0       | 25             | v | ro.     | ;        | 100%        |
| Organics, Volatile       | 2-Butanone (MEK)            | SW 8240              | ug/L         | ٧ | 5        |    |          | v | 6.32            | ٧        | 6         | 2              | v | 5       | ;        | <b>100%</b> |
| Organics, Volatile       | 2-Некапопе                  | SW 8240              | J/Bn         | v | 9        |    |          | v | ¥               | ٧        | Z         | <b>4</b>       | v | 5       | :        | 100%        |
| Organics, Volatile       | 4-Methyl-2-pentanone (MIBK) | SW 8240              | ng/L         | ٧ | 5        |    |          | v | ΑN              | ٧        | Z         | •              | v | 5       | ;        | 100%        |
| Organics, Volatile       | Acetone                     | SW 8240              | ug/L         | v | 5        |    |          | v | Ϋ́              | ٧        | Ž         | *              | v | 우       | :        | 100%        |
| Organics, Volatile       | Benzene                     | SW 8240              | ug/L         | v | S.       |    |          | ٧ | 0.848           |          | 16        | eú.            | v | ro.     | :        | 100%        |
| Organics, Volatile       | Bromodichloromethane        | SW 8240              | ng/L         | v | ις       |    |          | v | ν<br>Α          | ٧        | Ž         | 4              | v | S.      | :        | 100%        |
| Organics, Volatile       | Bromoform                   | SW 8240              | ng/L         | ٧ | ĸ        |    |          | ٧ | ¥.              | ٧        | Ž         | 4              | v | ro.     | ;        | 100%        |
| Organics, Volatile       | Bromomethane                | SW 8240              | <b>1/8</b> n | v | ᅌ        |    |          | v | 2.07            | ٧        | 5.0       | 1              | v | 우       | •        | 100%        |
| Organics, Volatile       | Carbon Disulfide            | SW 8240              | ης,<br>T     | v | ις       |    |          | v | 1.73            | <b>v</b> | -         | က              | v | က       | ;        | 100%        |
| Organics, Volatile       | Carbon Tetrachloride        | SW 8240              | ng/L         | v | Ŋ        |    |          | ٧ | 1.22            | ٧        | -         | 21             | v | 2       | ;        | 100%        |
| Organics, Volatile       | Chlorobenzene               | SW 8240              | ng√L         | ٧ | ın       |    |          | ٧ | 1,2             | ٧        | -         | ~              | v | S.      | ;        | 100%        |
| Organics, Volatile       | Chloroethane                | SW 8240              | ug/L         | v | 5        |    |          | ٧ | 1.41            | ٧        | -         | =              | v | 9       | ;        | 100%        |
| Organics, Volatile       | Chloroform                  | SW 8240              | ng√          | v | ιΩ       |    |          | v | 0.995           | •        | 0.9       | æ              | v | ĸo.     | :        | 100%        |
| Organics, Volatile       | Chloromethane               | SW 8240              | ug/L         | v | 5        |    |          | ٧ | <del>2</del> 8: | ٧        | 5.        | ďΩ             | v | 6       | ;        | 100%        |
| Organics, Volatile       | Dibromochloromethane        | SW 8240              | ug/L         | v | ıc       |    |          | v | X<br>X          | ٧        | Ż         |                | ٧ | 2       | :        | 100%        |
| Organics, Volatile       | Ethylbenzene                | SW 8240              | ηď,          | ٧ | ĸ        |    |          | v | 0.893           |          | 7,        | <u>ლ</u>       | v | 2       | :        | 100%        |
| Organics, Volatile       | Methylene Chloride          | SW 8240              | √gu<br>T∕gu  | v | r.       |    |          |   | 2.94            |          | 7.        | <u>.</u>       | v | 2       | ;        | 46%         |
| Organics, Volatile       | Styrene                     | SW 8240              | ng/L         | v | Ŋ        |    |          | ٧ | 1.36            | <b>v</b> | ==        | <b>Q</b>       | v | 2       | :        | 100%        |
| Organics, Volatile       | Tetrachloroethene           | SW 8240              | ug/L         | v | ιΩ       |    |          | v | 0.843           | •        | 9.0       | <del>1</del> 3 | v | co      | :        | 100%        |
| Organics, Volatile       | Toluene                     | SW 8240              | ug/L         | v | c)       |    |          |   | 0.352           | _        | 3.0       | 9              | v | S.      | :        | <b>88</b> % |
| Organics, Volatile       | Trichloroethene             | SW 8240              | ug/L         | v | S        |    |          | v | <del>1</del> .3 | ٧        | -         | <b>~</b>       | v | S)      | ;        | 100%        |
| Organics, Volatile       | Vinyl acetate               | SW 8240              | ug/L         | v | 6        |    |          | v | 4.01            | ٧        | 4.        | Ξ.             | v | 6       | ;        | 100%        |
| Organics, Volatile       | Vinyl chloride              | SW 8240              | ng/L         | ٧ | 9        |    |          | v | 1.67            | ٧        | 7.        |                | v | 욘       | ;        | 100%        |
| ŧ                        |                             |                      | •            | 3 | 4-6      | 01 | Filtmata |   | ų               |          |           |                |   |         |          |             |

Bottom Ash Sluice Filtrate - Page 5

Bottom Ash Sluice Filtrate - Page 6

Liquid Stream Data Summary

| Filtrate |
|----------|
| Sluice   |
| n Ash    |
| Botton   |
| Stream:  |
| mple     |

| DL.<br>Ratio               | 100%<br>100%<br>100%                                           |
|----------------------------|----------------------------------------------------------------|
| 95%                        | : : :                                                          |
| Average                    | ນເນເ                                                           |
|                            | v v v                                                          |
| Run<br>3d                  | 5.78<br>0.459<br>1.35                                          |
|                            | v v                                                            |
| Run<br>3a                  | 2.06<br>0.459<br>1.35                                          |
|                            | <b>v v v</b>                                                   |
| Run<br>2                   |                                                                |
| Run<br>1                   | വവവ                                                            |
|                            | <b>v v v</b>                                                   |
| Unit                       | ug/L<br>ug/L<br>ug/L                                           |
| Analytical<br>Method Units | SW 8240<br>SW 8240<br>SW 8240                                  |
| Specie                     | Xylenes cis-1,3-Dichloropropene trans-1,3-Dichloropropene      |
| Analyte<br>Group           | Organics, Volatile<br>Organics, Volatile<br>Organics, Volatile |

Liquid Stream Data Summary

Sample Stream: ESP Fly Ash Sluice Filtrate

| Andread         |              | Analytical |         | <b>Q</b>  | 5         |   |          |   |   | S.             |    |   | 2<br>2    |   | •        | %<br>62% | 5            |
|-----------------|--------------|------------|---------|-----------|-----------|---|----------|---|---|----------------|----|---|-----------|---|----------|----------|--------------|
| Group           | Specie       | Method     | Units   |           | · -       |   | 8        |   |   | 32             |    |   | P         |   | Average  | ច        | Ratio        |
|                 |              |            |         |           |           |   |          |   |   |                |    |   |           |   |          |          |              |
| Reduced Species | Cyanide      | SW 9012    | jw/go   | 0.0       | 0.0014    |   | 0.000    | 7 |   | 0.0022         | -, | v | 0.01      |   | 0.0015   | 0.0016   |              |
| Reduced Species | Ammonia as N | EPA 350.1  | ju.jon  | 0         | 0.379     |   | 0.419    |   |   | 0.355          |    |   | 0.438     |   | 0.3843   | 0.0803   |              |
| Anions          | Chloride     | EPA 300    | ug/ml   | =         | 10.9      |   | 10.7     |   |   | 9.71           |    |   | 10.1      |   | 10.4     | 1.6      |              |
| Anions          | Fluoride     | EPA 340.2  | lm/gn   | ö         | 0.633     |   | -        |   |   | 0.576          |    |   | 969.0     |   | 0.736    | 0.572    |              |
| Anions          | Phosphate    | EPA 365.2  | m/đn    | ö         | 0.015 J   |   | 0.0453   |   | ٧ | 0.02           |    | v | 0.02      |   | 0.023    | 0.047    | <b>4</b> %   |
| Anions          | Sulfate      | EPA 300.0  | ng/ml   | 7         | 238       |   | 582      |   |   | 210            |    |   | 236       |   | 343      | 515      |              |
| Metals, Soluble | Aluminum     | SW 6010    | lm/gn   | ö         | 0.381     |   | 2.48     |   |   | 0.0307         |    |   | 0.204     |   | 0.964    | 3.291    |              |
| Metals, Soluble | Antimony     | SW 6010    | lm/6n   | 0.0       | 0.0118    | • | 0.0241   |   | ٧ | 0.0241         |    | v | 0.0241    | ٧ | 0.024    | :        | 87%          |
| Metals, Soluble | Arsenic      | SW 7060    | Jw/6n   | 0.0       | 0.0108    |   | 0.0387   |   |   | 0.0004         | -  |   | 0.0127    |   | 0.017    | 0.049    |              |
| Metals, Soluble | Barium       | SW 6010    | im/6n   | o         | 0.198     |   | 0.314    |   |   | 0.213          |    |   | 0.226     |   | 0.242    | 0.157    |              |
| Metals, Soluble | Beryllium    | SW 6010    | lm/6n   | v<br>0.00 | 0.000554  | • | 0.000554 |   | v | 0.000554       |    | ٧ | 0.000554  | ٧ | 0.000554 | :        | <del>,</del> |
| Metals, Soluble | Boron        | SW 6010    | ug/ml   | 7         | 7.03      |   | 17       |   |   | 5.73           |    |   | 6.16      |   | 9.92     | 15.32    |              |
| Metals, Soluble | Cadmium      | SW 7131    | im/gu   | 0.0       | 0.00275   |   | 0.00108  |   |   | 0.00426        |    | Ŭ | 0.00269   |   | 0.0027   | 0.0040   |              |
| Metals, Soluble | Calcium      | SW 6010    | ng/ml   | -         | \$        |   | 219      |   |   | 93.6           |    |   | 99.2      |   | 136.9    | 172.9    |              |
| Metals, Soluble | Chromium     | SW 6010    | lm/6n   | 0.0       | 0.0582    |   | 0.0619   |   |   | 0.0244         |    |   | 0.0329    |   | 0.0482   | 0.0513   |              |
| Metals, Soluble | Cobalt       | SW 6010    | ug/mi   | ۸<br>0.0  | 0.0034    | v | 0.0034   |   |   | 0.00008        | -  | Ĭ | 0.00042 J | ٧ | 0.0034   | :        | %<br>%       |
| Metals, Soluble | Copper       | SW 6010    | ug/ml   | 0.0       | 0.00332 J |   | 0.00236  | 7 |   | 0.00226        | -  | Ŭ | 0.00209   |   | 0.0026   | 0.0015   |              |
| Metals, Soluble | lron         | SW 6010    | ng/ml   | 0.0       | 0.0131    |   | 0.00277  | - |   | 0.00289        | ~  | _ | 0.00444   |   | 0.0063   | 0.0147   |              |
| Metals, Soluble | Lead         | SW 7421    | ng/mi   | 0.0       | 0.0065    |   | 0.004    |   |   | 0.00           |    |   | 0.004     |   | 0.0048   | 0.0036   |              |
| Metals, Soluble | Magnesium    | SW 6010    | JIII/đn | 60        | 3.9       |   | 5.39     |   |   | 4.08           |    |   | 3.85      |   | 4.46     | 2.02     |              |
| Metals, Soluble | Manganese    | SW 6010    | lm/go   | 0.0       | 0.00372   |   | 0.0394   |   |   | 0.0173         |    | Ŭ | 0.00213   |   | 0.0201   | 0.0447   |              |
| Metals, Solubie | Mercury      | SW 7470    | lm/gu   | ۸<br>0.0  | 0.00005   |   | 0.00008  |   | v | 0.00005        |    | v | 0.00005   | v | 0.00005  | :        | 38%          |
| Metals, Soluble | Molybdenum   | SW 6010    | lm/gn   | ö         | 0.513     |   | 1.06     |   |   | 0.29           |    |   | 0.425     |   | 0.62     | 0.98     |              |
| Metals, Soluble | Nickel       | SW 6010    | ug/ml   | 0.0       | 0.0272    |   | 0.0122   |   |   | 0.032          |    |   | 0.0273    |   | 0.0238   | 0.0257   |              |
| Metals, Soluble | Phosphorus   | SW 6010    | ug/ml   | ٥<br>د    | 0.061     |   | 0.243    |   |   | 0.149          |    |   | 0.13      |   | 0.14     | 0.26     | 8            |
| Metals, Soluble | Potassium    | SW 6010    | lm/gn   | αÓ        | 8.73      |   | 19.4     |   |   | 6.98           |    |   | 8.27      |   | 11.70    | 16.70    |              |
| Metals, Soluble | Selenium     | SW 7740    | lm/gn   | 0.0       | 0.0331    |   | 0.0518   |   |   | 0.0198         |    |   | 0.0259    |   | 0.0349   | 0.0399   |              |
| Metals, Soluble | Silicon      | SW 6010    | lm/gn   | 4         | 4.64      |   | 2.78     |   |   | 4.74           |    |   | 4.67      |   | 4.05     | 2.74     |              |
| Metals, Soluble | Sodium       | SW 6010    | lm/gn   | -         | 17.7      |   | 32.8     |   |   | <del>1</del> . |    |   | 16.2      |   | 21.5     | 24.6     |              |
| Metals, Soluble | Strontium    | SW 6010    | m/dn    | ò         | 0.488     |   | 0.926    |   |   | 0.45           |    |   | 0.514     |   | 0.621    | 0.657    |              |
| Metals, Soluble | ᄩ            | SW 6010    | lm/6n   | 0.0       | 0.0111 J  |   | 0.00125  | 7 |   | 0.00021        | 7  | v | 0.0144    |   | 0.0042   | 0.0149   |              |
| Metals, Soluble | Titanium     | SW 6010    | lm/6n   | 0.0       | 0.00095   |   | 0.00058  | 7 |   | 0.0475         |    | _ | 0.00055   |   | 0.0163   | 0.0670   |              |
| Metals, Soluble | Vanadium     | SW 6010    | ug/ml   | 0.0       | 0.0634    |   | 0.12     |   |   | 0.0224         |    |   | 0.0681    |   | 0.0686   | 0.1218   |              |
|                 |              |            |         |           |           |   |          |   |   |                |    |   |           |   |          |          |              |

ESP Fly Ash Sluice Filtrate - Page 1

Liquid Stream Data Summary

H 86 Sample Stream: ESP Fly Ash Sluice Filtrate

| Analyte                 |                            | Analytical |              |   | Run               |         | Run      |       | _        | Run    |   | Run       |           | 6        | 95%    | ಕ           |
|-------------------------|----------------------------|------------|--------------|---|-------------------|---------|----------|-------|----------|--------|---|-----------|-----------|----------|--------|-------------|
| Group                   | Specie                     | Method     | Units        |   | -                 |         | 2        |       |          | 3a     |   | 3d        | Average   |          | 5      | Ratio       |
| Metals, Soluble         | Zinc                       | SW 6010    | lm/gu        |   | 0.00659           |         | 9E-05    | ~     | 0        | 0,204  |   | 0.00605   | 0.0702    | _        | 0.2879 |             |
| Aldehydes               | Acetaldehyde               | SW 8315    | lm/an        |   | 0.014             |         | 0.088    |       | 0        | 0.012  |   | 0.086     | 0.0       |          | 8      |             |
| Aldehydes               | Formaldehyde               | SW 8315    | lm/gu        |   | 0.016             |         | 0.052    |       | 0        | 0.022  |   | 0.034     | 0.030     |          | 0.048  |             |
| Organics, Semi-volatile | 1,2,4,5-Tetrachlorobenzene | SW 8270    | <b>ug</b> /L | v | 0.55              | v       | 0.578    | ·     | 0        | 0.375  | v | 0.375     | < 0.501   | ,<br>E   | _      | <b>%</b> 00 |
| Organics, Semi-volatite | 1,2,4-Trichlorobenzene     | SW 8270    | 7/Bn         | v | 0.563             | ٧       | 0.591    | Ī     |          | 0.565  | v | 0.565     | < 0.57    | ر.<br>د  |        | <b>%</b>    |
| Organics, Semi-volatile | 1,2-Dichlorobenzene        | SW 8270    | √gn          | v | 0.742             | •       | 0.779    | ·     |          | 0.611  | • | 0.611     | c 0.711   | ·<br>•   | •      | <b>%</b> 00 |
| Organics, Semi-volatile | 1,2-Diphenylhydrazine      | SW 8270    | rg/L         | ٧ | 6                 | v       | <u>6</u> | ·     |          | 90     | v | 9         | ,<br>5    | ·<br>~   | -      | %00         |
| Organics, Semi-volatile | 1,3-Dichlorobenzene        | SW 8270    | Wg/L         | ٧ | 0.377             | v       | 0.396    | ·     |          | 689    | v | 689.0     | c 0.487   |          | -      | %           |
| Organics, Semi-volatile | 1,4-Dichlorobenzene        | SW 8270    | μgγ          | v | 0.77              | v       | 0.808    |       |          | 0.565  | ٧ | 0.585     | × 0.714   | 4        | -      | 80          |
| Organics, Semi-volatile | 1-Chloronaphthalene        | SW 8270    | Lg/          | ٧ | 0.613             | v       | 0.644    | •     |          | 0.516  | v | 0.516     | > 0.5     | _        | -      | <b>%</b>    |
| Organics, Semi-volatile | 1-Naphthylamine            | SW 8270    | ug/L         | v | 1.49              | ٧       | 1.56     | ·     |          | 36.    | v | 1.95      | 9.1       |          | -      | %<br>00     |
| Organics, Semi-volatile | 2,3,4,6-Tetrachtorophenol  | SW 8270    | ug/L         | ٧ | 0.479             | v       | 0.503    | -     | 0        | 0.447  | v | 0.447     | A.0.      | φ,       |        | <b>%</b>    |
| Organics, Semi-volatile | 2,4,5-Trichlorophenol      | SW 8270    | ug/L         | v | 0.314             | v       | 0.33     | •     |          | 0.489  | v | 0.489     | < 0.378   |          |        | 100<br>%    |
| Organics, Semi-volatile | 2,4,6-Trichlorophenol      | SW 8270    | √gn          | v | 0.332             | ٧       | 0.349    |       | 0        | 0.487  | v | 0.487     | × 0.3     | ·<br>•   | •      | 80          |
| Organics, Semi-volatile | 2,4-Dichlorophenol         | SW 8270    | ug/L         | ٧ | 0.422             | v       | 0.443    | -     |          | 0.547  | v | 0.547     | × 0.4     | E        | _      | %<br>%      |
| Organics, Semi-volatile | 2,4-Dimethylphenol         | SW 8270    | ug/L         | v | 1.05              | v       | Ξ        | -     | v        | 1.25   | v | 1.25      | 1.1       |          | _      | %<br>00     |
| Organics, Semi-volatile | 2,4-Dinitrophenol          | SW 8270    | ug/L         | ٧ | 6.67              | ٧       | 7        |       |          | 4.02   | v | 4.02      | 6.5       | •        | -<br>, | %           |
| Organics, Semi-votatile | 2,4-Dinitrotoluene         | SW 8270    | ng/L         | ٧ | 0.524             | v       | 0.55     | -     |          | 0.568  | v | 0.568     | v<br>0.5  | . 4      |        | %           |
| Organics, Semi-volatile | 2,6-Dichlorophenol         | SW 8270    | rg/          | v | 0.689             | v       | 0.723    | ·     |          | 0.492  | v | 0.492     |           | Ω.       | -      | %           |
| Organics, Semi-volatile | 2,6-Dinitrotoluene         | SW 8270    | Lg/          | ٧ | 0.33              | v       | 0.346    | ·     |          | 828    | ٧ | 0.828     | 0.50      | '<br>=   | -      | %           |
| Organics, Semi-volatife | 2-Chioronaphthalene        | SW 8270    | ug/L         | ٧ | 0.308             | v       | 0.324    | •     |          | 377    | v | 0.377     | × 0.3     | -        | -      | %           |
| Organics, Semi-volatile | 2-Chlorophenol             | SW 8270    | ug/L         | v | 0.728             | •       | 0.764    |       |          | .611   | ٧ | 0.611     | × 0.70    | -        | _      | <b>%</b>    |
| Organics, Semi-volatile | 2-Methyinaphthalene        | SW 8270    | Lg/          | ٧ | 0.629             | v       | 99.0     | •     | <u> </u> | 0.35   | • | 0.35      | c 0.55    | ,        |        | 8           |
| Organics, Semi-volatile | 2-Methylphenol(o-cresol)   | SW 8270    | √g/L         | v | 0.509             | v       | 0.534    | •     |          | 298    | v | 0.298     | 4.0<br>4. | -        | -      | 80          |
| Organics, Semi-volatile | 2-Naphthyłamine            | SW 8270    | ug/L         | ٧ | 1.86              | ٧       | 1.95     | ·     | `        | 1.54   | v | <u>7.</u> | 7.1       |          | _      | 100<br>%    |
| Organics, Semi-volatite | 2-Nitroaniline             | SW 8270    | Lgn<br>Lgv   | ٧ | 0.383             | v       | 0.402    | •     |          | 637    | v | 0.637     | 0.47      | <u>,</u> | -      | <b>%</b>    |
| Organics, Semi-volatile | 2-Nitrophenol              | SW 8270    | ug/L         | ٧ | 0.419             | v       | 0.44     |       | 0        | 0.502  | v | 0.502     | A.0.      | ·<br>•   | -      | 8           |
| Organics, Semi-volatile | 2-Picolina                 | SW 8270    | 7/gn         | ٧ | 40.1              | ٧       | 1.09     | •     |          | 795    | v | 0.795     | .6.0<br>× | ζ.<br>'  | •      | 8           |
| Organics, Semi-volatile | 3,3'-Dichlorobenzidine     | SW 8270    | ng/L         | ٧ | 0.467             | v       | 0.49     | ·     | Ü        | 3.32   | v | 0.32      | × 0.4     | E        | -      | 80          |
| Organics, Semi-volatife | 3-Methylcholanthrene       | SW 8270    | ug/L         | ٧ | 0.746             | •       | 0.783    | •     |          | 0.481  | v | 0.481     | 9.0       | o        | -      | 80          |
| Organics, Semi-volatile | 3-Nitroanitine             | SW 8270    | Z/gn         | v | 0.485             | v       | 0.509    | •     |          | 378    | ٧ | 0.378     | ^<br>0.4  |          | •      | <b>%</b>    |
| Organics, Semi-votatile | 4,6-Dinitro-2-methylphenol | SW 8270    | ng/L         | v | 0.754             | v       | 0.792    | ·     |          | 0.413  | v | 0.413     | . 0.6     |          | •      | %           |
| Organics, Semi-volatile | 4-Aminobiphenyl            | SW 8270    | Jg,          | ٧ | 0.712             | ٧       | 0.748    | ·     |          | 1.14   | ٧ | 1.14      | 98.0      |          | _      | %           |
|                         |                            |            |              |   | ESP Fly Ash Shile | ()<br>S | ا مانانا | Hrate | Q.       | Page 2 |   |           |           |          |        |             |

ESP Fly Ash Sluice Filtrate - Page 2

Liquid Stream Data Summary

Sample Stream: ESP Fly Ash Sluice Filtrate

|                                | ,,,,         | Method  |              | 1 |       |   | •     |   | 50    |          | 000   |          | Average | ច       | Ratio        |
|--------------------------------|--------------|---------|--------------|---|-------|---|-------|---|-------|----------|-------|----------|---------|---------|--------------|
| 4-Bromochenyl ohenyl affer     | envi ether   | SW 8270 | Jon.         | v | 0.434 | • | 0.456 | \ | 0.465 | *        | 0.465 | ٧        | 0.452   | :       | 8            |
| 4-Chloro-3-methylphenol        | ylphenol     | SW 8270 | \$           | v | 0.689 | ٧ | 0.723 | ٧ | 0.495 | ٧        | 0.495 | ٧        | 0.636   | :       | <u>0</u>     |
| 4-Chlorophenyl phenyl ether    | nenyl ether  | SW 8270 | rg.          | ٧ | 0.503 | ٧ | 0.528 | ٧ | 0.405 | ٧        | 0.405 | v        | 0.479   | :       | <u>\$</u>    |
| 4-Methylphenol(p-cresol)       | p-cresol)    | SW 8270 | Ϋ́           | v | 0.548 | ٧ | 0.575 | ٧ | 0.441 | ٧        | 0.441 | ٧        | 0.521   | ;       | 100<br>X     |
| 4-Nitroaniline                 | -E           | SW 8270 | JON.         | ٧ | 0.461 | • | 0.484 | ٧ | 0.583 | V        | 0.583 | v        | 0.509   | :       | 00<br>X      |
| 4-Nitrophenol                  | nof          | SW 8270 | Lg/L         | ٧ | 0.658 | ٧ | 0.691 | v | 0.901 | ٧        | 0.901 | v        | 0.750   | ;       | 00           |
| 7,12-Dimethylbenz(a)anthracene | a)anthracene | SW 8270 | Š            | v | 1.83  | ٧ | 1.92  | ٧ | 1.28  | ٧        | 1.28  | ٧        | 1.68    | :       | 100%         |
| Acenaphthene                   | епе          | SW 8270 | Ą            | ٧ | 0.455 | ٧ | 0.478 | ٧ | 0.262 | ٧        | 0.262 | •        | 0.398   | :       | 100<br>X     |
| Acenaphthylene                 | lene         | SW 8270 | Ϋ́           | ٧ | 0.215 | v | 0.226 | v | 0.402 | ٧        | 0.402 | v        | 0.281   | :       | 00<br>X      |
| Acetophenone                   | one          | SW 8270 | Ϋ́           | v | 0.437 | ٧ | 0.459 | ٧ | 0.537 | V        | 0.537 | ٧        | 0.478   | :       | 100<br>%     |
| Aniline                        |              | SW 8270 | <b>1/6</b> n | ٧ | 0.889 | ٧ | 0.933 | ٧ | 0.592 | ٧        | 0.592 | ٧        | 0.805   | ;       | 100%         |
| Anthracene                     | 9            | SW 8270 | Ą            | v | 0.553 | v | 0.581 | ٧ | 0.354 | ٧        | 0.354 | ٧        | 0.496   | ;       | 100%         |
| Benzidine                      | •            | SW 8270 | 7            | ٧ | 20    | v | 20    | v | 2     | ٧        | 8     | v        | 20      | :       | 100%         |
| Benzo(a)anthracene             | acene        | SW 8270 | 성            | ٧ | 0.49  | • | 0.515 | ٧ | 0.432 | ٧        | 0.432 | ٧        | 0.479   | :       | 100%         |
| Benzo(a)pyrene                 | rene         | SW 8270 | L<br>L       | ٧ | 0.365 | ٧ | 0.383 | ٧ | 0.498 | ٧        | 0.498 | v        | 0.415   | :       | 100<br>%     |
| Benzo(b)fluoranthene           | nthene       | SW 8270 | γď           | v | 0.542 | ٧ | 0.569 | ٧ | 0.873 | ٧        | 0.873 | ٧        | 0.661   | :       | 100<br>36    |
| Benzo(g,h,i)perylene           | nylene       | SW 8270 | LIGAT.       | ٧ | 0.464 | ٧ | 0.487 | V | 0.981 | ٧        | 0.981 | V        | 0.644   | ;       | <u>\$</u>    |
| Benzo(k)fluoranthene           | nthene       | SW 8270 | rgy.         | ٧ | 0.922 | v | 0.968 | ٧ | 0.961 | V        | 0.961 | <b>v</b> | 0.950   | ;       | 00           |
| Benzoic acid                   | Dio.         | SW 8270 | Z,           | v | 3.77  | ٧ | 3.96  | ٧ | 37.1  | <b>v</b> | 37.1  | <b>v</b> | 14.9    | :       | <u>6</u>     |
| Benzyl alcohol                 | loho         | SW 8270 | ሚ            | v | 1.03  | v | 1.08  | ٧ | 0.587 | ٧        | 0.587 | ٧        | 0.899   | :       | 100%         |
| <b>Butyfbenzylphthalate</b>    | thalate      | SW 8270 | Lgv.         | v | 0.374 | v | 0.393 | ٧ | 0.601 | •        | 0.601 | v        | 0.456   | :       | 200<br>%     |
| Chrysene                       | 80           | SW 8270 | Ng/L         | ٧ | 0.637 | ٧ | 0.669 | V | 0.516 | V        | 0.516 | v        | 0.607   | :       | 100          |
| Di-n-octylphthalate            | halate       | SW 8270 | <b>1</b> 07  | v | 0.868 | v | 0.911 | ٧ | 0.338 | ٧        | 0.338 | ٧        | 0.706   | :       | 20<br>%      |
| Dibenz(a,h)anthracene          | hracene      | SW 8270 | 셤            | v | 0.451 | v | 0.474 | ٧ | 0.78  | ٧        | 0.78  | <b>v</b> | 0.568   | ;       | 00<br>X      |
| Dibenz(a_j)acridine            | ridine       | SW 8270 | γď           | v | 0.553 | ٧ | 0.581 | V | 0.81  | ٧        | 0.81  | •        | 0.648   | :       | 100<br>30    |
| Dibenzofuran                   | Tan          | SW 8270 | Ą            | v | 0.389 | v | 0.408 | V | 0.516 | ٧        | 0.516 | ٧        | 0.438   | :       | 100          |
| Dibutytphthalate               | alate        | SW 8270 | Ą            | ٧ | 0.47  | v | 0.493 | ٧ | 0.312 | ٧        | 0.312 | ٧        | 0.425   | \$<br>} | 400<br>30    |
| Diethylphthalate               | alate        | SW 8270 | Ą            | v | 0.32  | v | 0.336 | ٧ | 0.495 | •        | 0.495 | •        | 0.384   | :       | 100<br>%     |
| Dimethylphenethylamine         | ylamine      | SW 8270 | ρğ           | v | 120   | ٧ | 120   | ٧ | 120   | •        | 52    | v        | 120     | ;       | 100<br>%     |
| Dimethylphthalate              | nafate       | SW 8270 | LG/L         | v | 0.267 | v | 0.28  | v | 0.323 | V        | 0.323 | v        | 0.290   | :       | ± 00         |
| Diphenyfamine                  | aine<br>Aine | SW 6270 | Ą            | v | 0.503 | ٧ | 0.528 | v | 0.266 | ٧        | 0.266 | •        | 0.432   | :       | 100<br>%     |
| Ethyl methanesulfonate         | ulfonate     | SW 8270 | ₽gn          | v | 0.479 | • | 0.503 | ¥ | 0.653 | ٧        | 0.653 | v        | 0.545   | :       | 100%         |
| Fluoranthene                   | 90           | SW 8270 | Υgn          | v | 0.608 | ٧ | 0.638 | v | 0.453 | ٧        | 0.453 | v        | 0.566   | :       | 100%         |
| Fluorene                       | •            | SW 8270 | 4            | ٧ | 0.32  | • | 0.336 | ٧ | 0.365 | ٧        | 0.365 | v        | 0.340   | :       | 100<br>%     |
| Hexachlorobenzene              | nzene        | SW 8270 | Ř            | v | 0.223 | • | 0.234 | ٧ | 0.302 | ٧        | 0.302 | ٧        | 0.253   | :       | <del>2</del> |

ESP Fly Ash Sluice Filtrate - Page 3

Liquid Stream Data Summary

H-100 Sample Stream: ESP Fly Ash Stuice Filtrate

| Analyte                 |                             | Anatytical |          |   | Run       |   | Run          |          | Run    |   | Run   |   |         | %96 | 占            |
|-------------------------|-----------------------------|------------|----------|---|-----------|---|--------------|----------|--------|---|-------|---|---------|-----|--------------|
| Group                   | Specie                      | Method     | Units    |   | -         |   | 2            |          | 3a     |   | PE    |   | Average | ច   | Ratio        |
| Organics Semi-volatile  | Hexachlorobutadiene         | SW 8270    | <b>P</b> | v | 0.665     | v | 869.0        | v        | 0.492  | • | 0.492 | ٧ | 0.618   | :   | 100 <b>%</b> |
| Organics, Semi-volatile | Hexachlorocyclopentadiene   | SW 8270    | , Jon    | v | 8,5       | v | 8.92         | ٧        | 5.66   | ٧ | 5.66  | v | 7.69    | ;   | 100%         |
| Organics, Semi-volatile | Hexachtoroethane            | SW 8270    | ug/L     | v | 0.566     | v | 0.594        | v        | 0.611  | • | 0.611 | ٧ | 0.590   | ;   | 100%         |
| Organics, Semi-volatile | Indeno(1,2,3-cd)pyrene      | SW 8270    | ug/L     | v | 0.5       | v | 0.525        | •        | 1.28   | v | 1.28  | ٧ | 0.768   | ;   | 100%         |
| Organics, Semi-votatile | Isophorone                  | SW 8270    | ug/L     | v | 0.273     | v | 0.287        | v        | 0.592  | • | 0.592 | ٧ | 0.384   | ;   | 100%         |
| Organics, Semi-volatile | Methyt methanesulfonate     | SW 8270    | ug/L     | v | 8         | v | 8            | •        | ន      | • | 8     | ٧ | ŝ       | :   | 100%         |
| Organics, Semi-volatile | N-Nitroso-di-n-butylamine   | SW 8270    | ug/L     | v | 1.25      | v | 1.31         | •        | 0.605  | • | 909.0 | v | 1.055   | ;   | 100%<br>%    |
| Organics, Semi-volatile | N-Nitrosodimethylamine      | SW 8270    | ug/L     | v | 1.27      | v | 1.33         | v        | 0.756  | • | 0.756 | ~ | 1.119   | :   | 100 <b>%</b> |
| Organics, Semi-volatile | N-Nitrosodiphenylamine      | SW 8270    | ug/L     | v | 0.539     | v | 0.566        | <b>v</b> | 0.259  | • | 0.259 | • | 0.455   | ;   | 100 <b>%</b> |
| Organics, Semi-volatile | N-Nitrosodipropy/amine      | SW 8270    | ug/L     | v | 0.715     | ٧ | 0.751        | v        | 0.629  | • | 0.629 | • | 969'0   | :   | 100%         |
| Organics, Semi-volatile | N-Nitrosopiperidine         | SW 8270    | цg,      | v | 0.898     | v | 0.943        | v        | 0.574  | v | 0.574 | V | 0.805   | ;   | †00<br>%     |
| Organics, Semi-volatile | Naphthalene                 | SW 8270    | √gn      | v | 0.694     | v | 0.729        | ٧        | 0.46   | v | 0.46  | v | 0.628   | ;   | 100 <b>%</b> |
| Organics, Semi-volatile | Nitrobenzene                | SW 8270    | υg/L     | v | 0.503     | v | 0.528        | v        | 0.81   | ~ | 0.81  | v | 0.614   | :   | 100%         |
| Organics, Semi-volatile | Pentachlorobenzene          | SW 8270    | Lgn<br>L | ٧ | 0.422     | ٧ | 0.443        | v        | 9.36   | v | 0.36  | v | 0.408   | ;   | 100 <b>%</b> |
| Organics, Semi-volatile | Pentachloronitrobenzene     | SW 8270    | Ϋ́       | v | 1.97      | v | 2.07         | v        | 1.33   | • | 1.33  | • | 1.79    | ;   | 100%         |
| Organics, Semi-volatile | Pentachlorophenol           | SW 8270    | Ą        | v | 0.823     | ٧ | 0.864        | v        | 0.855  | v | 0.855 | ٧ | 0.847   | :   | 100%         |
| Organics, Semi-volatile | Phenacetin                  | SW 8270    | Ą        | v | 0.514     | v | 0.54         | v        | 0.371  | • | 0.371 | v | 0.475   | :   | 100%         |
| Organics, Semi-volatile | Phenanthrene                | SW 8270    | Ng/      | v | 0.592     | v | 0.622        | v        | 0.45   | • | 0.45  | v | 0.555   | :   | 100 <b>%</b> |
| Organics, Semi-volatife | Phenol                      | SW 8270    | ug/L     | ٧ | 0.38      | v | 0.399        | •        | 0.849  | • | 0.849 | ٧ | 0.543   | ;   | 100%         |
| Organics, Semi-volatile | Pronamide                   | SW 8270    | √gn      | v | 0.704     | v | 0.739        | •        | 0.232  | • | 0.232 | ٧ | 0.558   | :   | 100%         |
| Organics, Semi-volatile | Pyrene                      | SW 8270    | ηgη      | v | 0.446     | v | 0.468        | v        | 0.392  | • | 0.392 | v | 0.435   | :   | 100<br>%     |
| Organics, Semi-volatile | Pyridine                    | SW 8270    | Λgη      | ٧ | <b>:</b>  | v | 1.16         | v        | 0.565  | • | 0.565 | ~ | 0.942   | :   | 100%         |
| Organics, Semi-volatile | bis(2-Chloroethoxy)methane  | SW 8270    | μgη      | v | 0.535     | v | 0.562        | •        | 0.583  | • | 0.583 | ٧ | 0.560   | :   | <u> </u>     |
| Organics, Semi-volatile | bis(2-Chloroethyl)ether     | SW 8270    | ηgη      | • | 0.697     | v | 0.732        | •        | 0.368  | v | 0.368 | ٧ | 0.599   | :   | 100<br>%     |
| Organics, Semi-volatile | bis(2-Chloroisopropyl)ether | SW 8270    | ug/L     | ٧ | 0.691     | v | 0.726        | •        | 0.767  | • | 0.767 | ~ | 0.728   | ;   | 100<br>%     |
| Organics, Semi-volatile | bis(2-Ethylhexyl)phthalate  | SW 8270    | Æ        | v | 1.74      |   | 2.35         | v        | 0.559  | v | 0.559 | ٧ | 1.740   | ;   | 33%          |
| Organics, Semi-volatile | p-Chloroaniline             | SW 8270    | Ngn      | v | 0.532     | v | 0.559        | v        | 0.716  | • | 0.716 | • | 0.602   | ;   | 100<br>%     |
| Organics, Semi-volatife | p-Dimethylaminoazobenzene   | SW 8270    | ₽gv1     | v | 0.49      | v | 0.515        | v        | 869.0  | • | 969.0 | v | 0.568   | ;   | ¥001         |
| Organics, Volatile      | 1,1,1-Trichloroethane       | SW 8240    | Lg/L     | v | S         | v | ĸ            | v        | 2      | ٧ | 5     | ٧ | ĸ       | :   | 100%         |
| Organics, Volatile      | 1,1,2,2-Tetrachloroethane   | SW 8240    | ug/L     | v | S)        | v | រក           | v        | S.     | v | ហ     | ٧ | ĸ       | ;   | 100%         |
| Organics, Volatile      | 1,1,2-Trichloroethane       | SW 8240    | ug/L     | v | S         | v | 5            | v        | v      | • | S     | • | 'n      | :   | 100 <b>%</b> |
| Organics, Volatile      | 1,1-Dichloroethane          | SW 8240    | ug/L     | v | S.        | v | 2            | •        | ĸ      | ٧ | ĸ     | ٧ | 'n      | ;   | 100<br>%     |
| Organics, Volatile      | 1,1-Dichloroethene          | SW 8240    | √gn      | v | 5         | v | 2            | v        | ĸ      | • | S.    | • | S.      | :   | 100%         |
| Organics, Volatile      | 1,2-Dichloroethane          | SW 8240    | ug/L     | ٧ | ro.       | ٧ | S.           | v        | ហ      | v | ъ     | ٧ | LC.     | :   | 100%         |
|                         |                             |            |          | ш | SO ELV AS | 2 | nico Eiltrat | 9        | A dage |   |       |   |         |     |              |

ESP Fly Ash Sluice Filtrate - Page 4

Sample Stream: ESP Fly Ash Sluice Filtrate

|                             | Analytical |          |   | æ.       |   | Re       |   | Ę        |   | Run      |   |          | <b>%</b> 96 | 늄           |
|-----------------------------|------------|----------|---|----------|---|----------|---|----------|---|----------|---|----------|-------------|-------------|
| Specie                      | Method     | Chits    |   | -        |   | 2        |   | 3a       |   | DE DE    |   | Average  | 5           | Ratio       |
| 1,2-Dichloroethene (total)  | SW 8240    | γ        | v | ĸ        | ٧ | ĸ        | ٧ | ιΩ       | v | ĸ        | v | ĸ        | :           | 400         |
| 1,2-Dichtoropropane         | SW 8240    | γgη      | v | တ        | ٧ | ın       | v | ß        | ٧ | ĸ        | v | 10       | ;           | ¥001        |
| 2-Butanone (MEK)            | SW 8240    | ug/L     | v | 9        | V | 5        | v | 9        | v | 5        | v | <b>£</b> | :           | 100%        |
| 2-Hexanone                  | SW 8240    | Ng.      | ٧ | 5        | ٧ | 5        | ٧ | 9        | v | 5        | v | 9        | :           | 100%        |
| 4-Methyl-2-pentanone (MIBK) | SW 8240    | SQ.      | v | 우        | ٧ | 9        | v | 10       | v | ₽        | v | 2        | :           | 400%        |
| Acetone                     | SW 8240    | Ng/L     | v | 0        | ٧ | ð        |   | 13       | v | 5        | v | <b>e</b> | :           | 43%         |
| Benzene                     | SW 8240    | νgη      | v | ro.      | V | ιn       | v | ις       | v | ις.      | ٧ | ĸ        | :           | <b>100%</b> |
| Bromodichloromethans        | SW 8240    | ug/      | v | £        | ٧ | ស        | v | 5        | v | NO.      | v | ĸ        | ;           | 100%        |
| Bromoform                   | SW 8240    | ng/L     | v | ı,       | V | S        | v | 2        | v | ហ        | v | ĸ        | ;           | 100%        |
| Bromomethane                | SW 8240    | J⁄gn     | v | 5        | V | 9        | ٧ | 10       | v | <b>£</b> | v | \$       | :           | 100%        |
| Carbon Disulfide            | SW 8240    | √gn      | v | s,       | ٧ | ĸ        | ٧ | ນ        | ٧ | ĸ        | ٧ | w        | :           | 400%        |
| Carbon Tetrachloride        | SW 8240    | √g/L     | v | ທ        | v | ស        | ٧ | 5        | v | 2        | v | ın       | :           | 100%        |
| Chlorobenzene               | SW 6240    | Ź        | v | Ŋ        | ٧ | ĸ        | ٧ | S        | ٧ | K)       | ٧ | K)       | ;           | 100%        |
| Chloroethane                | SW 8240    | μgη      | • | 9        | ٧ | 9        | v | <b>t</b> | v | 2        | v | 9        | :           | 100%        |
| Chloroform                  | SW 8240    | μgη      | v | ιΩ       | V | ١Ç       | v | SO.      | v | LO.      | v | ιΩ       | :           | 100%        |
| Chloromethane               | SW 8240    | 1/gn     | v | <b>£</b> | v | 5        | ٧ | <b>5</b> | v | <b>5</b> | v | 5        | ;           | 100%        |
| Dibromochloromethane        | SW 8240    | LgJ      | v | ហ        | ٧ | ĸ        | v | S.       | v | S)       | v | ĸ        | :           | 100%        |
| Ethylbenzene                | SW 8240    | Ϋ́       | v | ın       | ٧ | ιρ       | v | S        | v | ស        | v | IO.      | ;           | <b>100%</b> |
| Methylene Chloride          | SW 8240    | γđη      |   | 5.5      |   | 3.6      |   | 5.7      |   | 6.5      |   | 6.4      | 2.9         |             |
| Styrene                     | SW 8240    | rg/      | • | ı,       | V | ιņ       | v | 2        | v | 2        | v | Ŋ        | :           | 100%        |
| Tetrachloroethene           | SW 8240    | ugd.     | v | ro.      | v | ស        | v | 2        | v | S        | v | S.       | :           | <b>100%</b> |
| Toluene                     | SW 8240    | Lg/L     | v | ເຄ       | ٧ | ហ        | v | 22       | v | S.       | v | S        | ;           | 100%        |
| Trichloroethene             | SW 8240    | μgγ      | v | Ŋ        | v | ស        | v | 52       | v | ıç,      | ٧ | ß        | :           | 100%        |
| Vinyf acetate               | SW 8240    | rgy.     | v | 0        | ٧ | \$0<br>0 | ٧ | 01       | • | 5        | v | 후        | :           | 100%        |
| Vinyi chloride              | SW 8240    | Lgh<br>L | v | ₽        | v | 0        | ٧ | 0        | v | 9        | v | <b>6</b> | :           | 100%        |
| Xylenes                     | SW 8240    | ug/L     | v | 2        | ٧ | ĸ        | v | S.       | v | Ç,       | v | 2        | ;           | ±00%        |
| cis-1,3-Dichloropropene     | SW 8240    | γgη.     | v | 9        | ٧ | ß        | ٧ | z,       | v | ĸ        | v | S        | :           | 100%        |
| trans-13-Dichloronropana    | SW 8740    | 1/2/1    | , |          |   |          |   |          |   |          |   |          |             |             |

Sample Stream: Gypsum Pond Water

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | Analytical |        |   | Run                      | Ru       |          | Run      |        | Run     |          | 95%     | 占     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|--------|---|--------------------------|----------|----------|----------|--------|---------|----------|---------|-------|
| Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Specie       | Method     | Units  |   | 1                        | 2        |          | 38       |        | 34      | Average  | ਠ       | Ratio |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | abines       | SIM 0012   | lm/pri |   | 0.0477                   | 0.0507   |          | 0.0473   |        | 0.043   | 0.0486   | 0.0046  |       |
| Reduced Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ammonia as N | EPA 350.1  | m/ga   | , | 16.7                     | 14.4     |          | 14.9     |        | 15.3    | 15.3     | 3.0     |       |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chloride     | EPA 300    | ua/mi  | · | 8300                     | 15200    |          | 15700    |        | 17300   | 16,400   | 4,135   |       |
| Anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fluoride     | EPA 340.2  | ım/σn  |   | 15.2                     | 13.5     |          | 15.9     |        | 16.2    | 14.9     | 3.1     |       |
| Anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phosphate    | EPA 365.2  | lm/gu  |   | .0264                    | 0.0424   |          | 0.0292   |        | 0.0292  | 0.0327   | 0.0212  |       |
| Anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sulfate      | EPA 300.0  | m/gn   |   | 914                      | 1010     |          | 1010     |        | 402     | 878      | 138     |       |
| Addition of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st | Aliminim     | SW 6010    | lm/on  |   | 0.497                    | 0.73     |          | 20.      |        | 1.15    | 0.76     | 0.68    |       |
| Metals, Counce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Antimony     | SW 6010    | m/os   | ٧ | 0.241                    | < 0.241  |          | < 0.241  | v      | 0.241   | < 0.24   | ;       | 100%  |
| Marinos, eletan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic      | SW 7060    | m/dn   |   | 0.132                    | 0.114    |          | 0.134    |        | 0.132   | 0.13     | 0.03    |       |
| Metale Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Barium       | SW 6010    | m/da   |   | 1.2                      | 1.16     |          | 1.2      |        | 1.26    | 1.19     | 90.0    |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beryllium    | SW 6010    | ng/m/  | ۷ | 0.00554                  | 0.0004   | ۳,       | 0.0009   | ۷<br>ح | 0.00554 | < 0.0055 | ;       | 68%   |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boron        | SW 6010    | ng/ml  |   | 533                      | 497      |          | 200      |        | 268     | 533      | 88      |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cadmium      | SW 7131    | ım/an  |   | 0.16                     | 0.133    |          | 0.153    |        | 0.15    | 0,15     | 0.03    |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calcium      | SW 6010    | lm/gu  |   | 9800                     | 7160     |          | 8390     |        | 20100   | 8,117    | 2,120   |       |
| Metals. Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chromium     | SW 6010    | lm/gu  | _ | 0.0877                   | 0.106    |          | 0.11     |        | 0.112   | 0.101    | 0.030   |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cobalt       | SW 6010    | m/gn   |   | 0.152                    | 0.0472   |          | 0.118    |        | 0.106   | 0.105    | 0.132   |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper       | SW 6010    | m/gn   | Ī | 0.0431                   | 0.0489   |          | 0.0789   |        | 0.0738  | 0.0570   | 0.0477  |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lron         | SW 6010    | im/gu  | v | 0.0596                   | > 0.0596 |          | > 0.0596 | ٧      | 0.0596  | > 0.0596 | ;       | 100%  |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lead         | SW 7421    | m/gn   | v | 0.0011                   | o.0011   |          | 0.0056   |        | 0.0052  | 0.0022   | 0.0072  | 16%   |
| Metals Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Magnesium    | SW 6010    | m/dn   |   | 708                      | 632      |          | 723      |        | 722     | 889      | 121     |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manganese    | SW 6010    | m/ga   |   | 121                      | 111      |          | 127      |        | 127     | 120      | 8       |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mercury      | SW 7470    | m/gn   | 0 | .00019                   | 0.00019  | •        | 0.00034  |        | 0.00023 | 0.00024  | 0.00022 |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Molybdenum   | SW 6010    | lm/gu  |   | 0.103                    | 0.0552   |          | 0.102    |        | 0.0886  | 0.0967   | 0.0679  |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nickel       | SW 6010    | m/đn   |   | 0.679                    | 0.57     |          | 0.62     |        | 0.687   | 0.623    | 0.136   |       |
| Metals Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Phosphorus   | SW 6010    | m/gn   |   | 0.39                     | 0.288    |          | 0.355    |        | 0.265   | 0.344    | 0.129   |       |
| Metals Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Potassium    | SW 6010    | m/dn   |   | 54.4                     | 45.9     |          | 54.4     |        | 55.2    | 51.6     | 12.2    |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selenium     | SW 7740    | lm/gu  |   | 0.405                    | 0.253    |          | 0.424    |        | 0.33    | 0.361    | 0.233   |       |
| Metals Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Silicon      | SW 6010    | m/dn   |   | 15.7                     | 14.8     |          | 17       |        | 16.9    | 15.8     | 2.7     |       |
| Metals Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sodium       | SW 6010    | m/gn   |   | 7:66                     | 90.5     |          | 102      |        | 102     | 97.3     | 15.5    |       |
| Metals Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Strontium    | SW 6010    | m/dn   |   | 13.3                     | 12.3     |          | 4        |        | 13.9    | 13.2     | 2.1     |       |
| Metals, Soluble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tin          | SW 6010    | lm/gu  | v | 0.144                    | 0.457    | 7        | 0.0083   | v<br>¬ | 0.144   | 0.1791   | 0.6031  | 13%   |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |            |        |   | Gypsum Pond Water - Page | ond Wa   | ter - Pa | ge 1     |        |         |          |         |       |

H-103

Liquid Stream Data Summary

H-104 Sample Stream: Gypsum Pond Water

| Analyte         |            | Analytical |       | Run      | Run      | Run       | Run     |          | ö | 95%   | 占    |
|-----------------|------------|------------|-------|----------|----------|-----------|---------|----------|---|-------|------|
| Group           | Specie     | Method     | Units | -        | 2        | 3a        | PE      | Average  |   |       | atio |
| Metala Soluble  | Titanium   | SW 6010    | la/on | 2.39     | 2.14     | 2.04      | 2.04    | 2.19     |   | 448   |      |
| Metals Soluble  | Vanadium   | SW 6010    | Im/gn | 0.348    | 0.296    | 0.323     | 0.342   | 0.32     |   | 965   |      |
| Metals, Soluble | Zinc       | SW 6010    | m/gn  | 0.81     | 0.739    | 0.868     | 0.865   | 0.806    |   | 0.161 |      |
| Metals, Total   | Aluminum   | SW 6010    | ng/ml | 1.91     | 1.85     | 2.36      | 2.83    | 2.0      |   | 69    |      |
| Metals, Total   | Antimony   | SW 6010    | lm/gn | < 0.0964 | < 0.0964 | < 0.241   | < 0.241 | × 0.14   |   | •     | %00I |
| Metals, Total   | Arsenic    | SW 7060    | lm/go | 0.121    | 0.118    | 0.141     | 0.127   | 0.12     |   | 031   |      |
| Metals, Total   | Barium     | SW 6010    | m/gn  | 1.28     | 1.08     | 1.21      | 90:1    | Ť        |   | S,    |      |
| Metals, Total   | Beryllium  | SW 6010    | ug/ml | 0.00396  | 0.00116  | < 0.00554 | 0.0012  | 0000 × r |   |       | 35%  |
| Metals, Total   | Boron      | SW 6010    | lm/gu | 283      | 472      | 266       | 512     | 547      |   | 54    |      |
| Metals, Total   | Calcium    | SW 6010    | Im/Bn | 12200    | 7720     | 8470      | 8340    | 9,46     |   | 961   |      |
| Metals, Total   | Cadmium    | SW 7131    | lm/gn | 0.174    | 0.185    | 0.171     | 0.168   | 0.17     |   | 918   |      |
| Metals, Total   | Chromium   | SW 6010    | lm/gn | 0.0586   | 0.0476   | 0.118     | 0.0646  | 0.0      |   | 094   |      |
| Metals, Total   | Cobalt     | SW 6010    | lm/gu | 0.163    | 0.113    | 0.152     | 0.143   | 0.14     |   | 965   |      |
| Metals, Total   | Copper     | SW 6010    | Im/gn | 0.0633   | 0.0403   | 0.0563    | 0.0824  | 0.05     |   | 293   |      |
| Metals, Totał   | Iron       | SW 6010    | m/6n  | 0.557    | 1.01     | 0.462     | 0.451   | 0.67     |   | 728   |      |
| Metals, Total   | Lead       | SW 7421    | E/go  | 0.0022   | 0.0027   | 0.0058    | 0.0043  | 0.00     |   | 048   |      |
| Metals, Total   | Magnesium  | SW 6010    | ng/mJ | 784      | 620      | 744       | 999     | 710      |   | 12    |      |
| Metals, Total   | Manganese  | SW 6010    | m/dn  | 135      | 105      | 129       | 116     | 42:      |   | œ     |      |
| Metals, Total   | Mercury    | SW 7470    | im/gn | 0.00028  | 0.00031  | 0.0003    | 0.00036 | 0.00     |   | 9004  |      |
| Metals, Total   | Molybdenum | SW 6010    | m/gn  | 0.0816   | 0.0749   | 0.0718    | 0.0565  | 0.07     |   | 124   |      |
| Metals, Total   | Nickel     | SW 6010    | lm/gn | 0.668    | 0.545    | 0.678     | 0.638   | 0.63     |   | 184   |      |
| Metals, Total   | Phosphorus | SW 6010    | lm/gu | 0.227    | 0.235    | 0.246     | 0.322   | 0.236    |   | 0.024 |      |
| Metals, Total   | Potassium  | SW 6010    | m/gn  | 53.2     | 45.9     | <b>18</b> | 52.2    | 51.      |   | 3.0   |      |
| Metals, Total   | Selenium   | SW 7740    | lm/gn | 0.242    | 0.343    | 0.212     | 0.0462  | 0.26     |   | 202   |      |
| Metals, Total   | Silicon    | SW 6010    | j⊞/gn | 19.2     | 16.9     | 19        | 17.1    | 18,      |   | 12    |      |
| Metals, Total   | Sodium     | SW 6010    | m/gn  | 109      | 91       | 107       | 95.5    | 102      |   | 4.5   |      |
| Metals. Total   | Strontium  | SW 6010    | lm/gs | 15.3     | 11.7     | 14.1      | 12.6    | 13.      |   | 9.    |      |
| Metals, Total   | 돈          | SW 6010    | lm/gu | > 0.0576 | > 0.0576 | < 0.144   | < 0.144 | > 0.0    |   |       | 100% |
| Metals, Total   | Titanium   | SW 6010    | m/gn  | 0.351    | 0.566    | 2.38      | 0.855   | 1.06     |   | 769   |      |
| Metals, Total   | Vanadium   | SW 6010    | m/gn  | 0.158    | 0.145    | 0.346     | 0.163   | 0.21     |   | 279   |      |
| Metals, Total   | Zinc       | SW 6010    | ug/mi | 0.841    | 0.715    | 0.884     | 0.81    | 0.81     |   | 218   |      |
|                 |            |            |       |          |          |           |         |          |   |       |      |

Gypsum Pond Water - Page 2

Sample Stream: Gypsum Pond Water

| Group         Specie         Method         Units         1           Aldehydes         Acetaldehyde         SW 8315         ug/ml         0.002           Aldehydes         Formaldehyde         SW 8315         ug/ml         0.012           Organics, Semi-volatile         1,2.4.Tichlorobenzene         SW 8270         ug/L         0.55           Organics, Semi-volatile         1,2.Dichlorobenzene         SW 8270         ug/L         0.742           Organics, Semi-volatile         1,2.Dichlorobenzene         SW 8270         ug/L         0.742           Organics, Semi-volatile         1,2.Dichlorobenzene         SW 8270         ug/L         0.742           Organics, Semi-volatile         1,2.Dichlorophenzene         SW 8270         ug/L         0.773           Organics, Semi-volatile         1,4.Dichlorophenol         SW 8270         ug/L         0.773           Organics, Semi-volatile         2,4.5.Tichlorophenol         SW 8270         ug/L         0.479           Organics, Semi-volatile         2,4.5.Tichlorophenol         SW 8270         ug/L         0.672           Organics, Semi-volatile         2,4.Dinitrophenol         SW 8270         ug/L         0.672           Organics, Semi-volatile         2,4.Dinitrophenol         SW 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0242                                | 33<br>0.072<br>0.034<br>0.382<br>0.576<br>0.623<br>0.703<br>0.703<br>0.576<br>0.456<br>0.456<br>0.456<br>0.456<br>0.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V V V V V V V V V V V V V V V V V V V | 3d<br>0.074<br>0.032<br>0.373<br>0.563<br>0.608<br>0.563<br>0.514<br>1.94<br>0.445<br>0.487    | × × × × × × × × × × × × × × × × × × × | •                                                                            | 5 0.00 : : : : : : : : : : : : : : : : : | Ratio 100% 100% 100% 100% 100% 100% 100% 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acetaldehyde SW 8315 ug/ml Formaldehyde SW 8315 ug/ml 1,2,4,5-Tetrachlorobenzene SW 8270 ug/L 1,2-Diphenylthydrazine SW 8270 ug/L 1,2-Diphenylthydrazine SW 8270 ug/L 1,4-Dichlorobenzene SW 8270 ug/L 1,-Chloronaphthalene SW 8270 ug/L 1,-Chloronaphthalene SW 8270 ug/L 2,4,6-Tetrachlorophenol SW 8270 ug/L 2,4,5-Trichlorophenol SW 8270 ug/L 2,4,5-Trichlorophenol SW 8270 ug/L 2,4,5-Trichlorophenol SW 8270 ug/L 2,4-Dinitrophenol SW 8270 ug/L 2,4-Dinitrophenol SW 8270 ug/L 2,4-Dinitrotoluene SW 8270 ug/L 2,6-Dichlorophenol SW 8270 ug/L 2,6-Dinitrotoluene SW 8270 ug/L 2,6-Dinitrotoluene SW 8270 ug/L 2,6-Dinitrotoluene SW 8270 ug/L 2,6-Dinitrotoluene SW 8270 ug/L 2,6-Dinitrotoluene SW 8270 ug/L 2,6-Dinitrotoluene SW 8270 ug/L 2,8-Dinitrotoluene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L 2-Methylinaphthalene SW 8270 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V V V V V V V V V V V V V V V V V V V | 1,072<br>1,034<br>1,382<br>1,576<br>1,576<br>1,576<br>1,576<br>1,526<br>1,99<br>1,526<br>1,99<br>1,456<br>1,496<br>1,27<br>1,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v v v v v v v v v v v v v v v v v v v | 0.074<br>0.032<br>0.373<br>0.563<br>0.608<br>0.608<br>0.563<br>0.563<br>0.514<br>1.94<br>0.445 | * * * * * * * * * * * * * * * * * * * |                                                                              |                                          | \$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Acetaldehyde SW 8315 ug/ml Formaldehyde SW 8315 ug/ml 1,2,4,5-Tetrachlorobenzene SW 8270 ug/L 1,2-Dichlorobenzene SW 8270 ug/L 1,2-Diphenylthydrazine SW 8270 ug/L 1,3-Dichlorobenzene SW 8270 ug/L 1,4-Dichlorobenzene SW 8270 ug/L 1,4-Dichlorophenol SW 8270 ug/L 2,4,5-Trichlorophenol SW 8270 ug/L 2,4,5-Trichlorophenol SW 8270 ug/L 2,4-Dimethylphenol SW 8270 ug/L 2,4-Dimitrophenol SW 8270 ug/L 2,4-Dimitrophenol SW 8270 ug/L 2,4-Dimitrophenol SW 8270 ug/L 2,4-Dimitrophenol SW 8270 ug/L 2,5-Dichlorophenol SW 8270 ug/L 2,6-Dichlorophenol SW 8 | V V V V V V V V V V V V V V V V V V V | 1,382<br>1,576<br>1,703<br>1,703<br>1,703<br>1,576<br>1,99<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1 | · · · · · · · · · · · · · · · · · · · | 0.032<br>0.373<br>0.608<br>0.608<br>0.686<br>0.514<br>1.94<br>0.445                            | , , , , , , , , , , , , , , , , , , , |                                                                              |                                          | \$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Formaldehyde SW 8315 ug/ml  1,2,4,5-Tetrachlorobenzene SW 8270 ug/L < 1,2,-Dichlorobenzene SW 8270 ug/L < 1,2-Dichlorobenzene SW 8270 ug/L < 1,3-Dichlorobenzene SW 8270 ug/L < 1,4-Dichlorobenzene SW 8270 ug/L < 1,4-Dichlorophenol SW 8270 ug/L < 2,3,4,6-Tetrachlorophenol SW 8270 ug/L < 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4-Dichlorophenol SW 8270 ug/L < 2,4-Dichlorophenol SW 8270 ug/L < 2,4-Dichlorophenol SW 8270 ug/L < 2,4-Dinitrotoluene SW 8270 ug/L < 2,4-Dinitrotoluene SW 8270 ug/L < 2,6-Dinitrotoluene SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylinaphthalene SW 8270 ug/L < 2-Methylinaphthalene SW 8270 ug/L < 2-Methylinaphthalene SW 8270 ug/L < 2-Methylinaphthalene SW 8270 ug/L < 2-Methylinaphthalene SW 8270 ug/L < 2-Methylinaphthalene SW 8270 ug/L < 3-Methylinaphthalene SW 8270 ug/L <  | V V V V V V V V V V V V V V V V V V V | 1,382<br>1,576<br>1,623<br>1,703<br>1,703<br>1,576<br>1,99<br>1,456<br>1,496<br>1,496<br>1,27<br>1,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · · | 0.032<br>0.373<br>0.608<br>0.608<br>0.686<br>0.514<br>1.94<br>1.94<br>0.445                    | v v v v v v v v v v v v               |                                                                              |                                          | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1,2,4,5-Tetrachlorobenzene SW 8270 ug/L 1,2-Dichlorobenzene SW 8270 ug/L 1,2-Diphenyfhydrazine SW 8270 ug/L 1,4-Dichlorobenzene SW 8270 ug/L 1-Choronaphthalene SW 8270 ug/L 1-Choronaphthalene SW 8270 ug/L 2,4,6-Tetrachlorophenol SW 8270 ug/L 2,4,5-Trichlorophenol SW 8270 ug/L 2,4-Dirntrophenol SW 8270 ug/L 2,4-Dirntrophenol SW 8270 ug/L 2,4-Dirntrophenol SW 8270 ug/L 2,4-Dirntrophenol SW 8270 ug/L 2,2-Dirntrophenol SW 8270 ug/L 2,2-Dirntrophenol SW 8270 ug/L 2,2-Dirntrophenol SW 8270 ug/L 2,6-Dichlorophenol SW 8270 ug/L 2,6-Dirntrophenol SW 8270 ug/L 2,6-Dirntrophenol SW 8270 ug/L 2,6-Dirntrophenol SW 8270 ug/L 2,6-Dirntrophenol SW 8270 ug/L 2,6-Dirntrophenol SW 8270 ug/L 2,6-Dirntrophenol SW 8270 ug/L 2,6-Dirntrophenol SW 8270 ug/L 2,6-Dirntrophenol SW 8270 ug/L 2,8-Dirntrophenol SW 8270 ug/L 2-Methylphenol(o-cresol) SW 8270 ug/L 2-Naphthylamine SW 8270 ug/L 2-Naphthylamine SW 8270 ug/L 2-Naphthylamine SW 8270 ug/L 2-Nitroaniline SW 8270 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V V V V V V V V V V V V V V V V V V V | 1,382<br>1,576<br>1,00<br>1,703<br>1,526<br>1,526<br>1,526<br>1,526<br>1,526<br>1,526<br>1,526<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1,456<br>1 | · · · · · · · · · · · · · · · · · · · | 0.373<br>0.563<br>0.608<br>100<br>0.568<br>0.514<br>1.94<br>0.445<br>0.487                     | * * * * * * * * * * * * * * * * * * * | .570<br>.570<br>.540<br>.540<br>.570<br>.570<br>.468<br>.468<br>.407         | : : : : : : : : : : : : : : : : : : : :  | \$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,2,4-Trichlorobenzene SW 8270 ug/L<br>1,2-Dichlorobenzene SW 8270 ug/L<br>1,3-Dichlorobenzene SW 8270 ug/L<br>1,4-Dichlorobenzene SW 8270 ug/L<br>1-Chloronaphthalene SW 8270 ug/L<br>2,3,4,6-Tetrachlorophenol SW 8270 ug/L<br>2,4,5-Trichlorophenol SW 8270 ug/L<br>2,4-Dichlorophenol SW 8270 ug/L<br>2,4-Dichlorophenol SW 8270 ug/L<br>2,4-Dinitrophenol SW 8270 ug/L<br>2,4-Dinitrophenol SW 8270 ug/L<br>2,6-Dinitrophenol SW 8270 ug/L<br>2,6-Dinitrotoluene SW 8270 ug/L<br>2,6-Dinitrotoluene SW 8270 ug/L<br>2,6-Dinitrotoluene SW 8270 ug/L<br>2,6-Dinitrophenol SW 8270 ug/L<br>2,6-Dinitrophenol SW 8270 ug/L<br>2,6-Dinitrophenol SW 8270 ug/L<br>2-Chlorophenol SW 8270 ug/L<br>2-Chlorophenol SW 8270 ug/L<br>2-Methylnaphthalene SW 8270 ug/L<br>2-Methylnaphthalene SW 8270 ug/L<br>2-Naphthylamine SW 8270 ug/L<br>2-Naphthylamine SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>3-Nitroanili                                                                                                                                                                            | V V V V V V V V V V V V V V V V V V V | 1,576<br>1,703<br>1,703<br>1,576<br>1,99<br>1,456<br>1,498<br>1,498<br>1,498<br>1,498<br>1,498<br>1,498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · · | 0.563<br>0.608<br>100<br>0.686<br>0.514<br>1.94<br>0.445<br>0.487                              | * * * * * * * * * * * * * * * * * * * | .6570<br>100<br>100<br>.540<br>.673<br>.570<br>.1.74<br>.468<br>.407<br>.414 |                                          | \$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,2-Dichlorobenzene SW 8270 ug/L<br>1,2-Diphenythydrazine SW 8270 ug/L<br>1,4-Dichlorobenzene SW 8270 ug/L<br>1,4-Dichlorobenzene SW 8270 ug/L<br>1-Chkororaphthalene SW 8270 ug/L<br>2,3,4,6-Tetrachlorophenol SW 8270 ug/L<br>2,4,5-Trichlorophenol SW 8270 ug/L<br>2,4-Dimethylphenol SW 8270 ug/L<br>2,4-Dimitrophenol SW 8270 ug/L<br>2,4-Dimitrophenol SW 8270 ug/L<br>2,6-Dichlorophenol SW 8270 ug/L<br>2,6-Dichlorophenol SW 8270 ug/L<br>2,6-Dichlorophenol SW 8270 ug/L<br>2,6-Dichlorophenol SW 8270 ug/L<br>2,6-Dichlorophenol SW 8270 ug/L<br>2,6-Dichlorophenol SW 8270 ug/L<br>2,6-Dichlorophenol SW 8270 ug/L<br>2,6-Dichlorophenol SW 8270 ug/L<br>2,7-Motrylnaphthalene SW 8270 ug/L<br>2-Chlorophenol SW 8270 ug/L<br>2-Chlorophenol SW 8270 ug/L<br>2-Methylphenol(o-cresol) SW 8270 ug/L<br>2-Methylphenol(o-cresol) SW 8270 ug/L<br>2-Naphthylamine SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L                                                                                                                                                                         | V V V V V V V V V V V V V V V V V V V | 1,703<br>1,703<br>1,576<br>1,576<br>1,456<br>1,459<br>1,459<br>1,459<br>1,459<br>1,459<br>1,459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · · | 0.608<br>100<br>0.686<br>0.514<br>1.94<br>0.445<br>0.487                                       | · · · · · · · · · · · · · · · · · · · | .683<br>100<br>.540<br>.573<br>.570<br>.174<br>.468<br>.407<br>.414          |                                          | 100%<br>100%<br>100%<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1,2-Diphenylhydrazine SW 8270 ug/L < 1,3-Dichlorobenzene SW 8270 ug/L < 1,4-Dichlorobenzene SW 8270 ug/L < 1-Chloronaphthalene SW 8270 ug/L < 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4,6-Trichlorophenol SW 8270 ug/L < 2,4-Dimethylphenol SW 8270 ug/L < 2,4-Dimethylphenol SW 8270 ug/L < 2,4-Dimitrophenol SW 8270 ug/L < 2,4-Dimitrophenol SW 8270 ug/L < 2,4-Dimitrophenol SW 8270 ug/L < 2,4-Dimitrophenol SW 8270 ug/L < 2,4-Dimitrophenol SW 8270 ug/L < 2,4-Dimitrophenol SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Mothylphenol(o-cresol) SW 8270 ug/L < 2,6-Mothylphenol(o-cresol) SW 8270 ug/L < 2,7-Naphthylamine SW 8270 ug/L < 2,7-Nitroaniline SW 8270 ug/L < 2,8-Naphthylamine SW 8270 ug/L < 2,8-Naphthylamine SW 8270 ug/L < 2,8-Naphthylamine SW 8270 ug/L < 2,8-Naphthylamine SW 8270 ug/L < 3,8-Naphthylamine SW 8 | V V V V V V V V V V V V V V V V V V V | 100<br>1,576<br>1,526<br>1,99<br>1,456<br>1,489<br>1,489<br>1,558<br>1,496<br>1,558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v v v v v v v v                       | 100<br>0.686<br>0.514<br>1.94<br>0.445<br>0.487                                                | · · · · · · · · · · · · · · · · · · · | 100<br>540<br>570<br>570<br>1.74<br>468<br>407<br>414                        | 1111111111                               | \$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,3-Dichlorobenzene SW 8270 ug/L < 1,4-Dichlorobenzene SW 8270 ug/L < 1-Chloronaphthalene SW 8270 ug/L < 2,3,4,6-Tetrachlorophenol SW 8270 ug/L < 2,4,6-Trichlorophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhorophenol SW 8270 ug/L < 2,6-Dirhoroniline SW 8270 ug/L < 2,6-Dirhoroniline SW 8270 ug/L < 2,6-Dirhoroniline SW 8270 ug/L < 3,6-Dirhoroniline v v v v v v v v v                     | 1,703<br>1,576<br>1,526<br>1,99<br>1,456<br>1,496<br>1,558<br>1,27<br>1,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · ·                     | 0.568<br>0.514<br>1.94<br>0.445<br>0.487                                                       | · · · · · · · · · · · ·               | .540<br>.570<br>1.74<br>.468<br>.407<br>.414                                 |                                          | \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$000 \$ \$0 |
| 1,4-Dichlorobenzene SW 8270 ug/L<br>1-Chloronaphthalene SW 8270 ug/L<br>2,3,4,6-Tetrachlorophenol SW 8270 ug/L<br>2,4-Diratrophenol SW 8270 ug/L<br>2,4-Diratrophenol SW 8270 ug/L<br>2,4-Diratrophenol SW 8270 ug/L<br>2,4-Diratrophenol SW 8270 ug/L<br>2,4-Diratrophenol SW 8270 ug/L<br>2,6-Dichlorophenol SW 8270 ug/L<br>2,6-Diratrotoluene SW 8270 ug/L<br>2,6-Diratrotoluene SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Chlorophenol SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>2,Naphthylamine SW 8270 ug/L<br>3,Naphthylamine SW 8270 ug/L<br>3,Naphthylamine SW 8270 u                                                                                                                                                                            | V V V V V V V V V                     | 1,576<br>1,526<br>1,99<br>1,456<br>1,499<br>1,496<br>1,558<br>1,27<br>1,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 0.563<br>0.514<br>1.94<br>0.445<br>0.487                                                       | · · · · · · · · · · · ·               | .673<br>.570<br>.174<br>.468<br>.407<br>.414<br>.490                         |                                          | # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1-Chkoronaphthalene SW 8270 ug/L < 2,3,4,6-Tetrachlorophenol SW 8270 ug/L < 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,6-Dirntrotoluene SW 8270 ug/L < 2,6-Dirntrotoluene SW 8270 ug/L < 2,5-Dirntrotoluene SW 8270 ug/L < 2,5-Morthylnaphthalene SW 8270 ug/L < 2,5-Methylnaphthalene SW 8270 ug/L < 2,5-Methylnaphthalene SW 8270 ug/L < 2,5-Methylnaphthalene SW 8270 ug/L < 2,5-Naphthylamine SW 8270 ug/L < 2,5-Naphthylamine SW 8270 ug/L < 2,5-Naphthylamine SW 8270 ug/L < 2,5-Naphthylamine SW 8270 ug/L < 2,5-Naphthylamine SW 8270 ug/L < 3,5-Naphthylamine SW 827 | V V V V V V V V                       | 1,526<br>1,99<br>1,456<br>1,496<br>1,496<br>1,558<br>1,27<br>1,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · ·                           | 0.514<br>1.94<br>0.445<br>0.487<br>0.484                                                       | · · · · · · · · · · · · · · · · · · · | .570<br>1.74<br>1.468<br>1.407<br>1.414<br>1.16                              | :::::::                                  | \$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1-Naphthylamine SW 8270 ug/L < 2,3,4,6-Tetrachlorophenol SW 8270 ug/L < 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,4-Dirntrophenol SW 8270 ug/L < 2,5-Dirntrophenol SW 8270 ug/L < 2,6-Dirntrotohenol SW 8270 ug/L < 2,6-Dirntrotohenol SW 8270 ug/L < 2,6-Dirntrotohenol SW 8270 ug/L < 2,5-Dirntrotohenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Naphthylamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V V V V V V                           | 1,99<br>1,456<br>1,496<br>1,558<br>1,27<br>1,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v v v v                               | 1.94<br>0.445<br>0.487<br>0.484                                                                | · · · · · · ·                         | 1,74<br>.468<br>.407<br>.414<br>.490                                         | ::::::                                   | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2,3,4,6-Tetrachlorophenol SW 8270 ug/L < 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4-Dichlorophenol SW 8270 ug/L < 2,4-Dinitrophenol SW 8270 ug/L < 2,4-Dinitrophenol SW 8270 ug/L < 2,4-Dinitrotoluene SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Dinitrotoluene SW 8270 ug/L < 2,5-Dichlorophenol SW 8270 ug/L < 2-Chloronaphthalene SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Naphthylamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v v v v v ·                           | 1,456<br>1,496<br>1,558<br>1,27<br>4,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v v v v                               | 0.445<br>0.487<br>0.484                                                                        | v v v v v                             | .468<br>.407<br>.414<br>.116                                                 | :::::                                    | 200 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2,4,5-Trichlorophenol SW 8270 ug/L < 2,4,6-Trichlorophenol SW 8270 ug/L < 2,4-Dichlorophenol SW 8270 ug/L < 2,4-Dinitrophenol SW 8270 ug/L < 2,4-Dinitrophenol SW 8270 ug/L < 2,6-Dinitrotoluene SW 8270 ug/L < 2,6-Dinitrotoluene SW 8270 ug/L < 2,6-Dinitrotoluene SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylnaphthalene SW 8270 ug/L < 2-Methylnaphthalene SW 8270 ug/L < 2-Methylnaphthalene SW 8270 ug/L < 2-Methylnamine SW 8270 ug/L < 2-Methylnamine SW 8270 ug/L < 2-Naphthylamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v v v v ·                             | 1,496<br>1,496<br>1,558<br>1,27<br>4,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v v v                                 | 0.487<br>0.484                                                                                 | , , , ,                               | .407<br>.414<br>.490                                                         | 1 1 1 1                                  | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2,4-Dichlorophenol SW 8270 ug/L < 2,4-Dichlorophenol SW 8270 ug/L < 2,4-Dimethylphenol SW 8270 ug/L < 2,4-Dimitrophenol SW 8270 ug/L < 2,4-Dinitrotohene SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2-Chloronaphthalene SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Naphthylamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | v v v v                               | ),496<br>),558<br>1.27<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v v                                   | 0.484                                                                                          | v v v                                 | .414<br>.490<br>1.16                                                         | 1 1 1                                    | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2,4-Dichlorophenol SW 8270 ug/L < 2,4-Dimethylphenol SW 8270 ug/L < 2,4-Dinitrophenol SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Naphthylamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v v v                                 | 1,558<br>1,27<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                     |                                                                                                | v v                                   | .490<br>I.16                                                                 | ; ;                                      | % % % % % % % % % % % % % % % % % % %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2,4-Dimethylphenol SW 8270 ug/L < 2,4-Dinitrophenol SW 8270 ug/L < 2,6-Dinitrotoluene SW 8270 ug/L < 2,6-Dichtorophenol SW 8270 ug/L < 2,6-Dinitrotoluene SW 8270 ug/L < 2,6-Dinitrotoluene SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Naphthylamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>v</b> v                            | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 0.544                                                                                          | ٧                                     | 16                                                                           | :                                        | % % % %<br>8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2,4-Dinitrophenol SW 8270 ug/L < 2,4-Dinitrotoluene SW 8270 ug/L < 2,6-Dichlorophenol SW 8270 ug/L < 2,6-Dinitrotoluene SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylnaphthalene SW 8270 ug/L < 2-Methylnaphthalene SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Naphthylamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                     | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v                                     | 1.24                                                                                           |                                       |                                                                              | •                                        | % % & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2,6-Diritrotoluene SW 8270 ug/L<br>2,6-Diritrotoluene SW 8270 ug/L<br>2,6-Diritrotoluene SW 8270 ug/L<br>2-Chloronaphthalene SW 8270 ug/L<br>2-Chlorophenol SW 8270 ug/L<br>2-Methylnaphthalene SW 8270 ug/L<br>2-Methylphenol(o-cresol) SW 8270 ug/L<br>2-Naphthylamine SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>2-Nitroaniline SW 8270 ug/L<br>3-Nitroaniline                                                                                                                                                                           |                                       | 073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v                                     | 4                                                                                              | ۷                                     | 5.39                                                                         |                                          | 808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2,6-Dichlorophenol SW 8270 ug/L < 2-Chloronaphthalene SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylnaphthalene SW 8270 ug/L < 2-Methylphenol(o-cresol) SW 8270 ug/L < 2-Naphthylamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                     | ).D/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.566                                                                                          | v                                     | 0.552                                                                        | :                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2,6-Dinitrotoluene SW 8270 ug/L  2,6-Dinitrotoluene SW 8270 ug/L  2,2-Chloropheriol SW 8270 ug/L  2,2-Chloropheriol SW 8270 ug/L  2,2-Methylnaphthalene SW 8270 ug/L  2,2-Methylphenol(o-cresol) SW 8270 ug/L  2,2-Naphthylamine SW 8270 ug/L  2,2-Nitroaniline SW 8270 ug/L  4,2-Nitroaniline SW 8270 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v                                     | 0.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.49                                                                                           | v                                     | 0.596                                                                        | ;                                        | 8<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2-Chlorophthalene SW 8270 ug/L < 2-Chlorophenol SW 8270 ug/L < 2-Methylnaphthalene SW 8270 ug/L < 2-Nathylphenol(o-cresol) SW 8270 ug/L < 2-Nathylphamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.824                                                                                          | v                                     | 0.587                                                                        | ;                                        | <b>%</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Chlorophenol SW 8270 ug/L < 2-Methylnaphthalene SW 8270 ug/L < 2-Methylphenol(o-creaol) SW 8270 ug/L < 2-Naphthylamine SW 8270 ug/L < 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                     | 0.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>~</b>                              | 0.375                                                                                          | o<br>v                                | 0.347                                                                        | :                                        | 100<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-Methylnaphthatene SW 8270 ug/L <<br>2-Methylphenol(o-cresol) SW 8270 ug/L <<br>2-Naphthylamine SW 8270 ug/L <<br>2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v                                     | 0.623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 909.0                                                                                          | v                                     | 0.676                                                                        | :                                        | <b>100</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2-Methylphenol(o-cresol) SW 8270 ug/L <<br>2-Naphthylamine SW 8270 ug/L <<br>2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v                                     | 0.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.348                                                                                          | v                                     | 493                                                                          | :                                        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2-Naphthylamine SW 8270 ug/L <<br>2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v                                     | 0.304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.297                                                                                          | o<br>v                                | 0.407                                                                        | :                                        | %001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2-Nitroaniline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v                                     | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                     | 1.53                                                                                           | ·                                     | 1.72                                                                         | :                                        | <b>200</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                     | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                     | 0.634                                                                                          | v                                     | 0.517                                                                        | ;                                        | 200%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Organics, Semi-volatile 2-Nitrophenol SW 8270 ug/L < 0.419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v                                     | 0.512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0,5                                                                                            | o<br>v                                | 0.466                                                                        | :                                        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2-Picoline SW 8270 ug/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v                                     | 0.811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.791                                                                                          | o<br>v                                | 0.926                                                                        | :                                        | ₹00<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3,3'-Dichlorobenzidine SW 8270 ug/L < (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v                                     | 0.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.319                                                                                          | v                                     | 0.397                                                                        | +                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Organics, Serni-volatile 3-Methylcholanthrene SW 8270 ug/L < 0.746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٧                                     | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                     | 0.478                                                                                          | o<br>v                                | 0.618                                                                        | ;                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v                                     | 0.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.376                                                                                          | o<br>v                                | 0.435                                                                        | :                                        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Organics, Semi-volatile 4,6-Dinitro-2-methylphenol SW 8270 ug/L < 0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v                                     | 0.422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v                                     | 0.411                                                                                          | v                                     | 0.588                                                                        | :                                        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Organics, Semi-volatile 4-Aminobiphenyl SW 8270 ug/L < 0.712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                     | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                     | 1.14                                                                                           | o<br>v                                | 0.941                                                                        | :                                        | %00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Gypsum Por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gypsum Pond Water - Page 3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                                                                |                                       |                                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Liquid Stream Data Summary

H-109 Sample Stream: Gypsum Pond Water

| Analyte                   |                              | Analytical |                                         |            | Run       | Run                      |     | Run   |   | Run   |          |         | <b>%96</b> | 7            |
|---------------------------|------------------------------|------------|-----------------------------------------|------------|-----------|--------------------------|-----|-------|---|-------|----------|---------|------------|--------------|
| Group                     | Specie                       | Method     | Units                                   |            | -         | 2                        |     | 3a    |   | 3d    |          | Average | 5          | Ratio        |
|                           | Lanced and Lanced and Lanced | 0700 7010  | 101                                     | ,          | 767 0     |                          | ,   | 77.75 | ٧ | 0.483 | ٧        | 0.455   | ;          | 400F         |
| Organics, Serin-Volatific |                              | 0140040    | j :                                     | ′ 、        | 1000      |                          | ٠,  |       | • | 0.403 | •        | 7050    |            | 80           |
| Organics, Sermi-volatile  |                              | C147 0270  | ֓֞֝֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | , <b>,</b> | 0.003     |                          | , v | 0.000 |   | 0.403 | v        | 0.458   |            | 100          |
| Organica, Semi-volume     | 4 Mathigh Angles             | C14/ 6170  | J                                       | , ,        | 0.00      |                          |     | 0.4E  |   | 0.439 | •        | 900     | ;          | į į          |
| Organica, Semi-volatile   | 4-weinyphenol(p-cread)       | SW 8270    | 9 9                                     |            | 0.461     |                          | v   | 0.594 | ٧ | 0.58  | v        | 0.528   | :          | 100<br>%     |
| Organica Semi-votatile    |                              | SW 8270    | 1/0/1                                   | ٧          | 0.658     |                          | v   | 0.919 | ٧ | 0.897 | ٧        | 0.789   | :          | 00<br>%      |
| Organics Semi-volatile    | 7 12-Dim                     | SW 8270    | ua/L                                    | v          | 1.83      |                          | v   | 1.3   | ٧ | 1.27  | v        | 1.57    | :          | 100%         |
| Organics, Semi-volatile   |                              | SW 8270    | rg/L                                    | v          | 0.455     |                          | v   | 0.267 | v | 0.26  | ٧        | 0.361   | ;          | 100%         |
| Organics, Semi-volatile   | Acenaphthylene               | SW 8270    | ng/L                                    | v          | 0.215     |                          | v   | 0.41  | v | 0.4   | v        | 0.313   | :          | 100%         |
| Organics, Semi-volatile   | Acetophenone                 | SW 8270    | . 7/65n                                 | ٧          | 0.437     |                          | v   | 0.548 | v | 0.535 | ٧        | 0.493   | :          | 100%         |
| Organics, Semi-volatile   | Aniline                      | SW 8270    | ug/L                                    | ٧          | 0.889     |                          | v   | 0.604 | v | 0.589 | ٧        | 0.747   | :          | 100%         |
| Organics, Semi-volatile   | Anthracene                   | SW 8270    | ng/L                                    | ٧          | 0.553     |                          | v   | 0.361 | ٧ | 0.352 | ٧        | 0.457   | :          | 100<br>%     |
| Organics, Semi-volatile   | Benzidine                    | SW 8270    | J/gn                                    | v          | 29        |                          | v   | 20    | v | 8     | v        | 8       | ;          | 100%         |
| Organics, Semi-volatile   | Benzo(a)anthracene           | SW 8270    | ng/L                                    | ٧          | 0.49      |                          | v   | 0.44  | v | 0.43  | v        | 0.47    | ;          | 100%         |
| Organics, Semi-volatile   | Benzo(a)pyrene               | SW 8270    | ug/L                                    | v          | 0.365     |                          | v   | 905.0 | v | 0.496 | v        | 0.437   | ;          | 100%         |
| Organics, Semi-volatile   | Benzo(b)fluoranthene         | SW 8270    | ug/L                                    | v          | 0.542     |                          | v   | 0.89  | v | 0.869 | v        | 0.716   | :          | 100%         |
| Organics, Semi-volatile   | Benzo(g,h,i)perylene         | SW 8270    | ug/L                                    | ٧          | 0.464     |                          | v   | -     | v | 0.976 | v        | 0.732   | :          | 100%         |
| Organics, Semi-volatile   | Benzo(k)fluoranthene         | SW 8270    | ug/L                                    | ٧          | 0.922     |                          | v   | 0.979 | v | 0.956 | v        | 0.951   | :          | 100%         |
| Organics, Semi-volatile   | Benzoic acid                 | SW 8270    | ug/L                                    | ¥          | 3.77      |                          | v   | 37.8  | ٧ | 36.9  | ٧        | 20.79   | ;          | 100 <b>%</b> |
| Organics, Semi-volatile   | Benzył alcohoł               | SW 8270    | ug/L                                    | v          | 1.03      |                          | v   | 0.598 | v | 0.584 | v        | 0.814   | :          | 100%         |
| Organics, Semi-volatile   | Butylbenzylphthalate         | SW 8270    | ug/L                                    |            | 0.296     |                          | v   | 0.613 | v | 0.598 | v        | 0.613   | ;          | 51%          |
| Organics, Semi-volatile   | Chrysene                     | SW 8270    | ug/L                                    | ٧          | 0.637     |                          | v   | 0.526 | v | 0.514 | v        | 0.582   | :          | 100%         |
| Organics, Semi-volatile   | Di-n-octylphthalate          | SW 8270    | ug/L                                    | ٧          | 0.868     |                          | v   | 0.345 | v | 0.337 | v        | 0.607   | :          | 100%         |
| Organics, Semi-votatile   | Dibenz(a,h)anthracene        | SW 8270    | ng/L                                    | ٧          | 0.451     |                          | v   | 0.795 | v | 0.776 | v        | 0.623   | :          | 700%         |
| Organics, Semi-volatile   | Dibenz(a.j)acridine          | SW 8270    | ng/L                                    | ٧          | 0.553     |                          | v   | 0.825 | v | 908.0 | v        | 0.689   | ;          | 100%         |
| Organics, Semi-volatile   | Dibenzofuran                 | SW 8270    | ng/L                                    | ٧          | 0.389     |                          | v   | 0.526 | v | 0.514 | v        | 0.458   | ;          | 100%         |
| Organics, Semi-volatile   | Dibutyfphthalate             | SW 8270    | ug/L                                    | v          | 0.47      |                          | v   | 0.318 | v | 0.31  | <b>v</b> | 0.394   | ;          | 100%         |
| Organics, Seml-volatile   | Diethyfphthalate             | SW 8270    | ng/L                                    | v          | 0.32      |                          | v   | 0.505 | v | 0.493 | v        | 0.413   | :          | 100%         |
| Organics, Semi-volatile   | Ö                            | SW 8270    | ng/L                                    | v          | 120       |                          | v   | 120   | v | 120   | <b>v</b> | 120     | ;          | 100%         |
| Organics, Semi-volatile   | Dimethylphthalate            | SW 8270    | ug/L                                    |            | 1.44      |                          |     | 1.09  |   | 1.02  |          | 1.27    | 2.22       |              |
| Organics, Semi-volatile   |                              | SW 8270    | ug/L                                    | v          | 0.503     |                          | v   | 0.272 | ٧ | 0.265 | v        | 0.388   | ;          | 100%         |
| Organics Semi-volatile    | Ethyl methanesulfonate       | SW 8270    | ug/L                                    | v          | 0.479     |                          | v   | 999.0 | v | 0.65  | v        | 0.573   | :          | 100%         |
| Organics, Semi-volatife   | Fluoranthene                 | SW 8270    | √g/                                     | v          | 0.608     |                          | v   | 0.462 | ٧ | 0.451 | v        | 0.535   | :          | 100%         |
|                           |                              |            |                                         |            | Gvosum Po | Gvosum Pond Water - Page | _   | 4     |   |       |          |         |            |              |
|                           |                              |            |                                         |            |           |                          |     | •     |   |       |          |         |            |              |

Sample Stream: Gypsum Pond Water

| Analyte                 |                             | Analytical |              |   | Run    | ··       | Run                             |        | Run      |   | Run   |   |         | 85%   | 占     |
|-------------------------|-----------------------------|------------|--------------|---|--------|----------|---------------------------------|--------|----------|---|-------|---|---------|-------|-------|
| Group                   | Specie                      | Method     | Units        | 1 | -      |          | 2                               |        | 38       |   | 39    |   | Average | ਹ     | Ratio |
|                         |                             |            |              |   |        |          |                                 |        |          |   |       |   |         |       |       |
| Organics, Semi-volatile | Fluorene                    | SW 8270    | ug/L         | ٧ | 0.32   |          |                                 | v      | 3.373    | ٧ | 0.364 | v | 0.347   | :     | 100%  |
| Organics, Semi-volatile | Hexachlorobenzene           | SW 8270    | <b>1/6</b> 0 | ٧ | 0.223  |          |                                 | v      | 308      | ٧ | 0.3   | v | 0.266   | :     | 100%  |
| Organics, Semi-volatile | Hexachlorobutadiene         | SW 8270    | / <b>g</b> n | v | 0.665  |          |                                 | v      | 502      | v | 0.49  | v | 0.584   | :     | 100%  |
| Organics, Semi-volatile | Hexachlorocyclopentadiene   | SW 8270    | ug/L         | v | 8.5    |          |                                 | v      | 5.77     | v | 5.64  | ٧ | 7.14    | :     | 100%  |
| Organics, Semi-volatile | Hexachloroethane            | SW 8270    | ug/L         | • | 0.566  |          |                                 | v      | .623     | ٧ | 0.608 | ٧ | 0.595   | :     | 100%  |
| Organics, Semi-votatile | Indeno(1,2,3-cd)pyrene      | SW 8270    | ug/L         | v | 0.5    |          |                                 | v      | 1,3      | ٧ | 1.27  | v | 0.90    | ;     | 100%  |
| Organics, Semi-volatile | Isophorone                  | SW 8270    | √gu          | v | 0.273  |          |                                 | v      | 0.604    | ٧ | 0.589 | v | 0.439   | :     | 100%  |
| Organics, Semi-volatile | Methyl methanesulfonate     | SW 8270    | ug/l         | v | 20     |          |                                 | ٧      | SS<br>SS | v | 8     | ٧ | ß       | :     | 100%  |
| Organics, Semi-volatile | N-Nitroso-di-n-butylamine   | SW 8270    | ug/L         | v | 1.25   |          |                                 | v      | .617     | ٧ | 0.602 | ٧ | 0.934   | ;     | 100%  |
| Organics, Semi-volatile | N-Nitrosodimethylamine      | SW 8270    | ug/L         | ٧ | 1.27   |          |                                 | _<br>v | 0.777    | v | 0.752 | ٧ | 1.021   | ;     | 100%  |
| Organics, Semi-volatile | N-Nitrosodiphenylamine      | SW 8270    | ug/L         | v | 0.539  |          |                                 | v      | 7.264    | v | 0.257 | v | 0.402   | ;     | 100%  |
| Organics, Semi-volatile | N-Nitrosodipropylamine      | SW 8270    | 7/gn         | ٧ | 0.715  |          |                                 | v      | .641     | ٧ | 0.626 | v | 0.678   | ;     | 100%  |
| Organics, Semi-volatile | N-Nitrosopiperidine         | SW 8270    | ng/L         | v | 0.898  |          |                                 | v      | .585     | ٧ | 0.571 | v | 0.742   | ;     | 100%  |
| Organics, Semi-volatile | Naphthalene                 | SW 8270    | 7            | v | 0.694  |          |                                 | v      | .469     | v | 0.457 | v | 0.582   | ;     | 100%  |
| Organics, Semi-votatile | Nitrobenzene                | SW 8270    | ug/L         | ٧ | 0.503  |          |                                 | v      | .825     | v | 0.806 | v | 0.664   | ;     | 100%  |
| Organics, Semi-volatile | Pentachlorobenzene          | SW 8270    | ug/L         | v | 0.422  |          |                                 | v      | .367     | v | 0.358 | ٧ | 0.395   | ;     | 100%  |
| Organics, Semi-volatile | Pentachloronitrobenzene     | SW 8270    | 1/gn         | v | 1.97   |          |                                 | v      | 1.35     | ٧ | 1.32  | ٧ | 1.66    | :     | 100%  |
| Organics, Semi-volatile | Pentachlorophenol           | SW 8270    | ng/L         | v | 0.823  |          |                                 | v      | .872     | v | 0.851 | v | 0.848   | :     | 100%  |
| Organics, Semi-volatile | Phenacetin                  | SW 8270    | ug/L         | v | 0.514  |          |                                 | v      | 378      | ٧ | 0.369 | v | 0.446   | ;     | 100%  |
| Organics, Semi-volatile | Phenanthrene                | SW 8270    | ug/L         | v | 0.592  |          |                                 | v      | .459     | v | 0.448 | v | 0.526   | :     | 100%  |
| Organics, Semi-volatile | Phenol                      | SW 8270    | ug/L         | v | 0.38   |          |                                 | v      | 998:     | ٧ | 0.845 | ٧ | 0.623   | ;     | 100%  |
| Organics, Semi-volatife | Pronamide                   | SW 8270    | ug/L         | ٧ | 0.704  |          |                                 | v      | 236      | v | 0.231 | ٧ | 0,470   | :     | 100%  |
| Organics, Semi-volatile | Pyrene                      | SW 8270    | ug/L         | v | 0.446  |          |                                 | v      | 0.4      | v | 0.39  | v | 0.423   | ;     | 100%  |
| Organics, Semi-volatile | Pyridine                    | SW 8270    | ng/L         | ٧ | 1.1    |          |                                 | v      | 0.576    | v | 0.563 | ٧ | 0.838   | :     | 100%  |
| Organics, Semi-volatile | bis(2-Chloroethoxy)methane  | SW 8270    | ug/L         | ٧ | 0.535  |          |                                 | v      | .594     | v | 0.58  | v | 0.565   | ;     | 100%  |
| Organics, Semi-volatile | bis(2-Chloroethyl)ether     | SW 8270    | ng/L         | v | 0.697  |          |                                 | v      | 0.375    | v | 0.367 | ٧ | 0.536   | ;     | 100%  |
| Organics, Semi-volatile | bis(2-Chtoroisopropyt)ether | SW 8270    | ug/L         | v | 0.691  |          |                                 | ·      | 0.782    | v | 0.764 | v | 0.737   | :     | 100%  |
| Organics, Semi-volatile | bis(2-Ethythexyt)phthalate  | SW 8270    | ug/L         |   | 14.7   |          |                                 |        | 2.03     | v | 0.556 |   | 8.365   | 80.52 |       |
| Organics, Seml-volatile | p-Chtoroaniline             | SW 8270    | ug/L         | ٧ | 0.532  |          |                                 | v      | 0.73     | v | 0.713 | v | 0.631   | ;     | 100%  |
| Organics, Semi-volatile | p-Dimethylaminoazobenzene   | SW 8270    | ug/L         | ٧ | 0.49   |          |                                 | v      | 0.712    | v | 0.695 | ٧ | 0.601   | ;     | 100%  |
| Organics, Volatile      | 1,1,1-Trichloroethane       | SW 8240    | ug/t         | ¥ | ស      | ٧        | ı,                              | v      | ιΩ       | v | Ŋ     | v | Ŋ       | :     | 100%  |
| Organics, Volatile      | 1,1,2,2-Tetrachloroethane   | SW 8240    | √gu          | v | ıc     | v        | ις.                             | v      | 2        | v | ຜ     | ٧ | S       | :     | 100%  |
|                         |                             |            |              |   | Gypsun | n Pond N | <b>3ypsum Pond Water - Page</b> | age 5  |          |   |       |   |         |       |       |
|                         |                             |            |              |   |        |          |                                 |        |          |   |       |   |         |       |       |

Liquid Stream Data Summary

H-108 Sample Stream: Gypsum Pond Water

| Specie        |
|---------------|
| !             |
| SW 8240       |
| SW 8240       |
| SW 8240       |
| SW 8240       |
| SW 8240       |
| SW 8240       |
| SW 8240       |
| SW 8240       |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/l. |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/l  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
| SW 8240 ug/L  |
|               |

Gypsum Pond Water - Page 6

Sample Stream: JBR Underflow Slurry Filtrate

| Analyte         |              | Analytical  |         | Run        |   | Run      |      | Ruh        |   | Run     |   |         | %96<br>% | 占     |
|-----------------|--------------|-------------|---------|------------|---|----------|------|------------|---|---------|---|---------|----------|-------|
| Group           | Specie       | Method      | Units   | -          |   | 2        |      | 3a         |   | PE      |   | Average | ਠ        | Ratio |
| Reduced Species | Cyanide      | SW 9012     | ng/ml   | 0.114      |   | 0.0372   |      | 0.0959     |   | 0.0205  |   | 0.0824  | 0.0997   |       |
| Reduced Species | Ammonia as N | EPA 350.1   | lm/gu   | 43.9       |   | £        | v    | 40.2       |   | 41.6    | v | 40.2    | ;        | 19%   |
| Anions          | Chloride     | EPA 300     | Jw/gn   | 27,200     |   | 24,100   |      | 26,900     |   | 25,600  |   | 26,067  | 4,248    |       |
| Anions          | Fluoride     | EPA 340.2   | lm/gn   | 23.8       |   | 35.1     |      | 34.1       |   | 34.1    |   | 31.0    | 15.5     |       |
| Anions          | Phosphate    | EPA 365.2   | og/m/   | 0.02       |   | 0.118    |      | 0.0122     | v | 0.02    |   | 0.047   | 0.153    | 7%    |
| Anions          | Sulfate      | EPA 300.0   | ng/mj   | 740        |   | 989      |      | <b>209</b> |   | 709     |   | 712     | 83       |       |
| Anions          | Sulfite      | EPRI-FGD-M2 | jw/bn   | 4          |   | 9.1      |      | 2.4        |   | 1.6     |   | 2.67    | 3.04     |       |
| Metals, Soluble | Aluminum     | SW 6010     | lm/gu   | 10.7       |   | 14.4     |      | 11.9       |   | 12.4    |   | 12.3    | 4.7      |       |
| Metals, Soluble | Antimony     | SW 6010     | > lm/gn | 0.241      | ٧ | 0.241    | v    | 0.0964     | v | 0.241   | ٧ | 0.1928  | :        | 100%  |
| Metals, Soluble | Arsenic      | SW 7060     | ng/m/   | 0.315      |   | 0.157    |      | 0.121      |   | 0.352   |   | 0.198   | 0.256    |       |
| Metals, Soluble | Barium       | SW 6010     | lm/gu   | 3.33       |   | 3.52     |      | 3.31       |   | 3.99    |   | 3.39    | 0.29     |       |
| Metals, Soluble | Beryllium    | SW 6010     | ng/mi   | 0.0085     |   | 0.0048   |      | 0.00728    |   | 0.0042  |   | 0.0069  | 0.0047   |       |
| Metals, Soluble | Boron        | SW 6010     | ng/ml   | 1450       |   | 1430     |      | 1310       |   | 1480    |   | 1,397   | 188      |       |
| Metals, Soluble | Cadmium      | SW 7131     | Juu/Bn  | 0.473      |   | 0.47     |      | 0.426      |   | 0.467   |   | 0.456   | 0.065    |       |
| Metals, Soluble | Calcium      | SW 6010     | ng/mi   | 20,100     |   | 19,300   |      | 12,600     |   | 19,000  |   | 17,333  | 10,232   |       |
| Metals, Soluble | Chromium     | SW 6010     | ng/mj   | 960'0      |   | 0.0851   |      | 0.0277     |   | 0.0791  |   | 9690'0  | 0.0912   |       |
| Metals, Soluble | Cobatt       | SW 6010     | lm/gu   | 0.303      |   | 0.303    |      | 0.305      |   | 0.316   |   | 0.304   | 0.003    |       |
| Metals, Soluble | Copper       | SW 6010     | ug/ml   | 0.242      |   | 0.272    |      | 0.203      |   | 0.234   |   | 0.239   | 0.086    |       |
| Metals, Soluble | Iron         | SW 6010     | > lm/gn | 0.0596     | v | 0.0596   | v    | 0.0238     | v | 0.0596  | ٧ | 0.0477  | ;        | 100%  |
| Metals, Soluble | Lead         | SW 7421     | lm/gu   | 0.0139     |   | 0.016    |      | 6000       |   | 0.012   |   | 0.013   | 600.0    |       |
| Metals, Soluble | Magnesium    | SW 6010     | lm/gu   | 1830       |   | 1810     |      | 1750       |   | 1870    |   | 1,797   | 103      |       |
| Metals, Soluble | Manganese    | SW 6010     | lm/gu   | 318        |   | 315      |      | 288        |   | 326     |   | 307     | 4        |       |
| Metals, Soluble | Mercury      | SW 7470     | ng/ml   | 0.00056    |   | 0.0014   |      | 0.00111    |   | 0.00125 |   | 0.00102 | 0.00106  |       |
| Metals, Soluble | Molybdenum   | SW 6010     | im/gu   | 0.0571     |   | 0.0659   |      | 0.0695     |   | 0.0619  |   | 0.0642  | 0.0158   |       |
| Metals, Soluble | Nickel       | SW 6010     | m/6n    | 1.57       |   | 1.61     |      | 1.37       |   | 1.61    |   | 1.52    | 0.32     |       |
| Metals, Soluble | Phosphorus   | SW 6010     | ng/ml   | 0.675      |   | 0.777    |      | 0.703      |   | 0.916   |   | 0.718   | 0.131    |       |
| Metals, Soluble | Potassium    | SW 6010     | lw/6n   | 125        |   | <u>₹</u> |      | 119        |   | 126     |   | 123     | S        |       |
| Metals, Soluble | Selenium     | SW 7740     | lm/gu   | < 0.00288  |   | 0.734    |      | 0.728      |   | 0.814   |   | 0.488   | 1.046    | 0.1%  |
| Metals, Soluble | Silicon      | SW 6010     | lm/gn   | 39.7       |   | 44.3     |      | 43.3       |   | 45.4    |   | 42.4    | 6.0      |       |
|                 |              |             |         | nderflow S | 7 | Filtrate | Dad. | 1 9        |   |         |   |         |          |       |

# JBR Underflow Slurry Filtrate - Page 1

H-110 Sample Stream: JBR Underflow Slurry Filtrate

| Analyte                 |                            | Analytical |                | Run             |        | Run               |      | Run         |          | Run      |   |         | 95%   | 占     |
|-------------------------|----------------------------|------------|----------------|-----------------|--------|-------------------|------|-------------|----------|----------|---|---------|-------|-------|
| Group                   | Specie                     | Method     | Units          | -               | İ      | 2                 |      | 38          |          | PE       |   | Average | 5     | Ratio |
| Motals Solution         | Sodium                     | SW 6010    | jw/bit         | 244             |        | 242               |      | 246         |          | 256      |   | 244     | 'n    |       |
| Metals, Soluble         | Strontium                  | SW 6010    | im/gn          | <u>¥</u>        |        | 33.6              |      | 90.9        |          | 35       |   | 32.9    | 4.3   |       |
| Metals, Soluble         | Ti                         | SW 6010    | v ju/bn        | 0.14            |        | 0.0007<br>J       | v    | 0.14        | v        | 0.144    | v | 0.144   | ;     | 100%  |
| Metals, Soluble         | Titanium                   | SW 6010    | lm/gn          | 0.762           |        | 0.817             |      | 0.868       |          | 0.739    |   | 0.816   | 0.132 |       |
| Metals, Soluble         | Vanadium                   | SW 6010    | lm/gn          | 0.296           |        | 0.29              |      | 0.138       |          | 0.288    |   | 0.241   | 0.222 |       |
| Metals, Soluble         | Zinc                       | SW 6010    | lm/gn          | 2.34            |        | 2.43              |      | 2.18        |          | 2.52     |   | 2.32    | 0.31  |       |
| Aldehydes               | Acetaldehyde               | SW 8315    | lm/gn          | 0.008           |        | 0.078             |      | 960'0       |          | 0.072    |   | 0.061   | 0.115 |       |
| Aldehydes               | Formaldehyde               | SW 8315    | lm/gn          | 0.004           |        | 0.048             |      | 0.2         |          | 0.152    |   | 0.084   | 0,255 |       |
| Organics, Semi-volatife | 1,2,4,5-Tetrachlorobenzene | SW 8270    | vg/L <         | 0.625           | v      | 0.567             | ٧    | 0.561       | v        | 0.456    | v | 0.584   | ;     | 100%  |
| Organics, Semi-volatile | 1,2,4-Trichlorobenzene     | SW 8270    | vg/L <         | 0.639           | v      | 0.579             | v    | 0.846       | v        | 0.688    | ٧ | 0.688   | :     | 100%  |
| Organics, Semi-volatile | 1,2-Dichlorobenzene        | SW 8270    | > 1/6n         | 0.842           | v      | 0.764             | ٧    | 0.914       | v        | 0.743    | v | 0.840   | ;     | 100%  |
| Organics, Semi-volatile | 1,2-Diphenylhydrazine      | SW 8270    | vg/L <         | <del>6</del>    | ٧      | 6                 | ٧    | 8           | v        | <u>8</u> | ٧ | 100     | ;     | 100%  |
| Organics, Semi-volatile | 1,3-Dichlorobenzene        | SW 8270    | vg/L <         | 0.428           | v      | 0.388             | v    | 1.03        | v        | 0.839    | v | 0.615   | :     | 100%  |
| Organics, Semi-volatile | 1,4-Dichtorobenzene        | SW 8270    | v 7/6n         | 0.874           | v      | 0.792             | v    | 0.846       | v        | 0.688    | v | 0.837   | :     | 100%  |
| Organics, Semi-volatile | 1-Chloronaphthalene        | SW 8270    | v 7/6n         | 969:0           | v      | 0.631             | v    | 0.773       | v        | 0.628    | v | 0.700   | ;     | 100%  |
| Organics, Semi-volatile | 1-Naphthylamine            | SW 8270    | v J/Bn         | 1.69            | v      | 1.53              | v    | 2.92        | v        | 2.37     | ٧ | 2.05    | :     | 100%  |
| Organics, Semi-volatile | 2,3,4,6-Tetrachiorophenol  | SW 8270    | ug/L <         | 0.544           | v      | 0.493             | ٧    | 0.669       | v        | 0.544    | v | 0.569   | :     | 100%  |
| Organics, Semi-volatile | 2,4,5-Trichlorophenol      | SW 8270    | v<br>√1)6in    | 0.357           | v      | 0.324             | v    | 0.732       | v        | 0.595    | ٧ | 0.471   | :     | 100%  |
| Organics, Semi-volatile | 2,4,6-Trichlorophenol      | SW 8270    | > <b>√</b> 00/ | 0.377           | ٧      | 0.342             | v    | 0.728       | v        | 0.592    | ٧ | 0.482   | :     | 100%  |
| Organics, Semi-volatile | 2,4-Dichtorophenol         | SW 8270    | v 7/6n         | 0.479           | ٧      | 0.434             | •    | 0.819       | v        | 0.665    | v | 0.577   | :     | 100%  |
| Organics, Semi-volatile | 2,4-Dimethylphenol         | SW 8270    | v<br>VBn       | 1.19            | ٧      | 1.08              | v    | 1.87        | v        | 1.52     | ٧ | 1.38    | :     | 100%  |
| Organics, Semi-volatile | 2,4-Dinitrophenol          | SW 8270    | v<br>ngv       | 7.57            | v      | 6.86              | v    | 6.01        | <b>v</b> | 4.89     | v | 6.81    | ;     | 100%  |
| Organics, Semi-volatife | 2,4-Dinitrotoluene         | SW 8270    | og/L <         | 0.595           | v      | 0.539             | v    | 0.85        | v        | 0.691    | ٧ | 0.661   | :     | 100%  |
| Organics, Semi-volatile | 2,6-Dichlorophenol         | SW 8270    | v<br>VBn       | 0.782           | ٧      | 0.709             | v    | 0.737       | v        | 0.599    | v | 0.743   | :     | 100%  |
| Organics, Semi-volatile | 2,6-Dinitrotoluene         | SW 8270    | v Vôn          | 0.374           | ٧      | 0.339             | v    | 1.24        | v        | 1.01     | v | 0.651   | ;     | 100%  |
| Organics, Semi-volatile | 2-Chloronaphthalene        | SW 8270    | v J/Sn         | 0.35            | v      | 0.318             | v    | 0.564       | v        | 0.458    | v | 0.411   | :     | 100%  |
| Organics, Semi-volatile | 2-Chlorophenol             | SW 8270    | > 1/ôn         | 0.826           | v      | 0.749             | v    | 0.914       | v        | 0.743    | v | 0.830   | :     | 100%  |
| Organics, Semi-volatile | 2-Methylnaphthalene        | SW 8270    | > 7/60         | 0.714           | v      | 0.647             | v    | 0.524       | v        | 0.426    | ٧ | 0.628   | ;     | 100%  |
| Organics, Semi-volatile | 2-Methylphenol(o-cresol)   | SW 8270    | vg/L <         | 0.577           | v      | 0.524             | ٧    | 0.446       | v        | 0.363    | v | 0.516   | :     | 100%  |
|                         |                            |            | JBR Und        | nderflow Slurry | Slurry | Filtrate - Page 2 | - Pa | <b>3e</b> 2 |          |          |   |         |       |       |

Sample Stream: JBR Underflow Sturry Filtrate

| Analyte                  |                                | Analytical |          |   | Run               |          | Run       |     | Run              |          | Run   |   |         | 85% | 占           |
|--------------------------|--------------------------------|------------|----------|---|-------------------|----------|-----------|-----|------------------|----------|-------|---|---------|-----|-------------|
| Group                    | Specie                         | Method     | Units    |   | -                 |          | 2         |     | 3.8              |          | P     |   | Average | 5   | Ratio       |
|                          |                                |            |          |   |                   |          |           |     |                  |          |       |   |         |     |             |
| Organics, Semi-volatile  | 2-Naphthylamine                | SW 8270    | μğ       | v | 2.11              | v        | 1.9       | v   | 2.3              | v        | 1.87  | ٧ | 2.11    | ;   | 100%        |
| Organics, Semi-volatile  | 2-Nitroaniline                 | SW 8270    | ng/L     | v | 0.435             | v        | 0.394     | v   | 0.954            | v        | 0.775 | v | 0.594   | :   | 100%        |
| Organics, Semi-volatile  | 2-Nitrophenol                  | SW 8270    | ug/L     | v | 0.476             | <b>v</b> | 0.431     | ٧   | 0.751            | v        | 0.611 | ٧ | 0.553   | :   | 100%        |
| Organics, Semi-volatile  | 2-Picoline                     | SW 8270    | ng/L     | v | 1.18              | v        | 1.07      | ٧   | 1.19             | v        | 296.0 | ٧ | 1.15    | :   | 100%        |
| Organics, Semi-volatile  | 3,3'-Dichlorobenzidine         | SW 8270    | <b>1</b> | v | 0.53              | v        | 0.48      | ٧   | 0.479            | <b>v</b> | 0.389 | ٧ | 0.496   | :   | 100%        |
| Organics, Semi-volatile  | 3-Methylcholanthrene           | SW 8270    | ug/L     | v | 0.846             | V        | 0.768     | ٧   | 0.719            | •        | 0.585 | v | 0.778   | :   | 100%        |
| Organics, Semi-volatile  | 3-Nitroanitine                 | SW 8270    | √g/L     | ٧ | 0.55              | ٧        | 0.499     | ٧   | 0.565            | ٧        | 0.46  | ٧ | 0.538   | :   | 100%        |
| Organics, Semi-volatile  | 4,6-Dinitro-2-methylphenol     | SW 8270    | ug/L     | ٧ | 0.856             | v        | 0.776     | ٧   | 0.619            | •        | 0.503 | ٧ | 0.750   | :   | 100%        |
| Organics, Semi-volatile  | 4-Aminobiphenyl                | SW 8270    | ₽¢/L     | ٧ | 0.809             | v        | 0.733     | ٧   | 1.71             | ٧        | 1.39  | ٧ | 1.084   | ;   | 100%        |
| Organics, Semi-volatile  | 4-Bromophenyl phenyl           | SW 8270    | ug/L     | v | 0.493             | v        | 0.447     | v   | 969.0            | <b>v</b> | 0.566 | ٧ | 0.545   | :   | 4004        |
| Organics, Semi-volatife  | 4-Chloro-3-methylphenol        | SW 8270    | √g√      | v | 0.782             | v        | 0.709     | v   | 0.741            | •        | 0.602 | ٧ | 0.744   | :   | 100%        |
| Organics, Semi-volatile  | 4-Chlorophenyl phenyl ether    | SW 8270    | ug/L     | v | 0.571             | v        | 0.518     | ٧   | 909.0            | •        | 0.492 | ٧ | 0.565   | :   | 100%        |
| Organics, Semi-volatife  | 4-Methylphenol(p-cresot)       | SW 8270    | ng/L     | v | 0.622             | v        | 0.564     | •   | 99.0             | v        | 0.537 | ٧ | 0.615   | ;   | 100%        |
| Organics, Semi-volatile  | 4-Nitroaniline                 | SW 8270    | J/6n     | v | 0.523             | v        | 0.475     | v   | 0.872            | v        | 0.709 | v | 0.623   | :   | 400%        |
| Organics, Semi-votatile  | 4-Nitrophenol                  | SW 8270    | √gn      | v | 0.747             | v        | 0.677     | •   | <del>1</del> .35 | v        | 1.    | v | 0.925   | ;   | 100%        |
| Organics, Semi-volatile  | 7,12-Dimethyfbenz(a)anthracene | SW 8270    | √gv<br>T | ٧ | 2.08              | v        | 1.88      | •   | 1.91             | v        | 1.56  | v | 36.     | ;   | 100%        |
| Organics, Semi-volatife  | Acenaphthene                   | SW 8270    | Ng/L     | v | 0.517             | v        | 0.469     | v   | 0.391            | •        | 0.318 | v | 0.459   | :   | 100%        |
| Organics, Semi-volatifie | Acenaphthylene                 | SW 8270    | ug/L     | v | 0.244             | v        | 0.222     | •   | 0.601            | •        | 0.489 | v | 0.356   | ;   | 100%        |
| Organics, Semi-volatile  | Acetophenone                   | SW 8270    | ng/L     | v | 0.496             | v        | 0.45      | v   | 0.804            | •        | 0.654 | v | 0.583   | ;   | 100%        |
| Organics, Semi-volatile  | Aniline                        | SW 8270    | √L       | ٧ | 101               | v        | 0.915     |     | 1.57             | •        | 0.72  | v | 1.010   | :   | 38%         |
| Organics, Semi-volatile  | Anthracene                     | SW 8270    | γgη      | ٧ | 0.628             | ٧        | 0.57      | v   | 0.529            | ٧        | 0.43  | ٧ | 0.576   | ;   | 100%        |
| Organics, Semi-volatile  | Benzidine                      | SW 8270    | ng/L     | v | 8                 | v        | 8         | ٧   | ឧ                | v        | R     | ٧ | 8       | :   | 100%        |
| Organics, Semi-volatile  | Benzo(a)anthracene             | SW 8270    | √g/L     | v | 0.557             | v        | 0.505     | ٧   | 0.646            | v        | 0.525 | ٧ | 0.569   | ;   | 100%        |
| Organics, Semi-volatite  | Benzo(a)pyrene                 | SW 8270    | ug/L     | ٧ | 0.414             | v        | 0.375     | •   | 0.745            | v        | 909:0 | v | 0.511   | ;   | 100%        |
| Organics, Semi-volatile  | Benzo(b)fluoranthene           | SW 8270    | √g/L     | v | 0.615             | v        | 0.558     | •   | 1.31             | v        | 1.06  | ٧ | 0.828   | :   | 100%        |
| Organics, Semi-volatile  | Benzo(g,h,i)perylene           | SW 8270    | ug/L     | v | 0.526             | v        | 0.477     | v   | 1.47             | ٧        | 1.19  | ٧ | 0.824   | :   | 100%        |
| Organics, Semi-volatile  | Benzo(k)fluoranthene           | SW 8270    | ug/L     | v | <del>.</del><br>8 | v        | 0.949     | ٧   | 4.               | •        | 1.17  | v | 1.146   | :   | 100%        |
| Organics, Seml-volatile  | Benzoic acid                   | SW 8270    | J/Gn     | ٧ | 4.28              |          | 4.73      | •   | 55.5             | v        | 45.1  | v | 55.50   | ;   | <b>96</b> % |
| Organics, Semi-volatife  | Benzył atcohoł                 | SW 8270    | √g'n     | ٧ | 1.17              | v        | 97.       | v   | 0.878            | ٧        | 0.713 | v | 1.036   | :   | 400%        |
| Organics, Semi-volatile  | Butylbenzylphthalate           | SW 8270    | ng/L     | v | 0.425             | v        | 0.385     | v   | 0.899            | v        | 0.731 | v | 0.570   | :   | 100%        |
| Organics, Semi-volatile  | Chrysene                       | SW 8270    | ug/L     | v | 0.723             | v        | 0.656     | ٧   | 0.773            | v        | 0.628 | ٧ | 0.717   | ;   | <b>100%</b> |
|                          |                                |            | 000      | 2 | arffow (          |          | , Filtrat | D . | 2, 90,           |          |       |   |         |     |             |

**JBR Underflow Slurry Filtrate - Page 3** 

Liquid Stream Data Summary

H-112 Sample Stream: JBR Underflow Sturry Filtrate

| 占          | Ratio   | 100%                   | 100%                   | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 2%                      | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                      | 100%                    | 100%                    | 100%                    | 100%                    | 100%                      | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    |                  |
|------------|---------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------|
| 95%        | ਠ       | :                      | :                      | ;                       | 1                       | ;                       | ;                       | ;                       | 4.18                    | ;                       | ;                       | ;                       | :                       | ;                       | ;                       | :                         | :                       | :                       | :                       | :                       | ;                         | ;                       | ;                       | :                       | :                       | :                       | :                       | :                       | 1                       | :                       | ;                       | :                       |                  |
|            | Average | 0.795                  | 0.716                  | 0.803                   | 0.538                   | 0.494                   | 0.478                   | 52                      | 2.094                   | 0.496                   | 0.671                   | 0.664                   | 0.413                   | 0.311                   | 0.725                   | 8.95                      | 0.713                   | 0.998                   | 0.492                   | ଜ                       | 1.20                      | 1.29                    | 0.518                   | 0.830                   | 0.935                   | 0.730                   | 0.766                   | 0.484                   | 2.09                    | 1.020                   | 0.556                   | 0.652                   |                  |
|            |         | ٧                      | ٧                      | V                       | ٧                       | ٧                       | v                       | ٧                       |                         | ٧                       | V                       | v                       | ٧                       | v                       | v                       | v                         | •                       | v                       | v                       | V                       | v                         | v                       | ٧                       | ٧                       | ٧                       | v                       | ٧                       | ٧                       | v                       | v                       | v                       | v                       |                  |
| Run        | 34      | 0.412                  | 0.949                  | 0.985                   | 0.628                   | 0.379                   | 0.602                   | 23                      | 2.65                    | 0.324                   | 0.794                   | 0.551                   | 0.444                   | 0.367                   | 0.599                   | 6.89                      | 0.743                   | 1.56                    | 0.72                    | ß                       | 0.736                     | 0.919                   | 0.315                   | 0.765                   | 0.698                   | 0.559                   | 0.985                   | 0.437                   | <u>16.</u>              | 8                       | 0.451                   | 0.547                   |                  |
|            |         | ٧                      | ٧                      | ٧                       | ٧                       | v                       | v                       | v                       |                         | ٧                       | ٧                       | v                       | ٧                       | v                       | v                       | v                         | v                       | ٧                       | V                       | ٧                       | v                         | ٧                       | v                       | ٧                       | v                       | v                       | ٧                       | v                       | ٧                       | v                       | V                       | v                       |                  |
| Run        | 33      | 0.506                  | 1.17                   | 1.21                    | 0.773                   | 0.466                   | 0.741                   | 120                     | 3.04                    | 0.399                   | 7.20                    | 0.678                   | 0.547                   | 0.452                   | 0.737                   | 8.47                      | 0.914                   | 1.91                    | 0.886                   | 8                       | 0.905                     | 1.13                    | 0.387                   | 0.941                   | 0.859                   | 0.688                   | 1.21                    | 0.538                   | 1.99                    | 1.28                    | 0.555                   | 0.673                   | Page 4           |
|            |         | V                      | v                      | v                       | V                       | v                       | ٧                       | v                       |                         | v                       | v                       | v                       | v                       | v                       | •                       | v                         | ٧                       | v                       | ٧                       | v                       | v                         | ٧                       | v                       | ٧                       | v                       | v                       | ٧                       | v                       | v                       | v                       | v                       | v                       | <b>-</b>         |
| Run        | 2       | 0.893                  | 0.465                  | 0.57                    | 4.0                     | 0.483                   | 0.329                   | 52                      | 3.09                    | 0.518                   | 0.493                   | 0.625                   | 0.329                   | 0.229                   | 0.684                   | 8.75                      | 0.582                   | 0.515                   | 0.281                   | ଝ                       | 1.28                      | 1.3                     | 0.555                   | 0.736                   | 0.925                   | 0.715                   | 0.518                   | 0.434                   | 2.03                    | 0.847                   | 0.529                   | 0.61                    | / Filtrate       |
|            |         | ٧                      | ٧                      | V                       | ٧                       | V                       | v                       | V                       |                         | v                       | v                       | v                       | v                       | v                       | ٧                       | v                         | v                       | v                       | v                       | v                       | ٧                         | ٧                       | v                       | ٧                       | v                       | v                       | v                       | ٧                       | v                       | v                       | v                       | ٧                       | Slurn            |
| Run        | -       | 0.985                  | 0.512                  | 0.628                   | 0.44                    | 0.533                   | 0.363                   | 120                     | 0.303                   | 0.571                   | 0.544                   | 69.0                    | 0.363                   | 0.253                   | 0.755                   | 9.64                      | 0.642                   | 0.568                   | 0.31                    | ß                       | 1.42                      | <del>1</del> .          | 0.612                   | 0.812                   | 1.02                    | 0.788                   | 0.571                   | 0.479                   | 2.24                    | 0.934                   | 0.584                   | 0.672                   | inderflow Slurry |
|            |         | ٧                      | v                      | v                       | ٧                       | v                       | ٧                       | ٧                       | v                       | v                       | ٧                       | v                       | ٧                       | ٧                       | ٧                       | ٧                         | ٧                       | v                       | v                       | v                       | v                         | v                       | ٧                       | ٧                       | v                       | v                       | ٧                       | v                       | v                       | v                       | ٧                       | ٧                       | Š<br>D           |
|            | Units   | ua/L                   | , Pa                   | ug/L                    | ug/L                    | Mg/L                    | ug/L                    | ng/L                    | ng/L                    | ug/L                    | ng/L                    | ug/L                    | ug/L                    | ng/L                    | ng/L                    | ₩g/L                      | ug/L                    | Mg/L                    | ug/L                    | ng/L                    | ug/L                      | Jgs<br>T                | ng/L                    | ₩<br>J                  | μg.                     | ₩                       | Mg/L                    | γg,                     | J/Gn                    | ng/L                    | √gn                     | ug/L                    | JBR              |
| Analytical | Method  | SW 8270                | SW 8270                | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                   | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                   | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 |                  |
|            | Specie  | Di-n-octylohthalate    | Dibenz(a h)anthracene  | Dibenz(a.j)acridine     | Dibenzofuran            | Dibutylphthalate        | Diethylphthalate        | Dimethylphenethylamine  | Dimethylphthalate       | Diphenylamine           | Ethyl methanesulfonate  | Fluoranthene            | Fluorene                | Hexachlorobenzene       | Hexachlorobutadiene     | Hexachlorocyclopentadiene | Hexachloroethane        | Indeno(1,2,3-cd)pyrene  | Isophorone              | Methyl methanesulfonate | N-Nitroso-di-n-butylamine | N-Nitrosodimethylamine  | N-Nitrosodiphenylamine  | N-Nitrosodipropylamine  | N-Nitrosopiperidine     | Naphthalene             | Nitrobenzene            | Pentachlorobenzene      | Pentachloronitrobenzene | Pentachlorophenol       | Phenacetin              | Phenanthrene            |                  |
| Analyte    | Group   | Organics Semi-volatile | Organics Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile   | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile   | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile |                  |

Sample Stream: JBR Underflow Slurry Filtrate

| Analyte                 |                             | Analytical |                  |          | Run                       |      | Run      |          | Ru       |   | Run      |   |          | 95%  | 占                |
|-------------------------|-----------------------------|------------|------------------|----------|---------------------------|------|----------|----------|----------|---|----------|---|----------|------|------------------|
| Group                   | Specie                      | Method     | Units            |          | -                         |      | 2        |          | 38       |   | 39       |   | Average  | ಶ    | Ratio            |
|                         |                             |            |                  |          |                           |      |          |          |          |   |          |   |          |      |                  |
| Organics, Semi-votatile | Phenol                      | SW 8270    | ng/              | _<br>v   | 1431                      | v    | 0.391    | v        | 1.27     | V | 1.03     | v | 0.697    | :    | 100%             |
| Organics, Semi-volatile | Pronamide                   | SW 8270    | ng/              | v        | .799                      | v    | 0.725    | v        | 0.347    | v | 0.282    | v | 0.624    | :    | 100%             |
| Organics, Semi-volatile | Pyrene                      | SW 8270    | ug/L             | v        | 902:0                     | v    | 0.459    | v        | 0.587    | v | 0.477    | v | 0.517    | ;    | 100%             |
| Organics, Semi-volatile | Pyridine                    | SW 8270    | ug/L             | v        | 1.25                      | v    | 1.14     | V        | 0.846    | v | 0.688    | v | 1.079    | ;    | 100%             |
| Organics, Semi-volatile | bis(2-Chloroethoxy)methane  | SW 8270    | ug/L             | v        | 909.                      | v    | 0.551    | v        | 0.872    | v | 0.709    | v | 0.677    | :    | 100%             |
| Organics, Semi-volatile | bis(2-Chloroethyl)ether     | SW 8270    | rg/              | v        | 0.791                     | v    | 0.718    | v        | 0.551    | v | 0.448    | v | 0.687    | ;    | 100%             |
| Organics, Semi-volatile | bis(2-Chlorolsopropyl)ether | SW 8270    | ug/L             | v        | 3.785                     | v    | 0.712    | ٧        | 1.15     | v | 0.933    | v | 0.882    | :    | 100%             |
| Organics, Semi-volatile | bis(2-Ethylhexyl)phthalate  | SW 8270    | Ę                |          | 4                         |      | 5.11     |          | 4.16     |   | 2.98     |   | 4.42     | 1.49 |                  |
| Organics, Semi-volatile | p-Chloroaniline             | SW 8270    | ng/L             | v        | 0.604                     | v    | 0.548    | ٧        | 1.07     | v | 0.871    | v | 0.741    | ;    | 100%             |
| Organics, Semi-volatile | p-Dimethylaminoazobenzene   | SW 8270    | ug/L             | _        | 0.557                     | v    | 0.505    | v        | <u>5</u> | v | 0.849    | v | 0.701    | ;    | 100%             |
|                         | 4 1 1 Trickloroethere       | CIM BOAD   | <i>  </i>        | v        | ư                         | ٧    | ď        | ٧        | ιc       | ٧ | LC.      | v | ¥.       |      | 100 <del>8</del> |
| Organics, Volatile      | 1 1 2 2 Totrachlomethane    | SW 8240    | 9 2              |          | ) נכ                      | ٠ ٧  | o uc     | v        | , ru     | v | o un     | v | , ru     | :    | 100%             |
| Organics, Volatile      | 1.1.2-Trichloroethane       | SW 8240    | l de             | v        | ı ru                      | ٧    | · w      | ٧        | ະດ       | ٧ | ı,       | ٧ | ro.      | ;    | 100%             |
| Organics, Volatile      | 1,1-Dichloroethane          | SW 8240    | ug/L             | v        | S.                        | v    | ß        | ٧        | ß        | v | ហ        | ٧ | Ŋ        | ;    | 100%             |
| Organics, Volatile      | 1,1-Dichloroethene          | SW 8240    | ug/L             | v        | ro                        | ٧    | ស        | V        | ιΩ       | ٧ | ιΩ       | ٧ | ω        | ;    | 100%             |
| Organics, Volatile      | 1,2-Dichloroethane          | SW 8240    | ug/L             | v        | ιΩ                        | ٧    | £        | •        | ဏ        | v | ιΩ       | ٧ | гo       | :    | 100%             |
| Organics, Volatile      | 1,2-Dichloroethene (total)  | SW 8240    | ng/L             | v        | rs.                       | v    | ß        | •        | က        | ٧ | Ŋ        | v | S        | :    | 100%             |
| Organics, Volatile      | 1,2-Dichloropropane         | SW 8240    | ng/L             | v        | 5                         | v    | ß        | v        | ហ        | v | ഗ        | v | ស        | :    | 100%             |
| Organics, Volatile      | 2-Butanone (MEK)            | SW 8240    | J <sub>G</sub> n | v        | 0                         | v    | 9        | v        | 5        | ٧ | ₽        | v | 10       | ;    | 100%             |
| Organics, Volatile      | 2-Hexanone                  | SW 8240    | ug/L             | v        | 0                         | v    | <b>£</b> | <b>v</b> | 5        | v | ₽        | v | <b>1</b> | ;    | 100%             |
| Organics, Volatite      | 4-Methyl-2-pentanone (MIBK) | SW 8240    | ug/L             | v        | 5                         | v    | 0        | v        | 5        | v | 0        | ٧ | 0        | :    | 100%             |
| Organics, Volatile      | Acetone                     | SW 8240    | ug/L             | v        | 5                         |      | 6.8      | ~        | ₽        | v | <b>5</b> | ٧ | 10       | :    | <b>%</b> 09      |
| Organics, Volatile      | Benzene                     | SW 8240    | rg/              | v        | S                         | v    | ιΩ       | •        | S.       | v | S        | v | ဟ        | :    | 100%             |
| Organics, Volatile      | Bromodichloromethane        | SW 8240    | ug/L             | v        | വ                         | v    | 20       | V        | 2        | ٧ | Ŋ        | v | 'n       | :    | 100%             |
| Organics, Volatile      | Bromoform                   | SW 8240    | J⁄6n             | v        | S                         | v    | ιΩ       | •        | ß        | V | ς.       | v | ហ        | :    | 100 <b>%</b>     |
| Organics, Volatile      | Bromomethane                | SW 8240    | ng/L             | v        | 10                        | v    | 9        | ٧        | ₽        | ٧ | ē        | ٧ | 9        | :    | 100%             |
| Organics, Volatile      | Carbon Disulfide            | SW 8240    | ug/L             | v        | S                         | v    | S        | ٧        | S        | ٧ | រហ       | v | ιΩ       | :    | 100%             |
| Organics, Volatile      | Carbon Tetrachloride        | SW 8240    | ng/L             | v        | c)                        | v    | ιn       | V        | တ        | ٧ | ιΩ       | v | υ        | :    | 100%             |
| Organics, Volatile      | Chlorobenzene               | SW 8240    | ng/L             | <b>v</b> | 2                         | v    | ις.      | ~        | 32       | v | un.      | v | ဌ        | :    | 100%             |
| Organics, Volatile      | Chloroethane                | SW 8240    | ug/L             | v        | 우                         | v    | <b>6</b> | v        | 9        | ٧ | 9        | v | 9        | ;    | 100%             |
| ŀ                       |                             |            | JBR (            | Jnde     | Inderflow Slurry Filtrate | urry | Filtrat  | •        | Page 5   |   |          |   |          |      |                  |

Liquid Stream Data Summary

| rate     |
|----------|
| 븚        |
| 7        |
| 5        |
| ŝ        |
| ⋛        |
| er       |
| 2        |
| 2        |
| <u> </u> |
| ä        |
| Ean-     |
| ŝ        |
| <u>ه</u> |
| 卢        |
| ď        |

|            | CI Ratio |                    |                    |                             |                    |                    |                    |                    |                    |                    |                    |                |                    |                                          | 100%                                                           |
|------------|----------|--------------------|--------------------|-----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------|--------------------|------------------------------------------|----------------------------------------------------------------|
|            | Average  | vo                 | 10                 | ស                           | ı,                 | S.                 | ις                 | S.                 | ď                  | ,                  | מוכ                | . v 6          | . ro to to         | ა დ მ მ დ                                | ა დ ე ე დ დ                                                    |
|            |          | v                  | ٧                  | ٧                           | ٧                  | ٧                  | v                  | v                  | ٧                  |                    | v                  | v v            | v v v              | v v v v                                  | <b>v v v v</b> v                                               |
| Run        | æ        | ιΩ                 | 5                  | ιΩ                          | ιΩ                 | ιo                 | ιΩ                 | ĸ                  | S.                 |                    | ഗ                  | 5 01           | s<br>0<br>0        | ა 01 0 ა                                 | ა<br>ე ე ე ა ა                                                 |
|            |          | ٧                  | v                  | V                           | ٧                  |                    | ٧                  | ٧                  | v                  |                    | v                  | v v            | v v v              | v v v                                    | <b>v v v v</b>                                                 |
| Run        | 3a       | S.                 | 10                 | 5                           | ςς                 | 5.7                | 2                  | S                  | S                  |                    | n                  | о <del>С</del> | o                  | 5 5 5                                    | ი ეე ი ი                                                       |
|            |          | •                  | ٧                  | v                           | ٧                  | _                  | v                  | v                  | ۷<br>٦             | ٧                  | ,                  | ' <b>'</b>     | , A. A.            | , , , ,                                  | , , , , ,                                                      |
| Run        | 2        | v.                 | 5                  | ĸ                           | ĸ                  | <del>4</del> .     | ß                  | ĸ                  | 7                  | ß                  |                    | 01             | 5<br>5             | 5<br>5                                   | 0<br>0<br>0<br>0<br>0<br>0                                     |
|            |          | v                  | v                  | v                           | ٧                  |                    | v                  | v                  |                    | ٧                  |                    | v              | <b>v v</b>         | <b>v v v</b>                             | <b>v v v v</b>                                                 |
| Run        | -        | တ                  | 5                  | ស                           | ιΩ                 | ιΩ                 | ហ                  | ιΩ                 | ιΩ                 | ស                  |                    | 2              | <del>6</del> 6     | 0<br>0<br>5                              | ე ე ა ა                                                        |
|            |          | v                  | v                  | v                           | ٧                  | v                  | ٧                  | v                  | v                  | v                  |                    | v              | v v                | v v v                                    | v v v                                                          |
|            | Units    | ug/L               | ug/L               | Jøn                         | ng/L               | ng/L               | 7ôn                | √g,                | ug/L               | ng/L               |                    | J<br>D         | 1 g                | de de de                                 |                                                                |
| Analytical | Method   | SW 8240            | SW 8240            | SW 8240                     | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240            |                | SW 8240            | SW 8240<br>SW 8240                       | SW 8240<br>SW 8240<br>SW 8240                                  |
|            | Specie   | Chloroform         | Chloromethane      | <b>Dibromochloromethane</b> | Ethylbenzene       | Methylene Chloride | Styrene            | Tetrachloroethene  | Toluene            | Trichtoroethene    | Vinyl acetate      | •              | Vinyl chloride     | Vinyl chloride<br>Xylenes                | Vinyl chloride<br>Xylenes<br>cis-1,3-Dichloropropene           |
| Analyte    | Group    | Organics, Volatile | Organics, Volatile | Organics, Volatile          | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile |                | Organics, Volatile | Organics, Volatile<br>Organics, Volatile | Organics, Volatile<br>Organics, Volatile<br>Organics, Volatile |

Sample Stream: Limestone Slurry Filtrate

| Anaivte         |              | Analytical |       |      | Run     | T.                                 | Run      | •        | Rgn         |   | Run       |   |   |         | <b>36%</b>   | 占          |
|-----------------|--------------|------------|-------|------|---------|------------------------------------|----------|----------|-------------|---|-----------|---|---|---------|--------------|------------|
| Group           | Specie       | Method     | Units |      | 1       |                                    | 2        |          | 3a          |   | 30        |   |   | Average | 5            | Ratio      |
|                 |              |            |       | ,    |         | ,                                  |          | •        |             |   |           |   |   |         |              |            |
| Reduced Species | Cyanide      | SW 9012    | E (B) | õ    | 0.0593  | ö                                  | 0.0834   | 0        | 0.003       |   | 0.0786    |   |   | 0.0486  | 0.1025       |            |
| Reduced Species | Ammonia as N | EPA 350.1  | lm/gu | -    | 13.9    | •                                  | 15.2     | <b>V</b> | 13.3        |   | 13.8      |   |   | 14.1    | 2.4          |            |
| accide          | Chloride     | EPA 300    | m/en  | 4    | 8       | 12                                 | 06       | 72       | 12,300      |   | 13,700    |   |   | 13,067  | 2,142        |            |
| Scions          | Fluoride     | EPA 340.2  | E/bn  |      | - 7     | 7                                  | 05       |          | 4.          |   | 1.46      |   |   | 28.     | 96.0         |            |
| Anions          | Phosphate    | EPA 365.2  | ng/ml | v    | 0.02    | v                                  | 0.02     | v        | 0.02        | ٧ | 0.02      |   | v | 20.0    | :            | 100%       |
| Anions          | Sulfate      | EPA 300.0  | ng/m  | ~    | 727     | _                                  | 18       | •        | 8           |   | 709       |   |   | 785     | 豆            |            |
| Motote Soluble  | Aluminum     | SW 6010    | na/mf | 0    | r 680'0 | õ                                  | 0.0418   | 0        | <b>5</b> 54 |   | 0.0725    | 7 |   | 0.2616  | 0.8463       |            |
| Metals Soluble  | Antimony     | SW 6010    | m/bn  | v    | 0.241   | o<br>v                             | 241      | o<br>v   | 0.241       | • | 0.241     |   | v | 0.241   | :            | 100%       |
| Metals, Soluble | Arsenic      | SW 7060    | m/bn  | Ó    | 0.105   | Ö                                  | 0.089    | Ö        | 0.0068      |   | 0.09      |   |   | 0.067   | 0.131        |            |
| Metals, Soluble | Barium       | SW 6010    | ug/ml | _    | 1.08    | -                                  | 13       | •        | 8.48        |   | 1.09      |   |   | 3.56    | 10.58        |            |
| Metals, Soluble | Beryllium    | SW 6010    | lm/gn | ŏ    | 0.0005  | o.0 ×                              | 0.00554  | Ö        | 0.0017      | • | < 0.00554 |   | v | 0.0055  | :            | <b>26%</b> |
| Metals, Soluble | Boron        | SW 6010    | m/gn  | •    | £       | •                                  | 449      | 6        | 3330        |   | 432       |   |   | 1,407   | 4,137        |            |
| Metals, Soluble | Cadmium      | SW 7131    | m/gn  | 00   | 9670    | 0.0                                | 0713     | 0        | 0.00546     |   | 0.0053    |   |   | 0.0067  | 0.0026       |            |
| Metals, Soluble | Calcium      | SW 6010    | E/Gn  | ~    | 7,160   | <b>'</b>                           | 030      | 7        | 030         |   | 6,470     |   |   | 7,073   | <del>8</del> |            |
| Metals, Soluble | Chromium     | SW 6010    | m/gn  | õ    | 3515    | 9                                  | 523      | 0        | 0848        |   | 0.0361    |   |   | 0.0629  | 0.0472       |            |
| Metals, Soluble | Cobalt       | SW 6010    | im/bn | õ    | 0.0347  | 0.                                 | 0.0108 J | Ü        | 0.23        |   | 0.0207    | 7 |   | 0.0918  | 0.2987       |            |
| Metals, Soluble | Copper       | SW 6010    | lm/gn | ö    | 0.0255  | ŏ                                  | 132 J    | Ö        | 0923        |   | 0.0273    | - |   | 0.0437  | 0.1057       |            |
| Metals, Soluble | Iron         | SW 6010    | m/6n  | ŏ    | 0.0596  | );<br>v                            | 969      | ō<br>v   | 9690        | V |           |   | v | 0.0596  | :            | 100%       |
| Metals, Soluble | Fead         | SW 7421    | m/gn  | õ    | 0.0011  | Ö                                  | 0.002    | 0        | 0.002       |   | 0.005     |   |   | 0.0017  | 0.0013       |            |
| Metals, Soluble | Magnesium    | SW 6010    | m/gn  | 4,   | 583     | .,                                 | 292      | •        | 4470        |   | 208       |   |   | 1,882   | 5,569        |            |
| Metals, Soluble | Manganese    | SW 6010    | lm/gn | _    | 17.2    | _                                  | 15.5     | υ,       | 9.06        |   | 12.5      |   |   | 1.1     | 106.5        |            |
| Metals, Soluble | Mercury      | SW 7470    | m/gn  | 0.0  | 900000  | 0.0                                | 900000   | ö        | 0.00005     |   | 0.00006   |   |   | 9,0000  | 0.00001      |            |
| Metals, Soluble | Molybdenum   | SW 6010    | lm/gn | õ    | 0.0671  | ŏ                                  | 0.0698   | •        | 905.0       |   | 0.102     |   |   | 0.214   | 0.628        |            |
| Metais. Soluble | Nickel       | SW 6010    | m/gn  | 0    | 0.303   | 0                                  | 0.32     | •        | 19.         |   | 0.302     |   |   | 0.844   | 2.293        |            |
| Metals, Soluble | Phosphorus   | SW 6010    | ng/m/ | 0    | 104     | Ö                                  | 0.246    | ٥        | 0.118       |   | 0.711     |   |   | 0.156   | 0.194        |            |
| Metals, Soluble | Potassium    | SW 6010    | m/gn  | 4    | 6.      | 4                                  | 40.9     |          | 333         |   | 43.7      |   |   | 138.4   | 418.7        |            |
| Metals, Soluble | Selenium     | SW 7740    | m/gn  | o    | 0.105   | Ö                                  | 0.141    | ٥        | 0.137       |   | 0.157     |   |   | 0.128   | 0.049        |            |
| Metals. Soluble | Silicon      | SW 6010    | m/gn  | ~    | 88      | ••                                 | 83       | •        | 16.9        |   | 2.38      |   |   | 7.2     | 50.9         |            |
| Metals, Soluble | Sodium       | SW 6010    | ng/ml | ₩    | 3.3     | <b>&amp;</b>                       | 4.7      |          | 387         |   | 82.9      |   |   | 285.0   | 864.9        |            |
| H-              |              |            | _     | imes | tone    | Limestone Slurry Filtrate - Page 1 | iltrate  | - Pag    | 7           |   |           |   |   |         |              |            |

Liquid Stream Data Summary

H-119 Sample Stream: Limestone Slurry Fittrate

| Analyte                 |                            | Analytical |       |   | Run      |          |   | -Sun       |     | Run            |   | Run         |          |         | <b>%96</b> | 占     |
|-------------------------|----------------------------|------------|-------|---|----------|----------|---|------------|-----|----------------|---|-------------|----------|---------|------------|-------|
| Group                   | Specie                     | Method     | Units |   | -        |          |   | 7          |     | 3a             | : | 3d          |          | Average | ರ          | Ratio |
|                         |                            |            | ,     |   | ;        |          |   | •          |     |                |   |             |          | t<br>1  | į          |       |
| Metals, Soluble         | Strontium                  | SW 6010    | ğ     |   | 5.1      |          |   | 4.         |     | 5.             |   |             |          | S<br>S  | 0.00       |       |
| Metals, Soluble         | Ţ                          | SW 6010    | m/gn  |   | 0.007    | <b>-</b> | v | 144        | v   | 0.144          |   | 0.109       | v        | 0.144   | :          | 95%   |
| Metals, Soluble         | Titanium                   | SW 6010    | m/gn  |   | 0.725    |          | ٠ | .731       | ٧   | 0.0102         | Ū | ).0059<br>J |          | 0.4870  | 1.0369     | 0.3%  |
| Metals, Soluble         | Vanadium                   | SW 6010    | m/gn  |   | 0.137    |          | Ü | 128        |     | 0.29           |   | 0.063       |          | 0.185   | 0.226      |       |
| Metals, Soluble         | Zinc                       | SW 6010    | lm/gu |   | 0.0133   | _        | 0 | 0.0307     | _   | 0.0765         | • | 0.0195      |          | 0.0402  | 0.0811     |       |
| Aldehydes               | Acetaldehyde               | SW 8315    | m/gn  |   | 0.0042   |          | J | 890:       |     | 0.08           |   | 9200        |          | 0.051   | 0.101      |       |
| Aldehydes               | Formaldehyde               | SW 8315    | lm/gn |   | 0.01     |          | Ü | 0.022      |     | 0.03           |   | 0.026       |          | 0.021   | 0.025      |       |
| Organics Semi-volatile  | 1.2.4.5-Tetrachlorobenzene | SW 8270    | ua/L  | v | 0.578    |          | v | .593       | v   | 0.6            | v | 0.531       | v        | 0:290   | ;          | 100%  |
| Organics, Semi-volatile | 1,2,4-Trichlorobenzene     | SW 8270    | ug/L  | ٧ | 0.591    |          | v | 9090       | v   | 0.905          | v | 8.0         | v        | 0.701   | :          | 100%  |
| Organics, Semi-volatile | 1,2-Dichlorobenzene        | SW 8270    | ug/L  | v | 0.779    |          | v | .799       | ٧   | 0.977          | ٧ | 0.864       | v        | 0.852   | :          | 100%  |
| Organics, Semi-volatile | 1,2-Diphenythydrazine      | SW 8270    | ng/L  | ٧ | <u>6</u> |          | v | 5          | v   | 001            | ٧ | <u>5</u>    | v        | 001     | :          | 100%  |
| Organics, Semi-volatile | 1,3-Dichlorobenzene        | SW 8270    | ng/L  | v | 0.396    |          | v | 904        | v   | <del>.</del> . | ٧ | 976.0       | v        | 0.634   | ;          | 100%  |
| Organics, Semi-volatife | 1,4-Dichlorobenzene        | SW 8270    | ug/L  | v | 908.0    |          | v | 0.829      | v   | 0.905          | v | 8.0         | v        | 0.847   | :          | 100%  |
| Organics, Semi-volatile | 1-Chloronaphthalene        | SW 8270    | ng/L  | ٧ | 0.644    |          | v | :661       | v   | 0.826          | v | 0.731       | v        | 0.710   | ;          | 100%  |
| Organics, Semi-volatile | 1-Naphthylamine            | SW 8270    | ug/L  | v | 1.56     |          | v | 9.1        | v   | 3.12           | v | 2.76        | v        | 2.09    | ;          | 100%  |
| Organics, Semi-volatile | 2,3,4,6-Tetrachlorophenol  | SW 8270    | ug/L  | ٧ | 0.503    |          | v | 516        | v   | 0.715          | v | 0.633       | v        | 0.578   | ;          | 100%  |
| Organics, Semi-volatile | 2,4,5-Trichlorophenol      | SW 8270    | ug/L  | ٧ | 0.33     |          | v | 338        | v   | 0.783          | v | 0.693       | v        | 0.484   | :          | 100%  |
| Organics, Semi-volatile | 2,4,6-Trichlorophenol      | SW 8270    | ng/L  | ٧ | 0.349    |          | v | 358        | v   | 0.778          | v | 0.688       | v        | 0.495   | ;          | 100%  |
| Organics, Semi-volatile | 2,4-Dichlorophenol         | SW 8270    | ug/L  | v | 0.443    |          | v | 454        | v   | 0.875          | ٧ | 0.774       | •        | 0.591   | ;          | 100%  |
| Organics, Semi-volatile | 2,4-Dimethylphenol         | SW 8270    | ug/L  | v | 1.1      |          | v | 1.13       | v   | 2              | v | 1.71        | •        | 14.     | :          | 100%  |
| Organics, Semi-volatile | 2,4-Dinitrophenol          | SW 8270    | νg/μ  | ٧ | 7        |          | v | 7.18       | v   | 6.43           | v | 5.69        | <b>v</b> | 6.87    | ;          | 100%  |
| Organics, Semi-volatile | 2,4-Dinitrololuene         | SW 8270    | ng/L  | v | 0.55     |          | v | .564       | v   | 0.909          | v | 0.804       | v        | 0.674   | ;          | 100%  |
| Organics, Semi-volatile | 2,6-Dichlorophenol         | SW 8270    | ug/L  | v | 0.723    |          | v | 742        | v   | 0.788          | v | 0.697       | •        | 0.751   | ;          | 100%  |
| Organics, Semi-votatile | 2,6-Dinitrotoluene         | SW 8270    | ng/L  | v | 0.346    |          | v | 355        | v   | 1.32           | v | 1.17        | •        | 0.674   | ;          | 100%  |
| Organics, Semi-volatile | 2-Chloronaphthalene        | SW 8270    | ug/L  | v | 0.324    |          | v | .332       | v   | 0.603          | ٧ | 0.533       | v        | 0.420   | ;          | 100%  |
| Organics, Semi-volatile | 2-Chlorophenol             | SW 8270    | ug/L  | ٧ | 0.764    |          | v | 784        | v   | 726.0          | ٧ | 0.864       | •        | 0.842   | :          | 100%  |
| Organics, Semi-volatile | 2-Methylnaphthalene        | SW 8270    | ug/L  | ٧ | 99.0     |          | v | 229        | v   | 0.56           | v | 0.495       | ٧        | 0.632   | ;          | 100%  |
| Organics, Semi-volatile | 2-Methylphenol(o-cresol)   | SW 8270    | ug/L  | ٧ | 0.534    |          | v | 548        | v   | 0.477          | ٧ | 0.422       | v        | 0.520   | :          | 100%  |
| Organics, Semi-volatile | 2-Naphthylamine            | SW 8270    | ug/L  | ٧ | 1.95     |          | v | 2          | v   | 2.46           | v | 2.18        | v        | 2.14    | :          | 100%  |
|                         |                            |            |       | Ĕ | mestone  | V.       | 2 | Filtrate - | Pag | 2 91           |   |             |          |         |            |       |

## Limestone Slurry Filtrate - Page 2

Sample Stream: Limestone Slurry Filtrate

| Analyte                  |                                | Analytical |              |   | Run             |    | Run        |   | Run            | E            |   | Run   |   |         | <b>%96</b> | 占     |
|--------------------------|--------------------------------|------------|--------------|---|-----------------|----|------------|---|----------------|--------------|---|-------|---|---------|------------|-------|
| Group                    | Specie                         | Method     | Units        |   | -               |    | ~          |   | 3a             | 6            |   | 3d    |   | Average | ច          | Ratio |
|                          |                                |            |              |   |                 |    |            |   |                |              |   |       |   |         |            |       |
| Organics, Semi-volatile  | 2-Nitroaniline                 | SW 8270    | 760          | v | 0.402           | ٧  | 0.412      | • | <del></del>    | 8            | v | 0.902 | v | 0.611   | :          | 100%  |
| Organics, Semi-volatile  | 2-Nitrophenol                  | SW 8270    | ng/L         | v | 4.0             | ٧  | 0.451      | • | 9.0            | 03           | v | 0.71  | ٧ | 0.565   | :          | 100%  |
| Organics, Semi-volatile  | 2-Picoline                     | SW 8270    | ng/L         | v | <del>2</del> .  | ٧  | 1.12       | • | <del>, .</del> | 27           | ٧ | 1.13  | v | 1.16    | :          | 100%  |
| Organics, Semi-volatile  | 3,3'-Dichlorobenzidine         | SW 8270    | ng/L         | v | 0.49            | ٧  | 0.503      | • | 0.5            | 112          | v | 0.453 | v | 0.502   | :          | 100%  |
| Organics, Semi-volatile  | 3-Methylcholanthrene           | SW 8270    | ug/L         | ٧ | 0.783           | ٧  | 0.803      | • | . 0.7          | 0.769        | ٧ | 0.68  | v | 0.785   | ;          | 100%  |
| Organics, Semi-volatile  | 3-Nitroaniline                 | SW 8270    | ng/L         | ٧ | 0.509           | ٧  | 0.522      | • | 0.6            | 55           | v | 0.535 | v | 0.545   | ;          | 100%  |
| Organics, Semi-volatile  | 4,6-Dinitro-2-methylphenol     | SW 8270    | ug/L         | ٧ | 0.792           | ٧  | 0.812      |   | 9.0            | 62           | ٧ | 0.585 | v | 0.755   | :          | 100%  |
| Organics, Semi-volatile  | 4-Aminobiphenyl                | SW 8270    | ng/L         | ٧ | 0.748           | ٧  | 0.767      | • | <del>-</del>   | 1.83         | ٧ | 1.62  | v | 1.115   | :          | 100%  |
| Organics, Semi-volatile  | 4-Bromophenyl phenyl           | SW 8270    | ug/L         | v | 0.456           | ٧  | 0.468      | • | . 0.7          | 45           | v | 0.659 | ٧ | 0.556   | :          | 100%  |
| Organics, Semi-volatile  | 4-Chloro-3-methylphenol        | SW 8270    | ug/L         | v | 0.723           | ٧  | 0.742      | • | . 0.7          | 35           | v | 0.701 | ٧ | 0.752   | :          | 100%  |
| Organics, Serni-volatile | 4-Chlorophenyl phenyl ether    | SW 8270    | ug/L         | v | 0.528           | ٧  | 0.542      | • | 9.0            | 85           | v | 0.573 | v | 0.573   | !          | 100%  |
| Organics, Semi-volatile  | 4-Methylphenol(p-cresol)       | SW 8270    | ng/L         | ٧ | 0.575           | ٧  | 0.59       | • | . 0.7          | 90           | ٧ | 0.624 | ٧ | 0.624   | ;          | 100%  |
| Organics, Semi-votatile  | 4-Nitroaniline                 | SW 8270    | ₩            | ٧ | 0.484           | ٧  | 0.496      | • | 50             | 32           | ٧ | 0.824 | v | 0.637   | :          | 100%  |
| Organics, Semi-volatile  | 4-Nitrophenol                  | SW 8270    | <b>7</b> /6n | ٧ | 0.691           | ٧  | 0.709      | • | ÷              | 2            | ٧ | 1.27  | ٧ | 0.947   | :          | 100%  |
| Organics, Serni-volatile | 7,12-Dimethylbenz(a)anthracene | SW 8270    | ng/L         | ٧ | 1.92            | ٧  | 1.97       | • |                | R            | v | 1.81  | v | 1.98    | :          | 100%  |
| Organics, Semi-volatile  | Acenaphthene                   | SW 8270    | ng/L         | v | 0.478           | ٧  | 0.49       | • | . 0            | 118          | v | 0.37  | v | 0.462   | :          | 100%  |
| Organics, Semi-volatile  | Acenaphthylene                 | SW 8270    | ug/L         | v | 0.226           | ٧  | 0.232      | • | 9.0            | <del>2</del> | v | 0.569 | v | 0.367   | :          | 100%  |
| Organics, Semi-volatile  | Acetophenone                   | SW 8270    | ug/L         | v | 0.459           | ٧  | 0.471      | • | õ              | <b>%</b>     | ٧ | 0.761 | • | 0.597   | :          | 100%  |
| Organics, Semi-volatile  | Aniline                        | SW 8270    | ng/L         | v | 0.933           | ٧  | 0.957      | • | 9.0            | <b>48</b>    |   | 966.0 | v | 0.946   | :          | 100%  |
| Organics, Semi-volatile  | Anthracene                     | SW 8270    | ng/L         | v | 0.581           | ٧  | 0.596      | • | .05            | 99           | v | 0.501 | v | 0.581   | :          | 100%  |
| Organics, Semi-volatile  | Benzidine                      | SW 8270    | ug/L         | v | 8               | ٧  | 8          | • |                | 0            | v | 8     | v | ଯ       | :          | 100%  |
| Organics, Semi-volatile  | Benzo(a)anthracene             | SW 8270    | 7/Gn         | v | 0.515           | ٧  | 0.528      | • | 90             | 9            | v | 0.611 | v | 0.578   | :          | 100%  |
| Organics, Semi-volatile  | Benzo(a)pyrene                 | SW 8270    | ug/L         | v | 0.383           | ٧  | 0.393      | • | 0.7            | 0.797        | ٧ | 0.705 | ٧ | 0.524   | :          | 100%  |
| Organics, Semi-volatile  | Benzo(b)fluoranthene           | SW 8270    | ng/L         | v | 0.569           | ٧  | 0.584      | • | <del>-</del>   | 4            | v | 1.24  | v | 0.851   | :          | 100%  |
| Organics, Semi-volatile  | Benzo(g,h,l)perylens           | SW 8270    | ug/L         | v | 0.487           | v  | 0.499      | • | <del></del>    | 27           | ٧ | 1.39  | v | 0.852   | ;          | 100%  |
| Organics, Semi-volatile  | Benzo(k)fluoranthene           | SW 8270    | ng/L         | v | 996.0           | ٧  | 0.993      | • | <del>-</del>   | *            | ٧ | 1.36  | v | 1.167   | :          | 100%  |
| Organics, Semi-volatile  | Benzoic acid                   | SW 8270    | 7/6n         | v | 3.96            | ٧  | 4.06       | • | 93<br>33       | 4.           | ٧ | 52.5  | ٧ | 22.473  | ;          | 100%  |
| Organics, Semi-volatile  | Benzyl alcohol                 | SW 8270    | ng/L         | v | 1.08            | ٧  | 1.1        | • | 5.0            | 38           | v | 0.83  | v | 1.043   | :          | 100%  |
| Organics, Semi-volatile  | Butylbenzylphthalate           | SW 8270    | ug/L         |   | 0.319 J         |    | 0.355      | _ | 9.0            | 62           | v | 0.85  | v | 0.962   | :          | 42%   |
| Organics, Semi-volatile  | Chrysene                       | SW 8270    | ug/L         | ν | 0.669           | ٧  | 0.686      | • | 9.6            | <u>2</u> 9   | v | 0.731 | ٧ | 0.727   | ;          | 100%  |
| Organics, Semi-volatile  | Di-n-octylphthalate            | SW 8270    | ug/L         | v | 0.911           | ٧  | 0.934      | • |                | 27           | ٧ | 0.479 | ٧ | 0.796   | ;          | 100%  |
| Н                        |                                |            | _            | Ĕ | imestone Slurry | TI | y Filtrate | - | Page 3         | က            |   |       |   |         |            |       |

Liquid Stream Data Summary

H-118 Sample Stream: Limestone Slurry Filtrate

| Analyte                  |                           | Analytical |        |   | Run      |   | Run         |        | Æ      | -          |   | Res      |   |          | %96 | 占     |
|--------------------------|---------------------------|------------|--------|---|----------|---|-------------|--------|--------|------------|---|----------|---|----------|-----|-------|
| Group                    | Specie                    | Method     | Units  |   | 1        |   | 2           |        | 3a     |            |   | 3d       |   | Average  | C   | Ratio |
|                          |                           |            |        |   |          |   |             |        |        |            |   |          |   |          |     |       |
| Organics, Seml-volatile  | Oibenz(a,h)anthracene     | SW 8270    | ug/L   | v | 0.474    | ٧ | 0.486       |        | 1.25   | ıc         | v | Ţ        | v | 0.737    | 1   | 100%  |
| Organics, Semi-volatile  | Dibenz(a,j)acridine       | SW 8270    | ug/L   | v | 0.581    | v | 0.596       | •      | <br>   | _          | v | 1.15     | V | 0.826    | ;   | 100%  |
| Organics, Semi-volatile  | Dibenzofuran              | SW 8270    | ug/L   | ٧ | 0.408    | ٧ | 0.418       | •      | . 0.87 | g:         | ٧ | 0.731    | ٧ | 0.551    | ;   | 100%  |
| Organics, Semi-volatile  | Dibutytphthalate          | SW 8270    | ug/L   | v | 0.493    | ٧ | 0.506       |        | 0.769  | 9          | V | 0.<br>14 | v | 0.506    | 1   | 39%   |
| Organics, Semi-volatife  | Diethylphthalate          | SW 8270    | ng/L   | v | 0.336    | ٧ | 0.345       |        | 0.4    | ر<br>23    | • | 0.701    | • | 0.345    | ;   | 41%   |
| Organics, Semi-volatile  | Dimethylphenethylamine    | SW 8270    | ug/L   | v | 120      | ٧ | 120         | •      |        | _          | ٧ | 52       | ٧ | 52       | ;   | 100%  |
| Organics, Semi-volatile  | Dimethylphthalate         | SW 8270    | ug/L   | v | 0.28     | v | 0.287       | •      | . 0.51 | 7          | ٧ | 0.457    | ٧ | 0.361    | 1   | 4004  |
| Organics, Semi-votatile  | Diphenylamine             | SW 8270    | ng/L   | v | 0.528    | ٧ | 0.542       |        | . 0.42 | go.        | ٧ | 0.377    | v | 0.499    | ;   | 100%  |
| Organics, Semi-volatile  | Ethyl methanesulfonate    | SW 8270    | ,6a    | v | 0.503    | v | 0.516       | ·      | 0.     | ₹          | v | 0.924    | v | 0.686    | ;   | 100%  |
| Organics, Semi-volatile  | Fluoranthene              | SW 8270    | - J/Sn | ٧ | 0.638    | ٧ | 0.654       |        | . 0.72 | τυ.        | v | 0.641    | v | 0.672    | :   | 100%  |
| Organics, Semi-volatile  | Fluorene                  | SW 8270    | ug/L   | ٧ | 0.336    | ٧ | 0.345       | Ĭ      | . 0.56 | ιΩ         | ٧ | 0.517    | ٧ | 0.422    | t   | 100%  |
| Organics, Semi-volatile  | Hexachlorobenzene         | SW 8270    | ng/L   | v | 0.234    | v | 0.24        | ·      | .0.    | 2          | ٧ | 0.427    | v | 0.319    | :   | 100%  |
| Organics, Semi-volatile  | Hexachlorobutadiene       | SW 8270    | ng/L   | v | 969.0    | ٧ | 0.716       | ·      | 0.78   | 92         | ٧ | 0.697    | v | 0.734    | ;   | 100%  |
| Organics, Semi-volatile  | Hexachlorocyclopentadiene | SW 8270    | ng/L   | v | 8.92     | ٧ | 9.15        | •      | 0.6    | <b>c</b> o | V | 8.01     | • | 908      | :   | 100%  |
| Organics, Semi-volatile  | Hexachloroethane          | SW 8270    | ng/L   | v | 0.594    | ٧ | 0.609       | ٠      | 0.97   | 7          | ٧ | 0.864    | v | 0.727    | ;   | 100%  |
| Organics, Semi-volatile  | Indeno(1,2,3-cd)pyrene    | SW 8270    | ng/L   | ٧ | 0.525    | v | 0.538       | •      | 2.0    | ıo         | v | 1.81     | v | 1.038    | 1   | 100%  |
| Organics, Semi-volatife  | Isophorone                | SW 8270    | ug/L   | v | 0.287    | v | 0.294       |        | 9      | œ          | v | 0.838    | v | 0.510    | :   | 100%  |
| Organics, Semi-volatile  | Methyl methanesulfonate   | SW 8270    | ng/L   | v | S        | v | ଜ           |        | <br>   |            | ٧ | ß        | V | ß        | ;   | 100%  |
| Organics, Semi-volatite  | N-Nitroso-di-n-butylamine | SW 8270    | ug/L   | v | 1.3      | v | <b>2</b> .3 |        | 060    | 92         | V | 0.856    | v | 1.21     | :   | 100%  |
| Organics, Semi-volatile  | N-Nitrosodimethylamine    | SW 8270    | ng/L   | v | 1.33     | ٧ | 1.36        | •      | 1.2    | _          | v | 1.07     | ٧ | 1.30     | :   | 100%  |
| Organics, Serni-volatife | N-Nitrosodiphenylamine    | SW 8270    | ng/L   | v | 0.566    | • | 0.581       | ·      | 0.4    | 4          | ٧ | 0.366    | v | 0.520    | :   | 100%  |
| Organics, Semi-volatile  | N-Nitrosodipropylamine    | SW 8270    | 'ng√   | v | 0.751    | v | 0.77        |        | 0.     | _          | ٧ | 0.89     | ٧ | 0.84     | ;   | 100%  |
| Organics, Semi-volatile  | N-Nitrosopiperidine       | SW 8270    | ug/L   | ٧ | 0.943    | ٧ | 0.967       | ·      | . 0.9  | 89         | ٧ | 0.812    | • | 0.943    | :   | 100%  |
| Organics, Semi-volatile  | Naphthaiene               | SW 8270    | ng/L   | ٧ | 0.729    |   | 0.206       | ·<br>¬ | . 0.73 | īΣ         | • | 0.65     | ٧ | 0.735    | :   | 78%   |
| Organics, Semi-volatile  | Nitrobenzene              | SW 8270    | ng/L   | v | 0.528    | v | 0.542       | •      | ÷.     |            | ٧ | 1.15     | • | 0.790    | :   | 100%  |
| Organics, Semi-volatile  | Pentachlorobenzene        | SW 8270    | ng/L   | v | 0.443    | v | 0.454       | •      | 0.57   | ξΩ         | v | 0.509    | • | 0.491    | ;   | 100%  |
| Organics, Semi-volatile  | Pentachloronitrobenzene   | SW 8270    | ug/L   | v | 2.07     | v | 2.12        | •      | 2.1    | ~          | ٧ | 1.88     | ٧ | 2.10     | ;   | 100%  |
| Organics, Semi-volatile  | Pentachlorophenoi         | SW 8270    | ug/L   | ٧ | 0.864    | • | 0.886       | ·      | <br>E. | 7          | V | 1.21     | • | €<br>040 | :   | 100%  |
| Organics, Semi-volatile  | Phenacetin                | SW 8270    | ng/L   | v | 0.54     | v | 0.554       | •      | . 0.50 | 4          | ٧ | 0.525    | V | 0.563    | :   | 100%  |
| Organics, Serni-volatite | Phenanthrene              | SW 8270    | ng/L   | v | 0.622    | ٧ | 0.638       | Ī      | : 0.7  | 8          | v | 0.637    | V | 0.660    | :   | 100%  |
| Organics, Semi-volatile  | Phenol                    | SW 8270    | ug/L   | ٧ | 0.399    | ٧ | 0.409       |        | 1.36   | G          | ٧ | 1.2      | v | 0.723    | !   | 100%  |
| •                        |                           |            |        | 3 | S auctor | 1 | Filtra      | 10.1   | A Ane  | ₩          |   |          |   |          |     |       |

Limestone Slurry Filtrate - Page 4

Sample Stream: Limestone Slurry Filtrate

| Analyte                 |                             | Analytical |            |   | Run             |   | Run          |   | Run          |   | Run      |   |          | 95%      | 占            |
|-------------------------|-----------------------------|------------|------------|---|-----------------|---|--------------|---|--------------|---|----------|---|----------|----------|--------------|
| Group                   | Specie                      | Method     | Units      | ١ | -               |   | 2            |   | 3a           |   | 34       |   | Average  | ច        | Ratio        |
| Oresolve Comittee       | Pronamide                   | SW R270    | [/UI       | ٧ | 0 739           | ٧ | 0.758        | ٧ | 0.371        | v | 0.328    | v | 0.623    | ;        | 100%         |
| Organics, Semi-volatile | Pyrene                      | SW 8270    | na/L       | v | 0.468           | ٧ | 84.0         | ٧ | 0.628        | ٧ | 0.555    | v | 0.525    | ;        | 100%         |
| Organics, Semi-volatile | Pyridine                    | SW 8270    | , Ag       | ٧ | 1.16            | ٧ | 1.19         | v | 9060         | v | 8.0      | v | 1.085    | :        | 100%         |
| Organics, Semi-volatile | bis(2-Chloroethoxy)methane  | SW 8270    | ug/L       | ٧ | 0.562           | v | 0.576        | v | 0.932        | v | 0.824    | v | 0.690    | :        | 100%         |
| Organics, Semi-volatile | bis(2-Chloroethyl)ether     | SW 8270    | ng/L       | v | 0.732           | ٧ | 0.751        | ٧ | 0.589        | ٧ | 0.521    | v | 0.691    | :        | 100%         |
| Organics, Seml-volatile | bis(2-Chtoroisopropyl)ether | SW 8270    | ug/L       | ٧ | 0.726           | ٧ | 0.745        | v | 1.23         | ٧ | 1.09     | ٧ | 0.900    | :        | 100%         |
| Organics, Semi-volatile | bis(2-Ethylhexyl)phthalate  | SW 8270    | ₩,         |   | 5.17            |   | 6.43         |   | 399          |   | 0.918    |   | 137      | 564      |              |
| Organics, Semi-volatile | p-Chloroaniline             | SW 8270    | ng/L       | ٧ | 0.559           | ٧ | 0.573        | v | 1.15         | ٧ | 1.0      | • | 0.761    | :        | 100%         |
| Organics, Semi-volatile | p-Dimethylaminoazobenzene   | SW 8270    | ug/L       | ٧ | 0.515           | ٧ | 0.528        | ٧ | 1.12         | ٧ | 0.988    | v | 0.721    | :        | 100%         |
| :                       |                             |            | *          |   | ı               | , |              | , |              | • | U        | , | U        |          | 4000         |
| Organics, Volatile      | 1,1,1-1 richioroemane       | SW 0240    | 00,<br>10, | v | י מ             | , | nı           | , | י כ          | , | י ה      | , | י כ      | <u>'</u> | 8 8          |
| Organics, Volatile      | 1,1,2,2-Tetrachloroethane   | SW 8240    | ng/L       | v | ın ı            | ٧ | ശ            | v | ומ           | v | മ        | v | ו מו     | :        | 400          |
| Organics, Volatile      | 1,1,2-Trichloroethane       | SW 8240    | ug/L       | v | ហ               | ٧ | co<br>Co     | v | ιn           | v | ıc       | v | ഹ        | :        | 100%         |
| Organics, Volatile      | 1,1-Dichloroethane          | SW 8240    | ug/L       | v | ιo              | ٧ | S.           | v | တ            | ٧ | 'n       | v | S        | :        | 100%         |
| Organics, Volatile      | 1,1-Dichloroethene          | SW 8240    | ug/L       | v | ഹ               | ٧ | S            | v | လ            | v | က        | v | ស        | ;        | 100%         |
| Organics, Volatile      | 1,2-Dichloroethane          | SW 8240    | ng/L       | v | Ŋ               | ٧ | S            | v | ស            | v | S.       | v | ស        | :        | 100%         |
| Organics, Volatile      | 1,2-Dichloroethene (total)  | SW 8240    | ug/L       | v | 2               | v | S            | v | S.           | v | က        | v | co<br>Co | :        | 100%         |
| Organics, Volatile      | 1,2-Dichloropropane         | SW 8240    | ug/L       | ٧ | လ               | ٧ | ιΩ           | ٧ | ស            | ν | ς,       | v | Ω.       | :        | 100%         |
| Organics, Volatile      | 2-Butanone (MEK)            | SW 8240    | ug/l.      | v | 2               | v | 5            |   | 5.1          | v | 5        | v | 6        | :        | <b>99</b> 99 |
| Organics, Volatile      | 2-Hexanone                  | SW 8240    | ug/t       | v | <b>•</b>        | ٧ | <b>£</b>     | ٧ | 10           | ٧ | 0        | v | 10       | :        | 100%         |
| Organics, Volatile      | 4-Methyl-2-pentanone (MIBK) | SW 8240    | ng/L       | ٧ | 9               | ٧ | <b>£</b>     | v | 10           | ٧ | ₽        | v | 01       | :        | 100%         |
| Organics, Volatile      | Acetone                     | SW 8240    | ug/        |   | <del>0</del>    |   | <b>74</b>    |   | 24           |   | <b>8</b> |   | Ø        | 7        |              |
| Organics, Volatife      | Benzene                     | SW 8240    | ng/L       | v | ഹ               | ٧ | so.          | ٧ | 2            | v | ις       | • | ß        | :        | 100%         |
| Organics, Volatile      | <b>Bromodichloromethane</b> | SW 8240    | ug/L       | ٧ | ß               | ٧ | ß            | v | ς.           | v | s.       | v | ស        | :        | 100%         |
| Organics, Volatile      | Bromoform                   | SW 8240    | ng/L       | v | ιΩ              | V | S            | ٧ | ည            | ٧ | ις       | v | ιΩ       | :        | 100%         |
| Organics, Volatile      | Bromomethane                | SW 8240    | ug/L       | v | <b>6</b>        | v | ₽            | • | 10           | v | 5        | • | <b>Q</b> | :        | 100%         |
| Organics, Volatile      | Carbon Disulfide            | SW 8240    | ug/L       | v | Ŋ               | ٧ | ro.          | v | വ            | v | ις.      | • | Ω.       | :        | 100%         |
| Organics, Volatile      | Carbon Tetrachloride        | SW 8240    | ng/L       | v | ഹ               | v | S)           | v | ល            | v | w        | v | ro       | :        | 100%         |
| Organics, Volatile      | Chiorobenzene               | SW 8240    | ng/L       | v | S)              | ٧ | ς.           | v | ς.           | v | S.       | v | r,       | :        | 100%         |
| Organics, Volatile      | Chloroethane                | SW 8240    | ng/L       | ٧ | 9               | ٧ | 0            | v | <del>0</del> | ٧ | 5        | ٧ | <b>Q</b> | :        | 100%         |
| Organics, Volatite      | Chloroform                  | SW 8240    | μĝ         | v | တ               | V | ro.          | ٧ | S            | ٧ | ß        | • | S        | :        | 100%         |
| Н                       |                             |            |            | Ë | imestone Slurry |   | / Filtrate - | _ | Page 5       |   |          |   |          |          |              |

Limestone Slurry Filtrate - Page 6

**Liquid Stream Data Summary** 

| Filtrate  |
|-----------|
| Slurry    |
| .imestone |
| Stream: L |
| nple (    |

| 36% DL     |         | 100%     | 100%               | 100%                                      | %0Z ···            | 100%               |                    | 100% | 100%     | 100%               | 100%<br>100%<br>100%                  | 100%<br>100%<br>100%<br>100%                             | 100%<br>100%<br>100%<br>100%<br>100%                                        | 100%<br>                                                                                       |
|------------|---------|----------|--------------------|-------------------------------------------|--------------------|--------------------|--------------------|------|----------|--------------------|---------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|            | Average | 10       | ß                  | ທ                                         | S.                 | ഗ                  |                    | w    | ഗഗ       | ນທູນ               | ი<br>ი<br>0                           | ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი                    | ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი                                       | ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი ი                                                          |
|            |         | v        | ٧                  | ٧                                         | v<br>¬             | v                  |                    | v    | v v      | v v v              | v v v                                 | v v v v                                                  | v v v v v                                                                   | v v v v v v                                                                                    |
| Run        | DC      | 5        | w                  | ı.c                                       | 8.                 | ß                  |                    | ß    | വ വ      | വവവ                | សសស 2                                 | <b>v</b> v v 0 0                                         | <br>                                                                        | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                |
| П          |         | v        | ٧                  | ٧                                         |                    | V                  |                    | V    | v v      | v v v              | v v v                                 | V V V V                                                  | v v v v v                                                                   | v v v v v v                                                                                    |
| Run        | 3a      | 5        | · va               | יט כ                                      | o un               | , ro               |                    | S    | n n      | വവസ                | ი ი ი 5                               | ა<br>გა დე 20<br>10                                      | ა<br>ი 10<br>ი 10                                                           | გ გ. გ. გ. გ.<br>1902 წელი გ.                                                                  |
|            |         | ٧        | ٧                  | v                                         |                    | v                  |                    | ٧    | v v      | v v v              | · · · ·                               | v v v v                                                  | v v v v v                                                                   | v v v v v v                                                                                    |
| Run        | 2       | Ę        | e u                | , u                                       | o un               | , ro               |                    | 'n   | ro ro    | വഹവ                | ი ა ი 2                               | ი ი ი ე <u>ე</u>                                         | დ დ დ Q Q დ                                                                 | ი ი ი ე ე ი ი                                                                                  |
|            |         | v        |                    | , v                                       | •                  | v                  |                    | v    | v v      | v v v              | v v v                                 | v v v v                                                  | v v v v v                                                                   | <b>, , , , , , , , , , , , , , , , , , , </b>                                                  |
| Run        | -       | Ç        | 2 u                | טנ                                        | י ע                | o uc               | • 1                | ır.  | n n      | വവ                 |                                       | ი ი ი <del>ე</del> ე                                     | ი გი დე დე და და და და და და და და და და და და და                           | ი ი ი <del>ე</del> ე ი ი                                                                       |
|            |         | ٧        | , ,                | , ,                                       | , v                | , v                | •                  | i    | , ,      | , v v              | , , , ,                               | , , , , ,                                                | , , , , , ,                                                                 | , , , , , , , ,                                                                                |
|            | Units   | 101      |                    | ָרָרָרָרָרָרָרָרָרְיִירָרְיִירָרְיִירְיִי | )<br> <br> <br>    |                    | , (P)              |      | 100      | ן<br>מאר           | 1964 J                                |                                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                       |                                                                                                |
| Analytical | Method  | OVCB INC | 344 0240           | SVV 6240                                  | ON/ 8240           | SW 8240            | SW 8240            |      | CACR MAS | SW 8240            | SW 8240<br>SW 8240                    | SW 8240<br>SW 8240<br>SW 8240                            | SW 8240<br>SW 8240<br>SW 8240<br>SW 8240                                    | SW 8240<br>SW 8240<br>SW 8240<br>SW 8240<br>SW 8240                                            |
|            | Specie  | 4        |                    | Ulbromochioromethane                      | Ethylbenzene       | Memylene Caldade   | Totrachlossethene  |      | Tefrican | Toluene            | Toluene Trichloroethene               | Toluene Trichloroethene Vinyl acetate                    | Tokuene Trichloroethene Vinyl acetate Vinyl chloride                        | Toluene Trichloroethene Vinyl acetate Vinyl chloride Xylenes                                   |
| Analyte    | Group   |          | Organics, Volatile | Organics, Volatile                        | Organics, Volatile | Organics, Volatile | Organics, volatile |      |          | Organics, Volatile | Organics, Volatile Organics, Volatile | Organics, Votatile Organics, Votatile Organics, Votatile | Organics, Votatile Organics, Votatile Organics, Votatile Organics, Votatile | Organics, Votatile Organics, Votatile Organics, Votatile Organics, Votatile Organics, Votatile |

Liquid Stream Data Summary

Sample Stream: Cooling Water

| DL<br>Ratio          |            |                 |                 |                |                  |           |           |                 | 65%             | 100%            |                 | 100%            |                 |                 |                 |                 | 82%             |                 |                 |                 |                 |                 |                 |                 |                 | 21%             |                 | 100%            |                 |                 |                 | <b>68</b> %     |                 |                 |                 |   |
|----------------------|------------|-----------------|-----------------|----------------|------------------|-----------|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---|
| %<br>56<br>5         | 100000     | 2000            | 0.014           | 1.80           | 0.018            | 0.070     | 1.36      | 0.047           | ;               | :               | 0.0081          | ;               | 3.44            | 0.00697         | 52.65           | 0.0027          | ;               | 0.131           | 0.131           | 0.097           | 4.01            | 0.250           | 0.00002         | 0.00069         | 0.00484         | ;               | 0.49            | ;               | 4.25            | 11.57           | 0.080           | ;               | 0.00120         | 090000          | 0.050           |   |
| Average              | 0000       | 200             | 0.047           | 5.71           | 0.134            | 0.094     | 6.34      | 0.031           | 0.024           | 0.001           | 0.013           | 0.001           | 0.93            | 0.00198         | 19.12           | 0.0020          | 0.0034          | 0.035           | 0.112           | 0.027           | 3.09            | 0.072           | 0.00005         | 0.00152         | 0.00215         | 0.061           | 2.42            | 0.0014          | 4.55            | 8.42            | 0.049           | 0.014           | 0.00111         | 0.00272         | 0.018           |   |
|                      |            |                 |                 |                |                  |           |           |                 | ٧               | v               |                 | v               |                 |                 |                 |                 | v               |                 |                 |                 |                 |                 |                 |                 |                 | <b>v</b>        |                 | ٧               |                 |                 |                 | ٧               |                 |                 |                 |   |
|                      | -          | 7               |                 |                |                  |           |           |                 |                 |                 |                 |                 |                 |                 |                 | ~               |                 |                 |                 |                 |                 |                 |                 | -               | _               |                 |                 |                 |                 |                 |                 |                 |                 | 7               |                 |   |
| Run<br>3d            | 0000       | 0.00203         | 0.0333          | 5.26           | 0.146            | 0.0623    | 6.02      | 0.0423          | 0.0241          | 0.000657        | 0.0109          | 0.000554        | 0.0807          | 0.00136         | 4.97            | 0.00061         | 0.0034          | 0.0103          | 0.0923          | 0.0121          | 1.23            | 0.0107          | 0.00005         | 0.00057         | 0.0017          | 0.0941          | 205             | 0.00144         | 3.75            | 5.29            | 0.0251          | 0.0144          | 0.00125         | 0.00089         | 0.00857         |   |
|                      |            |                 |                 |                |                  |           |           |                 | ٧               | ٧               |                 | V               |                 |                 |                 |                 | ٧               |                 |                 |                 |                 |                 | v               |                 |                 |                 |                 | v               |                 |                 |                 | ٧               |                 |                 |                 |   |
|                      | -          | •               |                 |                |                  |           |           | 7               | 7               | <u>,</u>        |                 | 4               |                 | ~               |                 | _               | ~               | _               |                 |                 |                 |                 | ¬               | ~               | ~               |                 |                 | _               |                 |                 |                 | ~               | <u>-</u>        | <b>~</b>        |                 |   |
| Run<br>3a            | 70,00      | 200.0           | 0.0421          | 5.25           | 0.128            | 0.0614    | 5.73      | 0.0151          | 0.0127          | 0.000657        | 0.0113          | 0.000554        | 0.196           | 0.00042         | 8.72            | 0.00291         | 0.00062         | 0.0959          | 0.173           | 0.0072          | 3.95            | 0.0188          | 0.00004         | 0.00137         | 0.00012         | 0.0929          | 2.38            | ø               | 6.53            | 13.8            | 0.0335          | 0.00666         | 0.00055         | 0.00256         | 0.0413          |   |
|                      |            |                 |                 |                |                  |           |           |                 |                 | ٧               |                 | ٧               |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | ٧               |                 |                 |                 |                 |                 |                 |                 |   |
|                      | -          | •               |                 |                |                  |           |           |                 |                 | ~               |                 | 4               |                 | Δ.              |                 | <b>-</b>        |                 |                 |                 |                 |                 |                 | "               | -<br>-          | <b>-</b>        |                 |                 | _               |                 |                 |                 |                 | _               |                 | <b>.</b>        | • |
| Run<br>2             | 250        | 2               | 0.0455          | 5.34           | 0.132            | 0.114     | 6.51      | 0.052           | 0.0241          | 0.000657        | 0.0169          | 0.000554        | 2.52            | 0.00522         | 43.5            | 0.00081         | 0.0034          | 0.00447         | 0.0844          | 0.0722          | 4.              | 0.188           | 0.0000          | 0.00184         | 0.00231         | 0.061           | 7.04            | 0.00144         | 3.55            | 5.62            | 0.0856          | 0.0144          | 0.00136         | 0.0026          | 0.00616         | 1 |
|                      |            |                 |                 |                |                  |           |           |                 | ٧               | ٧               |                 | ٧               |                 |                 |                 |                 | ٧               |                 |                 |                 |                 |                 |                 |                 |                 | ٧               |                 | ٧               |                 |                 |                 | ٧               |                 |                 |                 |   |
|                      | -          | 7               |                 |                |                  |           |           | 7               |                 | _               |                 |                 |                 |                 |                 | 7               |                 |                 |                 |                 |                 |                 |                 | 7               | 7               | 7               |                 |                 |                 |                 |                 |                 |                 |                 |                 |   |
| Run<br>T             | 250        | 3               | 0.0532          | 6.55           | 0.142            | 0.106     | 6.79      | 0.0265          | 0.0241          | 0.000657        | 0.0112          | 0.000554        | 0.0601          | 0.00031         | 5.13            | 0.00239         | 0.0034          | 0.00429         | 0.079           | 0.0023          | 1.23            | 0.00932         | 0.00005         | 0.00135         | 0.00401         | 0.021           | 2.25            | 0.00144         | 3.58            | 5.85            | 0.0265          | 0.0144          | 0.00141         | 0.003           | 0.00684         |   |
|                      |            |                 |                 |                |                  |           |           |                 | v               | ٧               |                 | ٧               |                 |                 |                 |                 | ٧               |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | ٧               |                 |                 |                 | ٧               |                 |                 |                 |   |
| Units                | 1          |                 | lm/gn           | m/gn           | m/on             | lm/gu     | lm/gu     | m/gn            | E/Bn            | m/dn            | m/Bn            | m/gu            | m/gn            | μ/gn            | m/go            | m/bn            | lm/go           | ĮΨ/đη           | lm/gu           | lm/gu           | lm/gu           | μ/gn            | m/gn            | lm/gu           | m/gn            | lm/gu           | jw/gn           | m/gn            | m/on            | μ/bn            | m/sn            | Įω/ď            | m/gn            | lm/6n           | m/gn            |   |
| Analytical<br>Method | C FOO 7913 | 2108 440        | EPA 350.1       | <b>EPA 300</b> | <b>EPA 340.2</b> | EPA 365.2 | EPA 300.0 | SW 6010         | SW 6010         | SW 7060         | SW 6010         | SW 6010         | SW 6010         | SW 7131         | SW 6010         | SW 6010         | SW 6010         | SW 6010         | SW 6010         | SW 7421         | SW 6010         | SW 6010         | SW 7470         | SW 6010         | SW 6010         | SW 6010         | SW 6010         | SW 7740         | SW 6010         | SW 6010         | SW 6010         | SW 6010         | SW 6010         | SW 6010         | SW 6010         |   |
|                      |            |                 | z               |                |                  |           |           |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 | •               | en              |                 | E               |                 | 40              |                 |                 |                 |                 |                 |                 |                 |                 |                 |   |
| Specie               |            | Cyalline        | Ammonta as N    | Chloride       | Fluoride         | Phosphate | Sulfate   | Aluminum        | Antimony        | Arsenic         | Bartum          | Beryllium       | Boron           | Cadmium         | Calcium         | Chromium        | Cobalt          | Copper          | Iron            | Lead            | Magnesium       | Manganese       | Mercury         | Molybdenum      | Nickel          | Phosphorus      | Potassium       | Selenium        | Silicon         | Sodium          | Strontium       | 투               | Titanium        | Vanadium        | Zinc            |   |
|                      |            |                 |                 |                |                  |           |           |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |   |
| Analyte              |            | Reduced Species | Reduced Species | Anions         | Anions           | Anions    | Anions    | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble | Metals, Soluble |   |

Cooling Water - Page 1

Liquid Stream Data Summary

| A)  |
|-----|
| •   |
| _   |
| 65  |
|     |
| -   |
| _   |
| _   |
| _   |
|     |
| -   |
| _   |
| _   |
| _   |
| _   |
| u   |
|     |
| •   |
|     |
|     |
| _   |
|     |
|     |
|     |
| E   |
| _   |
| ea  |
| *** |
| a.  |
| •   |
| _   |
| 돐   |
|     |
| 4   |
| ••  |
| -   |
| •   |
| _   |
| ~   |
| _   |
| =   |
| -   |
| _   |
| -   |
| •0  |
| "   |
|     |

|            | Averag |  |
|------------|--------|--|
| Run        | 34     |  |
| Run        | 3a     |  |
| Run        | 2      |  |
| Run        | 1      |  |
|            | Units  |  |
| Analytical | Method |  |
|            | Specie |  |
| Analyte    | Group  |  |

| Analyte                 |                            | Analytical |          | <b>u</b> . | Run      |   | Run      |   | 2          | =            |   | Run      |   |         | 95%     | 占          |
|-------------------------|----------------------------|------------|----------|------------|----------|---|----------|---|------------|--------------|---|----------|---|---------|---------|------------|
| Group                   | Specie                     | Method     | Units    |            | -        |   | 2        |   | 3a         |              |   | DE 3d    |   | Average | ਠ       | Ratio      |
|                         |                            |            |          |            |          |   |          |   |            |              |   |          |   |         |         |            |
| Metais, Total           | Aluminum                   | SW 6010    | lm/gn    | ~          | 86.      |   | 4.6      |   | 1.03       | ø            |   | 1.15     |   | 2.87    | 4.44    |            |
| Metals, Total           | Antimony                   | SW 6010    | ш/бл     | 0          | 960      |   | 0.0219   | 7 | 0.00859    | 359 J        |   | 0.0346   |   | 0.022   | 0.034   |            |
| Metals, Total           | Arsenic                    | SW 7060    | m/go     | ö          | 0.0216   | ٧ | 0.000657 |   | < 0.000657 | 657          | ٧ | 0.000657 |   | 0.0074  | 0.0305  | 3%         |
| Metals, Total           | Barium                     | SW 6010    | m/gn     | ö          | 0.0322   |   | 0.0409   |   | 0.0188     | 88           |   | 0.0181   |   | 0.031   | 0.028   |            |
| Metals, Total           | Beryllium                  | SW 6010    | m/gn     | ਨ          | 9E-05    |   | 0.00014  | - | 0000       | 554          | ٧ | 0.000554 | ٧ | 0.00055 | :       | 22%        |
| Metals, Total           | Boron                      | SW 6010    | m/gn     | O          | 0.247    |   | 0.488    |   | 0,236      | œ            |   | 0.0846   |   | 0.324   | 0.354   |            |
| Metals, Total           | Cadmium                    | SW 7131    | m/gu     | 0.0        | 0.00023  |   | 0.00209  |   | 0.00064    | <b>36</b> 4  |   | 0.00031  |   | 0.00099 | 0.00243 |            |
| Metals, Total           | Calcium                    | SW 6010    | m/gu     | ¥O         | 5.91     |   | 6.54     |   | 5.28       | 80           |   | 4.62     |   | 5.91    | 1.57    |            |
| Metals, Total           | Chromium                   | SW 6010    | m/gu     | 0.0        | 0.00566  |   | 0.00634  |   | 0.00283    | 283          |   | 0.00449  |   | 0.00494 | 0.00462 |            |
| Metals, Total           | Cobalt                     | SW 6010    | E/ð      | 0.0        | 0.00453  |   | 0.00682  |   | 0.00368    | 898          |   | 0.00622  |   | 0.00501 | 0.00403 |            |
| Metals, Total           | Copper                     | SW 6010    | ⊞/go     | ö          | 0.0112   |   | 0.0132   |   | 0.00682    | 382          |   | 0.00552  |   | 0.010   | 0.00811 |            |
| Metals, Total           | Iron                       | SW 6010    | m/gn     | 4          | 4.12     |   | 6.21     |   | 1.87       | 7            |   | 1.94     |   | 4.07    | 5.39    |            |
| Metals, Total           | Lead                       | SW 7421    | m/gn     | ö          | 0.0163   |   | 0.0572   |   | 0.0173     | 73           |   | 0.0092   |   | 0.030   | 0.058   |            |
| Metals, Total           | Magnesium                  | SW 6010    | m/gn     | -          | 1.81     |   | 1.89     |   | £.         | 9            |   | 1.28     |   | 1.69    | 0.71    |            |
| Metals, Total           | Manganese                  | SW 6010    | m/bn     | O          | 193      |   | 0.237    |   | ŏ          | ¥            |   | 0.0934   |   | 0.178   | 0.168   |            |
| Metals, Total           | Mercury                    | SW 7470    | m/gn     | 0.0        | 0003     |   | 0.00004  | 7 | 0.00005    | 92           |   | 900000   |   | 0.00004 | 0.00002 |            |
| Metals, Total           | Molybdenum                 | SW 6010    | m/gn     | 0.0        | 0175 J   |   | 0.00246  | 7 | 0.00295    | 7<br>982     | v | 0.00463  |   | 0.00239 | 0.00150 |            |
| Metals, Total           | Nickel                     | SW 6010    | m/gn     | 0.0        | 0524     |   | 0.00445  | - | > 0.00986  | 986          |   | 0.00078  | • | 0.010   | 1       | 34%        |
| Metals, Total           | Phosphorus                 | SW 6010    | m/gn     | O          | 138      |   | 0.184    |   | > 0.061    | <u>~</u>     | v | 0.061    |   | 0.118   | 0.196   | <b>%</b> 6 |
| Metais, Total           | Potassium                  | SW 6010    | ug/m     | •          | Ξ        |   | 2.84     |   | 2.3        | 8            |   | 2.43     |   | 2.76    | 0.97    |            |
| Metals, Total           | Selenium                   | SW 7740    | m/6n     | ö          | 214      | ٧ | 0.00144  |   | < 0.00144  | 44           | ٧ | 0.00144  |   | 0.008   | 0.030   | %9         |
| Metals, Total           | Silicon                    | SW 6010    | lm/gu    | 7          | 2        |   | 8.22     |   | 4.47       | 7            |   | 4.56     |   | 6.57    | 4.75    |            |
| Metals, Total           | Sodium                     | SW 6010    | E/Bn     | 9          | 27       |   | 5.1      |   | 4.81       | -            |   | 4.7      |   | 5.39    | 1.92    |            |
| Metals, Total           | Strontium                  | SW 6010    | m/gn     | ö          | 0.0295   |   | 0.0293   |   | 0.0241     | <del>-</del> |   | 0.0224   |   | 0.028   | 0.0076  |            |
| Metals, Total           | ᆵ                          | SW 6010    | m/gn     | ŏ<br>v     | 14       | ٧ | 0.0144   |   | م<br>0.01  | 4            | ٧ | 0.0144   | ٧ | 0.014   | :       | 100%       |
| Metals, Total           | Titanium                   | SW 6010    | m/gn     | <b>O</b>   | 0.167    |   | 0.235    |   | 90.0       | 77           |   | 690.0    |   | 0.157   | 0.209   |            |
| Metals, Total           | Vanadium                   | SW 6010    | m/gn     | 0.0        | 0.00881  |   | 0.0119   |   | 0.00427    | 127          |   | 0.00629  |   | 0.00833 | 0.010   |            |
| Metals, Total           | Zinc                       | SW 6010    | m/gn     | Ö          | 0.0275   |   | 0.0382   |   | 0.01       | 98           |   | 0.0136   |   | 0.026   | 0.031   |            |
| Aldebudee               | Acetaldebyde               | SW 8315    | m/m/     | o          | 8        |   | 9900     |   | 0          | æ            |   | 60.0     |   | 0.055   | 0.117   |            |
|                         | Extraplement               | SW 8315    | æ/or.    | · -        | 0.0054   |   | 0.044    |   | 0 03       | . ~          |   | 0.026    |   | 0.026   | 0.049   |            |
| Aldenydes               | rollnanellyus              | 200        | <b>P</b> | ś          | <b>5</b> |   |          |   | 3          | ,            |   | 200      |   | 2707    |         |            |
| Organics, Semi-volatile | 1,2,4,5-Tetrachforobenzene | SW 8270    | J/gn     | ۷          | 0.55     | ٧ | 0.556    |   | < 0.371    | Ξ.           | v | 0.375    | ٧ | 0.492   | ;       | 100%       |
| Organics Semi-volatile  | 1,2,4-Trichlorobenzene     | SW 8270    | ug/L     | v          | 0.563    | ٧ | 0.568    |   | × 0.5      | 9            | v | 0.565    | ٧ | 0.564   | :       | 100%       |
| Organics, Semi-volatile | 1,2-Dichlorobenzene        | SW 8270    | ug/L     | v          | 742      | ٧ | 0.749    |   | 90°0       | ξ.           | ٧ | 0.611    | V | 0.699   | :       | 100%       |

### Cooling Water - Page 2

Liquid Stream Data Summary

Sample Stream: Cooling Water

| 占           | Ratio   | 3001 | 3                       | 100<br>%                | 100<br>%                | 100%                    | 100%                    | 100%                      | 100%                    | 7001                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 4001                    | 100%                    | 100%                     | 100%                    | 100%                    | 100%                    | 100%                    | 100 <b>%</b>            | 100%                    | 100%                    | 100%                       | 100%                    | 100%                    | 100%                    | 100 <b>%</b>                | 100%                     | 100%                   | 100%                    | 100%                           | 100%                    | 100%                    |   |
|-------------|---------|------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------------|-------------------------|-------------------------|-------------------------|-----------------------------|--------------------------|------------------------|-------------------------|--------------------------------|-------------------------|-------------------------|---|
| <b>%</b> 98 | ਠ       | 1    | 1                       | :                       | :                       | ;                       | :                       | :                         | :                       | •                       | ;                       | :                       | ;                       | :                       | :                       | 1                       | :                       | :                       | :                       | ;                        | 1                       | ;                       | ;                       | :                       | ;                       | ;                       | :                       | ;                          | ;                       | ;                       | 1                       | :                           | ;                        | !<br>!                 | :                       | ;                              | :                       | ;                       |   |
|             | Average | Ş    | 3                       | 0.480                   | 0.702                   | 0.581                   | 1.64                    | 0.469                     | 0.372                   | 0.383                   | 0.463                   | 1,12                    | 5.79                    | 0.539                   | 0.624                   | 0.494                   | 0.331                   | 0.689                   | 0.54                    | 0.439                    | 1.75                    | 0.467                   | 0.446                   | 0.959                   | 0.418                   | 0.658                   | 0.449                   | 0.642                      | 0.854                   | 0.444                   | 0.625                   | 0.471                       | 0.513                    | 0.501                  | 0.738                   | 1.65                           | 0.391                   | 0.277                   |   |
|             | `       | •    | ,                       | v                       | v                       | ٧                       | v                       | ٧                         | ٧                       | ٧                       | v                       | v                       | v                       | ٧                       | v                       | ٧                       | ٧                       | v                       | ٧                       | v                        | ٧                       | ٧                       | ٧                       | v                       | v                       | ٧                       | v                       | v                          | ٧                       | ٧                       | v                       | v                           | v                        | v                      | v                       | v                              | v                       | v                       |   |
| Run         | 3d      | ξ    | 3                       | 0.689                   | 0.565                   | 0.516                   | 1.85                    | 0.447                     | 0.489                   | 0.487                   | 0.547                   | 1.25                    | 4.02                    | 0.568                   | 0.492                   | 0.828                   | 0.377                   | 0.611                   | 0.35                    | 0.298                    | 1.54                    | 0.637                   | 0.502                   | 0.795                   | 0.32                    | 0.481                   | 0.378                   | 0.413                      | 1.14                    | 0.465                   | 0.495                   | 0.405                       | 0.441                    | 0.583                  | 0.901                   | 1.28                           | 0.262                   | 0.402                   |   |
|             | ļ       | `    | ,                       | v                       | v                       | ٧                       | v                       | ٧                         | v                       | v                       | ٧                       | v                       | v                       | ٧                       | ٧                       | ٧                       | v                       | v                       | v                       | ٧                        | v                       | ٧                       | ٧                       | v                       | ٧                       | ٧                       | ٧                       | ٧                          | v                       | ٧                       | v                       | ٧                           | v                        | ٧                      | ٧                       | v                              | ٧                       | ٧                       |   |
| Run         | 38      | ξ    | 3 }                     | 0.683                   | 0.56                    | 0.511                   | 1.93                    | 0.443                     | 0.485                   | 0.482                   | 0.542                   | 1.24                    | 3.98                    | 0.563                   | 0.488                   | 0.82                    | 0.373                   | 0.605                   | 0.347                   | 0.295                    | 1.52                    | 0.631                   | 0.497                   | 0.788                   | 0.317                   | 0.476                   | 0.374                   | 0.41                       | 1.13                    | 0.461                   | 0.49                    | 0.401                       | 0.437                    | 0.577                  | 0.892                   | 1.27                           | 0.259                   | 0.398                   |   |
|             |         | ,    | ,                       | v                       | v                       | ٧                       | ٧                       | v                         | v                       | v                       | ٧                       | v                       | v                       | ٧                       | v                       | ٧                       | v                       | ٧                       | v                       | ٧                        | v                       | ٧                       | v                       | v                       | v                       | v                       | ٧                       | v                          | ٧                       | ٧                       | v                       | ٧                           | ٧                        | ٧                      | ٧                       | v                              | v                       | v                       |   |
| Run         | 2       | ξ    | 3                       | 0.381                   | 0.777                   | 0.619                   | <del>2</del> .          | 0.484                     | 0.317                   | 0.336                   | 0.426                   | 1.06                    | 6.73                    | 0.529                   | 0.695                   | 0.333                   | 0.312                   | 0.735                   | 0.635                   | 0.513                    | 1.87                    | 0.387                   | 0.423                   | 50.                     | 0.471                   | 0.753                   | 0.489                   | 0.762                      | 0.719                   | 0.438                   | 0.695                   | 0.508                       | 0.553                    | 0.465                  | 0.664                   | 1.85                           | 0.46                    | 0.217                   |   |
|             |         | ,    | ,                       | v                       | ٧                       | v                       | v                       | ٧                         | v                       | v                       | ٧                       | v                       | v                       | v                       | v                       | v                       | v                       | ٧                       | v                       | v                        | v                       | v                       | v                       | v                       | ٧                       | v                       | v                       | v                          | v                       | v                       | v                       | v                           | v                        | v                      | v                       | v                              | v                       | v                       |   |
|             |         |      |                         |                         |                         |                         |                         |                           |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                          |                         |                         |                         |                         |                         |                         |                         |                            |                         |                         |                         |                             |                          |                        |                         |                                |                         |                         |   |
| Run         | -       | ξ    | 3                       | 0.377                   | 0.77                    | 0.613                   | 1.49                    | 0.479                     | 0.314                   | 0.332                   | 0.422                   | <del>1</del> 8          | 6.67                    | 0.524                   | 0.689                   | 0.33                    | 0.309                   | 0.728                   | 0.629                   | 0.509                    | <del>2</del>            | 0.383                   | 0.419                   | 2                       | 0.467                   | 0.746                   | 0.485                   | 0.754                      | 0.712                   | 0.434                   | 0.689                   | 0.503                       | 0.548                    | 0.461                  | 0.658                   | 1.83                           | 0.455                   | 0.215                   | Ć |
|             |         | `    | ,                       | ٧                       | V                       | V                       | ٧                       | ٧                         | V                       | ٧                       | V                       | v                       | V                       | ٧                       | ٧                       | ٧                       | v                       | ٧                       | v                       | ٧                        | v                       | ٧                       | ٧                       | ٧                       | ٧                       | V                       | ٧                       | ٧                          | ٧                       | V                       | V                       | v                           | v                        | ٧                      | ٧                       | V                              | V                       | v                       |   |
|             | Chits   | ,    | 7                       | ğ                       | √gn                     | ng/L                    | √gv                     | √g/                       | 1/ <b>6</b> n           | ug/L                    | A<br>VB                 | ug/L                    | √gn                     | ng/L                    | ng/L                    | J/Bn                    | J/gn                    | Z<br>Z                  | ηď,                     | ug/L                     | ug/L                    | <b>1/6</b> 0            | ug/L                    | rg/                     | J/dh                    | ug/L                    | ug/L                    | ng/L                       | ₽<br>F                  | γĝη                     | Ϋ́                      | γ <mark>ό</mark> ς          | √g/                      | ug/L                   | ug/L                    | ug/L                           | ug/L                    | 충                       |   |
| Analytical  | Method  | 0200 | 0170 Mc                 | SW 8270                   | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                  | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                    | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                     | SW 8270                  | SW 8270                | SW 8270                 | SW 8270                        | SW 8270                 | SW 8270                 |   |
|             | Specie  |      | 1,Z-Upnenymydrazme      | 1,3-Dichlorobenzene     | 1,4-Dichlorobenzene     | 1-Chloronaphthalene     | 1-Naphthylamine         | 2,3,4,6-Tetrachlorophenol | 2,4,5-Trichlorophenol   | 2,4,6-Trichlorophenol   | 2,4-Dichlorophenol      | 2,4-Dimethylphenol      | 2,4-Dinttrophenol       | 2,4-Dinitrotoluene      | 2,6-Dichlorophenol      | 2,6-Dinitrotoluene      | 2-Chloronaphthalene     | 2-Chlorophenol          | 2-Methylnaphthalene     | 2-Methylphenol(o-cresol) | 2-Naphthytamine         | 2-Nitroaniline          | 2-Nitrophenol           | 2-Picoline              | 3,3'-Dichlorobenzidine  | 3-Methylcholanthrene    | 3-Nitroanitine          | 4,6-Dinitro-2-methylphenol | 4-Aminobiphenyl         | 4-Bromophenyl phenyl    | 4-Chloro-3-methylphenol | 4-Chlorophenyl phenyl ether | 4-Methylphenol(p-cresol) | 4-Nitroaniline         | 4-Nitrophenol           | 7,12-Dimethylbenz(a)anthracene | Acenaphthene            | Acenaphthylene          |   |
| Analyte     | Group   |      | Organics, Semi-Volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-votatile | Organics, Semi-votatile | Organics, Semi-volatile   | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatife | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatife | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile  | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-votatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-votatile | Organics, Semi-votatile    | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile     | Organics, Semi-votatile  | Organics Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile        | Organics, Semi-volatile | Organics, Semi-volatile | • |

Cooling Water - Page 3

Liquid Stream Data Summary

| <u></u> |
|---------|
| >       |
| -       |
| _       |
| 9       |
| Ē       |
| -       |
| ₹       |
| 0       |
| 0       |
| Æ.      |
| v       |
|         |
| =       |
| -       |
| ă       |
|         |
| •       |
| ⋍       |
| 77      |
| •       |
| 6ı      |
| _       |
| •       |
| ₹       |
| ₽       |
| Ġ       |
| ιň      |
|         |

| 占          | Ratio   | 400%                   | 100%                   | 100%                    | 100%                     | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                     | 100%                    | 100%                     | 100%                    | <b>\$</b>               | 100%                    | 100%                    | 100%                    | 100<br>%                | 100<br>%                | 100%<br>%                | 100<br>%                  | 100%                    | 100%                    | 100%                    | 100%                    | 100%                      | 100%                    | 100%                    | 400%                    |
|------------|---------|------------------------|------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------|-------------------------|-------------------------|-------------------------|
| 95%        | 5       | ;                      | ;                      | ;                       | ;                        | ;                       | :                       | ;                       | ;                       | ;                       | :                       | •                       | ;                       | ;                       | ;                       | ;                       | ;                       | ;                        | 1                       | :                        | ;                       | :                       | ;                       | ;                       | ;                       | ;                       | :                       | :                        | :                         | ;                       | :                       | :                       | ;                       | :                         | :                       | ;                       | ;                       |
|            | Average | 0.470                  | 0.791                  | 0.487                   | 23                       | 0.471                   | 0.409                   | 0.651                   | 0.634                   | 0.935                   | 14.79                   | 0.884                   | 0.449                   | 0.597                   | 0.693                   | 0.56                    | 0.64                    | 0.431                    | 0.418                   | 0.378                    | 120                     | 0,285                   | 0,425                   | 0.537                   | 0.557                   | 0.335                   | 0.249                   | 9090                     | 7.58                      | 0.581                   | 0.76                    | 0.379                   | ይ                       | 1.036                     | 1,100                   | 0,446                   | 0,687                   |
|            |         | ٧                      | ٧                      | •                       | ٧                        | v                       | •                       | v                       | v                       | v                       | v                       | v                       | v                       | ٧                       | •                       | v                       | v                       | v                        | v                       | v                        | v                       | •                       | •                       | •                       | •                       | v                       | <b>v</b>                | •                        | v                         | <b>v</b>                | •                       | •                       | v                       | •                         | v                       | v                       | v                       |
| Run        | 8       | 0.537                  | 0.592                  | 0.354                   | 2                        | 0.432                   | 0.498                   | 0.873                   | 0.981                   | 0.961                   | 37.1                    | 0.587                   | 0.601                   | 0.516                   | 0.338                   | 0.78                    | 0.81                    | 0.516                    | 0.312                   | 0.495                    | 120                     | 0.323                   | 0.266                   | 0.653                   | 0.453                   | 0.365                   | 0.302                   | 0.492                    | 5.66                      | 0.611                   | 1.28                    | 0.592                   | ß                       | 0.605                     | 0.756                   | 0.259                   | 0.629                   |
|            |         | v                      | ٧                      | v                       | v                        | ٧                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | •                       | v                       | v                        | v                       | v                        | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                        | •                         | v                       | v                       | v                       | v                       | •                         | v                       | v                       | v                       |
| Run        | 3a      | 0.532                  | 0.587                  | 0.35                    | 20                       | 0.428                   | 0.493                   | 0.865                   | 0.971                   | 0.951                   | 36.8                    | 0,581                   | 0.595                   | 0.511                   | 0.335                   | 0.772                   | 0.802                   | 0.511                    | 0,309                   | 0.49                     | 120                     | 0.32                    | 0.264                   | 0.647                   | 0.449                   | 0.362                   | 0.299                   | 0.488                    | 5.61                      | 0.605                   | 1.27                    | 0.587                   | ଝ                       | 0.599                     | 0,749                   | 0.256                   | 0,623                   |
|            |         | v                      | ٧                      | ٧                       | v                        | v                       | v                       | ٧                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | ٧                       | v                        | v                       | v                        | v                       | v                       | v                       | v                       | ٧                       | V                       | V                       | v                        | ٧                         | v                       | ٧                       | ٧                       | v                       | ٧                         | v                       | v                       | V                       |
| Run        | 2       | 0.441                  | 0.897                  | 0.559                   | 20                       | 0.495                   | 0.368                   | 0.547                   | 0.468                   | 0.931                   | 3.81                    | 2                       | 0.378                   | 0.643                   | 0.876                   | 0.456                   | 0.559                   | 0.392                    | 0.474                   | 0.323                    | 120                     | 0.269                   | 0.508                   | 0.484                   | 0.613                   | 0.323                   | 0.225                   | 0.671                    | 8.58                      | 0.571                   | 0.505                   | 0.276                   | 8                       | 1.26                      | 1.28                    | 0.544                   | 0.722                   |
|            |         | v                      | v                      | v                       | v                        | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                        | v                       | v                        | v                       | v                       | v                       | v                       | v                       | v                       | •                       | v                        | v                         | v                       | v                       | v                       | v                       | v                         | v                       | v                       | v                       |
| Run        | -       | 0.437                  | 0.889                  | 0.553                   | 2                        | 0.49                    | 0.365                   | 0.542                   | 0.464                   | 0.922                   | 3.77                    | 1.03                    | 0.374                   | 0.637                   | 0.868                   | 0.451                   | 0.553                   | 0.389                    | 0.47                    | 0.32                     | 120                     | 0.267                   | 0.503                   | 0.479                   | 909.0                   | 0.32                    | 0.223                   | 0.665                    | 8.5                       | 0.566                   | 0.5                     | 0.273                   | 22                      | 1.25                      | 1.27                    | 0.539                   | 0.715                   |
|            |         | v                      | ٧                      | ٧                       | v                        | v                       | ٧                       | v                       | v                       | ٧                       | ٧                       | v                       | v                       | ٧                       | v                       | ٧                       | ٧                       | v                        | v                       | v                        | ٧                       | ٧                       | •                       | ٧                       | ٧                       | v                       | v                       | v                        | v                         | v                       | v                       | ٧                       | v                       | ٧                         | v                       | <b>v</b>                | v                       |
|            | Units   | 1/0/1                  | /001                   | 7                       | - N                      | J/6n                    | 1/60                    | ng/                     | √gn                     | /gn                     | J/Bn                    | ug/L                    | J/Bn                    | ug/L                    | ug/L                    | ug/L                    | ₩,                      | ng/L                     | √gn                     | J/Bn                     | √gv                     | J/gn                    | √gu                     | √g√                     | J/Bn                    | √g⁄r                    | ng/L                    | ug/L                     | γď                        | ₽<br>V                  | γgn                     | γgη.                    | ng/L                    | √gn                       | √gu                     | <b>7</b>                | 1/ôn                    |
| Analyticat | Method  | SW 8270                | SW 8270                | SW 8270                 | SW 8270                  | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                  | SW 8270                 | SW 8270                  | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                  | SW 8270                   | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                   | SW 8270                 | SW 8270                 | SW 8270                 |
|            | Specie  | Acetonhenone           | Aniline                | Anthracene              | Benzidine                | Benzo(a)anthracene      | Benzo(a)pyrene          | Benzo(b)fluoranthene    | Benzo(g,h,i)perylene    | Benzo(k)fluoranthene    | Benzoic acid            | Benzył alcohol          | Butyfbenzylphthalate    | Chrysene                | Di-n-octylphthalate     | Dibenz(a,h)anthracene   | Dibenz(a,))acridine     | Dibenzofuran             | Dibutyfphthalate        | Diethylphthalate         | Dimethytphenethylamine  | Dimethylphthalate       | Diphenylamine           | Ethyl methanesulfonate  | Fluoranthene            | Fiuorene                | Hexachiorobenzene       | Hexachlorobutadiene      | Hexachlorocyclopentadtene | Hexachloroethane        | Indeno(1,2,3-cd)pyrene  | Isophorone              | Methyl methanesulfonate | N-Nitroso-di-n-butylamine | N-Nitrosodimethylamine  | N-Nitrosodiphenylamine  | N-Nitrosodipropytamine  |
| Analyte    | Group   | Organica Semi-volatile | Organice Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatifie | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatite | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatifie | Organics, Semi-volatile | Organics, Semi-volatifie | Organics, Semi-votatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatite | Organics, Semi-volatite | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatifie | Organics, Semi-volatile   | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile   | Organics, Semi-volatite | Organics, Semi-volatile | Organics, Semi-volatile |

### Cooling Water - Page 4

Sample Stream: Cooling Water

| ᆸ          | Ratio   | 5<br>8                  | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                    | 100%                       | 100%                    | 100%                        | 3%                         | 100 <b>%</b>            | 100%<br>%                 | 100%                  | 100%                      | 100%                  | 100%               | 100°               | 100%               | 100%                       | 100%                | 100%               | 100%               | 100%                        | 45%                | 100%               | 100%                 | 100%               | 100%               | 100%               |   |
|------------|---------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------------|-------------------------|-----------------------------|----------------------------|-------------------------|---------------------------|-----------------------|---------------------------|-----------------------|--------------------|--------------------|--------------------|----------------------------|---------------------|--------------------|--------------------|-----------------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|---|
| 95%        | 5       | :                       | ;                       | :                       | ;                       | :                       | ;                       | ;                       | :                       | :                       | :                       | ;                       | :                       | :                          | ;                       | :                           | 7.2                        | :                       | :                         | :                     | ;                         | ;                     | :                  | :                  | ;                  | :                          | :                   | :                  | :                  | :                           | :                  | ;                  | :                    | :                  | :                  | ;                  |   |
|            | Average | 0.791                   | 0.62                    | 0.604                   | 0.401                   | 1.76                    | 0.834                   | 0.467                   | 0.545                   | 0.535                   | 0.548                   | 0.428                   | 0.93                    | 0.551                      | 0.589                   | 0.716                       | 3.55                       | 0.593                   | 0.559                     | J.                    | ĸ                         | ις.                   | ro.                | ιΩ                 | ιΩ                 | ιΩ                         | ro<br>C             | 우                  | 5                  | 2                           | 9                  | ĸ                  | ĸ                    | ស                  | 5                  | 2                  |   |
|            |         | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                       | v                          | v                       | v                           |                            | ٧                       | v                         | ٧                     | v                         | v                     | ٧                  | v                  | ٧                  | ٧                          | v                   | v                  | v                  | v                           | v                  | v                  | V                    | v                  | v                  | v                  |   |
| E          |         | 74                      | 9                       | <u>~</u>                | 92                      | ಜ                       | 22                      | 71                      | ਨ                       | 49                      | 32                      | 82                      | 65                      | 83                         | 88                      | 29                          | SS.                        | 16                      | 86                        |                       |                           |                       |                    |                    |                    |                            |                     | ₽                  | 0                  | 0                           | <del>-</del>       |                    |                      |                    | 0                  |                    |   |
| Run        | Ñ       | < 0.574                 | ŏ                       | ٠<br>0                  | < 0.36                  | ¥.                      | < 0.855                 | < 0.371                 | < 0.45                  | 8.0<br>8.0              | < 0.232                 | × 0.3                   | s.<br>0.5               | A 0.5                      | × 0.3                   | 7.0 ×                       | < 0.559                    | × 0.7                   | × 0.698                   | un<br>V               | V.                        | <b>υ</b>              | v.                 | ιο                 | UP<br>V            | v.                         | <b>ν</b>            | <del>-</del>       | <del>-</del>       | <del>=</del>                | ₩.                 | vo<br>v            | v                    | uc<br>V            | <b>∓</b>           | v.                 |   |
|            |         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                         |                            |                         |                             |                            |                         |                           |                       |                           |                       |                    |                    |                    |                            |                     |                    |                    |                             |                    |                    |                      |                    |                    |                    |   |
| Run        | 3a      | 0.569                   | 0.455                   | 0.802                   | 0.356                   | 131                     | 0.847                   | 0.368                   | 0.446                   | 0.841                   | 0.23                    | 0.389                   | 0.56                    | 0.577                      | 0.365                   | 92.0                        | 0.553                      | 0.71                    | 0.691                     | ĸ                     | S                         | ß                     | വ                  | S.                 | ß                  | വ                          | ro                  | 2                  | 9                  | ₽                           | 12                 | S                  | £                    | S                  | 우                  | သ                  |   |
|            |         | v                       | ٧                       | v                       | v                       | V                       | ٧                       | ٧                       | v                       | v                       | v                       | ٧                       | ٧                       | ٧                          | ٧                       | V                           | v                          | ٧                       | ٧                         | ٧                     | ٧                         | ٧                     | v                  | v                  | ٧                  | v                          | v                   | v                  | v                  | ٧                           |                    | ٧                  | V                    | v                  | v                  | ٧                  |   |
| _          |         | <u>_</u>                | =                       | 82                      | 9                       | 0                       | =                       | ø                       | 8                       | ¥                       | <b>+</b>                | LC<br>L                 | 2                       | ₩.                         | Ŧ                       | 8                           |                            | 1                       | ıΩ                        |                       |                           |                       |                    |                    |                    |                            |                     |                    |                    |                             |                    |                    |                      |                    |                    |                    | , |
| Run        | 2       | 0.907                   | 0.701                   | 0.508                   | 0.426                   | .98                     | 0.831                   | 0.51                    | 0.59                    | 0.38                    | 0.711                   | 0                       | =                       | 0.5                        | 0.70                    | 0.69                        | 5.8                        | 0.53                    | 0.49                      | iù.                   | ı,                        | ro.                   | 10                 | 10                 | <br>10             | ψ.                         |                     | 2                  | 5                  |                             | 5                  | ιΩ<br>Ω            | ις<br>C              | S.                 | 우                  | S.                 |   |
|            |         | •                       | •                       | ٧                       | ٧                       | •                       | V                       | ٧                       | •                       | ٧                       | •                       | ٧                       | ٧                       | ٧                          | •                       | •                           |                            | ٧                       | •                         | •                     | ٧                         | V                     | ٧                  | •                  | ٧                  | ٧                          | ٧                   | ٧                  | ٧                  | •                           | •                  | •                  | •                    | •                  | ٧                  | •                  |   |
| Run        | -       | 0.898                   | 0.694                   | 0.503                   | .422                    | 1.97                    | 0.823                   | 514                     | .592                    | 38                      | 0.704                   | .446                    | 1.1                     | .535                       | 7691                    | .691                        | 4.56                       | 532                     | 0.49                      | r.                    | Ç.                        | D.                    | ស                  | ιΩ                 | လ                  | ۍ<br>ک                     | ω                   | 9                  | 5                  | 5                           | 9                  | ഗ                  | S                    | 2                  | 욘                  | 2                  | ; |
|            |         | v                       | v                       | v                       | v                       | V                       | v                       | v                       | v                       | v                       | ۷                       | v                       | v                       | v                          | v                       | v                           | •                          | v                       | v                         | v                     | ٧                         | v                     | v                  | ٧                  | v                  | v                          | v                   | v                  | v                  | v                           | v                  | v                  | v                    | v                  | v                  | v                  |   |
|            | Units   | ug/L                    | ng/L                    | ng/L                    | ug/L                    | ug/L                    | <b>1</b>                | ug/L                       | J/gn                    | ug/L                        | ug/L                       | ug/L                    | ηĝη                       | ug/L                  | ng/L                      | ارو<br>ا              | Jgn<br>J           | ng/                | 7                  | ug/L                       | ug/L                | ng/L               | ng/L               | ug/L                        | ug/t               | ug/L               | ug/L                 | ng/L               | ug/L               | ng/L               |   |
| Analytical | Method  | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                 | SW 8270                    | SW 8270                 | SW 8270                     | SW 8270                    | SW 8270                 | SW 8270                   | SW 8240               | SW 8240                   | SW 8240               | SW 8240            | SW 8240            | SW 8240            | SW 8240                    | SW 8240             | SW 8240            | SW 8240            | SW 8240                     | SW 8240            | SW 8240            | SW 8240              | SW 8240            | SW 8240            | SW 8240            |   |
|            | Specie  | N-Nitrosopiperidine     | Naphthalene             | Nitrobenzene            | Pentachlorobenzene      | Pentachloronitrobenzene | Pentachlorophenol       | Phenacetin              | Phenanthrene            | Phenol                  | Pronamide               | Pyrene                  | Pyridine                | bis(2-Chioroethoxy)methane | bis(2-Chloroethyl)ether | bis(2-Chloroisopropyl)ether | bis(2-Ethythexyl)phthalate | p-Chloroaniline         | p-Dimethytaminoazobenzene | 1,1,1-Trichloroethane | 1,1,2,2-Tetrachloroethane | 1,1,2-Trichloroethane | 1,1-Dichloroethane | 1,1-Dichloroethene | 1,2-Dichloroethane | 1,2-Dichloroethene (total) | 1,2-Dichloropropane | 2-Butanone (MEK)   | 2-Hexanone         | 4-Methyf-2-pentanone (MIBK) | Acetone            | Benzene            | Bromodichloromethane | Bromoform          | Bromomethane       | Carbon Disulfide   |   |
| Analyte    | Group   | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-volatile | Organics, Semi-votatile | Organics, Semi-volatile | Organics, Semi-volatife    | Organics, Semi-volatile | Organics, Semi-volatile     | Organics, Semi-volatile    | Organics, Semi-votatile | Organics, Semi-volatile   | Organics, Volatile    | Organics, Volatile        | Organics, Volatile    | Organics, Volatile | Organics, Volatife | Organics, Volatile | Organics, Volatife         | Organics, Volatile  | Organics, Volatile | Organics, Votatile | Organics, Votatile          | Organics, Volatile | Organics, Volatile | Organics, Volatile   | Organics, Volatile | Organics, Volatile | Organics, Volatile |   |

### Cooling Water - Page 5

Liquid Stream Data Summary

| coling Water     |  |
|------------------|--|
| Sample Stream: ( |  |

| 2                                     | V V V   | Cnits | Method |
|---------------------------------------|---------|-------|--------|
| V V V V V V V V V V V V V V V V V V V | v v v v |       |        |
| V V V V V V V V V V V V V V V V V V V | v v v   |       | ğ      |
| V V V V V V V                         | v v     | یے    | 절      |
| V V V V V V                           | v       | ng/L  | 5      |
| V V V V V                             | ,       | ئے    | 칠      |
| v v v ;                               | v       | 4     | ş      |
| <b>v</b> v v                          | v       | _     | ᇹ      |
| <b>v</b> v <sup>1</sup>               | ۷,      |       | 촹      |
| <b>v</b> v 1                          | ν,      | ی     | 형      |
| <b>v</b> '                            | ν,      |       | 형      |
| •                                     | v       | ب     | 훩      |
| ٧                                     | v       | بے    | 형      |
| v                                     | ۷,      | پ     | 헣      |
| v                                     | v       | یے    | 뒇      |
| <b>v</b>                              | v       | ب     | ğ      |
| v                                     | ۸       | _1    | ğ      |
| v                                     | ν       |       | ğ      |
| ران مار<br>د                          | ~,<br>v | ng/L  | 3"     |

Sample Stream: Coal Pile Run-off

| Analyte                 | •                          | Analytical | =              |   | Run •                  | Run .  |   |                | 36%   | DF.          |
|-------------------------|----------------------------|------------|----------------|---|------------------------|--------|---|----------------|-------|--------------|
| Group                   | Specie                     | Meriloo    | OFFE           |   | -                      | •      |   | Average        | 5     | Natio        |
| Aldehydes               | Acetaldehyde               | SW 8315    | m/gn           |   | 0.07                   | 0.112  |   | 0.091          | 0.267 |              |
| Aldehydes               | Formaldehyde               | SW 8315    | lm/gu          |   | 0.026                  | 0.088  |   | 0.057          | 0.394 |              |
| Organics, Semi-volatile | 1,2,4,5-Tetrachlorobenzene | SW 8270    | ug/L           | v | 0.709                  |        | ٧ | 0.709          | :     | 100%         |
| Organics, Semi-volatile | 1,2,4-Trichlorobenzene     | SW 8270    | ng/L           | ٧ | 0.725                  |        | v | 0.725          | :     | 100%         |
| Organics, Semi-volatile | 1,2-Dichlorobenzene        | SW 8270    | ľg,            | ٧ | 0.956                  |        | ٧ | 926.0          | :     | 100%         |
| Organics, Semi-volatile | 1,2-Diphenylhydrazine      | SW 8270    | ug/L           | ٧ | 92                     |        | ٧ | <del>5</del>   | :     | 100%         |
| Organics, Semi-volatile | 1,3-Dichlorobenzene        | SW 8270    | ug/L           | ٧ | 0.486                  |        | v | 0.486          | :     | 100%         |
| Organics, Semi-volatile | 1,4-Dichlorobenzene        | SW 8270    | ug/L           | ٧ | 0.991                  |        | ٧ | 0.991          | :     | 100%         |
| Organics, Semi-volatile | 1-Chloronaphthalene        | SW 8270    | ug/L           | ٧ | 0.79                   |        | ٧ | 0.79           | ;     | 100%         |
| Organics, Semi-volatile | 1-Naphthylamine            | SW 8270    | ug/<br>L       | ٧ | 1.91                   |        | ٧ | <del>1</del> . | :     | 100%         |
| Organics, Semi-volatile | 2,3,4,6-Tetrachlorophenol  | SW 8270    | ug/L           | v | 0.617                  |        | ٧ | 0.617          | :     | 100%         |
| Organics, Semi-volatile | 2,4,5-Trichlorophenol      | SW 8270    | ngıl           | ٧ | 0.405                  |        | V | 0.405          | :     | 100%         |
| Organics, Semi-volatile | 2,4,6-Trichlorophenol      | SW 8270    | ug/L           | ٧ | 0.428                  |        | ٧ | 0.428          | :     | 100%         |
| Organics, Semi-volatile | 2,4-Dichlorophenol         | SW 8270    | ug/L           | v | 0.544                  |        | ٧ | 0.544          | ;     | 100%         |
| Organics, Semi-volatile | 2,4-Dimethylphenol         | SW 8270    | P <sub>S</sub> | v | 1.35                   |        | ٧ | 1.35           | ;     | 100%         |
| Organics, Semi-volatile | 2,4-Dinitrophenol          | SW 8270    | ug/L           | ٧ | 8.59                   |        | v | 8.59           | :     | 100%         |
| Organics, Semi-volatile | 2,4-Dinitrotoluene         | SW 8270    | rg,            | ٧ | 0.675                  |        | ٧ | 0.675          | :     | 100%         |
| Organics, Semi-volatile | 2,6-Dichlorophenol         | SW 8270    | rg,            | v | 0.887                  |        | ٧ | 0.887          | :     | 100 <b>%</b> |
| Organics, Semi-volatile | 2,6-Dinitrotoluene         | SW 8270    | ν<br>Ω         | ٧ | 0.425                  |        | v | 0.425          |       | 100%         |
| Organics, Semi-volatile | 2-Chloronaphthalene        | SW 8270    | ₽gu<br>T/gu    | v | 0.396                  |        | v | 0.398          | :     | 100%         |
| Organics, Semi-volatile | 2-Chlorophenol             | SW 8270    | ₽<br>P         | ٧ | 0.937                  |        | ٧ | 0.937          | :     | 100%         |
| Organics, Semi-volatile | 2-Methylnaphthalene        | SW 8270    | rgu<br>T       | ٧ | 0.81                   |        | ٧ | 0.81           | :     | 400%         |
| Organics, Semi-volatile | 2-Methylphenol(o-cresol)   | SW 8270    | ng/L           | v | 0.655                  |        | v | 0.655          | :     | 100%         |
| Organics, Semi-volatile | 2-Naphthylamine            | SW 8270    | √J/Gn          | ٧ | 2.39                   |        | v | 2.39           | ;     | 100%         |
| Organics, Semi-volatile | 2-Nitroaniline             | SW 8270    | ug/L           | ٧ | 0.493                  |        | ٧ | 0.493          | :     | 100%         |
| Organics, Semi-volatile | 2-Nitrophenol              | SW 8270    | ng/L           | ٧ | 0.54                   |        | ٧ | 0.54           | ;     | 100%         |
| Organics, Semi-volatile | 2-Picoline                 | SW 8270    | ų<br>V         | v | <u>4</u> .             |        | V | 1.34           | :     | 100%         |
| Organics, Semi-volatile | 3,3'-Dichlorobenzidine     | SW 8270    | ug/L           | ٧ | 0.601                  |        | v | 0.601          | :     | 100%         |
| Organics, Semi-volatile | 3-Methylcholanthrene       | SW 8270    | rg/            | ٧ | 0.961                  |        | v | 0.961          | ;     | 100%         |
| Organics, Semi-volatile | 3-Nitroaniline             | SW 8270    | ug/L           | v | 0.625                  |        | ٧ | 0.625          | :     | 100%         |
|                         |                            | ပိ         | al Pile        | 2 | Coal Pile Run-off - Pa | Page 1 |   |                |       |              |
|                         |                            |            |                |   |                        | )      |   |                |       |              |

Sample Stream: Coal Pile Run-off

| Group         Specie         Method         Units         1         2         Average         CI         100%           Organica, Semi-votalite         44-Dirdic-2-methylphenyl         SW 8270         ugl.         < 0.918         < 0.916         < 0.919         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%         < 0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                 |                                | Analytical |            |   | Run   | Run   |   |         | <b>%96</b> | 占        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|------------|------------|---|-------|-------|---|---------|------------|----------|
| 4.6-Dintric-Z-methyphenol SW 8270 ug/L < 0.972 < 0.972  4-Aminobpheny   SW 8270 ug/L < 0.986 < 0.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Group                   | Specie                         | Method     | Units      |   | -     | 2     |   | Average | ಶ          | Ratio    |
| 4-Chioro-2-methyphenol SW 8270 ug/L < 0.978 < 0.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                |            |            |   |       |       |   |         |            |          |
| 4-Drinobphenyl SW 8270 ug/L < 0.918 < 0.919 4-Drinophenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phenyl phe     | Organics, Semi-volatile | 4,6-Dinitro-2-methylphenol     | SW 8270    | √g<br>ng/F | ٧ | 0.972 |       | V | 0.972   | ;          | 10%<br>% |
| ## Hormopheny pheny   SW 8270 ug/L   C 0.56   ## Chitoco-Amethyphenic   SW 8270 ug/L   C 0.887   C 0.887   ## Chitoco-Amethypheny ether   SW 8270 ug/L   C 0.648   C 0.768   C 0.768   ## Authrophenic   SW 8270 ug/L   C 0.594   C 0.768   C 0.768   ## Acenaphthyene   SW 8270 ug/L   C 0.587   C 0.287   ## Acenaphthyene   SW 8270 ug/L   C 0.277   C 0.277   ## Acenaphthyene   SW 8270 ug/L   C 0.277   C 0.277   ## Acenaphthyene   SW 8270 ug/L   C 0.277   C 0.277   ## Anthracene   SW 8270 ug/L   C 0.277   C 0.277   ## Anthracene   SW 8270 ug/L   C 0.277   C 0.277   ## Benzo(a) anthracene   SW 8270 ug/L   C 0.477   C 0.47   ## Benzo(a) flucianthene   SW 8270 ug/L   C 0.47   C 0.47   ## Benzo(a) flucianthene   SW 8270 ug/L   C 0.47   C 0.47   ## Benzo(a) flucianthene   SW 8270 ug/L   C 0.598   C 0.598   ## Benzo(a) flucianthene   SW 8270 ug/L   C 0.598   C 0.598   ## Benzo(a) flucianthene   SW 8270 ug/L   C 0.599   C 0.598   ## Benzo(a) flucianthene   SW 8270 ug/L   C 0.599   C 0.599   ## Benzo(a) flucianthene   SW 8270 ug/L   C 0.590   C 0.590   ## Benzo(a) flucianthene   SW 8270 ug/L   C 0.592   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.592   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.592   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.592   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.592   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.592   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) anthracene   SW 8270 ug/L   C 0.590   C 0.590   ## Dibenz(a) ant | Organics, Semi-votatile | 4-Aminobiphenyl                | SW 8270    | ug/L       | ٧ | 0.918 |       | ٧ | 0.918   | :          | 100%     |
| 4-Chloro-3-methylphenol         SW 8270         ug/L         < 0.887         < 0.848            4-Chloro-3-methylphenol (p-cread)         SW 8270         ug/L         < 0.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organics, Semi-volatile | 4-Bromophenyl phenyl           | SW 8270    | ug/L       | ٧ | 0.56  |       | ٧ | 0.56    | ;          | 100%     |
| 4-Chlorophenyl phenyl ether SW 8270 ug/L < 0.648 < 0.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organics, Semi-volatile | 4-Chloro-3-methylphenol        | SW 8270    | ug/L       | ٧ | 0.887 |       | ٧ | 0.887   | :          | 100%     |
| 4-Methylphenol(p-cresol)         SW 8270         ug/L         c         0.706            4-Minophenol         SW 8270         ug/L         c         0.848         c         0.594            7,12-Dimethylbenz(a)anthracene         SW 8270         ug/L         c         0.848         c         0.848            Acenaphthylene (a) Minophenol         SW 8270         ug/L         c         0.587         c         0.587            Acenaphthylene (a) SW 8270         ug/L         c         0.277         c         0.277            Antiline (a) SW 8270         ug/L         c         0.563         c         0.587            Antiline (a) SW 8270         ug/L         c         0.713         c         0.713            Benzo(a)anthracene (a) SW 8270         ug/L         c         0.632         c         0.632          0.632          0.677          0.568          0.632          0.632          0.632          0.632          0.632          0.632          0.632          0.632          <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Organics, Semi-volatile | 4-Chlorophenyl phenyl ether    | SW 8270    | ug/L       | ٧ | 0.648 |       | v | 0.648   | :          | 100%     |
| 4-Nitrophenol         SW 8270         ug/L         < 0.594         < 0.594            4-Nitrophenol         SW 8270         ug/L         < 0.846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Organics, Semi-volatile | 4-Methylphenol(p-cresol)       | SW 8270    | ng/L       | ٧ | 0.706 |       | v | 90.70   | ;          | 100%     |
| 4-Nitrophenol         SW 8270         ug/L         < 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.847         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848         . 0.848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Organics, Semi-volatile | 4-Nitroanitine                 | SW 8270    | ug/L       | ٧ | 0.594 |       | ٧ | 0.594   | :          | 100%     |
| 7,12-Dimethylbenz(a)anthracene         SW 8270         ug/L         < 2.36          2.36            Acenaphthene         SW 8270         ug/L         < 0.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Organics, Semi-volatile | 4-Nitrophenol                  | SW 8270    | ug/L       | ٧ | 0.848 |       | V | 0.848   | :          | 100%     |
| Acenaphthene         SW 8270         ug/L         < 0.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Organics, Semi-volatile | 7,12-Dimethylbenz(a)anthracene | SW 8270    | ug/L       | ٧ | 2.36  |       | ٧ | 2.36    | :          | 100%     |
| Acetophenone         SW 8270         ug/L         < 0.277            Acetophenone         SW 8270         ug/L         < 0.563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organics, Semi-volatile | Acenaphthene                   | SW 8270    | ng/L       | ٧ | 0.587 |       | V | 0.587   | :          | 100%     |
| Acetophenone         SW 8270         ug/L         < 0.563         < 0.563            Antiline         SW 8270         ug/L         < 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Organics, Semi-volatile | Acenaphthylene                 | SW 8270    | ng/L       | ٧ | 0.277 |       | ٧ | 0.277   | :          | 100%     |
| Antiline         SW 8270         ug/L         < 1.14         - 1.14         - 1.14           Anthracene         SW 8270         ug/L         < 0.713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Organics, Semi-volatile | Acetophenone                   | SW 8270    | ng/L       | V | 0.563 |       | V | 0.563   | :          | 100%     |
| Anthracene         SW 8270         ugf.         < 0.713            Benzo(a)anthracene         SW 8270         ugf.         < 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Organics, Semi-volatile | Aniline                        | SW 8270    | J/Gn       | ٧ | 1.14  |       | v | 1.14    | :          | 100%     |
| Benzolajne         SW 8270         ug/L         < 20         < 20            Benzo(a)anthracene         SW 8270         ug/L         < 0.632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Organics, Semi-volatile | Anthracene                     | SW 8270    | ng/L       | ٧ | 0.713 |       | v | 0.713   | :          | 100%     |
| Benzo(a)anthracene         SW 8270         ug/L         < 0.632            Benzo(a)pyrene         SW 8270         ug/L         < 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Organics, Semi-volatile | Benzidine                      | SW 8270    | rg/L       | V | 29    |       | v | 8       | 1          | 100%     |
| Benzo(a)pyrene         SW 8270         ug/L         < 0.47         < 0.47            Benzo(b)fluoranthene         SW 8270         ug/L         < 0.596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Organics, Semi-volatile | Benzo(a)anthracene             | SW 8270    | ng/L       | v | 0.632 |       | v | 0.632   | :          | 100%     |
| Benzo(gh,i)perylene         SW 8270         ug/L         < 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598         - 0.598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Organics, Semi-volatile | Benzo(a)pyrene                 | SW 8270    | ng/L       | ٧ | 0.47  |       | v | 0.47    | :          | 100%     |
| Benzo(g,h,i)perylene         SW 8270         ug/L         < 0.598            Benzo(k)fluoranthene         SW 8270         ug/L         < 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Organics, Semi-votatile | Benzo(b)fluoranthene           | SW 8270    | ng/L       | ٧ | 969'0 |       | v | 969.0   | :          | 100%     |
| Benzo(k)fluoranthene         SW 8270         ug/L         < 1.19            Benzolc acid         SW 8270         ug/L         < 4.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Organics, Semi-votatile | Benzo(g,h,i)perylene           | SW 8270    | rgy<br>V   | ٧ | 0.598 |       | V | 0.598   | :          | 100%     |
| Benzolo acid         SW 8270         ug/L         < 4.86         < 4.86            Benzyl alcohol         SW 8270         ug/L         < 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Organics, Semi-volatile | Benzo(k)fluoranthene           | SW 8270    | ng/L       | V | 1.19  |       | ٧ | 1.19    | :          | 100%     |
| Benzyl alcohol         SW 8270         ug/L         < 1.33            Chrysene         SW 8270         ug/L         < 0.839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Organics, Semi-volatile | Benzoic acid                   | SW 8270    | J/gn       | ٧ | 4.86  |       | v | 4.86    | :          | 100%     |
| Butylbenzylphthalate         SW 8270         ug/L         0.539            Chrysene         SW 8270         ug/L         < 0.821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Organics, Semi-volatile | Benzył akohol                  | SW 8270    | ng/L       | V | 1.33  |       | ٧ | 8       | :          | 100%     |
| Chrysene         SW 8270         ug/L         < 0.821            Di-n-octyfphthalate         SW 8270         ug/L         < 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Organics, Semi-volatile | Butylbenzylphthalate           | SW 8270    | √gn        |   | 0.539 |       |   | 0.539   | :          |          |
| Di-n-octyphthalate         SW 8270         ug/L         < 1.12            Dibenz(a,h)anthracene         SW 8270         ug/L         < 0.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Organics, Semi-volatile | Chrysene                       | SW 8270    | ng/L       | ٧ | 0.821 |       | ٧ | 0.821   | :          | 100%     |
| Dibenz(a,h)anthracene         SW 8270         ug/L         < 0.582            Dibenz(a,j)acridine         SW 8270         ug/L         < 0.713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organics, Semi-volatile | Di-n-octyfphthalate            | SW 8270    | ng/L       | v | 1.12  |       | ٧ | 1.12    | :          | 100%     |
| Dibenz(a,j)acridine         SW 8270         ug/L         < 0.713            Dibenzofuran         SW 8270         ug/L         < 0.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Organics, Semi-volatile | Dibenz(a,h)anthracene          | SW 8270    | J/Bn       | ٧ | 0.582 |       | v | 0.582   | :          | 100%     |
| Dibenzofuran         SW 8270         ug/L         < 0.501         < 0.501            Dibuty/phthalate         SW 8270         ug/L         < 0.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Organics, Semi-volatile | Dibenz(a,j)acridine            | SW 8270    | ng/L       | ٧ | 0.713 |       | ٧ | 0.713   | ;          | 100%     |
| Dibutyphthalate         SW 8270         ug/L         < 0.605            Diethylphthalate         SW 8270         ug/L         < 0.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Organics, Seml-volatile | Dibenzofuran                   | SW 8270    | ng/L       | ٧ | 0.501 |       | ٧ | 0.501   | ;          | 100%     |
| Directhylphthalate SW 8270 ug/L < 0.412 Directhylphenettylamine SW 8270 ug/L < 120 < 120 Coal Pile Run-off - Page 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Organics, Semi-volatile | DibutyIphthalate               | SW 8270    | ng/L       | ٧ | 0.605 |       | ٧ | 0.605   | :          | 100%     |
| Dimethylphenethylamine SW 8270 ug/L < 120 Coal Pile Run-off - Page 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Organics, Semi-volatile | Diethylphthalate               | SW 8270    | ng/L       | ٧ | 0.412 |       | ٧ | 0.412   | ;          | 100%     |
| Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Organics, Semi-volatile | Dimethylphenethylamine         | SW 8270    | ng/L       | ٧ | 8     |       | v | 52      | •          | 100%     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                | ပိ         | al Pile    | 2 |       | age 2 |   |         |            |          |

Sample Stream: Coal Pile Run-off

| Specie         Method         Units         1         2         Average         CI           Diphenylamine         SW 8270         ug/L         < 0.844         < 0.344            Diphenylamine         SW 8270         ug/L         < 0.617         < 0.617            Fluoranthore         SW 8270         ug/L         < 0.783         < 0.617            Fluoranthore         SW 8270         ug/L         < 0.783         < 0.287            Hexachlorobratisene         SW 8270         ug/L         < 0.729         < 0.287            Hexachlorochtratiene         SW 8270         ug/L         < 0.729         < 0.287            Hexachlorochtratiene         SW 8270         ug/L         < 0.729         < 0.729            Hexachlorochtratiene         SW 8270         ug/L         < 0.854         < 0.729            Inderect (1.23-cd)pyrene         SW 8270         ug/L         < 5.00         < 0.729            Inderect (1.23-cd)pyrene         SW 8270         ug/L         < 5.00         < 0.854            N-Mitrosoclimethylene         SW 8270         ug/L         < 0.854                                                                                                                                                                                                                              | Group                   | -lood3                      |         |          |   |       |   |   |         |   |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|---------|----------|---|-------|---|---|---------|---|-------|
| Dimethylphthalete         SW 8270         ugL         c         0.344         c         0.344           Dipherylamine         SW 8270         ugL         c         0.648         c         0.648           Fluoranthene         SW 8270         ugL         c         0.617         c         0.617           Fluoranthene         SW 8270         ugL         c         0.643         c         0.641           Hexachloroberzene         SW 8270         ugL         c         0.647         c         0.648           Hexachloroberzene         SW 8270         ugL         c         0.656         c         0.648           Hexachloroberzene         SW 8270         ugL         c         0.729         c         0.643           Hexachloroberzene         SW 8270         ugL         c         0.729         c         0.644           Hexachlorophymene         SW 8270         ugL         c         0.644         c         0.644           Makhy methanesulforane         SW 8270         ugL         c         0.644         c         0.644           N-Nitrosodipropylamine         SW 8270         ugL         c         0.644         c         0.644           N-A                                                                                                                                               |                         | Specie                      | Method  | Units    |   | -     | 2 |   | Average | 5 | Ratio |
| Dipherylamine         SW 8270         ugl.         < 0.648         < 0.648            Fluorente         SW 8270         ugl.         < 0.617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Organics, Semi-volatile | Dimethylphthalate           | SW 8270 | J/Bn     | ٧ | 0.344 |   | ٧ | 0.344   | : | 100%  |
| Ethyl methanesulinate         SW 8270         ugL         < 0.817         < 0.617           Fluoranthene         SW 8270         ugL         < 0.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | broanies Semi-volatile  | Dichendamine                | SW 8270 | הם<br>הם | V | 0.648 |   | ٧ | 0.648   | ; | 100%  |
| Fluoranthene         SW 8270         ug/L         < 0.783            Hexachloroberacene         SW 8270         ug/L         < 0.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Organics, Semi-volatile | Ethyl methanesulfonate      | SW 8270 | M        | ٧ | 0.617 |   | ٧ | 0.617   | : | 100%  |
| Fluorene         SW 8270         ug/L         < 0.412         < 0.412         < 0.412         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287         < 0.287 | organics, Semi-volatile | Fluoranthene                | SW 8270 | ng/L     | ٧ | 0.783 |   | ٧ | 0.783   | ; | 100%  |
| Hexachlorobrazene         SW 8270         ug/L         c         0.287         c         0.287           Hexachlorobutadlene         SW 8270         ug/L         c         0.856         c         0.656           Hexachlorocyclopentadrene         SW 8270         ug/L         c         0.729         c         0.729           Indeno(1,2,3-cd)pyrene         SW 8270         ug/L         c         0.544         c         0.729           Methyl methanesulforate         SW 8270         ug/L         c         0.544         c         0.352           N-Nitroso-din-butylamine         SW 8270         ug/L         c         1.61         c         0.352           N-Nitroso-din-butylamine         SW 8270         ug/L         c         0.694         c         0.644           N-Nitroso-din-butylamine         SW 8270         ug/L         c         1.63         c         1.61         c           N-Nitroso-din-butylamine         SW 8270         ug/L         c         1.63         c         1.61         c           N-Nitroso-din-putylamine         SW 8270         ug/L         c         1.63         c         1.63         c           Pentachlorobreviere         SW 8270         ug/L<                                                                                                            | organics, Semi-volatile | Fluorene                    | SW 8270 | ug/      | ٧ | 0.412 |   | ٧ | 0.412   | ; | 100%  |
| Hexachlorocyclopentacliene         SW 8270         ug/L         < 10.9            Hexachlorocyclopentacliene         SW 8270         ug/L         < 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rganics, Semi-volatile  | Hexachlorobenzene           | SW 8270 | - Joh    | v | 0.287 |   | V | 0.287   | ; | 100%  |
| Hexachlorocyclopentadiene         SW 8270         ug/L         < 10.9            Hexachlorocyclopentadiene         SW 8270         ug/L         < 0.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | organics, Semi-volatile | Hexachlorobutadiene         | SW 8270 | ng/L     | v | 0.856 |   | ٧ | 0.856   | : | 100%  |
| Hexachloroethane         SW 8270         ug/L         < 0.729         < 0.729            Indenc(1,2,3-cd)pyrene         SW 8270         ug/L         < 0.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rganics, Semi-volatile  | Hexachlorocyclopentadiene   | SW 8270 | ng/L     | ٧ | 10.9  |   | ٧ | 6.01    | : | 100%  |
| Indenc(1,2,3-cd)pyrene   SW 8270   ug/L   < 0.844   < 0.844   < 0.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rganics, Semi-votatile  | Hexachloroethane            | SW 8270 | rg,      | ٧ | 0.729 |   | ٧ | 0.729   | : | ±00±  |
| Septionone   SW 8270   Ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rganics, Semi-volatile  | Indeno(1,2,3-cd)pyrene      | SW 8270 | rg/      | ٧ | 0.644 |   | v | 0.644   | ; | 100%  |
| Methyl methanesulfonate         SW 8270         ug/L         < 161            N-Nitroso-din-butylamine         SW 8270         ug/L         < 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rganics, Semi-volatile  | Isophorone                  | SW 8270 | ng/L     | v | 0.352 |   | v | 0.352   | ; | 100%  |
| N. Nitroso-di-n-butylamine         SW 8270         ugfL         < 1.61         < 1.61            N-Nitrosodimethylamine         SW 8270         ugfL         < 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rganics, Semi-volatile  | Methyl methanesulfonate     | SW 8270 | ng/L     | ٧ | 25    |   | ٧ | ଜ       | : | 100%  |
| N-Nitrosodimethylamine         SW 8270         ug/L         < 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 163         - 16                                              | rganics, Semi-volatite  | N-Nitroso-di-n-butylamine   | SW 8270 | J/Ĝn     | ٧ | 1.61  |   | ٧ | 1.61    | : | 100%  |
| N-Nitrosodiphenylarnine         SW 8270         ug/L         < 0.694            N-Nitrosodipropylarnine         SW 8270         ug/L         < 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rganics, Semi-volatile  | N-Nitrosodimethylamine      | SW 8270 | ď,       | ٧ | 1.63  |   | ٧ | 1.63    | ; | 100%  |
| N-Nitrosodipropylamine         SW 8270         ug/L         < 0.921            N-Nitrosodipropylamine         SW 8270         ug/L         < 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rganics, Semi-volatile  | N-Nitrosodiphenylamine      | SW 8270 | ug/L     | v | 0.694 |   | ٧ | 0.694   | : | 100%  |
| N-Nitrosopiperidine         SW 8270         ug/L         < 1.16            Naphthalene         SW 8270         ug/L         < 0.894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rganics, Semi-volatile  | N-Nitrosodipropylamine      | SW 8270 | 7/Bn     | ٧ | 0.921 |   | ٧ | 0.921   | ; | 100%  |
| Naphthalene         SW 8270         ug/L         < 0.894            Nitrobenzene         SW 8270         ug/L         < 0.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rganics, Semi-volatite  | N-Nitrosopiperidine         | SW 8270 | J/Ĝn     | ٧ | 1.16  |   | ٧ | 1.16    | ; | 100%  |
| Niktrobenzene         SW 8270         ug/L         < 0.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rganics, Semi-votatile  | Naphthalene                 | SW 8270 | 'n,      | v | 0.894 |   | v | 0.894   | : | ±00%  |
| Pentachlorobenzene         SW 8270         ug/L         < 0.544         < 0.544         < 0.544           Pentachlorophenol         SW 8270         ug/L         < 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rganics, Semi-volatile  | Nitrobenzene                | SW 8270 | ng/L     | ٧ | 0.648 |   | ٧ | 0.648   | : | 100%  |
| Pentachloronitrobenzene         SW 8270         ug/L         < 2.54            Pentachlorophenol         SW 8270         ug/L         < 0.663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rganics, Semi-volatile  | Pentachlorobenzene          | SW 8270 | ug/L     | v | 0.544 |   | ٧ | 0.544   | : | 100%  |
| Pentachlorophenol         SW 8270         ug/L         < 1.06            Phenacetin         SW 8270         ug/L         < 0.663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rganics, Semi-volatile  | Pentachloronitrobenzene     | SW 8270 | rg/      | ٧ | 2.54  |   | ٧ | 2.54    | : | 100%  |
| Phenacetin         SW 8270         ug/L         < 0.663            Phenarithrene         SW 8270         ug/L         < 0.763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rganics, Semi-votatile  | Pentachlorophenol           | SW 8270 | rg/L     | ٧ | 1.06  |   | ٧ | 1.06    | : | 100%  |
| Phenanthrene         SW 8270         ug/L         < 0.763            Phenol         SW 8270         ug/L         < 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rganics, Semi-volatile  | Phenacetin                  | SW 8270 | ĘŶ       | ٧ | 0.663 |   | ٧ | 0.663   | ; | 100%  |
| Phenol         SW 8270         ug/L         < 0.49           0.49            Pyrene         SW 8270         ug/L         < 0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rganics, Semi-volatile  | Phenanthrene                | SW 8270 | J/Ŝn     | v | 0.763 |   | ٧ | 0.763   | ; | 100%  |
| Pronamide         SW 8270         ug/L         < 0.907            Pyrene         SW 8270         ug/L         < 0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rganics, Semi-volatile  | Phenol                      | SW 8270 | ng/L     | ٧ | 0.49  |   | ٧ | 0.49    | ţ | 100%  |
| Pyrene         SW 8270         ug/L         < 0.574         < 0.574            Pyridine         SW 8270         ug/L         < 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rganics, Seml-volatile  | Pronamide                   | SW 8270 | lg.      | v | 0.907 |   | ٧ | 0.907   | : | 100%  |
| Pyridine         SW 8270         ug/L         < 1.42         < 1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42          1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rganics, Semi-volatile  | Pyrene                      | SW 8270 | √g/L     | v | 0.574 |   | ٧ | 0.574   | : | 100%  |
| bis(2-Chloroethoxy)methane       SW 8270       ug/L       < 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rganics, Semi-volatile  | Pyridine                    | SW 8270 | ng/L     | ٧ | 1.42  |   | ٧ | 1.42    | ; | 100%  |
| bis(2-Chloroethyl)ether SW 8270 ug/L < 0.898 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rganics, Semi-volatile  | bis(2-Chloroethoxy)methane  | SW 8270 | rgo/L    | ٧ | 0.69  |   | v | 0.69    | 1 | 100%  |
| bis(2-Chloroisopropyl)ether SW 8270 ug/L < 0.891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rganics, Semi-volatile  | bis(2-Chloroethyl)ether     | SW 8270 | ng/L     | ٧ | 0.898 |   | ٧ | 0.898   | ; | 100%  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organics, Semi-volatile | bis(2-Chloroisopropyl)ether | SW 8270 | rg,      | ٧ | 0.891 |   | ٧ | 0.891   | : | 100%  |

Sample Stream: Coal Pile Run-off

| Analyte                 |                             | Analytical |              |   | Run   | Run     |   |          | <b>36%</b> | 占            |
|-------------------------|-----------------------------|------------|--------------|---|-------|---------|---|----------|------------|--------------|
| Group                   | Specie                      | Method     | Units        | 1 | -     | 2       |   | Average  | 5          | Ratio        |
| Organics, Semi-volatile | bis(2-Ethylhexyl)phthalate  | SW 8270    | ug/L         |   | 3.3   |         |   | 3.3      | :          |              |
| Organics, Semi-volatile | p-Chloroaniline             | SW 8270    | ng/L         | v | 0.686 |         | v | 989.0    | ;          | 100%         |
| Organics, Semi-volatile | p-Dimethylaminoazobenzene   | SW 8270    | ng/L         | v | 0.632 |         | ٧ | 0.632    | :          | 100 <b>%</b> |
| Organics, Volatile      | 1,1,1-Trichloroethane       | SW 8240    | ng/L         | v | ro.   | ە<br>ما | ٧ | ស        | :          | 100%         |
| Organics, Volatile      | 1,1,2,2-Tetrachloroethane   | SW 8240    | η <b>δ</b> η | v | ıs.   | A<br>TU | ٧ | ιo       | ;          | 100%         |
| Organics, Volatile      | 1,1,2-Trichloroethane       | SW 8240    | ng/          | v | w     | ۸<br>ص  | ٧ | 40       | :          | 100%         |
| Organics, Votatile      | 1,1-Dichloroethane          | SW 8240    | ug/L         | v | ιΩ    | ហ<br>v  | ٧ | က        | :          | 100%         |
| Organics, Volatile      | 1,1-Dichloroethene          | SW 8240    | ug/L         | ٧ | 2     | ۸<br>ان | v | လ        | :          | 100%         |
| Organics, Volatile      | 1,2-Dichloroethane          | SW 8240    | ng/L         | ٧ | S     | v<br>2  | ٧ | တ        | ;          | 100%         |
| Organics, Volatile      | 1,2-Dichloroethene (total)  | SW 8240    | ng/L         | ٧ | 2     | v<br>2  | ٧ | ည        | ;          | 100%         |
| Organics, Volatile      | 1,2-Dichloropropane         | SW 8240    | ng/L         | ٧ | 5     | ۸<br>ص  | ٧ | £        | ;          | 100%         |
| Organics, Volatile      | 2-Butanone (MEK)            | SW 8240    | ug/L         | v | 0     | ^<br>0  | ٧ | 9        | :          | 100%         |
| Organics, Volatile      | 2-Hexanone                  | SW 8240    | ng/L         | ٧ | 0     | ۰<br>5  | ٧ | <b>£</b> | :          | 100%         |
| Organics, Volatile      | 4-Methyl-2-pentanone (MIBK) | SW 8240    | ng/L         | ٧ | 9     | ۰<br>5  | ٧ | 10       | :          | 100%         |
| Organics, Volatile      | Acetone                     | SW 8240    | ug/L         |   | 8     | 20      |   | 4        | 254        |              |
| Organics, Volatile      | Benzene                     | SW 8240    | ng/L         | ٧ | r.    | v<br>v  | V | ιΩ       | :          | 100%         |
| Organics, Volatile      | Bromodichloromethane        | SW 8240    | ug/L         | ٧ | သ     | ۸<br>دن | v | ĸ        | :          | 100%         |
| Organics, Volatile      | Bromoform                   | SW 8240    | ng/L         | v | S     | v<br>v  | ٧ | ß        | :          | 100%         |
| Organics, Volatile      | Bromomethane                | SW 8240    | ng/L         | v | 5     | ۰<br>10 | V | \$       | :          | 100%         |
| Organics, Volatile      | Carbon Disulfide            | SW 8240    | ng/L         | ٧ | S.    | ۸<br>ئ  | ٧ | ស        | :          | 100%         |
| Organics, Volatile      | Carbon Tetrachloride        | SW 8240    | ng/L         | ٧ | SO.   | v<br>v  | v | မာ       | :          | 100%         |
| Organics, Volatile      | Chlorobenzene               | SW 8240    | ng/L         | ٧ | S.    | ۸<br>50 | ٧ | S        | :          | 100%         |
| Organics, Volatile      | Chloroethane                | SW 8240    | ng/L         | v | 10    | ,<br>5  | ٧ | 9        | :          | 100%         |
| Organics, Volatile      | Chloroform                  | SW 8240    | ng/L         | v | S)    | v<br>S  | ٧ | ស        | :          | 100%         |
| Organics, Volatile      | Chloromethane               | SW 8240    | ng/L         | ٧ | 10    | ^<br>10 | ٧ | 9        | :          | 100%         |
| Organics, Volatile      | Dibromochloromethane        | SW 8240    | ng/L         | v | ß     | ۸<br>دۍ | V | ß        | :          | 100%         |
| Organics, Volatile      | Ethylbenzene                | SW 8240    | ug/L         | ٧ | S.    | v<br>v  | ٧ | S        | :          | 100%         |
| Organics, Volatile      | Methylene Chloride          | SW 8240    | ug/L         | ٧ | 2     | 3.5 J   | v | 2        | :          | 71%          |
| Organics, Volatile      | Styrene                     | SW 8240    | ng/L         | ٧ | ro.   | v<br>v  | v | တ        | ;          | 100%         |
| Organics, Volatile      | Tetrachloroethene           | SW 8240    | ng/L         | ٧ | Z.    | so<br>v | v | ß        | :          | 100%         |
|                         |                             |            |              |   |       |         |   |          |            |              |

Coal Pile Run-off - Page 4

| _           |
|-------------|
| ᆴ           |
| 7           |
| Ţ           |
| ≒           |
| ~           |
| _           |
| <u> </u>    |
| ~           |
| =           |
| 4           |
| ò           |
| c)          |
| _           |
| ≕           |
|             |
| E           |
| Ě           |
| êa<br>E     |
| Ě           |
| Gean        |
| frean       |
| frean       |
| ple Stream  |
| nple Strean |
| iple Stream |

| DL<br>Ratio                             | %00I               | 100%               | %00%               | 300                | £00                | %00%                    | %00I                      |
|-----------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------------|---------------------------|
|                                         | _                  | •                  |                    |                    | •                  | •                       |                           |
| 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | :                  | :                  | ;                  | :                  | :                  | :                       | :                         |
| lverage                                 | ro.                | r)                 | 5                  | 5                  | 42                 | വ                       | ហ                         |
| 4                                       | v                  | v                  | v                  | v                  | v                  | v                       | v                         |
| Run<br>2                                | ιo                 | 10                 | 0                  | 0                  | rs<br>S            | r.                      | ıo.                       |
| ~                                       | v                  | v                  | v                  | ٧                  | ٧                  | v                       | v                         |
|                                         |                    |                    |                    |                    |                    |                         |                           |
| ₽ ~                                     | ហ                  | 40                 | 6                  | 5                  | 9                  | လ                       | ഗ                         |
| ľ                                       | v                  | ٧                  | v                  | ٧                  | ٧                  | v                       | ٧                         |
| Units                                   | ng/L               | ng/Ľ               | ng/L               | J/Ĝn               | ųgų.               | ng/L                    | ng/L                      |
| Analytical<br>Method Units              | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240            | SW 8240                 | SW 8240                   |
| Specie                                  | Toluene            | Trichloroethene    | Vinyl acetate      | Vinyl chloride     | Xylenes            | cis-1,3-Dichloropropene | trans-1,3-Dichloropropene |
| Analyte<br>Group                        | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile | Organics, Volatile      | Organics, Volatile        |

### APPENDIX I: DEVELOPMENT OF MASS BALANCE EQUATIONS AND EXAMPLE CALCULATIONS

### **Mass Balances**

Mass balances for ash and trace metals around Plant Yates power generation and emission control systems were calculated as a check on data consistency. Mass balances were calculated for the following processes: boiler, ESP, JBR, and total plant. The mathematical expressions used are developed in the paragraphs below.

A general mass balance equation which applies to any system is:

For all species, the generation term in Equation I-1 is equal to zero. Ash is considered to be a component of coal and not to be generated. Mass balance closure is defined by the following expression:

% Closure = 
$$100 * \frac{Out}{In-Accumulation}$$
 (I-2)

Uncertainties for mass balance closures (95% confidence intervals) were calculated using an error propagation analysis method based on ANSI/SME PTC 19.1-1985, "Measurement Uncertainty." The development of this method is treated in Appendix F.

The following sections detail the development of mass balances for the boiler, ESP, JBR and total plant (power generation and emission control systems). The equations are developed from Equation I-1 above. The purpose of this development is to present the variables considered in each mass balance. The equations presented below are simplified for clarity. The exact equations, which are more complex, are presented in Table I-1.

### Table I-1 Detailed Mass Balance Equations

### Mass Balance About Boiler:

$$Closure = 100 * \frac{(F_{coal} (1 - C_{w,coal}) C_{ash,coal} - Q_{espin} C_{ash,espin}) C_{i,bottomash} + Q_{espin} (C_{i,espin,v} + C_{i,espin,s})}{F_{coal} (1 - C_{w,coal}) C_{i,coal}}$$

### Mass Balance About ESP:

Closure = 
$$100 * \frac{(Q_{\text{capin}} C_{\text{ash,espin}} - Q_{\text{capout}} C_{\text{ash,espout}}) C_{i,\text{collected ash}} + Q_{\text{espout}} (C_{i,\text{espout},v} + C_{i,\text{espout},s})}{Q_{\text{espin}} (C_{i,\text{espin},v} + C_{i,\text{espin},s})}$$

### Mass Balance About JBR:

Closure = 
$$100 * \frac{O_{JBR}}{I_{JBR}}$$

where,

$$I_{JBR} = -\frac{\Delta M_{i}}{\Delta t} + Q_{espout} \left(C_{i,espout,v} + C_{i,espout,s}\right) + \left(F_{return,FT128} + F_{return,FT142} + F_{return,FT150B}\right)$$

$$* C_{i,return} + F_{makeup,FT150A} C_{i,makeup} + F_{ls} \left[\frac{C_{solids,ls} C_{i,solids,ls} + \hat{V}_{i,ls}(1 - C_{solids,ls}) C_{i,liq,ls}}{C_{solids,ls}\hat{V}_{s,ls} + (1 - C_{solids,ls})\hat{V}_{i,ls}}\right]$$

$$O_{JBR} = F_{bdwn \ FT162A} \left[ \frac{C_{solids,bdwn} \ C_{i,solids,bdwn} + \hat{V}_{l,bdwn} \left(1 - C_{solids,bdwn}\right) \ C_{i,liq,bdwn}}{C_{solids,bdwn} \ \hat{V}_{s,bdwn} + \left(1 - C_{solids}\right) \ \hat{V}_{l,bdwn}} \right] + Q_{stackgas} \left(C_{i,stackgas,v} + C_{i,stackgas,s}\right)$$

### Table I-1 (Continued)

$$\begin{split} \frac{\Delta M_{i}}{\Delta t} &= \frac{A_{IBR}}{\Delta t} \left[ C_{i,solida,IBR} \left( \left[ \frac{L_{TBR} C_{solida,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t} - \left[ \frac{L_{TBR} C_{solida,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t} - \frac{L_{TBR} C_{solida,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t-\Delta t} \right] \\ &+ \left[ C_{i,liq,IBR} \left( \left[ \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t} \left[ \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t-\Delta t} \right] \\ &+ \left[ C_{i,liq,IBR} \left( \left[ \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t-\Delta t} \right] \right] \\ &+ \left[ C_{i,liq,IBR} \left( \left[ \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t-\Delta t} \right] \right] \\ &+ \left[ C_{i,liq,IBR} \left( \left[ \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t-\Delta t} \right] \right] \\ &+ \left[ C_{i,liq,IBR} \left( \left[ \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t-\Delta t} \right] \right] \\ &+ \left[ C_{i,liq,IBR} \left( \left[ \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t-\Delta t} \right] \right] \\ &+ \left[ C_{i,liq,IBR} \left( \left[ \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t-\Delta t} \right] \right] \\ &+ \left[ C_{i,liq,IBR} \left( \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}} \right]_{t-\Delta t} \right] \\ &+ \left[ C_{i,liq,IBR} \left( \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR} \right]_{t-\Delta t} \right] \\ &+ \left[ C_{i,liq,IBR} \left( \frac{L_{TBR} \left(1 - C_{solida,IBR} \right) \hat{V}_{i,IBR}}{C_{solida,IBR} \hat{V}_{s,IBR} + \left($$

### Mass Balance About Entire Plant

Closure = 
$$100 * \frac{O_{plant}}{I_{plant}}$$

where,

$$I_{plant} = -\frac{\Delta M_{i}}{\Delta t} + F_{coal} \left(1 - C_{w,coal}\right) C_{i,coal} + \left(F_{return,FT128} + F_{return,FT142} + F_{return,FT150B}\right) C_{i,return} + F_{makeup,FT150A} C_{i,makeup} + F_{ls} \left[\frac{C_{solids,ls} C_{i,solids,ls} + \hat{V}_{l,ls} \left(1 - C_{solids,ls}\right) C_{i,liq,ls}}{C_{solids,ls} \hat{V}_{s,ls} + \left(1 - C_{solids,ls}\right) \hat{V}_{l,ls}}\right]$$

$$\begin{aligned} O_{plant} &= Q_{stackgas} \left( \overset{\bullet}{C}_{i,stackgas,v} + \overset{\bullet}{C}_{i,stackgas,s} \right) \\ &+ F_{bdwn,FT162A} \left[ \frac{\overset{\bullet}{C}_{solids,bdwn} \overset{\bullet}{C}_{i,solids,bdwn} + \mathring{V}_{l,bdwn} \left( 1 - \overset{\bullet}{C}_{solids,bdwn} \right) \overset{\bullet}{C}_{i,liq,bdwn}}{\overset{\bullet}{C}_{solids,bdwn} \overset{\bullet}{V}_{s,bdwn} + \left( 1 - \overset{\bullet}{C}_{solids,bdwn} \right) \mathring{V}_{l,bdwn}} \right] \\ &+ \left[ F_{coal} \left( 1 - \overset{\bullet}{C}_{w,coal} \right) \overset{\bullet}{C}_{ash,coal} - \overset{\bullet}{Q}_{espin} \overset{\bullet}{C}_{ash,espin} \right] \overset{\bullet}{C}_{i,bottomash} \\ &+ \left[ \overset{\bullet}{Q}_{espin} \overset{\bullet}{C}_{ash,espin} - \overset{\bullet}{Q}_{espout} \overset{\bullet}{C}_{ash,espout} \right] \overset{\bullet}{C}_{i,colloctedash} \end{aligned}$$

### Boiler

The following form of Equation I-1 applies to the boiler:

The accumulation term for ash and trace metal species in the boiler is small and was neglected. For ash, Equation I-3 is expressed mathematically as:

$$F_{\text{coal}} C_{\text{ash.coal}} = F_{\text{bottomash}} + Q_{\text{estrin}} C_{\text{ash.estrin}}$$
 (I-4)

Since the bottom ash flow rate could not be measured accurately, Equation I-4 was used to calculate it. The concentrations of trace metal species in combustion air are very low and were neglected. Applied to a trace metal species, Equation I-3 becomes:

$$F_{\text{coal}} C_{i,\text{coal}} = F_{\text{bottomash}} C_{i,\text{bottomash}} + Q_{\text{espin}} C_{i,\text{espin}}$$
 (I-5)

The exact equation used in calculating the data presented in Table 6-2 in Section 6 was obtained by substituting Equation I-4 into Equation I-5 and rewriting in closure format. This equation is located in Table I-1.

### **ESP**

The following form of Equation I-1 applies to the ESP:

The accumulation term for solids and trace metals is small and was neglected. For ash, Equation I-6, expressed mathematically, becomes:

$$Q_{esprin} C_{ash,esprin} = Q_{espout} C_{ash,espout} + F_{collectedash}$$
 (I-7)

Since the collected fly ash flow rate could not be measured, Equation I-7 was used to solve for it. Applied for a trace species, Equation I-6 becomes:

$$Q_{espin} C_{i,espin} = Q_{espout} C_{i,espout} + F_{collectedash} C_{i,collectedash}$$
 (I-8)

The exact equation used in calculating the data presented in Table 6-2 of Section 6 was obtained by substituting Equation I-7 into Equation I-8 and rewriting in closure format. This equation is located in Table I-1.

### **JBR**

The following form of Equation 1 applies to the JBR:

In the JBR, because of potential changes in volume or slurry solids concentration, the accumulation of solids and trace metals was not considered to be negligible over the test period. Mass flows of trace metal species in oxidation air are very low and were neglected. For a trace metal species, Equation I-1 becomes:

$$\frac{dM_{i}}{dt} = Q_{espout} C_{i,espout} + F_{makeup} C_{i,makeup} + F_{return} C_{i,return}$$

$$+ [F_{is} C_{solids,is} + F_{is} C_{liq,is} C_{i,liq,is}]$$

$$- [(F_{bdwn} C_{solids} C_{i,solids} + F_{bdwn} C_{liq,bdwn} C_{i,liq,bdwn}) + Q_{stackgas} C_{i,stackgas}]$$
(I-10)

The accumulation term in Equation I-10 was approximated:

$$\frac{dM_i}{dt} \approx \frac{\Delta M_i}{\Delta t} \tag{I-11}$$

 $\Delta M_i$ , the change in the mass of a species in the JBR over a test period, was calculated with the following equation:

$$\Delta \mathbf{M}_{i} = \mathbf{A}_{JBR} \Delta \begin{bmatrix} \mathbf{L}_{JBR} & \mathbf{C}_{solids,JBR} & \mathbf{C}_{i,solids} + \mathbf{L}_{JBR} & (1 - \mathbf{C}_{solids,JBR}) & \hat{\mathbf{V}}_{1} & \mathbf{C}_{i,liq} \\ \mathbf{C}_{solids,JBR} & \hat{\mathbf{V}}_{s} + (1 - \mathbf{C}_{solids,JBR}) & \hat{\mathbf{V}}_{1} \end{bmatrix}$$
 (I-12)

The exact equation used in calculating the data presented in Table 6-2 of Section 6 was obtained by substituting Equation I-12 into Equation I-10 and rewriting in closure format. This equation is located in Table I-1. Densities used in making the above calculations are as follows: JBR solids (gypsum), 2.32 g/cc; limestone solids (CaCO<sub>3</sub>), 2.72 g/cc; JBR and limestone liquid phase, 1.00 g/cc.

### Total Plant

Equation I-1, applied to the combined power generation/emission control system is:

Since most trace metal species will be removed with the bottom and fly ash, the accumulation term in the JBR will be relatively small in the total plant balance. Accumulations in other vessels have been neglected in previous equations and are also neglected in Equation I-13. Trace metals concentrations in the combustion and oxidation air streams are very low and assumed negligible. Expressed mathematically for a trace species, Equation I-13 becomes:

$$\frac{\Delta M_{i,JBR}}{\Delta t} = F_{coal} C_{i,coal} + F_{return} C_{i,return} + F_{makeup} C_{i,makeup} + [F_{LS} C_{solids,LS} C_{i,solids,LS} + F_{LS} C_{liq,LS} C_{i,liq,LS}] - [Q_{stackgas} C_{stackgas} + F_{bdwn} C_{solids,bdwn} C_{i,solids,bdwn}] - [F_{bdwn} C_{liq,bdwn} C_{i,liq,bdwn}] - [F_{collectedash} C_{i,collectedash} + F_{bottomash} C_{i,bottomash}]$$
(I-14)

The exact equation used in calculating the data presented in Table 6-2 of Section 6 was obtained by substituting Equations I-4 and I-7 into Equation I-14 and rewriting in closure format. This equation is located in Table I-1.

### **Example Calculations**

### Emission Factor

The unit-energy-based emission factors were determined by dividing the mass flow rate of a substance being emitted by the heat input to the boiler during testing. Mathematically, Equation 6-3 of Section 6 can be expressed as:

Emission Factor for Species 
$$i = \frac{Q_{\text{stackgas}} (C_{i,\text{stackgas},s} + C_{i,\text{stackgas},v})}{H_{\text{coal}} F_{\text{coal}} (1 - C_{\text{w,coal}})}$$
 (I-15)

Lead will be used for the following example calculation. The following data were taken from tables in Sections 3 and 5.

 $Q_{\text{stack gas}} = 456,000 \text{ Nm}^3/\text{hr}$ 

 $C_{i,stackgas,s} = 0.50 \,\mu g/Nm^3$ 

 $C_{i,stackgas,v} = \langle 0.22 \ \mu g/Nm^3 \rangle$ ; for calculations, use  $0.11 \ \mu g/Nm^3$ 

 $H_{coal} = 12,700 \text{ Btu/lb}$ 

 $F_{coal} = 91,000 \text{ lb/hr (coal rejects subtracted)}$ 

 $C_{w,coal} = 0.117$  lb water/lb coal

The emission factor for lead is calculated directly from Equation I-15.

Emission Factor, Pb = 2202.6 \* 
$$\frac{456,000 (0.50 + 0.11)}{12,700 * 91,000 (1 - 0.117)} = 0.6 \frac{\text{lb}}{10^{12}\text{Btu}}$$
 (I-16)

### Mass Balance

An example calculation for each of the mass balance equations presented in Table I-1 follows:

In this appendix, aluminum mass balance sample calculations are shown using equations and data from the report. The four sample calculations include boiler closure, ESP closure, JBR closure, and total plant closure.

**Boiler Closure.** The data required and the location of the data found in the report are shown below:

$$C_{i,coal} = 1.45 \times 10^7 \,\mu g/kg$$
 (Table 5-6)

$$F_{coal} = 4.13 \times 10^4 \text{ kg/hr} (9.1 \times 10^4 \text{ lb/hr})$$
 (Table 3-7)

$$C_{w,coal} = 0.117 \text{ kg/kg}$$
 (Table 3-7)

$$C_{ash,coal} = 0.111 \text{ kg/kg}$$
 (Table 3-7)

$$Q_{espin} = 2.84 \times 10^5 \text{ dscfm } (4.5 \times 10^5 \text{ Nm}^3/\text{hr})$$
 (Table 3-7)

$$C_{ash,cspin} = 3.64 \text{ gr/dscf } (0.00896 \text{ kg/Nm}^3)$$
 (Table 3-7)

$$C_{i,bottomash} = 7.61 \times 10^7 \,\mu\text{g/kg} \tag{Table 5-7}$$

$$C_{i,espin,s} = 8.7 \times 10^5 \,\mu g/Nm^3$$
 (Table 5-2)

$$C_{i,espin,v} = 146 \ \mu g/Nm^3$$
 (Table 5-2)

The material balance around the boiler is represented by the following equation:

$$Closure_{boller} = 100 * \frac{(F_{coal} (1 - C_{w,coal}) C_{ash,coal} - Q_{aspin} C_{ash,coal}) C_{i,bottomash} + Q_{aspin} (C_{i,capin,v} + C_{i,aspin,e})}{F_{coal} (1 - C_{w,coal}) C_{i,coal}}$$

Substitution of the values listed above results in the following boiler closure for aluminum:

 $Closure_{boiler} = 74\%$ 

**ESP Closure.** The data used in calculating the material balance closure around the ESP are shown as follows:

$$Q_{espin} = 2.84 \times 10^5 \text{ dscfm } (4.5 \times 10^5 \text{ Nm}^3/\text{hr})$$
 (Table 3-7)

$$C_{i,espin,s} = 8.7 \times 10^5 \,\mu g/Nm^3$$
 (Table 5-2)

$$C_{i,espin,v} = 146 \ \mu g/Nm^3$$
 (Table 5-2)

$$Q_{espout} = Q_{espin} (4.5 \times 10^5 \text{ Nm}^3/\text{hr})$$
 (Table 3-7)

$$C_{i,expout,s} = 1.21 \times 10^4 \ \mu g/Nm^3$$
 (Table 5-2)

$$C_{i,espout,v} = 57.5 \ \mu g/Nm^3$$
 (Table 5-2)

$$C_{\text{sub-expin}} = 3.64 \text{ gr/dscf} (8.96 \times 10^{-3} \text{ kg/Nm}^3)$$
 (Table 3-7)

$$C_{ash,espout} = 0.0577 \text{ gr/dscf } (1.42 \times 10^4 \text{ kg/Nm}^3)$$
 (Table 3-7)

$$C_{i,collectedash} = 9.8 \times 10^7 \,\mu\text{g/kg} \tag{Table 5-7}$$

The material balance closure equation for the ESP is represented by the following equation:

Closure<sub>ESP</sub> = 
$$100 * \frac{(Q_{espin} C_{sch,espin} - Q_{espont} C_{sch,espont}) C_{i,collected ash} + Q_{espont} (C_{i,espont,v} + C_{i,espont,v})}{Q_{espin} (C_{i,espin,v} + C_{i,espin,s})}$$

After substitution of the data presented above into this equation, the material balance closure for aluminum around the ESP is calculated to be:

$$Closure_{esp} = 101\%$$

 $L_{IBR,t} = 4.3 \text{ m}$ 

JBR Closure. Unlike the other unit operations considered at Plant Yates, the accumulation term for the JBR could be important in the material balance calculations. This is because the residence time of the slurry in the JBR is much greater than any of the sampling times. The first step shown is the calculation for one of the runs in Test Period 1. An average accumulation rate was calculated for each test period; the average of these was then used in the mass balance calculations.

Data required to calculate accumulation are as follows:

$$C_{i,liq,JBR} = 10.7 \text{ mg/L } (1.07 \text{ x } 10^7 \,\mu\text{g/m}^3) \qquad \qquad (App. \ H, \ Run-1)$$

$$A_{JBR} = 127 \ m^2 \qquad \qquad (Design \ Drawings)$$

$$\Delta t = 8 \ hr \qquad \qquad (Run \ 1)$$

$$C_{i,solids,JBR} = 1.03 \ x \ 10^6 \,\mu\text{g/kg} \qquad \qquad (App. \ H, \ Run \ 1)$$

$$L_{JBR,l-\Delta t} = 4.29 \ m \qquad \qquad (Average \ in \ Table \ 6-1)$$

$$V_{s,JBR} = 0.000431 \ m^3/\text{kg } (Sp. \ Gr. = 2.32) \qquad \qquad (App. \ I, \ p. \ 6)$$

$$V_{t,JBR} = 0.001 \ m^3/\text{kg } (Sp. \ Gr. = 1.0) \qquad \qquad (App. \ I, \ p. \ 6)$$

$$C_{solids,JBR,t-\Delta t} = 0.222 \ \text{kg/kg} \qquad \qquad (Average \ \% \ solids \ in \ Table \ 6-1)$$

$$C_{solids,JBR,t} = 0.223 \ \text{kg/kg} \qquad \qquad (Average \ \% \ solids \ in \ Table \ 6-1)$$

(Average level in Table 6-1)

The accumulation term  $(\Delta m_i/\Delta t)$  is represented by the following equations. The change in mass of aluminum contained in the JBR during the run is calculated:

$$\Delta \mathbf{m}_{i} = \mathbf{A}_{\mathbf{JBR}} \begin{bmatrix} \mathbf{C}_{\mathbf{Lsolids},\mathbf{JBR}} & \frac{\mathbf{L}_{\mathbf{JER},t} \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t}}{\mathbf{C}_{\mathbf{solids},\mathbf{JBR}}(\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}} \\ + \mathbf{C}_{\mathbf{L}\mathbf{liq},\mathbf{JBR}} & \frac{\mathbf{L}_{\mathbf{JBR},t}(1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}}{\mathbf{C}_{\mathbf{solids},\mathbf{JBR},t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}} \\ - \frac{\mathbf{L}_{\mathbf{JBR},t}(1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}}{\mathbf{C}_{\mathbf{solids},\mathbf{JBR},t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}} \\ - \frac{\mathbf{L}_{\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}}{\mathbf{C}_{\mathbf{solids},\mathbf{JBR},t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}} \\ - \frac{\mathbf{L}_{\mathbf{JBR},t - \Delta t}(1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}}{\mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}} \\ - \frac{\mathbf{L}_{\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}}{\mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}} \\ - \frac{\mathbf{L}_{\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}}{\mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t})\hat{\mathbf{V}}_{\mathbf{L},\mathbf{JBR}}} \\ - \frac{\mathbf{L}_{\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JBR}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JB}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JB}} + (1 - \mathbf{C}_{\mathbf{solids},\mathbf{JBR},t - \Delta t}\hat{\mathbf{V}}_{\mathbf{s},\mathbf{JB}$$

The accumulation of aluminum in the JBR during Run 1 is the change in mass divided by the length of the run and is calculated to be:

$$acc = \Delta m/\Delta t$$
  $acc = 1.37 \times 10^8 \mu g/hr$ 

In a similar manner, the accumulations in Runs 2 and 3 were calculated and when combined with the accumulation from Run 1, an average accumulation of  $1.42 \times 10^8 \,\mu\text{g/hr}$  was calculated. This average accumulation is used with the following data to calculate mass balance closure around the JBR:

$$acc_{xxx} = 1.42 \times 10^8 \, \mu g/hr$$

$$Q_{espout} = 2.84 \times 10^5 \text{ dscfm } (4.5 \times 10^5 \text{ Nm}^3/\text{hr})$$
 (Table 3-7)

$$C_{i,espout,s} = 1.21 \times 10^4 \,\mu g/Nm^3$$
 (Table 5-2)

$$C_{i,cspout,v} = 57.5 \ \mu g/Nm^3$$
 (Table 5-2)

F<sub>makeup,FT150A</sub> = 26.8 gal/min (6.09 m³/hr) (Mat'l bal. average in Table 6-1 Mist Elim/Deck Wash [Ash Pond Return])

$$C_{i,makeup} = 0.176 \text{ mg/L} (1.76 \text{ x } 10^5 \mu\text{g/m}^3)$$
 (Table 5-10)

$$F_{\text{return},FT128} = 78.9 \text{ gal/min } (17.9 \text{ m}^3/\text{hr})$$
 (Mat'l bal. average in Table 6-1 Transition Duct PW Flow [Gypsum Pond Return])

$$F_{return,FT142} = 39.9 \text{ gal/min } (9.06 \text{ m}^3/\text{hr})$$
 (Mat'l bal. average in Table 6-1)

$$F_{return,FT150B} = 6.39 \text{ gal/min } (1.45 \text{ m}^3/\text{hr})$$
 (Mat'l bal. average in Table 6-1)

$$C_{i,return} = 2.04 \text{ mg/L} (2.04 \text{ x } 10^6 \mu\text{g/m}^3)$$
 (Table 5-10)

$$F_b = 36.5 \text{ gal/min } (8.29 \text{ m}^3/\text{hr})$$
 (Mat'l bal. average in Table 6-1 Reagent Flow)

$$C_{solids,ls} = 0.361 \text{ kg/kg}$$

(Mat'l bal. average in Table 6-1)

$$C_{i,iq,is} = 6.78 \times 10^{-2} \text{ mg/L} (6.78 \times 10^4 \, \mu\text{g/m}^3)$$

(App. H, Run 3d substituted for Run 3)

 $F_{bdwn,FT162A} = 78.4 \text{ gal/min} (17.8 \text{ m}^3/\text{hr})$ 

(JBR blowdown in Table 6-1)

 $C_{\text{solids,bdwn}} = 0.229 \text{ kg/kg}$ 

(JBR density, mat'l bal. average in Table 6-1)

$$C_{i,solids,bdwn} = 1.1 \times 10^3 \ \mu g/gm \ (1.1 \times 10^6 \ \mu g/kg)$$

(Table 5-9)

$$V_{s,ls} = 0.000367 \text{ m}^3/\text{kg}$$

(App. I, p. 6)

$$V_{i,ls} = 0.001 \text{ m}^3/\text{kg}$$

(App. I, p. 6)

$$V_{s,bdwn} = 0.00431 \text{ m}^3/\text{kg (Sp. Gr.} = 2.32)$$

(App. I, p. 6)

$$V_{Lbdwn} = 0.001 \text{ m}^3/\text{kg (Sp. Gr.} = 1.0)$$

(App. I, p. 6)

$$C_{i,solids,ls} = 756 \ \mu g/gm \ (7.56 \ x \ 10^5 \ \mu g/kg)$$

(Table 5-9)

$$C_{i,lia,bdwn} = 12.3 \text{ mg/L} (1.23 \text{ x } 10^7 \text{ } \mu\text{g/m}^3)$$

(Table 5-10)

$$Q_{\text{stackgas}} = 2.88 \text{ x } 10^5 \text{ dscfm } (4.56 \text{ x } 10^5 \text{ Nm}^3/\text{hr})$$

(Table 3-7)

$$C_{i,\text{stackgas,s}} = 191 \ \mu\text{g}/\text{Nm}^3$$

(Table 5-2)

$$C_{i,\text{stackgas},v} = 4.35 \, \mu \text{g/Nm}^3$$

With these input values, the terms  $I_{SBR}$  and  $O_{JBR}$  can be calculated as shown below:

$$I_{IBR} = -\frac{\Delta M_i}{\Delta t} + Q_{espout} \left( C_{i,espout,v} + C_{i,espout,s} \right) + \left( F_{return,FT128} + F_{return,FT142} + F_{return,FT150B} \right)$$

\* 
$$C_{i,return}$$
 +  $F_{makeup,FT150A}$   $C_{i,makeup}$  +  $F_{ls}$  
$$\left[ \frac{C_{solids,ls} C_{i,solids,ls} + \hat{V}_{l,ls} (1 - C_{solids,ls}) C_{i,liq,ls}}{C_{solids,ls} \hat{V}_{s,ls} + (1 - C_{solids,ls}) \hat{V}_{l,ls}} \right]$$

 $I_{JBR} = 8.32 \times 10^9 \, \mu g/hr$ 

$$O_{JBR} = F_{bdwn \ FT162A} \left[ \frac{C_{solids,bdwn} \ C_{i,solids,bdwn} + \hat{V}_{l,bdwn} \ (1 - C_{solids,bdwn}) \ C_{i,liq,bdwn}}{C_{solids,bdwn} \ \hat{V}_{s,bdwn} + (1 - C_{solids}) \ \hat{V}_{l,bdwn}} \right]$$

$$+ Q_{stackgas} \left( C_{i,stackgas,v} + C_{i,stackgas,s} \right)$$

$$O_{JBR} = 5.44 \times 10^9 \,\mu g/hr$$

Mass balance closure for aluminum around the JBR is calculated to be:

$$Closure_{rbR} = 100 * O_{JbR}/I_{JbR} = 65\%$$

Note that the accumulation of aluminum in the JBR (1.42 x  $10^8$  µg/hr) is small relative to the throughput (outlet equals 5.5 x  $10^9$  µg/hr). However, the accumulation calculations are based on a single concentration and only reflect changes in the JBR density and level.

**Total Plant Closure.** All of the data required for the total plant calculations have been specified in previous calculations. The total flow of aluminum into the plant (minus JBR accumulation) is calculated according to the following equation:

$$\begin{split} I_{plant} &= -\frac{\Delta M_{i}}{\Delta t} + F_{coal} \left(1 - C_{w,coal}\right) C_{i,coal} + \left(F_{return,FT128} + F_{return,FT142} + F_{return,FT150B}\right) C_{i,return} \\ &+ F_{makeup,FT150A} C_{i,makeup} + F_{ls} \left[ \frac{C_{solids,ls} C_{i,solids,ls} + \hat{V}_{l,ls} \left(1 - C_{solids,ls}\right) C_{i,liq,ls}}{C_{solids,ls} \hat{V}_{s,ls} + \left(1 - C_{solids,ls}\right) \hat{V}_{l,ls}} \right] \end{split}$$

Substituting values defined above, the mass flow of aluminum into the plant becomes:

$$I_{plant} = 5.32 \times 10^{11} \, \mu g/hr$$

The total flow of aluminum exiting the plant is calculated with the following equation:

$$\begin{aligned} O_{plant} &= Q_{stackgas} \left( C_{i,stackgas,v} + C_{i,stackgas,s} \right) \\ &+ F_{bdwn,FT162A} \left[ \frac{C_{solids,bdwn} \ C_{i,solids,bdwn} + \hat{V}_{l,bdwn} \left( 1 - C_{solids,bdwn} \right) \ C_{i,liq,bdwn}}{C_{solids,bdwn} \ \hat{V}_{s,bdwn} + \left( 1 - C_{solids,bdwn} \right) \ \hat{V}_{l,bdwn}} \right] \\ &+ \left[ F_{coal} \left( 1 - C_{w,coal} \right) \ C_{ash,coal} - Q_{espin} \ C_{ash,espin} \right] \ C_{i,bottomash} \\ &+ \left[ Q_{espin} \ C_{ash,espin} - Q_{espout} \ C_{ash,espout} \right] \ C_{i,collectedash} \end{aligned}$$

Again, values previously given are substituted, which results in the outlet mass flow for aluminum being:

$$O_{plant} = 3.95 \times 10^{11} \, \mu g/hr$$

Using the mass flows inlet and outlet, the overall plant closure for aluminum is calculated:

$$Closure_{plant} = 100 * O_{plant}/I_{plant} = 75\%$$

### Removal Efficiencies

An example will be developed for lead removal in the JBR. Equation 6-4 applied to the JBR becomes:

$$\% \text{ Removal} = \left[ \frac{1 - Q_{\text{stackgas}} \left( C_{i,\text{stackgas,s}} + C_{i,\text{stackgas,v}} \right)}{Q_{\text{espout}} \left( C_{i,\text{espout,s}} + C_{i,\text{espout,v}} \right)} \right] * 100$$
 (I-17)

The following data were obtained from tables in Sections 3 and 5.

 $Q_{\text{stackyas}} = 456,000 \text{ Nm}^3/\text{hr}$ 

 $C_{i,stackgas,s} = 0.50 \,\mu g/Nm^3$ 

 $C_{i,stackgas,v} = < 0.22 \,\mu g/Nm^3$ ; for calculations use 0.11  $\mu g/Nm^3$ 

 $Q_{ESPout} = 450,000 \text{ Nm}^3/\text{hr}$ 

 $C_{i,ESPout,s} = 18 \mu g/Nm^3$ 

 $C_{i,ESPout,v} = 0.4 \mu g/Nm^3$ 

The removal efficiency for lead is calculated directly from Equation I-17.

Removal Efficiency of JBR for Pb = 
$$\left[1 - \frac{456,000 (0.50 + 0.11)}{450,000 (18 + 0.4)}\right] * 100 = 96.7\%$$
 (I-18)

### **Nomenclature**

A Cross-sectional area, m<sup>2</sup>

C Concentration  $\mu g/Nm^3$  (gas),  $\mu g/L$  (liquid),  $\mu g/kg$  (solid), or weight fraction (ash or water fraction)

F Coal flow rate, kg/hr or water/slurry flow rate, m<sup>3</sup>/hr

L Level, m

### Appendix I: Development of Mass Balance Equations & Example Calculations

Q Gas flow rate, Nm<sup>3</sup>/hr

 $\hat{\mathbf{V}}_{\bullet}\mathbf{V}$  Specific volume, m<sup>3</sup>/kg

**Subscripts** 

bdwn JBR blowdown slurry

bottomash Bottom ash coal Feed coal

collectedash ESP sluiced ash

espin ESP inlet

espout ESP outlet

FTx As indicated by flow transmitter x (flow from data acquisition

system)

i Species, i

JBR JBR l, liq Liquid

ls Limestone slurry

makeup FGD makeup water (ash pond return)

return Gypsum pond return

Solid phase

solids Solids stackgas Stack gas v Vapor phase

w Water